WorldWideScience

Sample records for laminin subunit alpha6beta4

  1. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  2. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential?

    DEFF Research Database (Denmark)

    Rossen, K; Dahlstrøm, K K; Mercurio, A M

    1994-01-01

    We have studied the expression of alpha 6 beta 4 integrin, a carcinoma laminin receptor in ten squamous cell carcinomas (SCCs) and ten basal cell carcinomas (BCCs) of the skin in order to examine whether changes in alpha 6 beta 4 integrin expression may be related to invasive and metastatic...... potential. Monoclonal antibodies specific for each subunit were applied on cryosections, using a three step indirect peroxidase technique. In normal epidermis the basal cells expressed both the alpha 6 and the beta 4 subunits, and the expression was polarized against the basement membrane. In SCCs...

  3. Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding

    NARCIS (Netherlands)

    Geerts, D.; Fontao, L.; Nievers, M. G.; Schaapveld, R. Q.; Purkis, P. E.; Wheeler, G. N.; Lane, E. B.; Leigh, I. M.; Sonnenberg, A.

    1999-01-01

    Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic

  4. Laminin-10 and Its Receptors in Breast Carcinoma: Cooperation of Alpha6Beta4 and Alpha3Beta1 Integrin Laminin Receptors in Breast Carcinoma

    National Research Council Canada - National Science Library

    Awwad, Rana

    2003-01-01

    .... In fact, IRS-1 function might reduce the efficacy of IRS-2 in these processes. Altogether, the findings suggest that IRS-1 is involved in the early stages of breast cancer establishment and that IRS-2 is required for its maintenance and progression to malignancy. (6 figures, 20 refs.)

  5. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160

    OpenAIRE

    Perrin, Arnaud; Rousseau, Jo?l; Tremblay, Jacques P.

    2016-01-01

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adul...

  6. Laminins

    DEFF Research Database (Denmark)

    Rasmussen, Daniel Guldager Kring; Karsdal, Morten Asser

    2016-01-01

    Laminins are a major constituent of the basement membrane which is an intricate meshwork of proteins separating the epithelium, mesothelium and endothelium from connective tissue. There are 15 different laminins each consisting of a unique combination of 3 subchains. The combination of chains con...

  7. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160

    Directory of Open Access Journals (Sweden)

    Arnaud Perrin

    2017-03-01

    Full Text Available Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1 gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR and proteins (immunohistochemistry and western blot were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.

  8. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160.

    Science.gov (United States)

    Perrin, Arnaud; Rousseau, Joël; Tremblay, Jacques P

    2017-03-17

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Differential expression of integrins and laminin-5 in normal oral epithelia

    DEFF Research Database (Denmark)

    Thorup, A K; Dabelsteen, Erik; Schou, S

    1997-01-01

    beta 1 and beta 4 integrins are receptors on epithelial cells mediating cell-extracellular matrix adhesion. Furthermore, alpha 2 beta 1 and alpha 3 beta 1 contribute to cell-cell adhesion. Laminin-5 in epithelial basement membranes (BMs) is a ligand for alpha 6 beta 4 and alpha 3 beta 1. Expressi...

  10. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    Science.gov (United States)

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  11. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium

    DEFF Research Database (Denmark)

    Lotz, M M; Nusrat, A; Madara, J L

    1997-01-01

    laminins 5, 6, and 7 as indicated by immunostaining using laminin subunit-specific monoclonal antibodies (MAbs). A MAb (BM2) specific for the laminin alpha 3 subunit, a component of laminins 5, 6, and 7, completely inhibited the closure of mechanical wounds in T84 monolayers. Confocal microscopy using MAbs...... BM2 (laminin alpha 3 subunit) and 6F12 (laminin beta 3 subunit) revealed that laminin-5 is deposited in a basal matrix that extends into the wound. The MAbs 4E10 (laminin beta 1 subunit) and C4 (laminin beta 2 subunit) stained the lateral membranes between T84 cells. This staining was enhanced...

  12. Merosin/laminin-2 and muscular dystrophy

    DEFF Research Database (Denmark)

    Wewer, U M; Engvall, E

    1996-01-01

    structural organization of domains, some of which have been assigned biological activities, including self-assembly and interactions with other proteins. The particular importance of laminins for the formation and stability of cell adhesion complexes is highlighted in severe inherited diseases of muscle...... and skin. Merosin is the collective name for laminins that share a common subunit, the laminin alpha 2 chain. Merosin-deficient congenital muscular dystrophy (CMD) is caused by mutations in the laminin alpha 2 chain gene. The skin disease Herlitz junctional epidermolysis bullosa is caused by mutations...

  13. A simplified laminin nomenclature

    DEFF Research Database (Denmark)

    Aumailley, Monique; Bruckner-Tudermann, Leena; Carter, William G.

    2005-01-01

    A simplification of the laminin nomenclature is presented. Laminins are multidomain heterotrimers composed of alpha, beta and gamma chains. Previously, laminin trimers were numbered with Arabic numerals in the order discovered, that is laminins-1 to -5. We introduce a new identification system fo...

  14. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations.

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-06-26

    The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations*

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-01-01

    The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. PMID:25953895

  16. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  17. The functions of laminins: lessons from in vivo studies

    DEFF Research Database (Denmark)

    Ryan, M C; Christiano, A M; Engvall, E

    1996-01-01

    of any of these links would result in the same phenotype. Current evidence supports this view, as the absence of integrin alpha 6 beta 4 (Vidal et al., 1995; Dowling et al., 1996; Georges-Labouesse et al., 1996; van der Neut et al., 1996) or of collagen VII (A. M. Christiano and J. Uitto, in press) also...

  18. Anti-laminin-1 Autoantibodies, Pregnancy Loss and Endometriosis

    Directory of Open Access Journals (Sweden)

    Junko Inagaki

    2004-01-01

    Full Text Available Laminin-1 is a major component and multifunctional glycoprotein of basement membranes that consists of three different subunits, α1, β1 and γ1 chains. It is the earliest synthesized network-forming protein during embryogenesis and plays an important role in embryonic development, embryonic implantation and placentation. We have recently shown that IgG anti-laminin-1 antibodies were significantly associated with recurrent first-trimester miscarriages and with subsequent pregnancy outcome. Interestingly, these antibodies were also observed in patients with endometriosis-associated infertility but not in patients with other causes of infertility, including tubal factors, hormonal and uterine abnormalities. Laminin-α1, -β1 and -γ1 mRNAs have been detected in 90% of endometriotic lesions and all laminin-α1, -β1 and -γ1 chains were localized in the basement membranes of glandular epithelium in endometriotic peritoneal lesions. Western blot analysis showed that anti-laminin-1 antibodies from those patients reacted with all laminin-1's chains. ELISA also confirmed that one of the target epitopes for these antibodies was located in a particular region of the laminin-1 molecule, i.e. the carboxyl-terminal globular G domain of α1 chain. IgM monoclonal anti-laminin-1 autoantibody, that we recently established, also recognized the G domain. Anti-laminin-1 antibodies from mice immunized with –mouse— laminin-1, caused a higher fetal resorption rate with lower embryonic and placental weights. Thus, anti-laminin-1 antibodies may be important in development of autoimmune-mediated reproductive failures and the assessment of the antibodies may provide a novel non-invasive diagnosis of endometriosis.

  19. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  20. Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion

    DEFF Research Database (Denmark)

    van Wijk, Xander M.; Döhrmann, Simon; Hallstrom, Bjorn

    2017-01-01

    cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human...... LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2β1γ1/laminin-α2β2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2...

  1. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  2. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  3. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...... adhesion of G361 cells to sulfatide or seminolipid (galactosylalkylacyl-glycerol-I3-sulfate) but not to other lipids is strongly stimulated and requires only 25 fmol/mm2 of adsorbed lipid. The effects of laminin and sulfatide on adhesion are synergistic, suggesting that laminin is mediating adhesion...... by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed on the plastic. Although thrombospondin binds to sulfatides and G361 cells, it does not enhance, but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide. In contrast, C32 melanoma cells also adhere...

  4. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A

    1987-01-01

    Two monoclonal antibodies (LAM-A and LAM-B) specific for laminin from normal and neoplastic parietal yolk sac (PYS) cells were produced in rats immunized with a mouse yolk sac carcinoma cell line. Both antibodies immunoprecipitated the 400,000- and 200,000-Da chains of laminin and reacted...... with purified PYS laminin in ELISA. LAM-A reacted with mouse and rat PYS laminin, whereas LAM-B reacted only with mouse PYS laminin. Formaldehyde- and methanol-fixed adult and fetal somatic tissues were immunohistochemically unreactive with either of the two antibodies. In acetone-fixed tissue sections, both...

  5. A fractal nature for polymerized laminin.

    Directory of Open Access Journals (Sweden)

    Camila Hochman-Mendez

    Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  6. A fractal nature for polymerized laminin.

    Science.gov (United States)

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  7. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system.

    Science.gov (United States)

    Chon, Brian H; Lee, Esther J; Jing, Liufang; Setton, Lori A; Chen, Jun

    2013-10-02

    ). Differentiated HUCMSCs under all conditions were found to contain glycosaminoglycan, expressed extracellular matrix proteins of collagen II and laminin α5, and laminin receptors (integrin α3 and β4 subunits). However, neither growth factor treatment generated distinct differences in NP-like phenotype for HUCMSC as compared with no-serum conditions. HUCMSCs have the potential to differentiate into cells sharing features with immature NP cells in a laminin-rich culture environment and may be useful for IVD cellular therapy.

  8. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, Alis Karabulut; Reibel, J.; Schjødt, Morten

    1998-01-01

    Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas......Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas...

  9. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  10. Secondary reduction of alpha7B integrin in laminin alpha2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle.

    Science.gov (United States)

    Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T

    1999-03-01

    The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even

  11. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells†

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A.; Gard, Jaime M.C.; Sroka, Isis C.; Strautman, Stephanie R.; Nagle, Raymond B.; Morrissey, Colm; Knudsen, Beatrice S.; Cress, Anne E.

    2017-01-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modelling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual) of 3.25min−1, 3-fold faster than α3 integrin (1.0 min−1), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min−1), and significantly slower than the unrelated transferrin receptor (CD71) (15 min−1). Silencing of α3 integrin protein expression in DU145, PC3 and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8 fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. This article is protected by copyright. All rights reserved PMID:27509031

  12. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E

    2017-05-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (k actual ) of 3.25 min -1 , threefold faster than α3 integrin (1.0 min -1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min -1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min -1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in k actual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the k actual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  14. The Laminin 511/521 Binding Site on the Lutheran Blood Group Glycoprotein is Located at theFlexible Junction of Ig Domains 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Mankelow, Tosti J.; Burton, Nicholas; Stedansdottir, Fanney O.; Spring, Frances A.; Parsons, Stephen F.; Pesersen, Jan S.; Oliveira, Cristiano L.P.; Lammie, Donna; Wess, Timothy; Mohandas, Narla; Chasis, Joel A.; Brady, R. Leo; Anstee, David J.

    2007-07-01

    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the {alpha}5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vasocclusive events that are an important cause of morbidity in sickle cell disease. Using X-ray crystallography, small angle X-ray scattering and site directed mutagenesis we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease.

  15. Laminins and cancer stem cells: Partners in crime?

    Science.gov (United States)

    Qin, Yan; Rodin, Sergey; Simonson, Oscar E; Hollande, Frédéric

    2017-08-01

    As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Laminin-5 Degradation Due to Mustard in Cultured Normal Human Epidermal Keratinocytes (NHEK)

    National Research Council Canada - National Science Library

    Ray, Prabhati; Jin, Xiannu; Leng, Yan; Li, Zhuangwu; Ray, Radharaman

    2003-01-01

    .... We observed that in NHEK, mustards degrade laminin-5. Calmodulin antagonist, W7 or the serine protease inhibitor, TLCK prior to mustard exposure prevented mustard-induced degradation of laminin-5...

  17. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

    Science.gov (United States)

    Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J

    1998-01-01

    Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226

  18. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  19. Carcinoma-associated perisinusoidal laminin may signal tumour cell metastasis to the liver

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    using chain-specific monoclonal antibodies against B2 laminin. In an ex vivo assay, viable tumour cells (Panc-1 and clone A) were found to bind with remarkable specificity to frozen sections of liver tissue containing perisinusoidal laminin as opposed to liver tissues without laminin. We suggest...

  20. Laminin in the anterior pituitary gland of the rat. Laminin in the gonadotrophic cells correlates with their functional state

    DEFF Research Database (Denmark)

    Holck, S; Albrechtsen, R; Wewer, U M

    1987-01-01

    The distribution pattern of laminin in the rat anterior pituitary gland under physiological and hormonally altered conditions was studied immunohistochemically. Intense immunoreactivity of the capillaries and of the basement membranes surrounding parenchymal cells was found. Five to 10......% of the parenchymal cells of normal adult rat pituitary gland exhibited also intense positive cytoplasmic staining. These were identified as gonadotrophic cells on the basis of their topographic distribution and typical 700-nm light bodies. By immunoelectron microscopy it was shown that the light bodies contain...... laminin and the number of light bodies reflects the hormonal activity of the gonadotrophic cells of the rat pituitary gland....

  1. The role of laminins in cartilaginous tissues: from development to regeneration.

    Science.gov (United States)

    Sun, Y; Wang, T L; Toh, W S; Pei, M

    2017-07-21

    As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  2. The role of laminins in cartilaginous tissues: from development to regeneration

    Directory of Open Access Journals (Sweden)

    Y Sun

    2017-07-01

    Full Text Available As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells’ proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  3. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C

    2001-01-01

    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells......, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential...

  4. LAMININS IN COLORECTAL CANCER: EXPRESSION, FUNCTION, PROGNOSTIC POWER AND MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2017-01-01

    Full Text Available Extracellular matrix (ECM proteins are a major component of the tumor stroma. Laminins emerge as one of the main families of ECM proteins with signaling properties. Apart from the structural function, laminins and products of their degradation affect survival and differentiation of cancer cells, motility of cancer and stromal cells, angiogenesis, invasion into distant organs, and other aspects of cancer development. Here, we discus expression of laminins in colorectal cancer (CRC, studying of laminin functions in in vitro and in vivo models of CRC, and using laminins as prognostic markers of CRC. Recently, we have reported a new approach to assessing prognostic power using classifiers constructed from sets of laminin genes. The method allows for accurate prognosis of CRC and provides additional information that may suggest possible molecular mechanisms of laminin function in CRC progression.

  5. Overexpression of β1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

    International Nuclear Information System (INIS)

    Fujita, Manabu; Khazenzon, Natalya M; Bose, Shikha; Sekiguchi, Kiyotoshi; Sasaki, Takako; Carter, William G; Ljubimov, Alexander V; Black, Keith L; Ljubimova, Julia Y

    2005-01-01

    Laminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the α4 chain from predominantly laminin-9 (α4β2γ1) to predominantly laminin-8 (α4β1γ1) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast. In the present study the expressions of laminin isoforms α1–α5, β1–β3, γ1, and γ2 were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9. Laminin α4 chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin β2 chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin β1 chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 (α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor progression. Additionally, laminin-2 (α2β1γ1) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 (α3β3γ2) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression. These results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast tumor progression. Angiogenic switch

  6. Overexpression of β1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

    Science.gov (United States)

    Fujita, Manabu; Khazenzon, Natalya M; Bose, Shikha; Sekiguchi, Kiyotoshi; Sasaki, Takako; Carter, William G; Ljubimov, Alexander V; Black, Keith L; Ljubimova, Julia Y

    2005-01-01

    Introduction Laminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the α4 chain from predominantly laminin-9 (α4β2γ1) to predominantly laminin-8 (α4β1γ1) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast. Method In the present study the expressions of laminin isoforms α1–α5, β1–β3, γ1, and γ2 were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9. Results Laminin α4 chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin β2 chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin β1 chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 (α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor progression. Additionally, laminin-2 (α2β1γ1) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 (α3β3γ2) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression. Conclusion These results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast

  7. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  8. Changes of laminin beta 2 chain expression in congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Cohn, R D; Herrmann, R; Wewer, U M

    1997-01-01

    We studied the distribution of laminin beta 2 chain in the skeletal muscle basement membrane of 16 patients with congenital muscular dystrophy (CMD) by immunohistochemistry. A dramatic reduction in the laminin beta 2 staining was observed in four patients with classical merosin-negative CMD....... A moderate reduction of laminin beta 2 labelling was observed in four patients with partial merosin deficiency and two patients with merosin-positive CMD. Two patients with merosin-positive CMD had no apparent changes in the expression of laminin beta 2. In three patients and one fetus diagnosed as Walker...

  9. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter......Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...

  10. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  11. Intrathymic laminin-mediated interactions: role in T cell migration and development

    Directory of Open Access Journals (Sweden)

    Wilson eSavino

    2015-11-01

    Full Text Available Intrathymic T cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins, a heterotrimeric protein family of the extracellular matrix. Several laminins are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells. Also, thymocytes and epithelial cells express integrin-type laminin receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the laminin isoform 211 exhibits defective thymocyte differentiation. Several data show haptotactic effects of laminins upon thymocytes, as well as their adhesion on thymic epithelial cells; both effects being prevented by anti-laminin or anti-laminin receptor antibodies. Interestingly, laminin synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate laminin-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of laminin receptors in human thymic epithelial cells, modulates a large number of cell-migration related genes, and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, laminin-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic trafficking events.

  12. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle

    DEFF Research Database (Denmark)

    Wewer, U M; Thornell, L E; Loechel, F

    1997-01-01

    and Becker muscular dystrophy. Immunoaffinity chromatography of muscle extracts with a monoclonal antibody to the laminin alpha 2 chain followed by immunoblotting with various antibodies to the beta 2 chain demonstrated the presence of the laminin-4 (alpha 2-beta 2-gamma 1) isoform. Together the present...

  13. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    International Nuclear Information System (INIS)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; Maitz, Manfred F.; Zhao, Anshan

    2016-01-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  14. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin

    DEFF Research Database (Denmark)

    Albrechtsen, R; Nielsen, M; Wewer, U

    1981-01-01

    The distribution of the basement membrane glycoprotein laminin was studied by the immunoperoxidase technique in benign and malignant human breast tissue and in axillary lymph nodes from patients with breast cancer. An antiserum prepared against rat laminin was used. The specificity...

  15. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069 (Germany); Zhao, Anshan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  16. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  17. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    International Nuclear Information System (INIS)

    Linke, Christian; Caradoc-Davies, Tom T.; Proft, Thomas; Baker, Edward N.

    2008-01-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution

  18. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    Energy Technology Data Exchange (ETDEWEB)

    Linke, Christian, E-mail: clin180@ec.auckland.ac.nz [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Caradoc-Davies, Tom T. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Australian Synchrotron, Clayton, Victoria 3168 (Australia); Proft, Thomas [School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Baker, Edward N. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2008-02-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.

  19. Folliculostellate Cells Are Required for Laminin Release from Gonadotrophs in Rat Anterior Pituitary

    International Nuclear Information System (INIS)

    Tsukada, Takehiro; Fujiwara, Ken; Horiguchi, Kotaro; Azuma, Morio; Ramadhani, Dini; Tofrizal, Alimuddin; Batchuluun, Khongorzul; Maliza, Rita; Syaidah, Rahimi; Kikuchi, Motoshi; Yashiro, Takashi

    2014-01-01

    The anterior pituitary gland is organized tissue comprising hormone-producing cells and folliculostellate (FS) cells. FS cells interconnect to form a meshwork, and their cytoplasmic processes are anchored by a basement membrane containing laminin. Recently, we developed a three-dimensional (3D) cell culture that reproduces this FS cell architecture. In this study of the novel function of FS cells, we used transgenic rats that express green fluorescent protein in FS cells for the 3D culture. Anterior pituitary cells were cultured with different proportions of FS cells (0%, 5%, 10%, and 20%). Anterior pituitary cells containing 5–20% FS cells formed round/oval cell aggregates, whereas amorphous cell aggregates were formed in the absence of FS cells. Interestingly, immunohistochemistry showed laminin-immunopositive cells instead of extracellular laminin deposition in FS cell-deficient cell aggregates. Double-immunostaining revealed that these laminin-immunopositive cells were gonadotrophs. Laminin mRNA expression did not differ in relation to the presence or absence of FS cells. When anterior pituitary cells with no FS cells were cultured with FS cell-conditioned medium, the proportion of laminin-immunopositive cells was lower than in control. These results suggest that a humoral factor from FS cells is required for laminin release from gonadotrophs

  20. Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication

    Science.gov (United States)

    Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.

    1998-01-01

    Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164

  1. Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets

    Science.gov (United States)

    Stipp, Christopher S.

    2010-01-01

    Within the integrin family of cell adhesion receptors, integrins α3β1, α6β1, α6β4 and α7β1 make up a laminin-binding subfamily. The literature is divided on the role of these laminin-binding integrins in metastasis, with different studies indicating either pro- or antimetastatic functions. The opposing roles of the laminin-binding integrins in different settings might derive in part from their unusually robust associations with tetraspanin proteins. Tetraspanins organise integrins into multiprotein complexes within discrete plasma membrane domains termed tetraspanin-enriched microdomains (TEMs). TEM association is crucial to the strikingly rapid cell migration mediated by some of the laminin-binding integrins. However, emerging data suggest that laminin-binding integrins also promote the stability of E-cadherin-based cell–cell junctions, and that tetraspanins are essential for this function as well. Thus, TEM association endows the laminin-binding integrins with both pro-invasive functions (rapid migration) and anti-invasive functions (stable cell junctions), and the composition of TEMs in different cell types might help determine the balance between these opposing activities. Unravelling the tetraspanin control mechanisms that regulate laminin-binding integrins will help to define the settings where inhibiting the function of these integrins would be helpful rather than harmful, and may create opportunities to modulate integrin activity in more sophisticated ways than simple functional blockade. PMID:20078909

  2. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois

    2005-01-01

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins

  3. Structural requirement of carboxyl-terminal globular domains of laminin alpha 3 chain for promotion of rapid cell adhesion and migration by laminin-5.

    Science.gov (United States)

    Hirosaki, T; Mizushima, H; Tsubota, Y; Moriyama, K; Miyazaki, K

    2000-07-21

    The basement membrane protein laminin-5, a heterotrimer of laminin alpha3, beta3, and gamma2 chains, potently promotes cellular adhesion and motility. It has been supposed that the carboxyl-terminal globular region of the alpha3 chain consisting of five distinct domains (G1 to G5) is important for its interaction with integrins. To clarify the function of each G domain, we transfected cDNAs for the full-length (wild type (WT)) and five deletion derivatives (DeltaGs) of the alpha3 chain into human fibrosarcoma cell line HT1080, which expressed and secreted the laminin beta3 and gamma2 chains but not the alpha3 chain. The transfectants with the alpha3 chain cDNAs lacking G5 (DeltaG(5)), G4-5 (DeltaG(4-5)), G3-5 (DeltaG(3-5)), and G2-5 (DeltaG(2-5)) secreted laminin-5 variants at levels comparable to that with WT cDNA. However, the transfectant with the cDNA without any G domains (DeltaG(1-5)) secreted little laminin-5, suggesting that the G domains are essential for the efficient assembly and secretion of the heterotrimer alpha3beta3gamma2. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs survived in serum-free medium longer than those with DeltaG(3-5), DeltaG(2-5), and DeltaG(1-5) cDNAs. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs secreted apparently the same size of laminin-5, which lacked G4 and G5 due to proteolytic cleavage between G3 and G4, and these laminin-5 forms potently promoted integrin alpha(3)beta(1)-dependent cell adhesion and migration. However, the laminin-5 forms of DeltaG(3-5) and DeltaG(2-5) hardly promoted the cell adhesion and motility. These findings demonstrate that the G3 domain, but not the G4 and G5 domains, of the alpha3 chain is essential for the potent promotion of cell adhesion and motility by laminin-5.

  4. Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Ragunathan, Preethi; Spellerberg, Barbara; Ponnuraj, Karthe

    2009-01-01

    Laminin-binding protein from S. agalactiae was expressed, purified and crystallized and X-ray diffraction data were collected to 2.5 Å resolution. Laminin-binding protein (Lmb), a surface-exposed lipoprotein from Streptococcus agalactiae (group B streptococcus), mediates attachment to human laminin and plays a crucial role in the adhesion/invasion of eukaryotic host cells. However, the structural basis of laminin binding still remains unclear. In the context of detailed structural analysis, the lmb gene has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals diffracted to a resolution of 2.5 Å and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 56.63, b = 70.60, c = 75.37 Å, β = 96.77°

  5. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  6. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  7. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  8. Laminin enhances the growth of human neural stem cells in defined culture media

    Directory of Open Access Journals (Sweden)

    Lathia Justin D

    2008-07-01

    Full Text Available Abstract Background Human neural stem cells (hNSC have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.

  9. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes.

    Science.gov (United States)

    Noël, Geoffroy; Tham, Daniel Kai Long; Moukhles, Hakima

    2009-07-17

    Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.

  10. Changes in Laminin Chain Expression in Pre- and Postnatal Rat Pituitary Gland

    International Nuclear Information System (INIS)

    Ramadhani, Dini; Tsukada, Takehiro; Fujiwara, Ken; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2014-01-01

    Cell–matrix interaction is required for tissue development. Laminin, a major constituent of the basement membrane, is important for structural support and as a ligand in tissue development. Laminin has 19 isoforms, which are determined by combinational assembly of five α, three β, and three γ chains (eg, laminin 121 is α1, β2, and γ1). However, no report has identified the laminin isoforms expressed during pituitary development. We used in situ hybridization to investigate all laminin chains expressed during rat anterior pituitary development. The α5 chain was expressed during early pituitary development (embryonic day 12.5–15.5). Expression of α1 and α4 chains was noted in vasculature cells at embryonic day 19.5, but later diminished. The α1 chain was re-expressed in parenchymal cells of anterior lobe from postnatal day 10 (P10), while the α4 chain was present in vasculature cells from P30. The α2 and α3 chains were transiently expressed in vasculature cells and anterior lobe, respectively, only at P30. Widespread distribution of β and γ chains was also observed during development. These findings suggest that numerous laminin isoforms are involved in anterior pituitary gland development and that alteration of the expression pattern is required for proper development of the gland

  11. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies

    Directory of Open Access Journals (Sweden)

    Gawlik Kinga I

    2011-03-01

    Full Text Available Abstract Laminin-211 is a cell-adhesion molecule that is strongly expressed in the basement membrane of skeletal muscle. By binding to the cell surface receptors dystroglycan and integrin α7β1, laminin-211 is believed to protect the muscle fiber from damage under the constant stress of contractions, and to influence signal transmission events. The importance of laminin-211 in skeletal muscle is evident from merosin-deficient congenital muscular dystrophy type 1A (MDC1A, in which absence of the α2 chain of laminin-211 leads to skeletal muscle dysfunction. MDC1A is the commonest form of congenital muscular dystrophy in the European population. Severe hypotonia, progressive muscle weakness and wasting, joint contractures and consequent impeded motion characterize this incurable disorder, which causes great difficulty in daily life and often leads to premature death. Mice with laminin α2 chain deficiency have analogous phenotypes, and are reliable models for studies of disease mechanisms and potential therapeutic approaches. In this review, we introduce laminin-211 and describe its structure, expression pattern in developing and adult muscle and its receptor interactions. We will also discuss the molecular pathogenesis of MDC1A and advances toward the development of treatment.

  12. Integrin β4 Regulates Migratory Behavior of Keratinocytes by Determining Laminin-332 Organization*s

    Science.gov (United States)

    Sehgal, Bernd U.; DeBiase, Phillip J.; Matzno, Sumio; Chew, Teng-Leong; Claiborne, Jessica N.; Hopkinson, Susan B.; Russell, Alan; Marinkovich, M. Peter; Jones, Jonathan C. R.

    2010-01-01

    Whether α6β4 integrin regulates migration remains controversial. β4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express β4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type β4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with α6β4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the α6β4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells. PMID:16973601

  13. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  14. De novo deposition of laminin-positive basement membrane in vitro by normal hepatocytes and during hepatocarcinogenesis

    DEFF Research Database (Denmark)

    Albrechtsen, R; Wewer, U M; Thorgeirsson, S S

    1988-01-01

    De novo formation of laminin-positive basement membranes was found to be a distinct morphologic feature of diethylnitrosamine/phenobarbital-induced hepatocellular carcinomas of the rat. The first appearance of extracellularly located laminin occurred in the preneoplastic liver lesions...... (corresponding to neoplastic nodules), and this feature became successively more prominent during the course of hepatocellular carcinoma development. Most groups of tumor cells were surrounded by laminin-positive basement membrane material. The laminin-positive material was also deposited along the sinusoids......, a location where no laminin was seen in normal rat liver. The amount of extractable laminin from hepatocellular carcinomas was significantly higher (approximately 100 ng per mg tissue) than that of normal liver tissue (less than 20 ng per mg). In vitro experiments demonstrated that normal and preneoplastic...

  15. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    Kikkawa, Yamato; Yu, Hao; Genersch, Elke; Sanzen, Noriko; Sekiguchi, Kiyotoshi; Faessler, Reinhard; Campbell, Kevin P.; Talts, Jan F.; Ekblom, Peter

    2004-01-01

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  16. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.

    2001-01-01

    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...... to mouse, rat and human laminin. and show strong immunohistochemical reactivity with basement membranes in human and murine tissue sections. Their properties make them ideal candidates for in vivo applications....

  17. Regulation of Laminin γ2 Expression by CDX2 in Colonic Epithelial Cells Is Impaired During Active Inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Soendergaard, Christoffer; Jørgensen, Steffen

    2017-01-01

    and to assess the influence of inflammation. Transcriptional regulation of LAMC2 was examined by reporter gene assays, overexpression, and shRNA-mediated knock-down of CDX2. CDX2-DNA interactions were assessed by chromatin immunoprecipitation on Caco-2 cells without or with TNF-α, as well as in purified colonic......The expression of Caudal-related homeobox transcription factor 2 (CDX2) is impaired by tumor necrosis factor-α (TNF-α)-mediated activation of nuclear factor-κB (NF-κB) in ulcerative colitis (UC). Laminin subunit γ2 (LAMC2) is an epithelial basement membrane protein implicated in cell migration......, proliferation, differentiation, as well as tumor invasion and intestinal inflammation, and its expression is enhanced by TNF-α in a NF-κB-dependent regulation of the recently identified LAMC2 enhancer. The aim was to determine whether CDX2 is involved in the basal regulation of LAMC2 in epithelial cells...

  18. Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model for Pierson syndrome

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G.; Miner, Jeffrey H.

    2011-01-01

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2−/− mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2−/− mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations. PMID:21876163

  19. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome.

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G; Miner, Jeffrey H

    2011-09-13

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2(-/-) mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2(-/-) mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations.

  20. The diagnostic and biological implications of laminin expression in serous tubal intraepithelial carcinoma.

    Science.gov (United States)

    Kuhn, Elisabetta; Kurman, Robert J; Soslow, Robert A; Han, Guangming; Sehdev, Ann Smith; Morin, Patrick J; Wang, Tian-Li; Shih, Ie-Ming

    2012-12-01

    There is compelling evidence to suggest that serous tubal intraepithelial carcinoma (STIC) is the likely primary site for the development of many pelvic high-grade serous carcinomas (HGSCs). Identifying molecules that are upregulated in STIC is important not only to provide biomarkers to assist in the diagnosis of STIC but also to elucidate our understanding of the pathogenesis of HGSC. In this study, we performed RNA sequencing to compare transcriptomes between HGSC and normal fallopian tube epithelium (FTE), and we identified LAMC1 encoding laminin γ1 as one of the preferentially upregulated genes associated with HGSC. Reverse transcription polymerase chain reaction further validated LAMC1 upregulation in HGSC as compared with normal FTE. Immunohistochemical analysis was performed on 32 cases of concurrent HGSC and STIC. The latter was diagnosed on the basis of morphology, TP53 mutations, and p53 and Ki-67 immunohistochemical patterns. Laminin γ1 immunostaining intensity was found to be significantly higher in STIC and HGSC compared with adjacent FTE in all cases (PSTIC and HGSC cells, laminin γ1 staining was diffuse and intense throughout the cytoplasm. More importantly, strong laminin γ1 staining was detected in all 13 STICs, which lacked p53 immunoreactivity because of null mutations. These findings suggest that the overexpression of laminin γ1 immunoreactivity and alteration of its staining pattern in STICs can serve as a useful tissue biomarker, especially for those STICs that are negative for p53 and have a low Ki-67 labeling index.

  1. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function.

    Directory of Open Access Journals (Sweden)

    Kihoon Nam

    Full Text Available Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.

  3. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    Science.gov (United States)

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  4. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Guan, Y J; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Schreyer, D J, E-mail: niz504@mail.usask.c [Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, S7K 0M7 (Canada)

    2010-12-15

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  5. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    International Nuclear Information System (INIS)

    Zhu, N; Guan, Y J; Chen, X B; Li, M G; Schreyer, D J

    2010-01-01

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  6. A novel biomarker of laminin turnover is associated with mortality and disease progression in chronic kidney disease

    DEFF Research Database (Denmark)

    Nielsen, Signe Holm; Guldager Kring Rasmussen, Daniel; Fenton, Anthony

    2017-01-01

    matrix (ECM) remodeling. The laminin γ1 (LAMC1) chain is a constituent of the laminin types present in the glomerular basement membrane (GBM), and its turnover may be altered in CKD. Fragments of LAMC1 could quantify GBM turnover in human CKD and reflect pathological tissue changes. We developed...

  7. The pattern of distribution of laminin in neurogenic tumors, granular cell tumors, and nevi of the oral mucosa

    DEFF Research Database (Denmark)

    Reibel, J; Wewer, U; Albrechtsen, R

    1985-01-01

    . Accentuated staining was seen in Verocay bodies. In granular cell myoblastomas (GCM), small groups of tumor cells were encircled by laminin-positive material, whereas individual tumor cells were unstained. In nevi, diffusely spread nevus cells were surrounded by a rim of laminin, whereas when arranged...

  8. Laminin-411 Is a Vascular Ligand for MCAM and Facilitates TH17 Cell Entry into the CNS

    Science.gov (United States)

    Flanagan, Ken; Fitzgerald, Kent; Baker, Jeanne; Regnstrom, Karin; Gardai, Shyra; Bard, Frederique; Mocci, Simonetta; Seto, Pui; You, Monica; Larochelle, Catherine; Prat, Alexandre; Chow, Samuel; Li, Lauri; Vandevert, Chris; Zago, Wagner; Lorenzana, Carlos; Nishioka, Christopher; Hoffman, Jennifer; Botelho, Raquel; Willits, Christopher; Tanaka, Kevin; Johnston, Jennifer; Yednock, Ted

    2012-01-01

    TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation. PMID:22792325

  9. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Simian, Marina; Liaw, Jane; Timpl, Rupert; Werb, Zena; Bissell, Mina J..

    2000-02-01

    Nidogen-1 (entactin) acts as a bridge between the extracellular matrix molecules laminin-1 and type IV collagen, and thus participates in the assembly of basement membranes. To investigate the role of nidogen-1 in regulating cell-type-specific gene expression in mammary epithelium, we designed a culture microecosystem in which each component, including epithelial cells, mesenchymal cells, lactogenic hormones and extracellular matrix, could be controlled. We found that primary and established mesenchymal and myoepithelial cells synthesized and secreted nidogen-1, whereas expression was absent in primary and established epithelial cells. In an epithelial cell line containing mesenchymal cells, nidogen-1 was produced by the mesenchymal cells but deposited between the epithelial cells. In this mixed culture, mammary epithelial cells express b-casein in the presence of lactogenic hormones. Addition of either laminin-1 plus nidogen-1, or laminin-1 alone to mammary epithelial cells induced b- casein production. We asked whether recombinant nidogen-1 alone could signal directly for b-casein. Nidogen-1 did not induce b-casein synthesis in epithelial cells, but it augmented the inductive capacity of laminin-1. These data suggest that nidogen-1 can cooperate with laminin-1 to regulate b-casein expression. Addition of full length nidogen-1 to the mixed cultures had no effect on b-casein gene expression; however, a nidogen-1 fragment containing the laminin-1 binding domain, but lacking the type IV collagen-binding domain, had a dominant negative effect on b-casein expression. These data point to a physiological role for nidogen-1 in the basement membrane-induced gene expression by epithelial cells.

  10. Template Based Design of Anti-Metastatic Drugs from the Active Conformation of Laminin Peptide II

    Science.gov (United States)

    2001-01-01

    affords lactam 10 as a 7 X=OH, Y=H Ph2BuSiO HH separable mixture of diastereomers rather 8 x = CI, Y NO2 9 10 than tricycle 11. Treatment of 10 with base...of mimotopes. explain the fact that pre- treatment of laminin with Amongst the phage that mimic the LBP൜ 9 peptide G in solution increases its...of ca6 - Colnagi, M. I. (1994). The simultaneous expression of integrin receptors and of mRNA encoding the puta- c-erbB-2 oncoprotein and laminin

  11. Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5)

    International Nuclear Information System (INIS)

    Zboralski, Dirk; Böckmann, Miriam; Zapatka, Marc; Hoppe, Sabine; Schöneck, Anna; Hahn, Stephan A; Schmiegel, Wolff; Schwarte-Waldhoff, Irmgard

    2008-01-01

    Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of α3-, β3- and γ2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor. Biochemically Smad4 is a transmitter of signals of the TGFβ superfamily of cytokines. We have reported previously, that Smad4 functions as a positive transcriptional regulator of constitutive and of TGFβ-induced transcription of all three genes encoding Laminin-332, LAMA3, LAMB3 and LAMC2. Promoter-reporter constructs harboring 4 kb upstream regions, each of the three genes encoding Laminin-322 as well as deletion and mutations constructs were established. Promoter activities and TGFβ induction were assayed through transient transfections in Smad4-negative human cancer cells and their stable Smad4-positive derivatives. Functionally relevant binding sites were subsequently confirmed through chromatin immunoprecipitation. Herein, we report that Smad4 mediates transcriptional regulation through three different mechanisms, namely through Smad4 binding to a functional SBE site exclusively in the LAMA3 promoter, Smad4 binding to AP1 (and Sp1) sites presumably via interaction with AP1 family components and lastly a Smad4 impact on transcription of AP1 factors. Whereas Smad4 is essential for positive regulation of all three genes, the molecular mechanisms are significantly divergent between the LAMA3 promoter as compared to the LAMB3 and LAMC2 promoters. We hypothesize that this divergence in modular regulation of the three promoters may lay the

  12. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.

    2015-07-26

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  13. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.; Nikodemus, Denise; Besong, Tabot M.D.; Reuten, Raphael; Meier, Markus; Harding, Stephen E.; Winzor, Donald J.; Koch, Manuel; Stetefeld, Jö rg

    2015-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  14. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  15. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    Science.gov (United States)

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Stromal laminin chain distribution in normal, hyperplastic and malignant oral mucosa: relation to myofibroblast occurrence and vessel formation.

    Science.gov (United States)

    Franz, Marcus; Wolheim, Anke; Richter, Petra; Umbreit, Claudia; Dahse, Regine; Driemel, Oliver; Hyckel, Peter; Virtanen, Ismo; Kosmehl, Hartwig; Berndt, Alexander

    2010-04-01

    The contribution of stromal laminin chain expression to malignant potential, tumour stroma reorganization and vessel formation in oral squamous cell carcinoma (OSCC) is not fully understood. Therefore, the expression of the laminin chains alpha2, alpha3, alpha4, alpha5 and gamma2 in the stromal compartment/vascular structures in OSCC was analysed. Frozen tissue of OSCC (9x G1, 24x G2, 8x G3) and normal (2x)/hyperplastic (11x) oral mucosa was subjected to laminin chain and alpha-smooth muscle actin (ASMA) immunohistochemistry. Results were correlated to tumour grade. The relation of laminin chain positive vessels to total vessel number was assessed by immunofluorescence double labelling with CD31. Stromal laminin alpha2 chain significantly decreases and alpha3, alpha4, alpha5 and gamma2 chains and also ASMA significantly increase with rising grade. The amount of stromal alpha3, alpha4 and gamma2 chains significantly increased with rising ASMA positivity. There is a significant decrease in alpha3 chain positive vessels with neoplastic transformation. Mediated by myofibroblasts, OSCC development is associated with a stromal up-regulation of laminin isoforms possibly contributing to a migration promoting microenvironment. A vascular basement membrane reorganization concerning alpha3 and gamma2 chain laminins during tumour angioneogenesis is suggested.

  17. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    Science.gov (United States)

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  18. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    Directory of Open Access Journals (Sweden)

    Tanja Seeger

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521 showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.

  19. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  20. NC1 domain of type VII collagen binds to the beta3 chain of laminin 5 via a unique subdomain within the fibronectin-like repeats.

    Science.gov (United States)

    Chen, M; Marinkovich, M P; Jones, J C; O'Toole, E A; Li, Y Y; Woodley, D T

    1999-02-01

    Type VII collagen, the major component of anchoring fibrils, consists of a central collagenous triple-helical domain flanked by two noncollagenous, globular domains, NC1 and NC2. Approximately 50% of the molecular mass of the molecule is consumed by the NC1 domain. We previously demonstrated that NC1 binds to various extracellular matrix components including a complex of laminin 5 and laminin 6 (Chen et al, 1997a). In this study, we examined the interaction of NC1 with laminin 5 (a component of anchoring filaments). Both authentic and purified recombinant NC1 bound to human and rat laminin 5 as measured by enzyme-linked immunosorbant assay and by binding of 125I-radiolabeled NC1 to laminin 5-coated wells, but not to laminin 1 or albumin. NC1 bound predominantly to the beta3 chain of laminin 5, but also to the gamma2 chain when examined by a protein overlay assay. The binding of 125I-NC1 to laminin 5 was inhibited by a 50-fold excess of unlabeled NC1 or de-glycosylated NC1, as well as a polyclonal antibody to laminin 5 or a monoclonal antibody to the beta3 chain. In contrast, the NC1-laminin 5 interaction was not affected by a monoclonal antibody to the alpha3 chain. Using NC1 deletion mutant recombinant proteins, a 285 AA (residues 760-1045) subdomain of NC1 was identified as the binding site for laminin 5. IgG from an epidermolysis bullosa acquisita serum containing autoantibodies to epitopes within NC1 that colocalized with the laminin 5 binding site inhibited the binding of NC1 to laminin 5. Thus, perturbation of the NC1-laminin 5 interaction may contribute to the pathogenesis of epidermolysis bullosa acquisita.

  1. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy.

    Science.gov (United States)

    Rooney, Jachinta E; Knapp, Jolie R; Hodges, Bradley L; Wuebbles, Ryan D; Burkin, Dean J

    2012-04-01

    Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A. Laminin-α2 is required for the formation of heterotrimeric laminin-211 (ie, α2, β1, and γ1) and laminin-221 (ie, α2, β2, and γ1), which are major constituents of skeletal muscle basal lamina. Laminin-111 (ie, α1, β1, and γ1) is the predominant laminin isoform in embryonic skeletal muscle and supports normal skeletal muscle development in laminin-α2-deficient muscle but is absent from adult skeletal muscle. In this study, we determined whether treatment with Engelbreth-Holm-Swarm-derived mouse laminin-111 protein could rescue MDC1A in the dy(W-/-) mouse model. We demonstrate that laminin-111 protein systemically delivered to the muscles of laminin-α2-deficient mice prevents muscle pathology, improves muscle strength, and dramatically increases life expectancy. Laminin-111 also prevented apoptosis in laminin-α2-deficient mouse muscle and primary human MDC1A myogenic cells, which indicates a conserved mechanism of action and cross-reactivity between species. Our results demonstrate that laminin-111 can serve as an effective protein substitution therapy for the treatment of muscular dystrophy in the dy(W-/-) mouse model and establish the potential for its use in the treatment of MDC1A. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  3. INHERITED PATHOLOGY OF β2-LAMININ (PIERSON SYNDROME: CLINICAL AND GENETIC ASPECTS

    Directory of Open Access Journals (Sweden)

    M.Yu. Kagan

    2010-01-01

    Full Text Available For the last decade a great successes were attained in the study of molecular bases of glomerular diseases. It was certain that the most frequent reasons of congenital and infantile nephrotic syndrome are mutations in the genes of NPHS1, NPHS2, and WT1. Nevertheless, until now, a number of patients, having combination of early nephrotic syndrome with inherent pathology of other organs, which etiology remains un known. These cases continue to be intensively probed. One of the most important recent achievements in understanding of molecular mechanisms of early nephrotic syndrome is the discovery of mutations of gene of LAMB2, encoding β2 laminin, as the cause of Pearson syndrome (OMIM#609049. In this article the author presents the basic genetic and clinical descriptions of this recently identified pathology. Key words: Pearson syndrome, congenital nephrotic syndrome, β2 laminin, malformation of organ of vision. (Pediatric Pharmacology. – 2010; 7(3:114-117

  4. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    ... gene encoding for the prion binding site in bovine fetal fibroblasts. The heterozygous BFF are ready to be used in producing homozygous cattle, which will be applied to study the interaction between prion and the 37-kDa/67-kDa LRP/LR. Key words: Prion, PrPC, PrPSc, 37-kDa/67-kDa laminin receptor, gene targeting.

  5. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  6. Vimentin and laminin are altered on cheek pouch microvessels of streptozotocin-induced diabetic hamsters

    Directory of Open Access Journals (Sweden)

    Jemima Fuentes R Silva

    2011-01-01

    Full Text Available OBJECTIVE: Normal endothelial cells respond to shear stress by elongating and aligning in the direction of fluid flow. Hyperglycemia impairs this response and contributes to microvascular complications, which result in deleterious effects to the endothelium. This work aimed to evaluate cheek pouch microvessel morphological characteristics, reactivity, permeability, and expression of cytoskeleton and extracellular matrix components in hamsters after the induction of diabetes with streptozotocin. METHODS: Syrian golden hamsters (90-130 g were injected with streptozotocin (50 mg/kg, i.p. or vehicle either 6 (the diabetes mellitus 6 group or 15 (the diabetes mellitus 15 group days before the experiment. Vascular dimensions and density per area of vessels were determined by morphometric and stereological measurements. Changes in blood flow were measured in response to acetylcholine, and plasma extravasation was measured by the number of leakage sites. Actin, talin, α-smooth muscle actin, vimentin, type IV collagen, and laminin were detected by immunohistochemistry and assessed through a semiquantitative scoring system. RESULTS: There were no major alterations in the lumen, wall diameters, or densities of the examined vessels. Likewise, vascular reactivity and permeability were not altered by diabetes. The arterioles demonstrated increased immunoreactivity to vimentin and laminin in the diabetes mellitus 6 and diabetes mellitus 15 groups. DISCUSSION: Antibodies against laminin and vimentin inhibit branching morphogenesis in vitro. Therefore, laminin and vimentin participating in the structure of the focal adhesion may play a role in angiogenesis. CONCLUSIONS: Our results indicated the existence of changes related to cell-matrix interactions, which may contribute to the pathological remodeling that was already underway one week after induction of experimental diabetes.

  7. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  8. The role of alpha3beta1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes.

    Science.gov (United States)

    deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R

    2003-02-01

    Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the

  9. The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2011-03-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.

  10. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  11. The Effect of Laminin-1-Doped Nanoroughened Implant Surfaces: Gene Expression and Morphological Evaluation

    Directory of Open Access Journals (Sweden)

    Humberto Osvaldo Schwartz-Filho

    2012-01-01

    Full Text Available Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 μg/mL and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR. Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp. for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold, calcitonin receptor (1.35-fold, and ATPase (1.25-fold. The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold and tumour necrosis factor-α (1.61-fold relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface.

  12. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bustamante, Carlos; Bissell, Mina J.

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.

  13. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.

    Science.gov (United States)

    Buisson, Nicolas; Sirour, Cathy; Moreau, Nicole; Denker, Elsa; Le Bouffant, Ronan; Goullancourt, Aline; Darribère, Thierry; Bello, Valérie

    2014-12-01

    Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells. © 2014. Published by The Company of Biologists Ltd.

  14. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    Science.gov (United States)

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  16. Structural organization of the human and mouse laminin beta2 chain genes, and alternative splicing at the 5' end of the human transcript

    DEFF Research Database (Denmark)

    Durkin, M E; Gautam, M; Loechel, F

    1996-01-01

    We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon-intron organ......We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon...

  17. Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease.

    Science.gov (United States)

    Mak, Ki M; Mei, Rena

    2017-08-01

    Basement membranes provide structural support to epithelium, endothelium, muscles, fat cells, Schwann cells, and axons. Basement membranes are multifunctional: they modulate cellular behavior, regulate organogenesis, promote tissue repair, form a barrier to filtration and tumor metastasis, bind growth factors, and mediate angiogenesis. All basement membranes contain type IV collagen (Col IV), laminin, nidogen, and perlecan. Col IV and laminin self-assemble into two independent supramolecular networks that are linked to nidogen and perlecan to form a morphological discernable basement membrane/basal lamina. The triple helical region, 7S domain and NCI domain of Col IV, laminin and laminin fragment P1 have been evaluated as noninvasive fibrosis biomarkers of alcoholic liver disease, viral hepatitis, and nonalcoholic fatty liver disease. Elevated serum Col IV and laminin are related to degrees of fibrosis and severity of hepatitis, and may reflect hepatic basement membrane metabolism. But the serum assays have not been linked to disclosing the anatomical sites and lobular distribution of perisinusoidal basement membrane formation in the liver. Hepatic sinusoids normally lack a basement membrane, although Col IV is a normal matrix component of the space of Disse. In liver disease, laminin deposits in the space of Disse and codistributes with Col IV, forming a perisinusoidal basement membrane. Concomitantly, the sinusoidal endothelium loses its fenestrae and is transformed into vascular type endothelium. These changes lead to capillarization of hepatic sinusoids, a significant pathology that impairs hepatic function. Accordingly, codistribution of Col IV and laminin serves as histochemical marker of perisinusoidal basement membrane formation in liver disease. Anat Rec, 300:1371-1390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis

    Science.gov (United States)

    Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.

    2016-01-01

    The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294

  19. In vitro Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin

    Directory of Open Access Journals (Sweden)

    Kostas Bougas

    2011-07-01

    Full Text Available Objectives: The aim of the present study was to evaluate calcium phosphate precipitation and the amount of precipitated protein on three potentially bioactive surfaces when adding laminin in simulated body fluid.Material and Methods: Blasted titanium discs were prepared by three different techniques claimed to provide bioactivity: alkali and heat treatment (AH, anodic oxidation (AO or hydroxyapatite coating (HA. A blasted surface incubated in laminin-containing simulated body fuid served as a positive control (B while a blasted surface incubated in non laminin-containing simulated body fuid served as a negative control (B-. The immersion time was 1 hour, 24 hours, 72 hours and 1 week. Surface topography was investigated by interferometry and morphology by Scanning Electron Microscopy (SEM. Analysis of the precipitated calcium and phosphorous was performed by Energy Dispersive X-ray Spectroscopy (EDX and the adsorbed laminin was quantified by iodine (125I labeling.Results: SEM demonstrated that all specimens except for the negative control were totally covered with calcium phosphate (CaP after 1 week. EDX revealed that B- demonstrated lower sum of Ca and P levels compared to the other groups after 1 week. Iodine labeling demonstrated that laminin precipitated in a similar manner on the possibly bioactive surfaces as on the positive control surface.Conclusions: Our results indicate that laminin precipitates equally on all tested titanium surfaces and may function as a nucleation center thus locally elevating the calcium concentration. Nevertheless further studies are required to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.

  20. One-Step Purification of Human Skeletal Muscle Myoblasts and Subsequent Expansion Using Laminin-Coated Surface.

    Science.gov (United States)

    Chowdhury, Shiplu Roy; binti Ismail, Annis; Chee, Sia Chye; bin Laupa, Mohd Suffian; binti Jaffri, Fadhlun; Saberi, Salfarina Ezrina Mohmad; Idrus, Ruszymah Bt Hj

    2015-11-01

    Skeletal myoblasts have been extensively used to study muscle growth and differentiation, and were recently tested for their application as cell therapy and as a gene delivery system to treat muscle and nonmuscle diseases. However, contamination of fibroblasts in isolated cells from skeletal muscle is one of the long-standing problems for routine expansion. This study aimed to establish a simple one-step process to purify myoblasts and maintain their purity during expansion. Mixed cells were preplated serially on laminin- and collagen type I-coated surfaces in a different array for 5, 10, and 15 min. Immunocytochemical staining with antibodies specific to myoblasts was performed to evaluate myoblast attachment efficiency, purity, and yield. It was found that laminin-coated surface favors the attachment of myoblasts. Highest myoblast purity of 78.9% ± 6.8% was achieved by 5 min of preplating only on the laminin-coated surface with a yield of 56.9% ± 3.3%. Primary cells, isolated from skeletal muscle (n = 4), confirm the enhancement of purity through preplating on laminin-coated surface for 5 min. Subsequent expansion after preplating enhanced myoblast purity due to an increase in myoblast growth than fibroblasts. Myoblast purity of ∼ 98% was achieved when another preplating was performed during passaging. In conclusion, myoblasts can be purified and efficiently expanded in one step by preplating on laminin-coated surface, which is a simple and robust technique.

  1. Growth hormone in the presence of laminin modulates interaction of human thymic epithelial cells and thymocytes in vitro

    Directory of Open Access Journals (Sweden)

    Marvin Paulo Lins

    Full Text Available BACKGROUND: Several evidences indicate that hormones and neuropeptides function as immunomodulators. Among these, growth hormone (GH is known to act on the thymic microenvironment, supporting its role in thymocyte differentiation. The aim of this study was to evaluate the effect of GH on human thymocytes and thymic epithelial cells (TEC in the presence of laminin. RESULTS: GH increased thymocyte adhesion on BSA-coated and further on laminin-coated surfaces. The number of migrating cells in laminin-coated membrane was higher in GH-treated thymocyte group. In both results, VLA-6 expression on thymocytes was constant. Also, treatment with GH enhanced laminin production by TEC after 24 h in culture. However, VLA-6 integrin expression on TEC remained unchanged. Finally, TEC/thymocyte co-culture model demonstrated that GH elevated absolute number of double-negative (CD4-CD8- and single-positive CD4+ and CD8+ thymocytes. A decrease in cell number was noted in double-positive (CD4+CD8+ thymocytes. CONCLUSIONS: The results of this study demonstrate that GH is capable of enhancing the migratory capacity of human thymocytes in the presence of laminin and promotes modulation of thymocyte subsets after co-culture with TEC.

  2. Growth Factor and Laminin Effect with Muscular Fiber Sheath on Repairing of the Sciatica Nerve

    Directory of Open Access Journals (Sweden)

    S Torabi

    2014-01-01

    Background & aim: Peripheral nerve injuries which can lead to a physical disability. If the defect is very low, direct suture without tension on both ends of the cut nerve regeneration is considered as a standard procedure. Otherwise, to reconstruct the axons, the gap must be filled by graft material in order to the guidance. Due to the similarity of the matrix tubular skeletal muscle and nerve muscles graft was used to repair in this study. Methods: In the present experimental study, 42 female Wistar rats were divided into three groups and underwent surgery. In the first group a narrow strip of muscle was prepared by freezing – thawing, and later sutured between the distal and proximal sciatic nerve. In the second group, the gap caused by muscle graft was regenerated and the nerve growth factor and laminin was injected into the graft. In the control group, the two ends of the cut nerve were hidden beneath the adjacent muscles. Next, a group of rats with sciatic functional index was investigated for the behavioral. On the other group were examined for histological studies after two months. Results: Sciatic functional index and Mean counts of myelinated fibers in two graft groups compared with the control group was significant p<0.05. Statistical analysis was performed using ANOVA test. Conclusion: co-axially aligned muscle grafts were an appropriate alternative substitute for repairing. It seems that the nerve growth factor and laminin have a positive role in axonal regeneration and functional recovery acceleration. Key words: Sciatic Functional Index, muscle graft, NGF, Laminin

  3. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  4. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-01-01

    Highlights: ► We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. ► YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. ► There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. ► The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. ► The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929–933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  5. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  6. Double immunohistochemical staining with laminin 5 (γ2 chain) and collagen IV in colorectal neoplasms

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Bzorek, Michael; Warnecke, Mads

    2016-01-01

    divided according to the primary histopathological diagnoses of tubular adenoma, tubulovillous adenoma, adenoma with pseudoinvasion and glandular adenocarcinoma stages pT1, pT2 or pT3, were included in the study. In normal colonic mucosa, no expression of laminin 5 staining was observed. BM was always...... as a supplement for the diagnosis of pT1 CRC. In adenomas, the double staining highlights the areas for the pathologist to pay extra attention. By itself, the double staining cannot determine whether or not there is invasion. Morphology remains the single most important factor in differentiating adenoma...

  7. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    International Nuclear Information System (INIS)

    Cação-Benedini, L.O.; Ribeiro, P.G.; Prado, C.M.; Chesca, D.L.; Mattiello-Sverzut, A.C.

    2014-01-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres

  8. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cação-Benedini, L.O.; Ribeiro, P.G. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Prado, C.M.; Chesca, D.L. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattiello-Sverzut, A.C. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  9. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  10. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence

    Directory of Open Access Journals (Sweden)

    André Alves Dias

    2012-12-01

    Full Text Available When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp, a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

  11. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    International Nuclear Information System (INIS)

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi; Nakatsuji, Norio; Suemori, Hirofumi

    2008-01-01

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin α6β1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin α6β1 expressed on hESCs

  12. Expression of periglandular tenascin-C and basement membrane laminin in normal prostate, benign prostatic hyperplasia and prostate carcinoma

    NARCIS (Netherlands)

    Xue, Y.; Li, J.; Latijnhouwers, M. A.; Smedts, F.; Umbas, R.; Aalders, T. W.; Debruyne, F. M.; de la Rosette, J. J.; Schalken, J. A.

    1998-01-01

    To evaluate the structural relationship of the distribution between tenascin (tenascin-C, an extra-cellular matrix glycoprotein involved in stromal-epithelial interactions in both normal and pathological conditions) and laminin, an important component of the basement membrane, in normal and

  13. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    Science.gov (United States)

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  14. Laminin α2 chain-deficiency is associated with microRNA deregulation in skeletal muscle and plasma

    Directory of Open Access Journals (Sweden)

    Johan eHolmberg

    2014-07-01

    Full Text Available MicroRNAs (miRNAs are widespread regulators of gene expression, but little is known of their potential roles in congenital muscular dystrophy type 1A (MDC1A. MDC1A is a severe form of muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. To gain insight into the pathophysiological roles of miRNAs associated with MDC1A pathology, laminin α2 chain-deficient mice were evaluated by quantitative PCR. We demonstrate that expression of muscle-specific miR-1, miR-133a, and miR-206 is deregulated in laminin α2 chain-deficient muscle. Furthermore, expression of miR-223 and miR-21, associated with immune cell infiltration and fibrosis, respectively, is altered. Finally, we show that plasma levels of muscle-specific miRNAs are markedly elevated in laminin α2 chain-deficient mice and partially normalized in response to proteasome inhibition therapy. Altogether, our data suggest important roles for miRNAs in MDC1A pathology and we propose plasma levels of muscle-specific miRNAs as promising biomarkers for the progression of MDC1A.

  15. Imaging-Based Screen Identifies Laminin 411 as a Physiologically Relevant Niche Factor with Importance for i-Hep Applications

    Directory of Open Access Journals (Sweden)

    John Ong

    2018-03-01

    Full Text Available Summary: Use of hepatocytes derived from induced pluripotent stem cells (i-Heps is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI for comparing the hepatic properties of cells against a physiological gold standard. The HLI was then applied in a targeted screen of extracellular niche factors to identify substrates driving i-Heps closer to the standard. Laminin 411, the top hit, was validated in two additional induced pluripotent stem cell (iPSC lines, primary tissue, and an in vitro model of α1-antitrypsin deficiency. Cumulatively, these data provide a reference method to control and screen for i-Hep differentiation, identify Laminin 411 as a key niche protein, and underscore the importance of combining substrates, soluble factors, and HCA when developing iPSC applications. : Rashid and colleagues demonstrate the utility of a high-throughput imaging platform for identification of physiologically relevant extracellular niche factors to advance i-Heps closer to their primary tissue counterparts. The extracellular matrix (ECM protein screen identified Laminin 411 as an important niche factor facilitating i-Hep-based disease modeling in vitro. Keywords: iPS hepatocytes, extracellular niche, image-based screening, disease modeling, laminin

  16. A novel cell binding site in the coiled‐coil domain of laminin involved in capillary morphogenesis

    DEFF Research Database (Denmark)

    Sanz, Laura; García-Bermejo, Laura; Blanco, Francisco J

    2003-01-01

    Recently, we reported the isolation and characterization of an anti‐laminin antibody that modulates the extracellular matrix‐dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction....

  17. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  18. Punch grafting of chronic ulcers in patients with laminin-332-deficient, non-Herlitz junctional epidermolysis bullosa

    NARCIS (Netherlands)

    Yuen, Wing Yan; Huizinga, Janneke; Jonkman, Marcel F.

    Background: Epidermolysis bullosa (EB) is a genetic, heterogeneous, trauma-induced blistering disease. Patients with laminin-332-deficient non-Herlitz junctional EB (JEB-nH) can have impaired wound healing witnessed by persistent, small, deep ulcers on the hands and feet that adversely affect the

  19. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig

    Czech Academy of Sciences Publication Activity Database

    Plánská, Daniela; Burocziová, Monika; Strnádel, Ján; Horák, Vratislav

    2015-01-01

    Roč. 48, č. 1 (2015), s. 15-26 ISSN 0044-5991 R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 ; RVO:61388971 Keywords : collagen IV * laminin * MeLiM * porcine melanoma * spontaneous regression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.912, year: 2015

  20. Laminin-Coated Poly(Methyl Methacrylate (PMMA Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population

    Directory of Open Access Journals (Sweden)

    Nor Kamalia Zahari

    2017-10-01

    Full Text Available Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate (PMMA nanofiber (PM scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h−1 and migration (0.26 ± 0.04 μm/min, while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h−1 and migration (0.23 ± 0.03 μm/min. Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.

  1. Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population.

    Science.gov (United States)

    Zahari, Nor Kamalia; Idrus, Ruszymah Binti Haji; Chowdhury, Shiplu Roy

    2017-10-30

    Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h -1 ) and migration (0.26 ± 0.04 μm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h -1 ) and migration (0.23 ± 0.03 μm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.

  2. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    Science.gov (United States)

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  3. Clinical significance of serum laminin in the patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Wang Lu; Qian Caifeng; Lu Aibin

    2002-01-01

    The concentration of serum LN is determined by radioimmunoassay in 78 diabetic patients and 30 normal subjects as control. The mean concentration of LN in total 78 diabetic patients [(132.54 +- 31.05) μg/L] is higher than that of control [(97.63 +- 19.31) μg/L, P<0.01], especially in group B [(134.25 +- 29.12)μg/L] and group C [(158.51 +- 37.82)μg/L] are remarkably higher as comparable with control (P<0.01). There is significantly positive correlation between serum LN and diabetic duration, UAE, FBG. The results show that abnormal laminin metabolism exists in diabetic patients. The increased serum LN level in diabetic patients related to the severity of diabetic renal lesion and could be an early and sensitive marker of DN

  4. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake.

    Science.gov (United States)

    Stamati, Katerina; Priestley, John V; Mudera, Vivek; Cheema, Umber

    2014-09-10

    Angiogenesis is an essential neovascularisation process, which if recapitulated in 3D in vitro, will provide better understanding of endothelial cell (EC) behaviour. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 key components. We were able to control the aggregation pattern of ECs in 3D collagen hydrogels, by varying the matrix composition and/or having a source of cells signalling angiogenic proteins. These aggregation patterns reflect the different developmental pathways that ECs take to form different sized tubular structures. Cultures with added laminin and thus increased expression of α6 integrin showed a significant increase (p3D. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The relationship of serum and urinary laminin and glomerular filtration rate in diabetes mellitus

    International Nuclear Information System (INIS)

    Li Jianlin

    2002-01-01

    Objective: To observe the relationship of serum and urinary laminin and glomerular filtration rate (GFR) in diabetes mellitus. Methods: The level of serum and urinary laminin was measured by radioimmunoassay, GFR acquired by 99m Tc diethylenetriamine pentaacetic acid ( 99m Tc-DTPA), renal dynamic imaging in 75 diabetes mellitus and 42 normal subjects. Results: (1) The level of serum LN (136.30 ± 11.20 ng/ml) and urinary LN (31.76 ± 5.77 ng/ml) in diabetic nephropathy was significantly higher than that in diabetes without nephrosis group (P<0.05) and control group (P<0.01), the level of serum LN (126.54 ± 6.98 ng/ml) and urinary LN (26.27 ± 3.81 ng/ml) in diabetes without nephrosis group was significantly higher than that in control group (P<0.05); the GFR of diabetic nephropathy (78.84 ± 10.79 ng/ml) was significantly lower than that in diabetes without nephrosis group (P<0.05) and control group (P<0.01); the level of serum (131.49 ± 10.74 ng/ml) and urinary LN (29.05 ± 5.60 ng/ml) in diabetes mellitus was significantly higher than that in control group (P<0.05), but GFR was significantly lower than that in control group (P<0.05). (2) The value of GFR in diabetes mellitus lasted less than 1 year was higher than that of control group (P<0.05), but inverse in diabetes mellitus more than 10 years (P<0.05). (3) The level of serum and urinary LN had significantly negative correlation with GFR (P<0.01). Conclusion: LN may accelerates the alteration of GFR and causes microangiopathy of diabetic nephropathy. It may be an important indicator in the diagnosis of the early diabetic nephropathy

  6. Characterization of fimbrial subunits from Bordetella species

    NARCIS (Netherlands)

    Mooi, F.R.; Heide, H.G.J. van der; Avest, A.R. ter; Welinder, K.G.; Livey, I.; Zeijst, B.A.M. van der; Gaastra, W.

    Using antisera raised against serotype 2 and 3 fimbrial subunits from Bordetella pertussis, serologically related polypeptides were detected in Bordetella bronchiseptica, Bordetella parapertussis and Bordetella avium strains. The two B. pertussis fimbrial subunits, and three of the serologically

  7. CD90-positive cells, an additional cell population, produce laminin α2 upon transplantation to dy3k/dy3k mice

    International Nuclear Information System (INIS)

    Fukada, So-ichiro; Yamamoto, Yukiko; Segawa, Masashi; Sakamoto, Kenta; Nakajima, Mari; Sato, Masaki; Morikawa, Daisuke; Uezumi, Akiyoshi; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Tsujikawa, Kazutake; Yamamoto, Hiroshi

    2008-01-01

    Laminin α2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin α2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin α2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin α2 in non-myogenic cells of normal mice, and we could enrich these laminin α2-producing cells in CD90 + cell fractions. Intriguingly, the number of CD90 + cells increased dramatically during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin α2 in CD90 + cells was not dependent on fusion with myogenic cells. Thus, CD90 + cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy

  8. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation.

    Directory of Open Access Journals (Sweden)

    Liezl Rae Balaoing

    Full Text Available Valve endothelial cells (VEC have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol diacrylate (PEGDA hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF. VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator and thrombotic (VWF, tissue factor, and P-selectin proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In

  9. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  10. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig

    International Nuclear Information System (INIS)

    Planska, Daniela; Burocziova, Monika; Strnadel, Jan; Horak, Vratislav

    2015-01-01

    Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma

  11. Human beta 2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    DEFF Research Database (Denmark)

    Wewer, U M; Gerecke, D R; Durkin, M E

    1994-01-01

    or other known laminin genes. Immunostaining showed that the beta 2 chain is localized to the smooth muscle basement membranes of the arteries, while the homologous beta 1 chain is confined to the subendothelial basement membranes. The beta 2 chain was found in the basement membranes of ovarian carcinomas......Overlapping cDNA clones that encode the full-length human laminin beta 2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature...... beta 2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human beta 2 chain is predicted to have all of the seven structural domains typical of the beta chains of laminin, including the short cysteine-rich alpha region. The amino acid sequence of human beta 2...

  12. Formation of the 67-kDa laminin receptor by acylation of the precursor.

    Science.gov (United States)

    Butò, S; Tagliabue, E; Ardini, E; Magnifico, A; Ghirelli, C; van den Brûle, F; Castronovo, V; Colnaghi, M I; Sobel, M E; Ménard, S

    1998-06-01

    Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule.

  13. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells1

    Science.gov (United States)

    Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R

    2008-01-01

    Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114

  14. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  15. Lysophosphatidic Acid Upregulates Laminin-332 Expression during A431 Cell Colony Dispersal

    Directory of Open Access Journals (Sweden)

    Hironobu Yamashita

    2010-01-01

    Full Text Available Lysophosphatidic acid (LPA is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, survival, wound healing, and tumor invasion through LPA receptors. Previously, we reported that LPA induces A431 colony dispersal, accompanied by disruption of cell-cell contacts and cell migration. However, it remains unclear how LPA affects cell migration and gene expression during A431 colony dispersal. In this paper, we performed cDNA microarray analysis to investigate this question by comparing gene expression between untreated and LPA-treated A431 cells. Interestingly, these results revealed that LPA treatment upregulates several TGF-β1 target genes, including laminin-332 (Ln-332 components (α3, β3, and γ2 chains. Western blot analysis also showed that LPA increased phosphorylation of Smad2, an event that is carried out by TGF-β1 interactions. Among the genes upregulated, we further addressed the role of Ln-332. Real-time PCR analysis confirmed the transcriptional upregulation of all α3, β3, and γ2 chains of Ln-332 by LPA, corresponding to the protein level increases revealed by western blot. Further, the addition of anti-Ln-332 antibody prevented LPA-treated A431 colonies from dispersing. Taken together, our results suggest that LPA-induced Ln-332 plays a significant role in migration of individual cells from A431 colonies.

  16. A newly identified protein of Leptospira interrogans mediates binding to laminin.

    Science.gov (United States)

    Longhi, Mariana T; Oliveira, Tatiane R; Romero, Eliete C; Gonçales, Amane P; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2009-10-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.

  17. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen.

    Science.gov (United States)

    Domingos, Renan F; Fernandes, Luis G; Romero, Eliete C; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2015-04-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions. © 2015 The Authors.

  18. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro.

    Science.gov (United States)

    Ishii, Kana; Sakurai, Hidetoshi; Suzuki, Nobuharu; Mabuchi, Yo; Sekiya, Ichiro; Sekiguchi, Kiyotoshi; Akazawa, Chihiro

    2018-02-13

    Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2-5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  20. Role of the Rubisco Small Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert Joseph [Univ. of Nebraska, Lincoln, NE (United States)

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  1. Noninvasive imaging of malignant tumors using laminin peptide fragments YIGSR labeled with Technetium-99m

    International Nuclear Information System (INIS)

    Qin, G.M.; Zhang, Y.X.; Hu, J.; An, R.; Gao, Z.R.; Cao, G.X.; Hnatowich, D.J.

    2002-01-01

    The radiopharmaceuticals that localize specifically at certain sites (such as peptides directed against receptors expressed on tumor cells or antibodies with high binding affinities for bacterial determinants) may be expected to display greater specificity of localization. Peptides, which diffuse rapidly into target lesions and clear rapidly elsewhere, may be expected to enjoy a pharmacokinetic advantage over those, such as antibodies, which accumulate and clear more slowly. The laminin peptide fragments YIGSR is known to bind to a 67-kDa laminin receptor. This receptor is understood to be expressed at higher than normal levels in malignant tumor cells, particularly those of breast and colon carcinomas. Methods 1 peptide conjugation and labeling A 2.5 mg/mL solution of YIGSR in 0.1 M N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer, pH8.0, and a fresh 10mg/mL solution of NHS-S-acetyl-MAG 3 in dimethylformamide dried over molecular sieve were prepared. 2 biodistribution and imaging studies A colony of KM mice (15-20g) were inoculated with 1x10 6 Ehrlich (breast) carcinoma tumor cells in the right thigh, and the tumors were allowed to grow for 6-7 days to a size of 1.0-1.5 cm in diameter. Biodistribution studies were performed in 40 KM mice after 50 μCi per mouse of 99m Tc-labeled YIGSR were injected intravenously. A total of 10 mice were injected intravenously in the tail vein with 1-2 mCi of 99m Tc-labeled YIGSR, immobilized with ketamine hydrochloride and imaged periodically from 0.5 hr to 24 hr with a gamma camera. The identical imaging procedure was also performed in mice with sterile infection/inflammation lesions to evaluate the specificity. Results Essentially complete conjugation was achieved by reverse-phase Sep-Pak C18 chromatography analysis. The highest accumulation of label was in the kidney first, with the liver and small bowel next. The injected activity localized in the lesion as early as 15 min and reached a saturation value at 3

  2. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.

    Science.gov (United States)

    Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2010-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  4. 28 CFR 51.6 - Political subunits.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All political...

  5. Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans

    Directory of Open Access Journals (Sweden)

    Hunter Gary R

    2008-08-01

    Full Text Available Abstract Background The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG storage using quantitative complementation procedures in Drosophila melanogaster. Based on our results from Drosophila, we performed a human population-based association study to investigate the effect of natural variation in LAMA5 gene on body composition in humans. Results We identified four candidate genes that contributed to differences in TAG storage between two strains of D. melanogaster, including Laminin A (LanA, which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable LanA mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. Drosophila LanA is closely related to human LAMA5 gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs in the human LAMA5 gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA and African American (AA descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: P = 0.008; AA: P = 0.05 and lean mass (EA: P= 0.003; AA: P = 0.03. We also found this SNP to be associated with height (P = 0.01, total fat mass (P = 0.01, and HDL-cholesterol (P = 0.003 but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (P = 0.02 and HDL-cholesterol (P = 0.03 were observed in AA women. Conclusion Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.

  6. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    Science.gov (United States)

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey

    2005-04-01

    Full Text Available Abstract Background Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. Methods We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient or Lama2-/- (laminin-α2-deficient mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. Results We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2-/- muscles showed similar significant increases in CD45+ cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2-/- muscles compared to healthy muscles. In particular, the most abundant Sca-1-/CD45- subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2-/- muscles. Conclusion The similar increases in CD45+ cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

  8. Matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in paediatric burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors.

    Science.gov (United States)

    Weremijewicz, Artur; Matuszczak, Ewa; Sankiewicz, Anna; Tylicka, Marzena; Komarowska, Marta; Tokarzewicz, Anna; Debek, Wojciech; Gorodkiewicz, Ewa; Hermanowicz, Adam

    2018-01-30

    The purpose of this study was the determination of matrix metalloproteinase-2 and its correlation with basal membrane components laminin-5 and collagen type IV in the blood plasma of burn patients measured with Surface Plasmon Resonance Imaging (SPRI) biosensors. 31 children scalded by hot water who were managed at the Department of Paediatric Surgery between 2014-2015, after primarily presenting with burns in 4-20% TBSA were included into the study (age 9 months up to 14 years, mean age 2,5+1 years). There were 10 girls and 21 boys. Venous blood samples were drawn 2-6h, and 12-16h after the thermal injury, and on the subsequent days 3, 5 and 7. The matrix metalloproteinase-2, collagen type IV and laminin-5 concentrations were assessed using Surface Plasmon Resonance Imaging by the investigators blinded to the other data. The MMP-2, laminin-5 and collagen type IV concentrations in the blood plasma of patients with burns, were highest 12-16h after thermal injury, the difference was statistically significant. The MMP-2, laminin-5 and collagen type IV concentrations measured 3 days, 5 days and 7 days after the thermal injury, slowly decreased over time, and on the 7th day reached the normal range, when compared with the concentration measured in controls. Current work is the first follow-up study regarding MMP-2 in burns. MMP-2, laminin-5 and collagen type IV levels were elevated early after burn injury in the plasma of studied patients, and were highest 12-16h after the injury. MMP-2, laminin-5 and collagen type IV levels were not proportional to the severity of the burn. We believe in the possibility that the gradual decrease of MMP-2, collagen type IV and laminin-5 concentrations could be connected with the process of healing, but to prove it, more investigation is needed in this area. The SPR imaging biosensor is a good diagnostic tool for determination of MMP-2, laminin-5 and collagen type IV in blood plasma of patients with burns. Copyright © 2017 Elsevier Ltd

  9. Downregulation of the non-integrin laminin receptor reduces cellular viability by inducing apoptosis in lung and cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Kiashanee Moodley

    Full Text Available The non-integrin laminin receptor, here designated the 37-kDa/67-kDa laminin receptor (LRP/LR, is involved in many physiologically relevant processes, as well as numerous pathological conditions. The overexpression of LRP/LR on various cancerous cell lines plays critical roles in tumour metastasis and angiogenesis. This study investigated whether LRP/LR is implicated in the maintenance of cellular viability in lung and cervical cancer cell lines. Here we show a significant reduction in cellular viability in the aforementioned cell lines as a result of the siRNA-mediated downregulation of LRP. This reduction in cellular viability is due to increased apoptotic processes, reflected by the loss of nuclear integrity and the significant increase in the activity of caspase-3. These results indicate that LRP/LR is involved in the maintenance of cellular viability in tumorigenic lung and cervix uteri cells through the blockage of apoptosis. Knockdown of LRP/LR by siRNA might represent an alternative therapeutic strategy for the treatment of lung and cervical cancer.

  10. Surface biomimetic modification with laminin-loaded heparin/poly-L-lysine nanoparticles for improving the biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao, E-mail: 11140021@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Hu, Youdong [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an (China); Tan, Jianying [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Liu, Shihui [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Chen, Junying [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Guo, Xin; Pan, Changjiang [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Li, Xia, E-mail: xial_li@qq.com [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an (China)

    2017-02-01

    Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-L-lysine nanoparticles. Alteration of heparin and poly-L-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1 μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis. - Highlights: • A novel laminin-loaded anticoagulant nanoparticle was prepared and used for titanium surface modification. • The nanoparticle binding density was adjustable by alteration the concentration ratio of heparin and poly-L-lysine. • In a certain range of NPs density, the surface was found to selectively direct platelet and vascular cells behavior.

  11. Surface biomimetic modification with laminin-loaded heparin/poly-L-lysine nanoparticles for improving the biocompatibility

    International Nuclear Information System (INIS)

    Liu, Tao; Hu, Youdong; Tan, Jianying; Liu, Shihui; Chen, Junying; Guo, Xin; Pan, Changjiang; Li, Xia

    2017-01-01

    Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-L-lysine nanoparticles. Alteration of heparin and poly-L-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1 μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis. - Highlights: • A novel laminin-loaded anticoagulant nanoparticle was prepared and used for titanium surface modification. • The nanoparticle binding density was adjustable by alteration the concentration ratio of heparin and poly-L-lysine. • In a certain range of NPs density, the surface was found to selectively direct platelet and vascular cells behavior.

  12. Acetylcholine Receptor: Complex of Homologous Subunits

    Science.gov (United States)

    Raftery, Michael A.; Hunkapiller, Michael W.; Strader, Catherine D.; Hood, Leroy E.

    1980-06-01

    The acetylcholine receptor from the electric ray Torpedo californica is composed of five subunits; two are identical and the other three are structurally related to them. Microsequence analysis of the four polypeptides demonstrates amino acid homology among the subunits. Further sequence analysis of both membrane-bound and Triton-solubilized, chromatographically purified receptor gave the stoichiometry of the four subunits (40,000:50,000:60,000:65,000 daltons) as 2:1:1:1, indicating that this protein is a pentameric complex with a molecular weight of 255,000 daltons. Genealogical analysis suggests that divergence from a common ancestral gene occurred early in the evolution of the receptor. This shared ancestry argues that each of the four subunits plays a functional role in the receptor's physiological action.

  13. The laminin beta 1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can

  14. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M

    1996-01-01

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed...

  15. The Subunit Principle in Scar Face Revision.

    Science.gov (United States)

    Elshahat, Ahmed; Lashin, Riham

    2017-06-01

    Facial scaring is considered one of the most difficult cosmetic problems for any plastic surgeon to solve. The condition is more difficult if the direction of the scar is not parallel to relaxed skin tension lines. Attempts to manage this difficult situation included revisions using geometric designs, Z plasties or W plasties to camouflage the straight line visible scaring. The use of long-lasting resorbable sutures was tried too. Recently, the use of botulinum toxin during revision improved the results. Fractional CO2 lasers, microfat grafts, and platelet-rich plasma were added to the armamentarium. The scar is least visible if placed in the junction between the facial subunits. The aim of this study is to investigate the use of the subunit principle to improve the results of scar revision. Four patients were included in this study. Tissue expansion of the intact part of the subunit allowed shifting the scar to the junction between the affected subunit and the adjacent one. Tissue expansion, delivery of the expanders, and advancement of the flaps were successful in all patients. The fact that this is a 2-stage procedure and sacrifices some of the intact skin from the affected facial subunit, makes this technique reserved to patients with ugly facial scars who are ambitious to improve their appearance.

  16. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  17. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells

    Directory of Open Access Journals (Sweden)

    Olsen Colin E

    2006-08-01

    Full Text Available Abstract Background Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332 proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC. Methods Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. Results When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. Conclusion Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.

  18. Immunochemical aspects of crotoxim and its subunits

    International Nuclear Information System (INIS)

    Nakazone, A.K.

    1979-01-01

    Crotamine and crotoxin with the subunits - phospholipase A and crotapotin - were obtained by purification from Crotalus durissus terrificus venom. Interaction studies of the subunits using crotalic antiserum, indicated that: crotoxin is formed of crotapotin and phospholipase A with the molar ratio of 1 to 1; using crotapotin 125 I the presence of a soluble complex was shown with the same antiserum. Immunological precipitation reactions demonstrated that crotapotin is antigenic: crotapotin and phospholipase A presented similar antigenic determinants; crotoxin antiserum reacted with each one of the submits; when the subunits are mixed to form synthetic crotoxin some antigenic determinants are masked in the process of interaction. Crotamine, interacted with crotapotin 1:1, without hidden antigenic determinants crotapotin antigenic site seems to be formed by, at least, one lysine. Enzimatical activity of phospholipase A apreared to be dependent on some reaction conditions when its arginine residues are blocked. Tyrosines of phospholipase A are more susceptible to labelling with 131 I than crotapotin. Gama irradiation of aqueous solutions of the subunits produced modifications in the ultraviolet spectra. A decrease of the enzymatic activity occured as a function of radiation dosis. Immunological activities of crotapotin and phospholipase A were not altered [pt

  19. Augmentation de l'expression de la chaine α1 de la laminine 111, un potentiel traitement pour la Dystrophie musculaire de Duchenne

    OpenAIRE

    Perrin, Arnaud

    2016-01-01

    La protéine hétérotrimérique laminine-111 permet le lien entre la matrice-extracellulaire et l’intégrine α7β1 du sarcolemme, remplaçant ainsi dans les muscles dystrophiques, des liens normalement assurés par le complexe de la dystrophine. L’injection de laminine-111 dans des souris mdx a permis, entre autre, l’augmentation de l'expression de l'intégrine α7β1, d’empêcher les bris du sarcolemme lors de la contraction musculaire, de restaurer un niveau normal de la créatine kinase sérique, ainsi...

  20. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    Science.gov (United States)

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  1. Rethinking Molecular Mimicry in Rheumatic Heart Disease andAutoimmune Myocarditis: Laminin, Collagen IV, CAR and B1AR as Initial Targets of Disease

    Directory of Open Access Journals (Sweden)

    Robert eRoot-Bernstein

    2014-08-01

    Full Text Available Rationale: Molecular mimicry theory (MMT suggests that epitope mimicry between pathogens and human proteins can activate autoimmune disease. Group A streptococci (GAS mimics human cardiac myosin in rheumatic heart disease (RHD and coxsackie viruses (CX mimic actin in autoimmune myocarditis (AM. But myosin and actin are immunologically inaccessible and unlikely initial targets. Extracellular cardiac proteins that mimic GAS and CX would be more likely.Objectives: To determine whether extracellular cardiac proteins such as coxsackie and adenovirus receptor (CAR, beta 1 adrenergic receptor (B1AR, CD55/DAF, laminin, and collagen IV mimic GAS, CX and/or cardiac myosin or actin. Methods: BLAST 2.0 and LALIGN searches of the UniProt protein database were employed to identify potential molecular mimics. Quantitative ELISA was used to measure antibody cross-reactivity. Measurements: Similarities were considered to be significant if a sequence contained at least 5 identical amino acids in 10. Antibodies were considered to be cross-reactive if the binding constant had a Kd less than 10-9 M. Main Results: GAS mimics laminin, CAR and myosin. CX mimics actin and collagen IV and B1AR. The similarity search results are mirrored by antibody cross-reactivities. Additionally, antibodies against laminin recognize antibodies against collagen IV; antibodies against actin recognize antibodies against myosin, and antibodies against GAS recognize antibodies against CX. Thus, there is both mimicry of extracellular proteins and antigenic complementarity between GAS-CX in RHD/AM.Conclusions: RHD/AM may be due to combined infections of GAS with CX localize at cardiomyocytes may produce a synergistic, hyperinflammatory response that cross-reacts with laminin, collagen IV, CAR and/or B1AR. Epitope drift shifts the immune response to myosin and actin after cardiomyocytes become damaged.

  2. Muscular subunits transplantation for facial reanimation

    Directory of Open Access Journals (Sweden)

    Hazan André Salo Buslik

    2006-01-01

    Full Text Available PURPOSE: To present an alternative technique for reconstruction of musculocutaneous damages in the face transferring innervated subsegments(subunits of the latissimus dorsi flap for replacement of various facial mimetic muscles. METHODS: One clinical case of trauma with skin and mimetic muscles damage is described as an example of the technique. The treatment was performed with microsurgical transfer of latissimus dorsi muscle subunits. Each subunit present shape and dimensions of the respective mimetic muscles replaced. The origin, insertions and force vectors for the mimicmuscle lost were considered. Each subsegment has its own arterial and venous supply with a motor nerve component for the muscular unit. RESULTS: Pre and one year postoperative photos registration of static and dynamic mimic aspects, as well as digital electromyography digital data of the patients were compared. The transplanted muscular units presented myoeletric activity, fulfilling both the functional and cosmetic aspect. CONCLUSION: This technique seems to be a promising way to deal with the complex musculocutaneous losses of the face as well as facial palsy.

  3. Influvac, a trivalent inactivated subunit influenza vaccine.

    Science.gov (United States)

    Zuccotti, Gian Vincenzo; Fabiano, Valentina

    2011-01-01

    Influenza represents a major sanitary and socio-economic burden and vaccination is universally considered the most effective strategy for preventing the disease and its complications. Traditional influenza vaccines have been on the market since the late 1940s, with million of doses administered annually worldwide, and demonstrated a substantial efficacy and safety. The trivalent inactivated subunit vaccine has been available for more than 25 years and has been studied in healthy children, adults and the elderly and in people affected by underlying chronic medical conditions. We describe vaccine technology focusing on subunit vaccine production procedures and mode of action and provide updated information on efficacy and safety available data. A review of efficacy and safety data in healthy subjects and in high risk populations from major sponsor- and investigator-driven studies. The vaccine showed a good immunogenicity and a favorable safety profile in all target groups. In the panorama of actually available influenza vaccines, trivalent inactivated subunit vaccine represents a well-established tool for preventing flu and the associated complications.

  4. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α.

    Science.gov (United States)

    Addington, C P; Dharmawaj, S; Heffernan, J M; Sirianni, R W; Stabenfeldt, S E

    2017-07-01

    The chemokine SDF-1α plays a critical role in mediating stem cell response to injury and disease and has specifically been shown to mobilize neural progenitor/stem cells (NPSCs) towards sites of neural injury. Current neural transplant paradigms within the brain suffer from low rates of retention and engraftment after injury. Therefore, increasing transplant sensitivity to injury-induced SDF-1α represents a method for increasing neural transplant efficacy. Previously, we have reported on a hyaluronic acid-laminin based hydrogel (HA-Lm gel) that increases NPSC expression of SDF-1α receptor, CXCR4, and subsequently, NPSC chemotactic migration towards a source of SDF-1α in vitro. The study presented here investigates the capacity of the HA-Lm gel to promote NPSC response to exogenous SDF-1α in vivo. We observed the HA-Lm gel to significantly increase NPSC transplant retention and migration in response to SDF-1α in a manner critically dependent on signaling via the SDF-1α-CXCR4 axis. This work lays the foundation for development of a more effective cell therapy for neural injury, but also has broader implications in the fields of tissue engineering and regenerative medicine given the essential roles of SDF-1α across injury and disease states. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  6. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Directory of Open Access Journals (Sweden)

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  7. Clinical value of the joint measurement of serum concentrations of type IV collagen and laminin in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Wang Lu; Wang Ping; Li Yongpei

    2004-01-01

    Objective: To study clinical value of the joint measurement of serum concentrations of type IV collagen (IV C) and laminin (LN) in patients with diabetic nephropathy (DN) by radioimmunoassay (RIA). Methods: Serum concentrations of IV C, LN were measured by RIA in 35 diabetic patients with normalbuminuria (group A), 28 cases of microalbuminuria (group B), 15 cases of macroalbuminuria (group C) and 30 normal subjects as control . Results: The serum concentrations of IV C, LN in total 78 diabetic patients [(97.6 ± 19.2), (132.4 ± 31.5) μg/L] were higher than that of the controls [(77.4 ± 8.2), (101.5 ± 17.6) μg/L, P<0.05], especially in group B and C, it was remarkably higher compared with the controls (P<0.05, P<0.01). There was significant positive correlation of serum IV C, LN to diabetic duration and the levels of blood urea nitrogen (BUN), creatinine (Cr), urinary albumin excretion rate (UAER). Conclusions: The results suggest that the joint measurement of serum levels of IV C, LN and UAER in DN patients might better evaluate the development process of DN, and be of help for early diagnosis and treatment of DN. Serum levels of IV C, LN and UAER in DN patients may become the reliable clinical markers for assessing the severity and predicting the prognosis of DN

  8. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  9. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  10. Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.

    Science.gov (United States)

    Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi

    2006-10-04

    Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.

  11. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  12. Human aldolase B subunit-specific radioimmunoassay

    International Nuclear Information System (INIS)

    Asaka, M.; Alpert, E.

    1983-01-01

    A radioimmunoassay was developed for the direct quantification of aldolase B in human serum and tissues. The method is a double-antibody radioimmunoassay technique using radioiodinated aldolase B homopolymer as ligand, chicken antibodies to aldolase B and rabbit antibodies to chicken IgG. This radioimmunoassay was shown to be specific for the aldolase B subunit, with no cross-reactivity with either human aldolase A subunit or homopolymeric human aldolase C (C 4 ). The lowest measurable amount by this method was 2 ng/ml. Aldolase B is predominantly found in normal liver tissue, with relatively-high aldolase B levels also observed in kidney. Aldolase B levels in the serum obtained from 11 normal subjects ranged from 23 to 38 ng/ml, with a mean of 28.5 +- 9.2 (S.D.) ng/ml. Almost all of patients with hepatitis had serum aldolase B levels greater than 30 ng/ml. In cancer patients, serum aldolase B was slightly elevated in patients with metastatic liver cancer and primary lever cell carcinoma, whereas no elevation of serum aldolase B was shown in patients without liver metastasis. (Auth.)

  13. Subunit stoichiometry of the chloroplast photosystem I complex

    International Nuclear Information System (INIS)

    Bruce, B.D.; Malkin, R.

    1988-01-01

    A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14 C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster

  14. Transcriptional regulators of Na, K-ATPase subunits

    OpenAIRE

    Zhiqin eLi; Sigrid A Langhans

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during developme...

  15. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway.

    Science.gov (United States)

    Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi

    2016-04-20

    Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin

  16. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit...

  17. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  18. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  19. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid

    Directory of Open Access Journals (Sweden)

    Sachiro eKakinoki

    2014-07-01

    Full Text Available We developed a microfibrous poly(L-lactic acid (PLLA nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG30 that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG30 composisting of an elastin-like repetitive sequence (VPGIG30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73 was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG30 inner layer.

  20. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    Science.gov (United States)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  1. Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ryan D. Wuebbles

    2013-09-01

    Duchenne muscular dystrophy (DMD is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.

  2. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins

    International Nuclear Information System (INIS)

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-01-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the α subunits of G/sub s/ (stimulatory) (α 45 and α 52 ), a 41-kDa subunit of G/sub i/ (inhibitory) (α 41 ), a 40-kDa protein (α 40 ), and the 36-kDa β subunit. No protein that comigrated with the α subunit of G 0 (unknown function) (α 39 ) was detected. In cells grown in the presence of [ 3 H]myristic acid, α 41 and α 40 contained 3 H label, while the β subunit did not. Chemical analysis of lipids attached covalently to purified α 41 and α 39 from bovine brain also revealed myristic acid. Similar analysis of brain G protein β and γ subunits and of G/sub t/ (Transducin) subunits (α, β, and γ) failed to reveal fatty acids. The fatty acid associated with α 41 , α 40 , and α 39 was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins

  3. Development of a Subunit Vaccine for Contagious Bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Their work has set the stage for commercial development of a sub-unit vaccine. ... The sub-unit vaccine will be cost-effective, easy to produce, and safe. How it will make a ... IDRC invites applications for the IDRC Doctoral Research Awards.

  4. Studies on the subunits of human glycoprotein hormones in relation to reproduction

    International Nuclear Information System (INIS)

    Hagen, C.

    1977-01-01

    In this review summarising present knowledge of the biological and immunological activity of the subunits of human glycoprotein hormones, the specificity of the α-subunit and β-subunit radioimmunoassays are discussed. The crossreaction studies performed with the α-subunit radioimmunoassays are aummarised in one table while those with the β-subunit radioimmunoassays are presented in a second table. (JIW)

  5. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  6. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  7. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  8. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit

    OpenAIRE

    Reig, Núria; Chillarón, Josep; Bartoccioni, Paola; Fernández, Esperanza; Bendahan, Annie; Zorzano, Antonio; Kanner, Baruch; Palacín, Manuel; Bertran, Joan

    2002-01-01

    The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System bo,+ exchanges dibasic for neutral amino acids. It is composed of rBAT and bo,+AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. bo,+AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the bo...

  9. Oxygen partial pressure modulates 67-kDa laminin receptor expression, leading to altered activity of the green tea polyphenol, EGCG.

    Science.gov (United States)

    Tsukamoto, Shuntaro; Yamashita, Shuya; Kim, Yoon Hee; Kumazoe, Motofumi; Huang, Yuhui; Yamada, Koji; Tachibana, Hirofumi

    2012-09-21

    (-)-Epigallocatechin-3-O-gallate (EGCG) exhibits anti-tumor activity mediated via the 67-kDa laminin receptor (67LR). In this study, we found that 67LR protein levels are reduced by exposure to low O(2) levels (5%), without affecting the expression of HIF-1α. We also found that EGCG-induced anti-cancer activity is abrogated under low O(2) levels (5%) in various cancer cells. Notably, treatment with the proteasome inhibitor, prevented down-regulation of 67LR and restored sensitivity to EGCG under 5% O(2). In summary, 67LR expression is highly sensitive to O(2) partial pressure, and the activity of EGCG can be regulated in cancer cells by O(2) partial pressure. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When...... nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely...... in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells...

  11. Genetic analysis of the cytoplasmic dynein subunit families.

    Science.gov (United States)

    Pfister, K Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  12. Genetic analysis of the cytoplasmic dynein subunit families.

    Directory of Open Access Journals (Sweden)

    K Kevin Pfister

    2006-01-01

    Full Text Available Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  13. Knockdown of Laminin gamma-3 (Lamc3 impairs motoneuron guidance in the zebrafish embryo [version 1; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Alexander M. J. Eve

    2017-11-01

    Full Text Available Background: Previous work in the zebrafish embryo has shown that laminin γ-3 (lamc3 is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.

  14. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    Science.gov (United States)

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats.

    Science.gov (United States)

    Gokce, Evren H; Tuncay Tanrıverdi, Sakine; Eroglu, Ipek; Tsapis, Nicolas; Gokce, Goksel; Tekmen, Isıl; Fattal, Elias; Ozer, Ozgen

    2017-10-01

    An alternative formulation for the treatment of diabetic foot wounds that heal slowly is a requirement in pharmaceutical field. The aim of this study was to develop a dermal matrix consisting of skin proteins and lipids with an antioxidant that will enhance healing and balance the oxidative stress in the diabetic wound area due to the high levels of glucose. Thus a novel three dimensional collagen-laminin porous dermal matrix was developed by lyophilization. Resveratrol-loaded hyaluronic acid and dipalmitoylphosphatidylcholine microparticles were combined with this dermal matrix. Characterization, in vitro release, microbiological and in vivo studies were performed. Spherical microparticles were obtained with a high RSV encapsulation efficacy. The microparticles were well dispersed in the dermal matrix from the surface to deeper layers. Collagenase degraded dermal matrix, however the addition of RSV loaded microparticles delayed the degradation time. The release of RSV was sustained and reached 70% after 6h. Histological changes and antioxidant parameters in different treatment groups were investigated in full-thickness excision diabetic rat model. Collagen fibers were intense and improved by the presence of formulation without any signs of inflammation. The highest healing score was obtained with the dermal matrix impregnated with RSV-microparticles with an increased antioxidant activity. Collagen-laminin dermal matrix with RSV microparticles was synergistically effective due to presence of skin components in the formulation and controlled release achieved. This combination is a safe and promising option for the treatment of diabetic wounds requiring long recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  17. Pituitary glycoprotein hormone a-subunit secretion by cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Oliveira M.C.

    1999-01-01

    Full Text Available Secretion of the a-subunit of pituitary glycoprotein hormones usually follows the secretion of intact gonadotropins and is increased in gonadal failure and decreased in isolated gonadotropin deficiency. The aim of the present study was to determine the levels of the a-subunit in the serum of patients with cirrhosis of the liver and to compare the results obtained for eugonadal cirrhotic patients with those obtained for cirrhotic patients with hypogonadotropic hypogonadism. Forty-seven of 63 patients with cirrhosis (74.6% presented hypogonadism (which was central in 45 cases and primary in 2, 7 were eugonadal, and 9 women were in normal menopause. The serum a-subunit was measured by the fluorimetric method using monoclonal antibodies. Cross-reactivity with LH, TSH, FSH and hCG was 6.5, 1.2, 4.3 and 1.1%, respectively, with an intra-assay coefficient of variation (CV of less than 5% and an interassay CV of 5%, and sensitivity limit of 4 ng/l. The serum a-subunit concentration ranged from 36 to 6253 ng/l, with a median of 273 ng/l. The median was 251 ng/l for patients with central hypogonadism and 198 ng/l for eugonadal patients. The correlation between the a-subunit and basal LH levels was significant both in the total sample (r = 0.48, P<0.01 and in the cirrhotic patients with central hypogonadism (r = 0.33, P = 0.02. Among men with central hypogonadism there was a negative correlation between a-subunit levels and total testosterone levels (r = 0.54, P<0.01 as well as free testosterone levels (r = -0.53, P<0.01. In conclusion, although the a-subunit levels are correlated with LH levels, at present they cannot be used as markers for hypogonadism in patients with cirrhosis of the liver.

  18. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    Science.gov (United States)

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  19. Probing the functional subunits of the tonoplast H+-ATPase

    International Nuclear Information System (INIS)

    Randall, S.K.; Lai, S.; Sze, H.

    1986-01-01

    The tonoplast ATPase of oat roots is composed of at least three polypeptides of 72, 60, and 16 kDa. The 16 kDA polypeptide covalently binds N,N'-dicyclohexylcarbodiimide and is postulated to be a component of the proton channel. Initial studies to identify other subunits indicate that both the 72 and 60 kDa subunits covalently bind 14 C]-7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and [ 14 C]N-ethylamleimide, inhibitors of the tonoplast ATPase. ATP prevents binding of these inhibitors suggesting that both the 72 and 60 kDa subunits are involved in substrate binding. Polyclonal antibody has been made to the 72 kDa subunit. Western blot analysis of tonoplast vesicles reveals single reactive polypeptide (72 kDa). The antibody shows no cross-reactivity towards either the mitochondrial F 1 -ATPase or the plasma membrane ATPase. This antibody specifically inhibits ATP hydrolysis and ATP-dependent H + pumping in native tonoplast vesicles. The authors conclude that the 72 kDa subunit is intimately associated with the catalytic (or ATP-binding) site

  20. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  1. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo.

    Science.gov (United States)

    Kolatkar, P R; Meador, W E; Stanfield, R L; Hackert, M L

    1988-03-05

    Tetrameric hemoglobin from the "fat innkeeper" worm Urechis caupo possesses a novel subunit arrangement having an "inside out" quaternary structure in that the G/H helices are located on the outer surface of the tetramer. A 5-A resolution crystal structure reveals that although the individual subunits are beta-like, having a distinct D helix and the general myoglobin fold, the subunit contacts are very different from those previously observed for hemoglobins. Furthermore, the hemoglobin from U. caupo is also quite different from the unusual hemoglobin tetramer from clam which also has its G/H helices on the outer surface but with the hemes in close proximity through E-F helical contacts (Royer, W. E., Jr., Love, W. E., and Fenderson, F. F. (1985) Nature 316, 277-280).

  2. Dynamic properties of motor proteins with two subunits

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B; III, Hubert Phillips

    2005-01-01

    The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion

  3. CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome

    Directory of Open Access Journals (Sweden)

    Shelly Rozen

    2015-10-01

    Full Text Available The highly conserved COP9 signalosome (CSN complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs, the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein. We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.

  4. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Keegan J. Baldauf

    2015-03-01

    Full Text Available Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT, which consists of two subunits: the A subunit (CTA and the B subunit (CTB. CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  5. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...... strong immune responses. This review highlights the status and recent advances in formulation and pulmonary delivery of thermostable human subunit vaccines. Such vaccines are very appealing from compliance, distribution and immunological point of view: Being non-invasive, inhalable vaccines are self...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  6. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    Science.gov (United States)

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood

  7. Evaluation of subunit vaccines against feline immunodeficiency virus infection

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Willemse, M.J.; Stam, J.G.; Vliet, A.L.W. van; Pouwels, H.; Chalmers, S.K.; Sondermeijer, P.J.; Hesselink, W.; Ronde, A. de

    1996-01-01

    Subunit vaccines prepared against feline immunodeficiency virus (FIV) infection were evaluated in two trials. First, cats were immunized with bacterial expression products of an envelope fragment that contained the V3 neutralization domain of the FIV surface protein fused to either galactokinase

  8. Partial agonists and subunit selectivity at NMDA receptors

    DEFF Research Database (Denmark)

    Risgaard, Rune; Hansen, Kasper Bø; Clausen, Rasmus Prætorius

    2010-01-01

    Subunit-selective ligands for glutamate receptors remains an area of interest as glutamate is the major excitatory neurotransmitter in the brain and involved in a number of diseased states in the central nervous system (CNS). Few subtype-selective ligands are known, especially among the N...

  9. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    Science.gov (United States)

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. α-4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    Background: Smoking behavior is influenced by both genetic and environmental factors. Nicotine is the major addictive substance in cigarettes. Nicotinic acetylcholine receptors (nAChRs) are thought to play an important role in nicotine addiction of smokers. One of the genes, α-4 subunit of nicotinic acetylcholine receptor ...

  11. Structural interaction of novel dendrimer and subunits with water

    African Journals Online (AJOL)

    Preferred Customer

    interaction study with solvents are essential [4-6] and several subunits are used for .... slowed down the viscous flow with higher excess limiting viscosities of the 2,4,6- ..... Practical Organic Chemistry, 5th ed.; Wiley: New York; 1989; p 300. 14.

  12. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  13. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    International Nuclear Information System (INIS)

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  14. Molecularly imprinted nanoparticles with recognition properties towards a laminin H-Tyr-Ile-Gly-Ser-Arg-OH sequence for tissue engineering applications

    International Nuclear Information System (INIS)

    Rosellini, Elisabetta; Barbani, Niccoletta; Giusti, Paolo; Ciardelli, Gianluca; Cristallini, Caterina

    2010-01-01

    Nanotechnology is an emerging field that promises to revolutionize medicine and is increasingly used in tissue engineering applications. Our research group proposed for the first time molecular imprinting as a new nanotechnology for the creation of advanced synthetic support structures for cell adhesion and proliferation. The aim of this work was the synthesis and characterization of molecularly imprinted polymers with recognition properties towards a laminin peptide sequence and their application as functionalization structures in the development of bioactive materials. Nanoparticles with an average diameter of 200 nm were synthesized by precipitation polymerization of methacrylic acid in the presence of the template molecule and trimethylpropane trimethacrylate as the cross-linking agent. The imprinted nanoparticles showed good performance in terms of recognition capacity and selectivity. The cytotoxicity tests showed normal vitality of C2C12 myoblasts cultured in the medium that was put in contact with the imprinted polymers. After the deposition on the polymeric film surface, the imprinted particles maintained their specific recognition and rebinding behaviour, showing an even higher quantitative binding than free nanoparticles. Preliminary in vitro cell culture tests demonstrated the ability of functionalized materials to promote cell adhesion, proliferation and differentiation, suggesting that molecular imprinting can be used as an innovative functionalization technique.

  15. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    Science.gov (United States)

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  16. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.

    Science.gov (United States)

    Mu, Y; Kamada, H; Kaneda, Y; Yamamoto, Y; Kodaira, H; Tsunoda, S; Tsutsumi, Y; Maeda, M; Kawasaki, K; Nomizu, M; Yamada, Y; Mayumi, T

    1999-02-05

    A comb-shaped polymeric modifier, SMA [poly(styrene comaleic anhydride)], which binds to plasma albumin in blood was used to modify the synthetic cell-adhesive laminin peptide YIGSR, and its inhibitory effect on experimental lung metastasis of B16-BL6 melanoma cells was examined. YIGSR was chemically conjugated with SMA via formation of an amide bond between the N-terminal amino group of YIGSR and the carboxyl anhydride of SMA. The antimetastatic effect of SMA-conjugated YIGSR was approximately 50-fold greater than that of native YIGSR. When injected intravenously, SMA-YIGSR showed a 10-fold longer plasma half-life than native YIGSR in vivo. In addition, SMA-YIGSR had the same binding affinity to plasma albumin as SMA, while native YIGSR did not bind to albumin. These findings suggested that the enhanced antimetastatic effect of SMA-YIGSR may be due to its prolonged plasma half-life by binding to plasma albumin, and that bioconjugation of in vivo unstable peptides with SMA may facilitate their therapeutic use. Copyright 1999 Academic Press.

  17. Magnetic Resonance Imaging Is Sensitive to Pathological Amelioration in a Model for Laminin-Deficient Congenital Muscular Dystrophy (MDC1A.

    Directory of Open Access Journals (Sweden)

    Ravneet Vohra

    Full Text Available To elucidate the reliability of MRI as a non-invasive tool for assessing in vivo muscle health and pathological amelioration in response to Losartan (Angiotensin II Type 1 receptor blocker in DyW mice (mouse model for Laminin-deficient Congenital Muscular Dystrophy Type 1A.Multiparametric MR quantifications along with histological/biochemical analyses were utilized to measure muscle volume and composition in untreated and Losartan-treated 7-week old DyW mice.MRI shows that DyW mice have significantly less hind limb muscle volume and areas of hyperintensity that are absent in WT muscle. DyW mice also have significantly elevated muscle levels (suggestive of inflammation and edema. Muscle T2 returned to WT levels in response to Losartan treatment. When considering only muscle pixels without T2 elevation, DyW T2 levels are significantly lower than WT (suggestive of fibrosis whereas Losartan-treated animals do not demonstrate this decrease in muscle T2. MRI measurements suggestive of elevated inflammation and fibrosis corroborate with increased Mac-1 positive cells as well as increased Picrosirius red staining/COL1a gene expression that is returned to WT levels in response to Losartan.MRI is sensitive to and tightly corresponds with pathological changes in DyW mice and thus is a viable and effective non-invasive tool for assessing pathological changes.

  18. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.

  19. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    Directory of Open Access Journals (Sweden)

    Anna Beier

    2016-06-01

    Full Text Available The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general.

  20. Electrophysiology and Beyond: Multiple roles of Na+ channel β subunits in development and disease

    Science.gov (United States)

    Patino, Gustavo A.; Isom, Lori L.

    2010-01-01

    Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These multifunctional molecules not only modulate Na+ current (INa), but also function as cell adhesion molecules (CAMs) – playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system. PMID:20600605

  1. Architecture of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leitner, Alexander; Bieri, Philipp; Voigts-Hoffmann, Felix; Erzberger, Jan P; Leibundgut, Marc; Aebersold, Ruedi; Ban, Nenad

    2014-01-23

    Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

  2. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  3. Testing experimental subunit furunculosis vaccines for rainbow trout

    DEFF Research Database (Denmark)

    Marana, Moonika H.; Chettri, Jiwan Kumar; Skov, Jakob

    2016-01-01

    Aeromonas salmonicida subsp. salmonicida (AS) is the etiological agent of typical furunculosis in salmonid fish. The disease causes bacterial septicemia and is a major fish health problem in salmonid aquaculture worldwide, inducing high morbidity and mortality. In this study we vaccinated rainbow...... trout with subunit vaccines containing protein antigens that were selected based on an in silico antigen discovery approach. Thus, the proteome of AS strain A449 was analyzed by an antigen discovery platform and its proteins consequently ranked by their predicted ability to evoke protective immune...... response against AS. Fourteen proteins were prepared in 3 different experimental subunit vaccine combinations and used to vaccinate rainbow trout by intraperitoneal (i.p.) injection. We tested the proteins for their ability to elicit antibody production and protection. Thus, fish were exposed to virulent...

  4. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  5. ASIC subunit ratio and differential surface trafficking in the brain.

    Science.gov (United States)

    Wu, Junjun; Xu, Yuanyuan; Jiang, Yu-Qing; Xu, Jiangping; Hu, Youjia; Zha, Xiang-ming

    2016-01-08

    Acid-sensing ion channels (ASICs) are key mediators of acidosis-induced responses in neurons. However, little is known about the relative abundance of different ASIC subunits in the brain. Such data are fundamental for interpreting the relative contribution of ASIC1a homomers and 1a/2 heteromers to acid signaling, and essential for designing therapeutic interventions to target these channels. We used a simple biochemical approach and semi-quantitatively determined the molar ratio of ASIC1a and 2 subunits in mouse brain. Further, we investigated differential surface trafficking of ASIC1a, ASIC2a, and ASIC2b. ASIC1a subunits outnumber the sum of ASIC2a and ASIC2b. There is a region-specific variation in ASIC2a and 2b expression, with cerebellum and striatum expressing predominantly 2b and 2a, respectively. Further, we performed surface biotinylation and found that surface ASIC1a and ASIC2a ratio correlates with their total expression. In contrast, ASIC2b exhibits little surface presence in the brain. This result is consistent with increased co-localization of ASIC2b with an ER marker in 3T3 cells. Our data are the first semi-quantitative determination of relative subunit ratio of various ASICs in the brain. The differential surface trafficking of ASICs suggests that the main functional ASICs in the brain are ASIC1a homomers and 1a/2a heteromers. This finding provides important insights into the relative contribution of various ASIC complexes to acid signaling in neurons.

  6. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    International Nuclear Information System (INIS)

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-01-01

    Highlights: ► Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. ► EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. ► EGCG-treated DCs inhibited MAPKs activation and NF-κB p65 translocation via 67LR. ► EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  7. Synergetic downregulation of 67 kDa laminin receptor by the green tea (Camellia sinensis secondary plant compound epigallocatechin gallate: a new gateway in metastasis prevention?

    Directory of Open Access Journals (Sweden)

    Müller Jakob

    2012-12-01

    Full Text Available Abstract Background In traditional Chinese medicine, green tea is considered to have a life-prolonging effect, possibly as a result of its rich content of antioxidant tea polyphenols, and hence has the potential to prevent cancer. This study investigated the role of the major tea secondary plant compound epigallocatechin gallate (EGCG for its inhibitory effects on the metastasis-associated 67 kDa laminin receptor (67LR. Methods To clarify the impact of EGCG on siRNA-silenced expression of 67LR, we applied an adenoviral-based intestinal in vitro knockdown model, porcine IPEC-J2 cells. Quantitative real-time polymerase chain reaction was performed to analyze 67LR gene expression following treatment with physiological and pharmacological concentrations of EGCG (1.0 g/l, 0.1 g/l, 0.02 g/l and 0.002 g/l. Results We report co-regulation of EGCG and 67LR, which is known to be an EGCG receptor. siRNA selectively and highly significantly suppressed expression of 67LR under the impact of EGCG in a synergetic manner. Conclusions Our findings suggest that 67LR expression is regulated by EGCG via a negative feedback loop. The explicit occurrence of this effect in synergy with a small RNA pathway and a plant-derived drug reveals a new mode of action. Our findings may help to provide insights into the many unsolved health-promoting activities of other natural pharmaceuticals.

  8. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

    Science.gov (United States)

    Wang, Qi-Ming; Wang, Hao; Li, Ya-Fei; Xie, Zhi-Yong; Ma, Yao; Yan, Jian-Jun; Gao, Yi Fan Wei; Wang, Ze-Mu; Wang, Lian-Sheng

    2016-01-01

    It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer) and MMPs (matrix metalloproteinases) by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG) has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR) has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. We showed that EGCG (10-50µmol/L) significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK) in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque. © 2016 The Author(s) Published by S. Karger AG, Basel.

  9. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages

    Directory of Open Access Journals (Sweden)

    Qi-Ming Wang

    2016-11-01

    Full Text Available Background/Aims: It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer and MMPs (matrix metalloproteinases by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA. Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. Results: We showed that EGCG (10-50µmol/L significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2, p38 and c-Jun N-terminal kinase (JNK in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Conclusion: Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque.

  10. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML. A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1 functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2 The capacity for VML therapies to augment regeneration and repair within the

  11. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    Science.gov (United States)

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Inhibition of vimentin or B1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueping; Fournier, Marcia V; Ware, Joy L; Bissell, Mina J; Yacoub, Adly; Zehner, Zendra E

    2008-06-12

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin, or {alpha}6 and {beta}1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of {alpha}6 and {beta}1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and {beta}1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499-508].

  13. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Eui-Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Choi, Han-Gyu [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@gmail.com [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  14. Global Proteome Analysis Identifies Active Immunoproteasome Subunits in Human Platelets*

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M.; Brown, Lyda M.; Hoffman, Michael D.; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-01-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. PMID:25146974

  15. Global proteome analysis identifies active immunoproteasome subunits in human platelets.

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-12-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Radioimmunoassay of TSH subunits in thyroid diseases and endocrine opthalmopahty

    International Nuclear Information System (INIS)

    Eder, W.

    1982-01-01

    Highly sensitive radioimmunoassays of hTSH sub-units were developed. The hormone preparations were labelled with 125-iodine according to a modified chloramine -T method, and purified by chromatography using biogel P6 and P60. Rabbit antisera were used as antibodies. Separation of the antibody-bound and of the free antigens was carried out via the double antibody method. The antiserum required for this purpose was obtained from a goat. The sensitivity of the assay was influenced by changing the protein content of the buffer, the incubation volume, the tracer amounts, the incubation time and the incubation temperature. For hTSH-α, the lowest detectable limit was found to be 50 pg/ml, for hTSH-#betta# 20 pg/ml. Thus, the sub-units could be determined for 98% of the patients under review. The #betta#-TSH radioimmunoassay is largely specific, TSH cross-reacts to a degree of 5%. The computerized evoluation was carried out by means of Spline approximation using the Siemens 4004 computer. Precision and accurateness are in compliance with generally accpted criteria. The serum levels of α and #betta# sub-units showed no discordancy with regard to TSH. In all groups of patients examined, the levels of the hormone-specific #betta#-chain were found to be exclusively dependent upon the actual thyroid activity. (orig.) [de

  17. The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences

    Science.gov (United States)

    Hiesel, Rudolf; Schobel, Werner; Schuster, Wolfgang; Brennicke, Axel

    1987-01-01

    Two loci encoding subunit III of the cytochrome oxidase (COX) in Oenothera mitochondria have been identified from a cDNA library of mitochondrial transcripts. A 657-bp sequence block upstream from the open reading frame is also present in the two copies of the COX subunit I gene and is presumably involved in homologous sequence rearrangement. The proximal points of sequence rearrangements are located 3 bp upstream from the COX I and 1139 bp upstream from the COX III initiation codons. The 5'-termini of both COX I and COX III mRNAs have been mapped in this common sequence confining the promoter region for the Oenothera mitochondrial COX I and COX III genes to the homologous sequence block. ImagesFig. 5. PMID:15981332

  18. Molecular cloning of the human casein kinase II α subunit

    International Nuclear Information System (INIS)

    Meisner, H.; Heller-Harrison, R.; Buxton, J.; Czech, M.P.

    1989-01-01

    A human cDNA encoding the α subunit of casein kinase II and a partial cDNA encoding the rat homologue were isolated by using a Drosophila casein kinase II cDNA probe. The 2.2-kb human cDNA contains a 1.2-kb open reading frame, 150 nucleotides of 5' leader, and 850 nucleotides of 3' noncoding region. Except for the first 7 deduced amino acids that are missing in the rat cDNA, the 328 amino acids beginning with the amino terminus are identical between human and rat. The Drosophila enzyme sequence is 90% identical with the human casein kinase II sequence, and there is only a single amino acid difference between the published partial bovine sequence and the human sequence. In addition, the C-terminus of the human cDNA has an extra 53 amino acids not present in Drosophila. Northern analysis of rat and human RNA showed predominant bands of 5.5, 3.1, and 1.8 kb. In rat tissues, brain and spleen had the highest levels of casein kinase II α subunit specific RNA, while skeletal muscle showed the lowest. Southern analysis of human cultured cell and tissue genomic DNA using the full-length cDNA probe revealed two bands with restriction enzymes that have no recognition sites within the cDNA and three to six bands with enzymes having single internal sites. These results are consistent with the possibility that two genes encode the α subunits

  19. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.M.B. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia]|[Universidade Nova de Lisboa, Oeiras (Portugal). Instituto de Tecnologia Quimica e Biologica; Franco, E.; Teixeira, A.R.N. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of {sup 35}S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author).

  20. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    International Nuclear Information System (INIS)

    Ferreira, R.M.B.; Universidade Nova de Lisboa, Oeiras; Franco, E.; Teixeira, A.R.N.

    1996-01-01

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35 S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author)

  1. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.

    Science.gov (United States)

    Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L

    2017-08-04

    Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression.

    Science.gov (United States)

    Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M; Shi, Shujie; Chen, Jingxin; Blobner, Brandon M; Buck, Teresa M; Brodsky, Jeffrey L; Hughey, Rebecca P; Kleyman, Thomas R

    2018-03-01

    Epithelial Na + channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αβγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na + . The lack of N-linked glycans on the β-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the β-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type β-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the β-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.

  4. Covalent co-immobilization of heparin/laminin complex that with different concentration ratio on titanium surface for selectively direction of platelets and vascular cells behavior

    International Nuclear Information System (INIS)

    Wang, Jian; Chen, Yuan; Liu, Tao; Wang, Xue; Liu, Yang; Wang, Yuan; Chen, Junying; Huang, Nan

    2014-01-01

    Highlights: • Extracellular matrix inspired surface modification with fibronectin, heparin and VEGF to construct a favorable microenvironment for selectively anticoagulant and promote endothelialization. • Take the advantage of specific intermolecular interaction, the bioactivity of above biomolecules was more efficiently maintained in compared with the common used covalent immobilization method. • Poly-l-lysine was used as a novel interlayer for surface amination, and in comparison, PLL coating was more feasible and the degradation product had no harm to human body. - Abstract: Surface biofunctional modification of coronary artery stent to improve the hemocompatibility and selectively accelerate endothelium regeneration but prevent restenosis have been become a new hotspot. For this, a novel method was developed in this work by co-immobilization of Ln and heparin complex on poly-L-lysine modified Ti surface. Take the advantage of the specific interaction between Ln and heparin, Ln and heparin complexes with different concentration ratios were set up for creating different exposure density of these two types of biomolecules. According to biocompatibility evaluation results, the Hep/Ln complexes modified surface displayed less platelet adhesion and activation. Especially, on L(150)H and L(200)H surface, the AT III binding quantity, APTT value and anti-coagulation property of modified surface were significantly promoted. Furthermore, the adherent density and proliferation activity of ECs and EPCs were positively correlated with Ln concentration. Notably, the proliferation of both ECs and EPCs on L(100)H, L(150)H and L(200)H surface were greatly promoted. Another hand, the proliferation activity of SMCs was significantly inhibited on Hep/Ln modified surfaces, which was considered mainly due to the inhibitory effect of heparin to SMCs. According to the existing results, this study demonstrated that in a certain range of heparin and laminin concentration ratio

  5. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions

    International Nuclear Information System (INIS)

    Freudenthal, Bret D.; Gakhar, Lokesh; Ramaswamy, S.; Washington, M. Todd

    2009-01-01

    Eukaryotic proliferating cell nuclear antigen (PCNA), an essential accessory factor in DNA replication and repair, is a ring-shaped homotrimer. A novel nontrimeric structure of E113G-mutant PCNA protein is reported, which shows that this protein forms alternate subunit interactions. It is concluded that the charged side chain of Glu113 promotes normal trimer formation by destabilizing these alternate subunit interactions. Eukaryotic proliferating cell nuclear antigen (PCNA) is an essential replication accessory factor that interacts with a variety of proteins involved in DNA replication and repair. Each monomer of PCNA has an N-terminal domain A and a C-terminal domain B. In the structure of the wild-type PCNA protein, domain A of one monomer interacts with domain B of a neighboring monomer to form a ring-shaped trimer. Glu113 is a conserved residue at the subunit interface in domain A. Two distinct X-ray crystal structures have been determined of a mutant form of PCNA with a substitution at this position (E113G) that has previously been studied because of its effect on translesion synthesis. The first structure was the expected ring-shaped trimer. The second structure was an unanticipated nontrimeric form of the protein. In this nontrimeric form, domain A of one PCNA monomer interacts with domain A of a neighboring monomer, while domain B of this monomer interacts with domain B of a different neighboring monomer. The B–B interface is stabilized by an antiparallel β-sheet and appears to be structurally similar to the A–B interface observed in the trimeric form of PCNA. The A–A interface, in contrast, is primarily stabilized by hydrophobic interactions. Because the E113G substitution is located on this hydrophobic surface, the A–A interface should be less favorable in the case of the wild-type protein. This suggests that the side chain of Glu113 promotes trimer formation by destabilizing these possible alternate subunit interactions

  6. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.

    OpenAIRE

    Heyduk, T; Heyduk, E; Severinov, K; Tang, H; Ebright, R H

    1996-01-01

    Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta ...

  7. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  8. Fungal mediator tail subunits contain classical transcriptional activation domains.

    Science.gov (United States)

    Liu, Zhongle; Myers, Lawrence C

    2015-04-01

    Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their incorporation into Mediator but do not possess the ability to activate transcription when fused to a DNA binding domain. This suggests that Mediator fusion proteins actually are functioning in a manner similar to that of a classical DNA-bound activator rather than just recruiting Mediator. Our finding that deletion of the activation domains of S. cerevisiae Med2 and Med3, as well as C. dubliniensis Tlo1 (a Med2 ortholog), impairs the induction of certain genes shows these domains function at native promoters. Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  11. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  12. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O

    1992-01-01

    Recombinant human alpha subunit from casein kinase-2 (CK-2) was subjected, either alone or in combination with recombinant human beta subunit, to high temperature, tryptic digestion and urea treatment. In all three cases, it was shown that the presence of the beta subunit could drastically reduce...... the autophosphorylation site. It is suggested that the acidic domain of the beta subunit, encompassing residues 55-71, plays a role in the interactions between the beta and alpha subunits....

  13. Efficient expression of functional (α6β22β3 AChRs in Xenopus oocytes from free subunits using slightly modified α6 subunits.

    Directory of Open Access Journals (Sweden)

    Carson Kai-Kwong Ley

    Full Text Available Human (α6β2(α4β2β3 nicotinic acetylcholine receptors (AChRs are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β22β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β22β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.

  14. Characterisation by nuclear magnetic resonance of the β catalytic subunit of the chloroplastic coupling factor

    International Nuclear Information System (INIS)

    Andre, Francois

    1986-09-01

    This academic work addressed the use of nuclear magnetic resonance (NMR) for the structural and dynamic study of the catalytic sub-unit of the extrinsic section of a membrane complex, the chloroplastic H+-ATPase. This work included the development of a protocol of preparation and quantitative purification of β subunits isolated from the CF1 for the elaboration of a concentrated sample for NMR, and then the study of the β subunit by using proton NMR

  15. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  16. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...... subunit and 71% identity to the alpha' subunit of human casein kinase 2....

  17. Compensatory expression of human -Acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma

    OpenAIRE

    Pohl , Sandra; Tiede , Stephan; Castrichini , Monica; Cantz , Michael; Gieselmann , Volkmar; Braulke , Thomas

    2009-01-01

    Abstract The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (?2, ?2, ?2). The ?- and ?-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the ?-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GN...

  18. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  19. The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA

    Directory of Open Access Journals (Sweden)

    Herberg Friedrich W

    2011-08-01

    Full Text Available Abstract Background The two variants of the α-form of the catalytic (C subunit of protein kinase A (PKA, designated Cα1 and Cα2, are encoded by the PRKACA gene. Whereas Cα1 is ubiquitous, Cα2 expression is restricted to the sperm cell. Cα1 and Cα2 are encoded with different N-terminal domains. In Cα1 but not Cα2 the N-terminal end introduces three sites for posttranslational modifications which include myristylation at Gly1, Asp-specific deamidation at Asn2 and autophosphorylation at Ser10. Previous reports have implicated specific biological features correlating with these modifications on Cα1. Since Cα2 is not modified in the same way as Cα1 we tested if they have distinct biochemical activities that may be reflected in different biological properties. Results We show that Cα2 interacts with the two major forms of the regulatory subunit (R of PKA, RI and RII, to form cAMP-sensitive PKAI and PKAII holoenzymes both in vitro and in vivo as is also the case with Cα1. Moreover, using Surface Plasmon Resonance (SPR, we show that the interaction patterns of the physiological inhibitors RI, RII and PKI were comparable for Cα2 and Cα1. This is also the case for their potency to inhibit catalytic activities of Cα2 and Cα1. Conclusion We conclude that the regulatory complexes formed with either Cα1 or Cα2, respectively, are indistinguishable.

  20. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  1. Distinct forms of the β subunit of GTP-binding regulatory proteins identified by molecular cloning

    International Nuclear Information System (INIS)

    Fong, H.K.W.; Amatruda, T.T. III; Birren, B.W.; Simon, M.I.

    1987-01-01

    Two distinct β subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as β 1 and β 1 subunits. The bovine transducin β subunit (β 1 ) has been cloned previously. The author now isolated and analyzed cDNA clones that encode the β 2 subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue M/sub r/ 37,329 Β 2 protein is 90% identical with β 1 in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine β 2 subunit is 1.7 kilobases in length. It is expressed at lower levels than β 1 subunit mRNA in all tissues examined. The β 1 and β 2 messages are expressed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that β 1 and β 2 are encoded by separate genes. The amino acid sequences for the bovine and human β 2 subunit are identical, as are the amino acid sequences for the bovine and human β 1 subunit. This evolutionary conservation suggests that the two β subunits have different roles in the signal transduction process

  2. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  3. Specific radioimmunoassay of HCG and its α and β subunits: methods and results

    International Nuclear Information System (INIS)

    Reuter, A.M.; Schoonbrood, J.; Franchimont, P.

    1976-01-01

    To create antisera that are specific for the radioimmunoassay of HCG and its subunits, the antisera are neutralized by incubation with LH or HCG. For each RIA system the inhibition curves of HCG and its subunits LH, FSH, TSH and STH are obtained. The 125 I labelled hormones HCG, α and β subunits and LH were chromatographed over a Sephadex G 100 column. Serum of menopausal and pregnant women were chromatographed in the same way and the fractions subjected to RIA. HCG and its subunits were determined by RIA in the sera of patients with different kinds of cancer

  4. Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.

    Science.gov (United States)

    Urban, C; Salton, M R

    1983-08-31

    The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.

  5. Effect of HMM Glutenin Subunits on Wheat Quality Attributes

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2009-01-01

    Full Text Available Glutenin is a group of polymeric gluten proteins. Glutenin molecules consist of glutenin subunits linked together with disulphide bonds and having higher (HMM-GS and lower (LMM-GS molecular mass. The main objective of this study is the evaluation of the influence of HMM-GS on flour processing properties. Seven bread wheat genotypes with contrasting quality attributes and different HMM-GS composition were analyzed during three years. The composition and quantity of HMM-GS were determined by SDS-PAGE and RP-HPLC, respectively. The quality diversity among genotypes was estimated by the analysis of wheat grain, and flour and bread quality parameters. The presence of HMM glutenin subunits 1 and 2* at Glu-A1 and the subunits 5+10 at Glu-D1 loci, as well as a higher proportion of total HMM-GS, had a positive effect on wheat quality. Cluster analysis of the three groups of data (genotype and HMM-GS, flour and bread quality, and dough rheology yielded the same hierarchical structure for the first top three levels, and similarity of the corresponding dendrograms was proved by the principal eigenvalues of the corresponding Euclidian distance matrices. The obtained similarity in classification based on essentially different types of measurements reflects strong natural association between genetic data, product quality and physical properties. Principal component analysis (PCA was applied to effectively reduce large data set into lower dimensions of latent variables amenable for the analysis. PCA analysis of the total set of data (15 variables revealed a very strong interrelationship between the variables. The first three PCA components accounted for 96 % of the total variance, which was significant to the level of 0.05 and was considered as the level of experimental error. These data imply that the quality of wheat cultivars can be contributed to HMM-GS data and should be taken into account in breeding programs assisted by computer models with the aim to

  6. Determination of hCG-alpha subunit in threatened pregnancy

    International Nuclear Information System (INIS)

    Talas, M.; Pohanka, J.; Fingerova, H.; Janouskova, M.; Krikal, Z.; Prasilova, J.; Zupkova, H.

    1987-01-01

    Radioimmunoassay of the hCG-alpha subunit was made using an antibody anti hCG-alpha serum, highly purified hCG-alpha for 125 I-labelling and the standard hCG-alpha. Sera of healthy pregnant women sampled throughout the whole pregnancies were used to determine x-bar±S.D. of hCG-alpha for 14-day intervals. Included in the study were groups of women with high risk of premature labor, late toxemia of pregnancy, twins and fetal hypotrophy. It was shown that increased hCG-alpha is found in pregnant women in whom signs of late toxemia of pregnancy are combined with high risk of premature labor, or with twin pregnancies, while in those with fetal hypotrophy hCG-alpha is within normal limits. (author). 3 figs., 7 refs

  7. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  8. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  9. The subunit structure of the extracellular hemoglobin of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Arndt, Marcio H.L.; Naves, Cristiani F.; Xavier, Luciana P.; Santoro, Marcelo M.

    1997-01-01

    Full text. The hemoglobin of Biomphalaria glabrata was purified to homogeneity by a two step purification protocol using a gel filtration column (Superose 6 HR/Pharmacia ) followed by an anion exchange chromatography (MONO-Q Sepharose/Pharmacia). The dissociation products were analysed by a 5 - 15 % Polyacrylamide gel electrophoresis containing Sodium Dodecyl Sulfate (SDS-PAGE) giving a band of 270 K Daltons and a band of 180 K Daltons after reduction with β-mercaptoethanol. The same profile was obtained in a 3.5 % Agarose gel electrophoresis containing SDS (SDS-AGE) showing additional bands of higher molecular weight. These bands were proposed to be monomers, dimers and trimers and, after reduction in a Bidimensional SDS-AGE, the proposed monomers and dimers were decomposed in two and four bands that were interpreted as 1 - 4 chains. The hemoglobin was digested by four different proteases ( Thrombin, Trypsin, Chymotrypsin and Subtilisin ) showing several equivalent fragments with molecular weights multiples of its minimum molecular weight ( 17.7 K Daltons). The circular dichroism spectrum of the protein showed a characteristic high α-helix content. We proposed that this hemoglobin is a pentamer of approx. 360 K Daltons subunits each formed by two 180 K Daltons chains linked in pairs by disulfide bridges and each of these chains comprises ten Heme binding domains. These data were compared to other Planorbidae extracellular hemoglobins. Up to now, the quaternary structure of this hemoglobin (shape and disposition of the subunits) is unknown. It is intended to elucidate its structure by Small Angle X-Ray Scattering in Brazilian National Laboratory of Synchrotron Light (LNLS). (author)

  10. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    International Nuclear Information System (INIS)

    Taylor, T.; Weintraub, B.D.

    1985-01-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing [ 14 C]alanine and [ 3 H] glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, [ 14 C]alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. [ 3 H]Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function

  11. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    Science.gov (United States)

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  12. Roles of the β subunit hinge domain in ATP synthase F1 sector: Hydrophobic network formed by introduced βPhe174 inhibits subunit rotation

    International Nuclear Information System (INIS)

    Nakanishi-Matsui, Mayumi; Kashiwagi, Sachiko; Kojima, Masaki; Nonaka, Takamasa; Futai, Masamitsu

    2010-01-01

    The ATP synthase β subunit hinge domain (βPhe148 ∼ βGly186, P-loop/α-helixB/loop/β-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F 1 with the βSer174 to Phe mutation in the domain lowered the γ subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F 1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the βMet159, βIle163, and βAla167 residues of the β subunit are involved together with the mutant βPhe174. The network is expected to stabilize the conformation of β DP (nucleotide-bound form of the β subunit), resulting in increased activation energy for transition to β E (empty β subunit). The modeling further predicts that replacement of βMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of βS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the β subunit hinge domain is pertinent for the rotational catalysis.

  13. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation

    NARCIS (Netherlands)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A. NR2B, and NR2D subunit transcripts

  14. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  15. Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea.

    OpenAIRE

    Ruggero, D; Londei, P

    1996-01-01

    Hybrid ribosomes obtained by mixing the ribosomal subunits of the extremely thermophilic archaea Sulfolobus solfataricus and Desulfurococcus mobilis were tested for their sensitivity to selected antibiotics. It is shown that structural differences in the large ribosomal subunits determine qualitatively and quantitatively the patterns of response to alpha-sarcin and paromomycin in these species.

  16. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  17. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  18. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  19. Purification of the alpha and beta subunits of phosphorylase kinase for structural studies

    International Nuclear Information System (INIS)

    Sotiroudis, T.G.; Heilmeyer, L.M.G. Jr.; Crabb, J.W.

    1987-01-01

    Structural analysis of the alpha (Mr, 132,000) and beta (Mr, 113,000) subunits of phosphorylase kinase may provide clues to their yet unknown functions however purification remains problematic. Preparative RP-HPLC procedures yield inconveniently large, dilute solutions and concentration steps are required prior to subunit modification and fragmentation. Concentration of the β subunit usually results in significant losses due to insolubility. Using preparative SDS-polyacrylamide gel electrophoresis, they have purified the α, 7 , and β subunits from rabbit muscle phosphorylase kinase in a soluble and concentrated form suitable for structural studies. Phosphorylase kinase labelled with fluorescein isothiocyanate in the α and α' subunits and fully 14 C-S-carboxymethylated was fractionated on a 5% acrylamide Laemmli slab gel. The subunit bands were visualized by fluorescence and by SDS precipitation then excised and electroeluted in the presence of SDS using an ELUTRAP device. From 4.5 mg of enzyme applied to a 4.5 mm thick gel about 70% of the α subunit and about 90% of the β subunit were typically recovered in less than 1 ml with overnight elution

  20. Submitochondrial distributions and stabilities of subunits 4, 5, and 6 of yeast cytochrome oxidase in assembly defective mutants.

    Science.gov (United States)

    Glerum, D M; Tzagoloff, A

    1997-08-04

    The concentration and submitochondrial distribution of the subunit polypeptides of cytochrome oxidase have been studied in wild type yeast and in different mutants impaired in assembly of this respiratory complex. All the subunit polypeptides of the enzyme are associated with mitochondrial membranes of wild type cells, except for a small fraction of subunits 4 and 6 that is recovered in the soluble protein fraction of mitochondria. Cytochrome oxidase mutants consistently display a severe reduction in the steady-state concentration of subunit 1 due to its increased turnover. As a consequence, most of subunit 4, which normally is associated with subunit 1, is found in the soluble fraction. A similar shift from membrane-bound to soluble subunit 6 is seen in mutants blocked in expression of subunit 5a. In contrast, null mutations in COX6 coding for subunit 6 promote loss of subunit 5a. The absence of subunit 5a in the cox6 mutant is the result of proteolytic degradation rather than regulation of its expression by subunit 6. The possible role of the ATP-dependent proteases Rca1p and Afg3p in proteolysis of subunits 1 and 5a has been assessed in strains with combined mutations in COX6, RCA1, and/or AFG3. Immunochemical assays indicate that another protease(s) must be responsible for most of the proteolytic loss of these proteins.

  1. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-03-28

    The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1 , ATP5G2 , and ATP5G3 , encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1 , ATP5G2 , and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F 1 -catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ 0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.

  2. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  3. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    International Nuclear Information System (INIS)

    Bidart, J.M.; Troalen, F.; Salesse, R.; Bousfield, G.R.; Bohuon, C.J.; Bellet, D.H.

    1987-01-01

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptides spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex

  4. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins.

    Directory of Open Access Journals (Sweden)

    Christine Pampeno

    Full Text Available The laminin receptor (LamR is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C and PrP(Sc. Indeed, LamR is a receptor for PrP(C. Whether LamR interacts with PrP(Sc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.

  5. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases.

    Science.gov (United States)

    Garrido, Francisco; Alfonso, Carlos; Taylor, John C; Markham, George D; Pajares, María A

    2009-07-01

    Archaea contain a class of methionine adenosyltransferases (MATs) that exhibit substantially higher stability than their mesophilic counterparts. Their sequences are highly divergent, but preserve the essential active site motifs of the family. We have investigated the origin of this increased stability using chemical denaturation experiments on Methanococcus jannaschii MAT (Mj-MAT) and mutants containing single tryptophans in place of tyrosine residues. The results from fluorescence, circular dichroism, hydrodynamic, and enzyme activity measurements showed that the higher stability of Mj-MAT derives largely from a tighter association of its subunits in the dimer. Local fluorescence changes, interpreted using secondary structure predictions, further identify the least stable structural elements as the C-terminal ends of beta-strands E2 and E6, and the N-terminus of E3. Dimer dissociation however requires a wider perturbation of the molecule. Additional analysis was initially hindered by the lack of crystal structures for archaeal MATs, a limitation that we overcame by construction of a 3D-homology model of Mj-MAT. This model predicts preservation of the chain topology and three-domain organization typical of this family, locates the least stable structural elements at the flat contact surface between monomers, and shows that alterations in all three domains are required for dimer dissociation.

  6. The Regulation of NF-κB Subunits by Phosphorylation

    Directory of Open Access Journals (Sweden)

    Frank Christian

    2016-03-01

    Full Text Available The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.

  7. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  8. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David

    2007-01-01

    Adenosine to inosine (A-to-I) pre-mRNA editing by the ADAR enzyme family has the potential to increase the variety of the proteome. This editing by adenosine deamination is essential in mammals for a functional brain. To detect novel substrates for A-to-I editing we have used an experimental method...... to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA(A) receptor......, is a substrate for editing by both ADAR1 and ADAR2. Editing of the Gabra-3 mRNA recodes an isoleucine to a methionine. The extent of editing is low at birth but increases with age, reaching close to 100% in the adult brain. We therefore propose that editing of the Gabra-3 mRNA is important for normal brain...

  9. Vaccine profile of herpes zoster (HZ/su) subunit vaccine.

    Science.gov (United States)

    Cunningham, Anthony L; Heineman, Thomas

    2017-07-01

    Herpes zoster (HZ) causes an often severe and painful rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN) and by dissemination in immune-compromised patients. HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age-related or other causes of decreased T cell immunity. A live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 8 years. Areas covered: A new HZ subunit (HZ/su) vaccine combines a key surface VZV glycoprotein (E) with a T cell-boosting adjuvant system (AS01 B ) and is administered by two intramuscular injections two months apart. Expert commentary: HZ/su showed excellent efficacy of ~90% in immunocompetent adults ≥50 and ≥70 years of age, respectively, in the ZOE-50 and ZOE-70 phase III controlled trials. Efficacy was unaffected by advancing age and persisted for >3 years. Approximately 9.5% of subjects had severe, but transient (1-2 days) injection site pain, swelling or redness. Compliance with both vaccine doses was high (95%). The vaccine will have a major impact on HZ management. Phase I-II trials showed safety and immunogenicity in severely immunocompromised patients. Phase III trial results are expected soon.

  10. Design of a hyperstable 60-subunit protein icosahedron

    Science.gov (United States)

    Hsia, Yang; Bale, Jacob B.; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K.; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N.; Gonen, Tamir; King, Neil P.; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

  11. Fc receptor gamma subunit polymorphisms and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Al-Ansari, Aliya; Ollier, W.E.; Gonzalez-Gay, Miguel A.; Gul, Ahmet; Inanac, Murat; Ordi, Jose; Teh, Lee-Suan; Hajeer, Ali H.

    2004-01-01

    To investigate the possible association between Fc receptor gamma polymorphisms and systemic lupus erythematosus (SLE). We have investigated the full FcR gamma gene for polymorphisms using polymerase chain reaction (PCR)-single strand confirmational polymorphisms and DNA sequencing .The polymorphisms identified were genotype using PCR-restriction fragment length polymorphism. Systemic lupus erythematosus cases and controls were available from 3 ethnic groups: Turkish, Spanish and Caucasian. The study was conducted in the year 2001 at the Arthritis Research Campaign, Epidemiology Unit, Manchester University Medical School, Manchester, United Kingdom. Five single nucleotide polymorphisms were identified, 2 in the promoter, one in intron 4 and, 2 in the 3'UTR. Four of the 5 single nucleotide polymorphisms (SNPs) were relatively common and investigated in the 3 populations. Allele and genotype frequencies of all 4 investigated SNPs were not statistically different cases and controls. fc receptor gamma gene does not appear to contribute to SLE susceptibility. The identified polymorphisms may be useful in investigating other diseases where receptors containing the FcR gamma subunit contribute to the pathology. (author)

  12. Crystal structure of the P pilus rod subunit PapA.

    Directory of Open Access Journals (Sweden)

    Denis Verger

    2007-05-01

    Full Text Available P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE mechanism, whereby the chaperone's G1 beta-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it.

  13. Structural characterization of recombinant crustacyanin subunits from the lobster Homarus americanus

    International Nuclear Information System (INIS)

    Ferrari, Michele; Folli, Claudia; Pincolini, Elisa; McClintock, Timothy S.; Rössle, Manfred; Berni, Rodolfo; Cianci, Michele

    2012-01-01

    The two recombinant apo subunits H1 and H2 from H. americanus have been structurally characterized. Reconstitution studies with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits. Crustacean crustacyanin proteins are linked to the production and modification of carapace colour, with direct implications for fitness and survival. Here, the structural and functional properties of the two recombinant crustacyanin subunits H 1 and H 2 from the American lobster Homarus americanus are reported. The two subunits are structurally highly similar to the corresponding natural apo crustacyanin CRTC and CRTA subunits from the European lobster H. gammarus. Reconstitution studies of the recombinant crustacyanin proteins H 1 and H 2 with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits from H. gammarus in complex with astaxanthin. Moreover, correlations between the presence of crustacyanin genes in crustacean species and the resulting carapace colours with the spectral properties of the subunits in complex with astaxanthin confirmed this genotype–phenotype linkage

  14. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase family of enzymes. All of these NHases possess a gene organization of , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of , was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K(2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K(2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K(2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a order. Our findings expand the general features of self-subunit swapping maturation.

  15. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  16. Three human alcohol dehydrogenase subunits: cDNA structure and molecular and evolutionary divergence

    International Nuclear Information System (INIS)

    Ikuta, T.; Szeto, S.; Yoshida, A.

    1986-01-01

    Class I human alcohol dehydrogenase (ADH; alcohol:NAD + oxidoreductase, EC 1.1.1.1) consists of several homo- and heterodimers of α, β, and γ subunits that are governed by the ADH1, ADH2, and ADH3 loci. The authors previously cloned a full length of cDNA for the β subunit, and the complete sequence of 374 amino acid residues was established. cDNAs for the α and γ subunits were cloned and characterized. A human liver cDNA library, constructed in phage λgt11, was screened by using a synthetic oligonucleotide probe that was matched to the γ but not to the β sequence. Clone pUCADHγ21 and clone pUCADHα15L differed from β cDNA with respect to restriction sites and hybridization with the nucleotide probe. Clone pUCADHγ21 contained an insertion of 1.5 kilobase pairs (kbp) and encodes 374 amino acid residues compatible with the reported amino acid sequence of the γ subunit. Clone pUCADHα15L contained an insertion of 2.4 kbp and included nucleotide sequences that encode 374 amino acid residues for another subunit, the γ subunit. In addition, this clone contained the sequences that encode the COOH-terminal part of the β subunit at its extended 5' region. The amino acid sequences and coding regions of the cDNAs of the three subunits are very similar. A high degree of resemblance is observed also in their 3' noncoding regions. However, distinctive differences exist in the vicinity of the Zn-binding cysteine residue at position 46. Based on the cDNA sequences and the deduced amino acid sequences of the three subunits, their structural and evolutionary relationships are discussed

  17. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation.

    Science.gov (United States)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    2002-04-01

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A, NR2B, and NR2D subunit transcripts were present in both nondifferentiated and neuronally differentiated cultures, while NR2C subunits were expressed only transiently, during the early period of neural differentiation. Several splice variants of NR1 were detected in noninduced progenitors and in RA-induced cells, except the N1 exon containing transcripts that appeared after the fourth day of induction, when neuronal processes were already formed. NR1 and NR2A subunit proteins were detected both in nondifferentiated progenitor cells and in neurons, while the mature form of NR2B subunit protein appeared only at the time of neuronal process elongation. Despite the early presence of NR1 and NR2A subunits, NMDA-evoked responses could be detected in NE-4C neurons only after the sixth day of induction, coinciding in time with the expression of the mature NR2B subunit. The formation of functional NMDA receptors also coincided with the appearance of synapsin I and synaptophysin. The lag period between the production of the subunits and the onset of channel function suggests that subunits capable of channel formation cannot form functional NMDA receptors until a certain stage of neuronal commitment. Thus, the in vitro neurogenesis by NE-4C cells provides a suitable tool to investigate some inherent regulatory processes involved in the initial maturation of NMDA receptor complexes. Copyright 2002 Wiley Periodicals, Inc.

  18. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    OpenAIRE

    Costa, Mariana Souza; Scholz, Maria Brígida dos Santos; Miranda, Martha Zavariz; Franco, Célia Maria Landi

    2017-01-01

    ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8), Glu-D1 (5+10), and Glu-A3 (b) were associa...

  19. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions.

    Science.gov (United States)

    Palù, Giorgio; Loregian, Arianna

    2013-09-01

    Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Protein Kinase A Regulatory Subunits in Human Adipose Tissue

    Science.gov (United States)

    Mantovani, Giovanna; Bondioni, Sara; Alberti, Luisella; Gilardini, Luisa; Invitti, Cecilia; Corbetta, Sabrina; Zappa, Marco A.; Ferrero, Stefano; Lania, Andrea G.; Bosari, Silvano; Beck-Peccoz, Paolo; Spada, Anna

    2009-01-01

    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects. RESEARCH DESIGN AND METHODS—The expression of the different PKA regulatory subunits was evaluated by immunohistochemistry, Western blot, and real-time PCR in subcutaneous and visceral adipose tissue samples from 20 nonobese and 67 obese patients. PKA activity and glycerol release were evaluated in total protein extract and adipocytes isolated from fresh tissue samples, respectively. RESULTS—Expression techniques showed that R2B was the most abundant regulatory protein, both at mRNA and protein level. Interestingly, R2B mRNA levels were significantly lower in both subcutaneous and visceral adipose tissues from obese than nonobese patients and negatively correlated with BMI, waist circumference, insulin levels, and homeostasis model assessment of insulin resistance. Moreover, both basal and stimulated PKA activity and glycerol release were significantly lower in visceral adipose tissue from obese patients then nonobese subjects. CONCLUSIONS—Our results first indicate that, in human adipose tissue, there are important BMI-related differences in R2B expression and PKA activation, which might be included among the multiple determinants involved in the different lipolytic response to β-adrenergic activation in obesity. PMID:19095761

  1. P. berghei telomerase subunit TERT is essential for parasite survival.

    Directory of Open Access Journals (Sweden)

    Agnieszka A Religa

    Full Text Available Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA, though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT, is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further

  2. Molecular cloning of the α subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: Chromosomal localization and homology to the α subunits of integrins

    International Nuclear Information System (INIS)

    Arnaout, M.A.; Remold-O'Donnell, E.; Pierce, M.W.; Harris, P.; Tenen, D.G.

    1988-01-01

    The cell surface-glycoprotein Mo1 is a member of the family of leukocyte cell adhesion molecules (Leu-CAMs) that includes lymphocyte function-associated antigen 1 (LFA-1) and p150,95. Each Leu-CAM is a heterodimer with a distinct α subunit noncovalently associated with a common β subunit. The authors describe the isolation and analysis of two partial cDNA clones encoding the α subunit of the Leu-CAM Mo1 in humans and guinea pigs. A monoclonal antibody directed against an epitope in the carboxyl-terminal portion of the guinea pig α chain was used for immunoscreening a λgt11 expression library. The sequence of a 378-base-pair insert from one immunoreactive clone revealed a single continuous open reading frame encoding 126 amino acids including a 26-amino acid tryptic peptide isolated from the purified guinea pig α subunit. A cDNA clone of identical size was isolated from a human monocyte/lymphocyte cDNA library by using the guinea pig clone as a probe. The human clone also encoded a 126-amino acid peptide including the sequence of an additional tryptic peptide present in purified human Mo1α chain. Southern analysis of DNA from hamster-human hybrids localized the human Mo1α chain to chromosome 16, which has been shown to contain the gene for the α chain of lymphocyte function-associated antigen 1. These data suggest that the α subunits of Leu-CAMs evolved by gene duplication from a common ancestral gene and strengthen the hypothesis that the α subunits of these heterodimeric cell adhesion molecules on myeloid and lymphoid cells, platelets, and fibroblasts are evolutionary related

  3. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  4. Characterization of the alpha and beta subunits of casein kinase 2 by far-UV CD spectroscopy

    DEFF Research Database (Denmark)

    Issinger, O G; Brockel, C; Boldyreff, B

    1992-01-01

    Although Chou-Fasman calculations of the secondary structure of recombinant casein kinase 2 subunits alpha and beta suggest they have a similar overall conformation, circular dichroism (CD) studies show that substantial differences in the conformation of the two subunits exist. In addition......, no changes in the far-UV CD spectrum of the alpha subunit are observed in the presence of casein or the synthetic decapeptide substrate RRRDDDSDDD. Furthermore, the alpha-helical structure of the alpha subunit (but not the beta subunit) can be increased in the presence of stoichiometric amounts of heparin...

  5. Stereocontrolled Synthesis of the C(1)-C(11) Subunit of the Iejimalides

    DEFF Research Database (Denmark)

    Mendlik, Matthew T.; Cottard, Muriel; Rein, Tobias

    1997-01-01

    An enantioselective synthesis of the C(1)-C(11) subunit of the iejimalides has been accomplished through a combination of an asymmetric Homer-Wadsworth-Emmons condensation and a chiral pool approach. (C) 1997 Elsevier Science Ltd....

  6. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.

    Science.gov (United States)

    Magill, C P; Jackson, S P; Bell, S D

    2001-12-14

    Archaea possess two general transcription factors that are required to recruit RNA polymerase (RNAP) to promoters in vitro. These are TBP, the TATA-box-binding protein and TFB, the archaeal homologue of TFIIB. Thus, the archaeal and eucaryal transcription machineries are fundamentally related. In both RNAP II and archaeal transcription systems, direct contacts between TFB/TFIIB and the RNAP have been demonstrated to mediate recruitment of the polymerase to the promoter. However the subunit(s) directly contacted by these factors has not been identified. Using systematic yeast two-hybrid and biochemical analyses we have identified an interaction between the N-terminal domain of TFB and an evolutionarily conserved subunit of the RNA polymerase, RpoK. Intriguingly, homologues of RpoK are found in all three nuclear RNA polymerases (Rpb6) and also in the bacterial RNA polymerase (omega-subunit).

  7. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    Science.gov (United States)

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  9. Two subunits of human ORC are dispensable for DNA replication and proliferation.

    Science.gov (United States)

    Shibata, Etsuko; Kiran, Manjari; Shibata, Yoshiyuki; Singh, Samarendra; Kiran, Shashi; Dutta, Anindya

    2016-12-01

    The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1 . The ORC1 or ORC2 -depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication.

  10. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    Science.gov (United States)

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  11. Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito,J.; Kanyo, Z.; Wang, D.; Franceschi, F.; Moore, P.; Steitz, T.; Duffy, E.

    2008-01-01

    The oxazolidinone antibacterials target the 50S subunit of prokaryotic ribosomes. To gain insight into their mechanism of action, the crystal structure of the canonical oxazolidinone, linezolid, has been determined bound to the Haloarcula marismortui 50S subunit. Linezolid binds the 50S A-site, near the catalytic center, which suggests that inhibition involves competition with incoming A-site substrates. These results provide a structural basis for the discovery of improved oxazolidinones active against emerging drug-resistant clinical strains.

  12. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Science.gov (United States)

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  13. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Directory of Open Access Journals (Sweden)

    Yolima P. Torres

    2014-10-01

    Full Text Available Coded by a single gene (Slo1, KCM and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca+2-activated K+ channel (BK is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels and a large C terminus composed of two regulators of K+ conductance domains (RCK domains, where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3 & β4 and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca+2 sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  14. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.

    Science.gov (United States)

    Torres, Yolima P; Granados, Sara T; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  15. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    International Nuclear Information System (INIS)

    Raftery, M.A.; Dunn, S.M.J.; Conti-Tronconi, B.M.; Middlemas, D.S.; Crawford, R.D.

    1983-01-01

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  16. Neutron scattering and the 30 S ribosomal subunit of E. coli

    International Nuclear Information System (INIS)

    Moore, P.B.; Engelman, D.M.; Langer, J.A.; Ramakrishnan, V.R.; Schindler, D.G.; Schoenborn, B.P.; Sillers, I.Y.; Yabuki, S.

    1982-01-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today. 30 references, 5 figures

  17. Distribution of AMPA-type glutamate receptor subunits in the chick visual system

    Directory of Open Access Journals (Sweden)

    Pires R.S.

    1997-01-01

    Full Text Available Several glutamate receptor (GluR subunits have been characterized during the past few years. In the present study, subunit-specific antisera were used to determine the distribution of the AMPA-type glutamate receptor subunits GluR1-4 in retinorecipient areas of the chick brain. Six white leghorn chicks (Gallus gallus, 7-15 days old, unknown sex were deeply anesthetized and perfused with 4% buffered paraformaldehyde and brain sections were stained using immunoperoxidase techniques. The AMPA-type glutamate receptor subunits GluR1, GluR2/3 and GluR4 were present in several retinorecipient areas, with varying degrees of colocalization. For example, perikarya in layers 2, 3, and 5 of the optic tectum contained GluR1, whereas GluR2/3 subunits appeared mainly in neurons of layer 13. The GluR4 subunit was only detected in a few cells of the tectal layer 13. GluR1 and GluR2/3 were observed in neurons of the nucleus geniculatus lateralis ventralis, whereas GluR4 was only present in its neuropil. Somata in the accessory optic nucleus appeared to contain GluR2/3 and GluR4, whereas GluR1 was the dominant subunit in the neuropil of this nucleus. These results suggest that different subpopulations of visual neurons might express different combinations of AMPA-type GluR subunits, which in turn might generate different synaptic responses to glutamate derived from retinal ganglion cell axons

  18. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.

    Science.gov (United States)

    Ismaya, Wangsa T; Rozeboom, Henriëtte J; Weijn, Amrah; Mes, Jurriaan J; Fusetti, Fabrizia; Wichers, Harry J; Dijkstra, Bauke W

    2011-06-21

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 Å resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ∼392 residues and two L subunits of ∼150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ∼100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 Å away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.

  19. Proteasome (Prosome Subunit Variations during the Differentiation of Myeloid U937 Cells

    Directory of Open Access Journals (Sweden)

    Laurent Henry

    1997-01-01

    Full Text Available 20S proteasomes (prosomes/multicatalytic proteinase are protein particles built of 28 subunits in variable composition. We studied the changes in proteasome subunit composition during the differentiation of U937 cells induced by phorbol‐myristate‐acetate or retinoic acid plus 1,25‐dihydroxy‐cholecalciferol by western blot, flow cytometry and immuno‐fluorescence. p25K (C3, p27K (IOTA and p30/33K (C2 subunits were detected in both the nucleus and cytoplasm of undifferentiated cells. Flow cytometry demonstrated a biphasic decrease in proteasome subunits detection during differentiation induced by RA+VD. PMA caused an early transient decrease in these subunits followed by a return to their control level, except for p30/33K, which remained low. Immuno‐fluorescence also showed differences in the cytolocalization of the subunits, with a particular decrease in antigen labeling in the nucleus of RA+VD‐induced cells, and a scattering in the cytoplasm and a reorganization in the nucleus of PMA‐induced cells. Small amounts of proteasomal proteins were seen on the outer membrane of non‐induced cells; these membrane proteins disappeared when treated with RA+VD, whereas some increased on PMA‐induced cells. The differential changes in the distribution and type of proteasomes in RA+VD and PMA‐induced cells indicate that, possibly, 20S proteasomes may play a role in relation to the mechanisms of differentiation and the inducer used.

  20. Characterization and application of a radioimmunoassay for reduced, carboxymethylated human luteinizing hormone α-subunit

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Beitins, I.Z.; Johnson, L.; McArthur, J.W.

    1978-01-01

    We have established a double antibody RIA using a rabbit antiserum prepared against reduced, carboxymethylated (RCXM) human LH α-subunit, with RCXM-α as tracer and standard. This antiserum did not cross-react with any native gonadotropins or subunit, and reacted only weakly with RCXM-α. A tryptic digest of RCXM α-subunit was completely reactive, while chymotryptic digestion abolished all immunoreactivity. By testing with separate tryptic fragments, the recognition site could be localized to a segment close to the amino-terminus of the peptide chain. When applied to measurement of serum and urine, an immunoreactive species, parallel to RCXM α-subunit by serial dilution, was found in concentrations of 1-2 ng/ml in serum and 3-4 ng/ml in urine. Similar levels of the immunoreactive component were found in conditions of elevated gonadotropins (e.g. pregnancy) as well as gonadotropin deficiency (panhypopituitarism and Kallmann's syndrome). After stimulation with LHRH, no rise was noted at times up to 6 h despite the fact that both LH and LH-α were elevated. The data indicate that the sequence-specific antiserum may be detecting an immunoreactive form of α-subunit of LH whose kinetics of appearance and disappearance differs from those of the native subunit

  1. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  2. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    Full Text Available ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8, Glu-D1 (5+10, and Glu-A3 (b were associated with strong flours and bread with high specific volume and low firmness. The subunits at the Glu-A1 and Glu-B3 had no effect on the rheological properties of the dough and bread quality, while the subunit 2+12 at Glu-D1 negatively affected the resistance to extension, and specific volume and firmness of the bread. Specific volume and firmness of the bread were influenced by the rheological properties of the dough, while the flour protein content was not important to define wheat quality. The identification of glutenin subunits at different loci along with the rheological tests of the flour are fundamental in estimating the potential use of different materials developed in wheat breeding.

  3. A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid.

    Science.gov (United States)

    Lee, Lye Siang; Brunk, Nicholas; Haywood, Daniel G; Keifer, David; Pierson, Elizabeth; Kondylis, Panagiotis; Wang, Joseph Che-Yen; Jacobson, Stephen C; Jarrold, Martin F; Zlotnick, Adam

    2017-11-01

    Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations. © 2017 The Protein Society.

  4. Reactivation of the chloroplast CF1-ATPase beta subunit by trace amounts of the CF1 alpha subunit suggests a chaperonin-like activity for CF1 alpha.

    Science.gov (United States)

    Avni, A; Avital, S; Gromet-Elhanan, Z

    1991-04-25

    Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.

  5. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  6. Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits

    Directory of Open Access Journals (Sweden)

    Zhiwen Ye

    2017-04-01

    Full Text Available Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR α and β subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN. The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM, we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.

  7. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  8. The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits.

    Science.gov (United States)

    Barton, K A; Thompson, J F; Madison, J T; Rosenthal, R; Jarvis, N P; Beachy, R N

    1982-06-10

    The predominant storage protein of soybean seed, glycinin, is composed of two heterogeneous classes of related subunits, the acidics (Mr approximately 38,000) and the basics (Mr approximately 22,000). Immunoreaction of polypeptides translated in vitro from isolated seed mRNA using antibodies prepared against either purified acidic or basic subunit groups precipitated precursor polypeptides of Mr = 60,000 to Mr = 63,000. High pressure liquid chromatography fingerprinting of trypsin-generated fragments from in vitro synthesized precursors showed fragments specific to both acidic and basic subunits. No mature acidic or basic subunits were detected in vitro translation reactions by either immunoprecipitation or high pressure liquid chromatography fingerprinting. Pulse-labeling of cotyledons growing in culture with [3H]glycine showed rapid accumulation of label in glycinin precursors of Mr = 59,000 to Mr = 62,000. Although in vivo synthesized precursors had slightly greater electrophoretic mobility than in vitro synthesized precursors, little label initially appeared in mature glycinin subunits. After several hours of continued cotyledon growth in absence of label, precursors were processed and label accumulated in both acidic and basic subunit groups. Recombinant plasmids were prepared by reverse transcription of soybean seed mRNA, and clones which encode glycinin precursors were identified by heteroduplex-hybridization of translatable messages. Northern blot analysis of seed mRNA shows the mRNA-encoding glycinin precursors to migrate at Mr = 0.71 X 10(6) on agarose gels, corresponding to approximately 2050 nucleotides. This is sufficiently large to encode a polypeptide consisting of both a glycinin acidic and basic subunit.

  9. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.

    Science.gov (United States)

    He, Jiuya; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-08-22

    The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O , had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.

  10. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties.

    Science.gov (United States)

    Becker, María Inés; Fuentes, Alejandra; Del Campo, Miguel; Manubens, Augusto; Nova, Esteban; Oliva, Harold; Faunes, Fernando; Valenzuela, María Antonieta; Campos-Vallette, Marcelo; Aliaga, Alvaro; Ferreira, Jorge; De Ioannes, Alfredo E; De Ioannes, Pablo; Moltedo, Bruno

    2009-03-01

    Hemocyanin, the oxygen transporter metallo-glycoprotein from mollusks, shows strong relationship between its notable structural features and intrinsic immunomodulatory effects. Here we investigated the individual contribution of CCHA and CCHB subunits from Concholepas hemocyanin (CCH) to in vivo humoral immune response and their pre-clinical evaluation as immunotherapeutic agent in a mice bladder cancer model, in relation to their biochemical properties. To this end, subunits were purified and well characterized. Homogeneous subunits were obtained by anionic exchange chromatography, and its purity assessed by electrophoretic and immunochemical methods. While each CCH subunit contains eight functional units showing partial cross reaction, the vibrational spectral analysis showed several spectral differences, suggesting structural differences between them. In addition, we demonstrated differences in the carbohydrate content: CCHA had a 3.6% w/w sugar with both N- and O-linked moieties. In turn, CCHB had a 2.5% w/w sugar with N-linked, while O-linked moieties were nearly absent. Considering these differences, it was not possible to predict a priori whether the immunogenic and immunotherapeutic properties of subunits might be similar. Surprisingly, both subunits by itself induced a humoral response, and showed an antitumor effect in the bladder carcinoma cell line MBT-2. However, when immunologic parameters were analyzed, CCHA showed better efficiency than CCHB. No allergic reactions or any toxic effects were observed in mice treated with CCHA, sustaining its potential therapeutic use. Our study supports that CCHA subunit accounts for the most important features involved in the immunogenicity of CCH, such as better hydrophilicity and higher content of carbohydrates.

  11. Localization of extracellular matrix laminin and fibronectin in male rats infected by candida albicans, with the property expected as facilitator molecules and treated by pomegranate extract and nystatin as antifungal substance

    Energy Technology Data Exchange (ETDEWEB)

    Kumolosasi, E.S.; Barlian, A.; Sukandar, E.Y.

    1998-12-16

    Candida albicans is one of the parasitic fungi that often infects the tissue's surface in human. Nystatin has been long known as the most potent antifungal drug. One of natural products, Punica granatum, was shown to have antifungal effect as the result of ten years' investigation. In this research, male rats that were infected by C. albicans orally for 24 hours were cured by P. granatum extract with a dose of 50 mg/200 g body weight and by Nystatin 9.10{sup 3} IU/200 g body weight. Fifteen hours later, the rats were sacrificed and the small intestines were prepared for histology with semithin sectioning method. Microscopic observations showed that the inflammation occurred in the small intestines of the infected rats without any medication. However, for the rats that were treated with P. granatum extract, the small intestine area was almost in the similar condition with nin-infected rats. The small intestine of the rats treated by Nystatin showed minor inflammation. The immunocytochemistry procedure in this research still need modification to be able to detect Laminin and Fibronectin and clarify their roles in the invasion of C. albicans. (author)

  12. The calcium channel β2 (CACNB2 subunit repertoire in teleosts

    Directory of Open Access Journals (Sweden)

    Mueller Rachel

    2008-04-01

    Full Text Available Abstract Background Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary β subunits to chaperone the pore-forming α subunit to the plasma membrane, and to modulate channel electrophysiology 1. Several β subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse β2, but not in the other three β family members, are embryonic lethal at E10.5 due to defects in cardiac contractility 2. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of β subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of β2 subunits in zebrafish and other teleosts. Results Cloning of two zebrafish β2 subunit genes (β2.1 and β2.2 indicated they are membrane-associated guanylate kinase (MAGUK-family genes. Zebrafish β2 genes show high conservation with mammals within the SH3 and guanylate kinase domains that comprise the "core" of MAGUK proteins, but β2.2 is much more divergent in sequence than β2.1. Alternative splicing occurs at the N-terminus and within the internal HOOK domain. In both β2 genes, alternative short ATG-containing first exons are separated by some of the largest introns in the genome, suggesting that individual transcript variants could be subject to independent cis-regulatory control. In the Tetraodon nigrovidis and Fugu rubripes genomes, we identified single β2 subunit gene loci. Comparative analysis of the teleost and human β2 loci indicates that the short 5' exon sequences are highly conserved. A subset of 5' exons appear to be unique to teleost genomes, while others are shared with mammals. Alternative splicing is temporally and

  13. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site.

    Science.gov (United States)

    Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D

    2015-01-13

    Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.

  14. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  15. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  16. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  17. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    Science.gov (United States)

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes.

    Science.gov (United States)

    Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew

    2014-08-15

    The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.

  19. G-protein α-subunit expression, myristoylation, and membrane association in COS cells

    International Nuclear Information System (INIS)

    Mumby, S.M.; Gilman, A.G.; Heukeroth, R.O.; Gordon, J.I.

    1990-01-01

    Myristolyation of seven different α subunits of guanine nucleotide-binding regulatory proteins (G proteins) was examined by expressing these proteins in monkey kidney COS cells. Metabolic labeling studies of cells transfected with cytomegalovirus-based expression vectors indicated that [ 3 H]myristate was incorporated into α i1 , α i2 , α i3 , α 0 , and α 1 , and α z but not α s subunits. The role of myristoylation in the association of α subunits with membranes was analyzed by site-directed mutagenesis and by substitution of myristate with a less hydrophobic analog, 10-(propoxy)decanoate (11-oxamyristate). Myristoylation of α 0 was blocked when an alanine residue was substituted for its amino-terminal glycine, as was association of the protein with membranes. Substitution of the myristoyl group with 11-oxamyristate affected the cellular distribution of a subset of acylated α subunits. The results are consistent with a model wherein the hydrophobic interaction of myristate with the bilayer permits continued association of the protein with the plasma membrane when G-protein α subunits dissociated from βγ

  20. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul

    2018-05-14

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  1. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul; Mourier, Tobias; Banerjee, Manidipa; Pain, Arnab; Shanmugam, Dhanasekaran

    2018-01-01

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  2. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William C Weldon

    Full Text Available Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.

  3. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach.

    Directory of Open Access Journals (Sweden)

    J Lesitha Jeeva Kumari

    Full Text Available Subunit reassociation in mucin 1, a breast cancer tumor marker, is reported as one of the critical factors for its cytoplasmic activation. Inhibition of its heterodimeric association would therefore result in loss of its function and alter disease progression. The present study aimed at evaluating peptide inhibitor designing strategies that may serve as antagonist against this receptor-ligand alliance. Several peptides and their derivatives were designed based on native residues, subunit interface, hydrogen bonding and secondary structure. Docking studies with the peptides were carried on the receptor subunit and their binding affinities were evaluated using steered molecular dynamics simulation and umbrella sampling. Our results showed that among all the different classes of peptides evaluated, the receptor based peptide showed the highest binding affinity. This result was concurrent with the experimental observation that the receptor-ligand alliance in mucin 1 is highly specific. Our results also show that peptide ligand against this subunit association is only stabilized through native residue inter-protein interaction irrespective of the peptide structure, peptide length and number of hydrogen bonds. Consistency in binding affinity, pull force and free energy barrier was observed with only the receptor derived peptides which resulted in favorable interprotein interactions at the interface. Several observations were made and discussed which will eventually lead to designing efficient peptide inhibitors against mucin 1 heterodimeric subunit reassociation.

  4. In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface

    Directory of Open Access Journals (Sweden)

    Benoît Bestgen

    2017-02-01

    Full Text Available Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α’ subunits and two regulatory (β subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process. Although the monomeric CK2α subunit is endowed with a constitutive catalytic activity, many of the plethora of CK2 substrates are exclusively phosphorylated by the CK2 holoenzyme. This means that the spatial and high affinity interaction between CK2α and CK2β subunits is critically important and that its disruption may provide a powerful and selective way to block the phosphorylation of substrates requiring the presence of CK2β. In search of compounds inhibiting this critical protein–protein interaction, we previously designed an active cyclic peptide (Pc derived from the CK2β carboxy-terminal domain that can efficiently antagonize the CK2 subunit interaction. To understand the functional significance of this interaction, we generated cell-permeable versions of Pc, exploring its molecular mechanisms of action and the perturbations of the signaling pathways that it induces in intact cells. The identification of small molecules inhibitors of this critical interaction may represent the first-choice approach to manipulate CK2 in an unconventional way.

  5. Distribution of protein and RNA in the 30S ribosomal subunit

    International Nuclear Information System (INIS)

    Ramakrishnan, V.

    1986-01-01

    In Escherichia coli, the small ribosomal subunit has a sedimentation coefficient of 30S, and consists of a 16S RNA molecule of 1541 nucleotides complexed with 21 proteins. Over the last few years, a controversy has emerged regarding the spatial distribution of RNA and protein in the 30S subunit. Contrast variation with neutron scattering was used to suggest that the RNA was located in a central core of the subunit and the proteins mainly in the periphery, with virtually no separation between the centers of mass of protein and RNA. However, these findings are incompatible with the results of efforts to locate individual ribosomal proteins by immune electron microscopy and triangulation with interprotein distance measurements. The conflict between these two views is resolved in this report of small-angle neutron scattering measurements on 30S subunits with and without protein S1, and on subunits reconstituted from deuterated 16S RNA and unlabeled proteins. The results show that (i) the proteins and RNA are intermingled, with neither component dominating at the core or the periphery, and (ii) the spatial distribution of protein and RNA is asymmetrical, with a separation between their centers of mass of about 25 angstroms

  6. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......Large conductance calcium-activated potassium (BK(Ca)) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BK(Ca) channel and its modulatory beta-subunits (beta1-beta4) in porcine basilar and middle cerebral...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT...

  7. Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgG1 subclass

    DEFF Research Database (Denmark)

    Schmidt-Spaniol, I; Boldyreff, B; Issinger, O G

    1992-01-01

    A monoclonal antibody was produced against the recombinant human alpha subunit of CK-2. The antibody was of the IgG1 subclass and it was isolated from serum-free cell culture media and purified by affinity chromatography on Protein G Sepharose. The antibody can be used to detect specifically the CK......-2 alpha subunit in immunoblots from tissue extracts. An ELISA detection test was also established which also allows the identification of the CK-2 alpha subunit....

  8. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells

    OpenAIRE

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier Breancon, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-01-01

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence...

  9. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  10. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    Science.gov (United States)

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  11. Cloning and Expression of Luteinizing Hormone Subunits in Chinese Hamster Ovary Cell Line

    Directory of Open Access Journals (Sweden)

    Zeinab Soleimanifar

    2016-10-01

    Full Text Available Background: Luteinizing hormone (LH was secreted by the stimulating cells of the testes and ovaries in the anterior pituitary gland. The application of this hormone is in the treatment of men and women with infertility and amenorrhea respectively.Materials and Methods: In the present study the alpha and beta subunits of human LH gene were cloned into the pEGFP-N1 expression vector and produced the recombinant LH hormone in Chinese hamster ovary (CHO eukaryotic system.Results: Alpha and beta subunits of LH hormone were cloned between NheI and BamHI cut sites of pEGFP_N1 expression plasmid and confirmed by PCR.  Hormone expression was evaluated in CHO cell line by Western blotting using the specific antibody.Conclusion: Alpha and beta subunits of LH hormone were expressed in CHO cell line perfectly.

  12. Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants.

    Science.gov (United States)

    Matthews, J B; Geldhof, P; Tzelos, T; Claerebout, E

    2016-12-01

    The global increase in anthelmintic resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Subunit recombinant vaccines are ideally placed to fill this gap. Indeed, they are probably the only valid option for the long-term control of ruminant parasitic nematodes given the increasing ubiquity of multidrug resistance in a range of worm species across the world. The development of a subunit multicellular parasite vaccine to the point of practical application would be a groundbreaking step in the control of these important endemic infections of livestock. This review summarizes the current status of subunit vaccine development for a number of important gastrointestinal nematodes of cattle and sheep, with a focus on the limitations and problems encountered thus far, and suggestions as to how these hurdles might be overcome. © 2016 John Wiley & Sons Ltd.

  13. Subunit Organisation of In Vitro Reconstituted HOPS and CORVET Multisubunit Membrane Tethering Complexes

    Science.gov (United States)

    Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill

    2013-01-01

    Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556

  14. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  15. Differential expression of AMPA-type glutamate receptor subunits during development of the chick optic tectum

    Directory of Open Access Journals (Sweden)

    Batista S.S.

    2002-01-01

    Full Text Available Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR subunits in the chick optic tectum (TeO. Chick embryos from the 5th through the 20th embryonic day (E5-E20 and one-day-old (P1 chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4 had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.

  16. Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.

    Science.gov (United States)

    Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F

    2017-06-01

    The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.

  17. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    Science.gov (United States)

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  18. Mechanism of Integrim-Mediated Growth Control in Normal, Transformed, and Neoplastic Breast Cells

    National Research Council Canada - National Science Library

    Wayner, Elizabeth

    1999-01-01

    .... The primary cell adhesion receptors that mediate binding to extracellular matrix proteins are integrins Our data suggest that alpha 3 beta 1 and alpha 6 beta 4 are the primary integrins responsible...

  19. Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.

    Science.gov (United States)

    Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G

    1987-11-01

    Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.

  20. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  1. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  2. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  3. Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Arent, Susan; Harris, Pernille; Jensen, Kaj Frank

    2005-01-01

    organisms. To understand the allosteric regulation, crystal structures were determined for S. solfataricus UPRTase in complex with UMP and with UMP and the allosteric inhibitor CTP. Also, a structure with UMP bound in half of the active sites was determined. All three complexes form tetramers but reveal...... to rearrangements in the quaternary structure imply that this residue plays a major role in regulation of the enzyme and in communication between subunits. The ribose ring of UMP adopts alternative conformations in the cis and trans subunits of the UPRTase-UMP tetramer with associated differences...

  4. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  5. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob

    2017-01-01

    rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain...... A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i...

  6. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.

    Science.gov (United States)

    Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S

    1998-02-01

    RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.

  7. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.

    Science.gov (United States)

    Carta, Mario; Srikumar, Bettadapura N; Gorlewicz, Adam; Rebola, Nelson; Mulle, Christophe

    2018-02-15

    CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells. © 2017 Centre Nationnal de la Recherche Scientifique. The Journal of Physiology © 2017 The Physiological Society.

  8. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea; Hansen, Kasper B. (JHU); (Milan); (Montana)

    2017-07-31

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.

  9. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E

    2000-01-01

    The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides, ...

  10. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the

  11. Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter.

    Science.gov (United States)

    Morino, Masato; Suzuki, Toshiharu; Ito, Masahiro; Krulwich, Terry Ann

    2014-01-01

    Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na(+)/H(+) antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na(+).

  12. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    DEFF Research Database (Denmark)

    Kachel, Hamid S; Patel, Rohit N; Franzyk, Henrik

    2016-01-01

    -fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents...

  13. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

    DEFF Research Database (Denmark)

    Ross, Fiona A; Jensen, Thomas Elbenhardt; Hardie, D Grahame

    2016-01-01

    The g subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different g isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged ve...

  14. Recombinant cholera toxin B subunit in Escherichia coli: high-level secretion, purification, and characterization

    NARCIS (Netherlands)

    Slos, P.; Speck, D.; Accart, N.; Kolbe, H.V.; Schubnel, D.; Bouchon, B.; Bischoff, Rainer; Kieny, M.P.

    1994-01-01

    The gene coding for cholera toxin subunit B (CT-B) was fused to a modified ompA signal sequence and subsequently cloned into a high expression vector based on the regulatory signals of the arabinose operon of Salmonella typhimurium. Upon induction of gene expression in Escherichia coli, a product of

  15. epsilon, a New Subunit of RNA Polymerase Found in Gram-Positive Bacteria

    Czech Academy of Sciences Publication Activity Database

    Keller, A. N.; Yang, X.; Wiedermannová, Jana; Delumeau, O.; Krásný, Libor; Lewis, P. J.

    2014-01-01

    Roč. 196, č. 20 (2014), s. 3622-3632 ISSN 0021-9193 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:61388971 Keywords : RNA polymerase * subunit * X-ray crystallography Subject RIV: EE - Microbiology, Virology Impact factor: 2.808, year: 2014

  16. Stability of influenza sub-unit vaccine. Does a couple of days outside the refrigerator matter?

    NARCIS (Netherlands)

    Coenen, F; Tolboom, J T B M; Frijlink, H W

    2006-01-01

    In this study 27 full scale production batches of influenza sub-unit vaccine were evaluated on their stability. The batches varied with respect to the strains they contained and regarding the presence of the preservative thiomersal in the solution. The stability study showed that haemagglutinin

  17. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29

    NARCIS (Netherlands)

    Testi, Maria Grazia; Croce, Roberta; Polverino-De Laureto, Patrizia; Bassi, Roberto

    1996-01-01

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of

  18. The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus.

    Science.gov (United States)

    Weiss, Andy; Ibarra, J Antonio; Paoletti, Jessica; Carroll, Ronan K; Shaw, Lindsey N

    2014-04-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.

  19. Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits

    Science.gov (United States)

    Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...

  20. An immune stimulating complex (iscom) subunit rabies vaccine protects dogs and mice against street rabies challenge.

    NARCIS (Netherlands)

    M. Fekadu; J.H. Schaddock; J. Ekströ m; A.D.M.E. Osterhaus (Albert); D.W. Sanderlin; B. Sundquist; B. Morein (Bror)

    1992-01-01

    textabstractDogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine (HDCV) prepared from a Pitman Moore (PM) rabies vaccine strain. Pre-exposure vaccination of mice with two

  1. Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1993-01-01

    Twenty-one mutants of the noncatalytic beta-subunit of human casein kinase-2 have been created, expressed in Escherichia coli, and purified to homogeneity. They are either modified at the autophosphorylation site (mutants beta delta 1-4 and beta A 5,6) or bear variable deletions in their C...

  2. Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation.

    Directory of Open Access Journals (Sweden)

    Wahyu Surya

    Full Text Available The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.

  3. Structural properties of a peptide derived from H+-V-ATPase subunit a

    NARCIS (Netherlands)

    Vermeer, L.S.; Reat, V.; Hemminga, M.A.; Milon, A.

    2009-01-01

    The 3D structure of a peptide derived from the putative transmembrane segment 7 (TM7) of subunit a from H+-V-ATPase from Saccharomyces cerevisiae has been determined by solution state NMR in SDS. A stable helix is formed from L736 up to and including Q745, the lumenal half of the putative TM7. The

  4. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep......δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA......(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  5. A comparative study of ATPase subunit 9 (Atp9) gene between ...

    African Journals Online (AJOL)

    ATPase subunit 9 gene (Atp9) is an important functional gene in mitochondria, and is closely related with energy supply. RNA editing of atp9 gene was associated with male sterility in plants. In this study, the atp9 gene in soybeans was cloned from a soybean cytoplasmic male sterile line NJCMS2A and its maintainer line ...

  6. The thermal structural transition of alpha-crystallin modulates subunit interactions and increases protein solubility.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maulucci

    Full Text Available BACKGROUND: Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract, is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K. METHODS/RESULTS: To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ and the interfacial tension (γ of the aggregating phase, that characterize subunit interactions. CONCLUSIONS/GENERAL SIGNIFICANCE: The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.

  7. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    Energy Technology Data Exchange (ETDEWEB)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.; Ahn, Natalie G.; Luger, Karolin

    2017-04-18

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.

  8. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2

    Directory of Open Access Journals (Sweden)

    Burger Gertraud

    2008-10-01

    Full Text Available Abstract Background In a previous study, we conducted a large-scale similarity-free function prediction of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murf1 (maxicircle unidentified reading frame 1 was assigned as nad2, encoding subunit 2 of NADH dehydrogenase (Complex I of the respiratory chain. This hypothetical gene occurs in the mitochondrial genome of kinetoplastids, a group of unicellular eukaryotes including the causative agents of African sleeping sickness and leishmaniasis. In the present study, we test this assignment by using bioinformatics methods that are highly sensitive in identifying remote homologs and confront the prediction with available biological knowledge. Results Comparison of MURF1 profile Hidden Markov Model (HMM against function-known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Complex I protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs for each individual subunit, using all available sequences clustered at various identity thresholds. HMM-HMM comparison of these individual NADH subunits against MURF1 clearly identifies this hypothetical protein as NAD2. Further, we collected the relevant experimental information about kinetoplastids, which provides additional evidence in support of this prediction. Conclusion Our in silico analyses provide convincing evidence for MURF1 being a highly divergent member of NAD2.

  9. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameter...

  10. Domain interactions of the peripheral preprotein translocase subunit SecA

    NARCIS (Netherlands)

    Blaauwen, T.den; Fekkes, P.; de Wit, J.G.; Kuiper, W.; Driessen, A.J.M.

    1996-01-01

    The homodimeric SecA protein is the peripheral subunit of the preprotein translocase in bacteria. It binds the preprotein and promotes its translocation across the bacterial cytoplasmic membrane by nucleotide modulated coinsertion and deinsertion into the membrane, SecA has two essential nucleotide

  11. Domain dynamics of the Bacillus subtilis peripheral preprotein translocase subunit SecA

    NARCIS (Netherlands)

    Driessen, A.J.M.; Ladbury, JE; Chowdhry, BZ

    1998-01-01

    The homodimeric SecA protein is the peripheral subunit of the preprotein translocase in bacteria. It promotes the preprotein translocation across the cytoplasmic membrane by nucleotide-modulated co-insertion and de-insertion into the integral domain of the translocase. SecA has two essential

  12. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors

    DEFF Research Database (Denmark)

    Stalter, G; Siemer, S; Becht, E

    1994-01-01

    of protein kinase CK2 alpha in tumors/normal tissue (T/N) was 1.58 and that of the protein kinase CK2 beta (T/N) was 2.65. The data suggest that the generally described increase in protein kinase CK2 activity in tumor cells may to some extent result from a deregulation in subunit biosynthesis or degradation...

  13. The TFIIH Subunit p89 (XPB Localizes to the Centrosome during Mitosis

    Directory of Open Access Journals (Sweden)

    Achim Weber

    2010-01-01

    Full Text Available Background: The general transcription factor II H (TFIIH, comprised of a core complex and an associated CAK-complex, functions in transcription, DNA repair and cell cycle control. Mutations of the two largest subunits, p89 (XPB and p80 (XPD, cause the hereditary cancer-prone syndrome xeroderma pigmentosum.

  14. Production of a highly immunogenic subunit ISCOM vaccine against Bovine Viral Diarrhea Virus

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Roensholt, L.; Jensen, M.Holm

    1999-01-01

    by Vaccination of the dam. We describe in this report the production and initial testing of an inactivated subunit vaccine against BVDV. The vaccine is based on production of antigen in primary bovine cell cultures, extraction of antigens from infected cells with detergent, chromatographic purification...

  15. Over-production, renaturation and reconstitution of delta and epsilon subunits from chloroplast and cyanobacterial F1

    NARCIS (Netherlands)

    Steinemann, D.; Lill, H; Junge, Wolfgang; Engelbrecht, Siegfried

    1994-01-01

    We studied the functioning of chimeric F0F1-ATPases by replacing subunits delta and epsilon of spinach CF1 with their counterparts from Synechocystis sp. PCC 6803. The sequence identities between these subunits are 26 and 41%, respectively. For a systematic approach to such studies and later

  16. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  17. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.

    Science.gov (United States)

    R, Elakkiya; K, Selvamani

    2017-09-22

    Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.

  18. Basal Levels of AMPA Receptor GluA1 Subunit Phosphorylation at Threonine 840 and Serine 845 in Hippocampal Neurons

    Science.gov (United States)

    Babiec, Walter E.; Guglietta, Ryan; O'Dell, Thomas J.

    2016-01-01

    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are…

  19. Subunit–subunit interactions are weakened in mutant forms of acetohydroxy acid synthase insensitive to valine inhibition

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Janata, Jiří; Ságová-Marečková, M.; Kopecký, J.

    2010-01-01

    Roč. 192, č. 3 (2010), s. 195-200 ISSN 0302-8933 R&D Projects: GA MŠk 2B08064 Institutional research plan: CEZ:AV0Z50200510 Keywords : Streptomyces cinnamonensis * Acetohydroxy acid synthase * Subunit-subunit interaction Subject RIV: EE - Microbiology, Virology Impact factor: 1.754, year: 2010

  20. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  1. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Directory of Open Access Journals (Sweden)

    Michael B Tropak

    2016-01-01

    Full Text Available Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA. Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP, and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM, CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

  2. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Science.gov (United States)

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  3. A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Pedersen, Jan Skov

    2012-01-01

    to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair distributions...

  4. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...

  5. Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations

    DEFF Research Database (Denmark)

    Kacso, Gergely; Ravasz, Dora; Doczi, Judit

    2016-01-01

    Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to result...

  6. Dis3- and exosome subunit-responsive 3′ mRNA instability elements

    International Nuclear Information System (INIS)

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-01-01

    Highlights: ► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of m

  7. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions

    Science.gov (United States)

    Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 o...

  8. [Three regions of Rpb10 mini-subunit of nuclear RNA polymerases are strictly conserved in all eukaryotes].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N

    1996-12-01

    The rpb10+ cDNA from the fission yeast Schizosaccharomyces pombe was cloned using two independent approaches (PCR and genetic suppression). The cloned cDNA encoded the Rpb10 subunit common for all three RNA polymerases. Comparison of the deduced amino acid sequence of the Sz. pombe Rbp10 subunit (71 amino acid residues) with those of the homologous subunits of RNA polymerases I, II, and III from Saccharomyces cerevisiae and Home sapiens revealed that heptapeptides RCFT/SCGK (residues 6-12), RYCCRRM (residues 43-49), and HVDLIEK (residues 53-59) were evolutionarily the most conserved structural motifs of these subunits. It is shown that the Rbp10 subunit from Sz. pombe can substitute its homolog (ABC10 beta) in the baker's yeast S. cerevisiae.

  9. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  10. Structural model of the 50S subunit of E.Coli ribosomes from solution scattering

    Energy Technology Data Exchange (ETDEWEB)

    Svergun, D.I.; Koch, M.H.J. [Hamburg Outstation (Germany); Pedersen, J.S. [Riso National Laboratory, Roskilde (Denmark); Serdyuk, I.N. [Inst. of Protein Research, Moscow (Russian Federation)

    1994-12-31

    The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.

  11. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  12. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex

    Directory of Open Access Journals (Sweden)

    Yoo Eunice

    2007-02-01

    Full Text Available Abstract Background Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits. Results Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the Trs120- and Trs130-related sequences are conserved from fungi to animals. The mammalian orthologs of Trs120 and Trs130, NIBP and TMEM1, respectively, are candidates for human disorders. Currently, NIBP is implicated in signaling, and TMEM1 is suggested to have trans-membrane domains (TMDs and to function as a membrane channel. However, we show here that the yeast Trs130 does not function as a trans-membrane protein, and the human TMEM1 does not contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed conserved domains that include highly conserved amino acids. Conclusion We suggest that the function of both NIBP and TMEM1 in the regulation of intra-cellular trafficking is conserved from yeast to man. The conserved domains and amino acids discovered here can be used for functional analysis that should help to resolve the differences in the assigned functions of these proteins in fungi and animals.

  13. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  14. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit*

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Dehghani-Tafti, Ebrahim; Thomas, Philip; Baddeley, Stuart M.; Smart, Trevor G.

    2011-01-01

    γ-Aminobutyric acid type B (GABAB) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABAB receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABAB receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABAB receptor. PMID:21724853

  15. Molecular dynamics studies of the P pilus rod subunit PapA.

    Science.gov (United States)

    Vitagliano, Luigi; Ruggiero, Alessia; Pedone, Carlo; Berisio, Rita

    2009-03-01

    Adhesion of uropathogenic Escherichia coli to host tissues is mediated by pili, which extend from the outer cell membrane of the bacterium. Here we report molecular dynamics (MD) characterizations of the major constituent of P pili from the uropathogenic E. coli, PapA, in unliganded state and in complex with the G1 strand of the chaperone PapD. To mimic the PapA response to the gradual dissociation of the PapD G1 strand and to evaluate the role of PapA chaperone recognition sites, we also carried out MD simulations of complexes of PapA with fragments of PapD G1 strand, that leave either the P4 or both P3 and P4 sites unoccupied. Data on the unbound form of PapA indicate that, upon release of the chaperone, PapA evolves toward compact states that are likely not prone to subunit-subunit association. In line with recent experimental reports, this finding implies that chaperone release and subunit-subunit association must be concerted. Our data also indicated that the gradual unbinding of the chaperone from the PapA groove has increasingly strong structural consequences. Indeed, the release of the chaperone from the site P4, which is closest to the initiation site (P5), does not have dramatic effects on the domain structure, whereas its release from both the P4 and the adjacent P3 sites induces a quick structural transition toward a collapsed state, where the subunit groove is obstructed.

  16. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Ray, Sougata Sinha; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18. PMID:26098662

  17. Structural model of the 50S subunit of E.Coli ribosomes from solution scattering

    International Nuclear Information System (INIS)

    Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.; Serdyuk, I.N.

    1994-01-01

    The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA

  18. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits.

    Science.gov (United States)

    De Ioannes, Pablo; Moltedo, Bruno; Oliva, Harold; Pacheco, Rodrigo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2004-06-18

    We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca(2+) and/or Mg(2+) in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 degrees C, increases at 37 degrees C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg(2+) is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.

  19. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Sinha Ray, Sougata; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.

  20. Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development.

    Directory of Open Access Journals (Sweden)

    Xiaolong Ke

    2017-09-01

    Full Text Available Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood. In this study, we found that loss-of-function of CPNA2 (AtCpn60α2, a gene encoding the minor Cpn60α subunit in Arabidopsis thaliana, resulted in arrested embryo development at the globular stage, whereas the other AtCpn60α gene encoding the dominant Cpn60α subunit, CPNA1 (AtCpn60α1, mainly affected embryonic cotyledon development at the torpedo stage and thereafter. Further studies demonstrated that CPNA2 can form a functional chaperonin with CPNB2 (AtCpn60β2 and CPNB3 (AtCpn60β3, while the functional partners of CPNA1 are CPNB1 (AtCpn60β1 and CPNB2. We also revealed that the functional chaperonin containing CPNA2 could assist the folding of a specific substrate, KASI (β-ketoacyl-[acyl carrier protein] synthase I, and that the KASI protein level was remarkably reduced due to loss-of-function of CPNA2. Furthermore, the reduction in the KASI protein level was shown to be the possible cause for the arrest of cpna2 embryos. Our findings indicate that the two Cpn60α subunits in Arabidopsis play different roles during embryo development through forming distinct chaperonins with specific AtCpn60β to assist the folding of particular substrates, thus providing novel insights into functional divergence of Cpn60α subunits in plants.

  1. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines.

    Science.gov (United States)

    Khademi, Farzad; Taheri, Ramezan Ali; Momtazi-Borojeni, Amir Abbas; Farnoosh, Gholamreza; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-04-27

    The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

  2. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    Science.gov (United States)

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  4. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene

    Directory of Open Access Journals (Sweden)

    Sasaki Yukako

    2008-10-01

    Full Text Available Abstract Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit. Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas. The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98 ; L: 98–100%. The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed.

  5. Complementary DNA and derived amino acid sequence of the α subunit of human complement protein C8: evidence for the existence of a separate α subunit messenger RNA

    International Nuclear Information System (INIS)

    Rao, A.G.; Howard, O.M.Z.; Ng, S.C.; Whitehead, A.S.; Colten, H.R.; Sodetz, J.M.

    1987-01-01

    The entire amino acid sequence of the α subunit (M/sub r/ 64,000) of the eight component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire α coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A)sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of ∼2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for α and argues against the occurrence of a single-chain precursor form of the disulfide-linked α-λ subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence. Most significantly, it exhibits a striking overall homology to human C9, with values of 24% on the basis of identity and 46% when conserved substitutions are allowed. As described in an accompanying report this homology also extends to the β subunit of C8

  6. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    Science.gov (United States)

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Sequential loading of cohesin subunits during the first meiotic prophase of grasshoppers.

    Directory of Open Access Journals (Sweden)

    Ana M Valdeolmillos

    2007-02-01

    Full Text Available The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3 appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21 (sister chromatid cohesion protein 1, SCC1 and stromal antigen protein 1 (SA1 (sister chromatid cohesion protein 3, SCC3 are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21

  8. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  9. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    Science.gov (United States)

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  10. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.

    Science.gov (United States)

    Pautasso, Constanza; Reca, Sol; Chatfield-Reed, Kate; Chua, Gordon; Galello, Fiorella; Portela, Paula; Zaremberg, Vanina; Rossi, Silvia

    2016-08-01

    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  12. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    Science.gov (United States)

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  13. Expression and Trafficking of the γ Subunit of Na,K-ATPase in Hypertonically Challenged IMCD3 Cells

    International Nuclear Information System (INIS)

    Pihakaski-Maunsbach, Kaarina; Nonaka, Shoichi; Maunsbach, Arvid B.

    2008-01-01

    The γ subunit (FXYD2) of Na,K-ATPase is an important regulator of the sodium pump. In this investigation we have analysed the trafficking of γ to the plasma membrane in cultures of inner medullary collecting duct cells (IMCD3) following acute hypertonic challenge and brefeldin A (BFA) treatment. Following hypertonic challenging for 24 hr immunofluorescence labeling revealed initial co-localization of the γ subunit and 58K Golgi protein in the cytoplasm, but no co-localization of α1 and Golgi protein. Exposure of the challenged cells to BFA prevented the subsequent incorporation of γ into the basolateral plasma membrane. The γ subunit instead remained in cytoplasmic vesicles while cell proliferation and cell viability decreased simultaneously. Following removal of BFA from the hypertonic medium the IMCD3 cells recovered with distinct expression of γ in the basolateral membrane. The α1 subunit was only marginally influenced by BFA. The results demonstrate that the γ subunit trafficks to the plasma membrane via the Golgi apparatus, despite the absence of a signal sequence. The results also suggest that the γ and α subunits do not traffic together to the plasma membrane, and that the γ and α subunit have different turnover rates during these experimental conditions

  14. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  15. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs

    NARCIS (Netherlands)

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-01

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The

  16. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    2009-07-01

    Full Text Available The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels.To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm.These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  17. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  18. Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit

    International Nuclear Information System (INIS)

    Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei

    2010-01-01

    Crystal and solution structures of Rv1848 protein and their implications in the biological assembly of Mtb urease is presented. The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ) 3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure

  19. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control.

    Science.gov (United States)

    Satoh, Tadashi; Toshimori, Takayasu; Noda, Masanori; Uchiyama, Susumu; Kato, Koichi

    2016-11-01

    The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme. © 2016 The Protein Society.

  20. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Directory of Open Access Journals (Sweden)

    Justyna Nitarska

    2016-11-01

    Full Text Available Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.

  1. SAFETY AND EFFICIENCY OF INACTIVATED OF SUBUNIT INFLUENZA VACCINE AT MASS VACCINATION OF CHILDREN

    Directory of Open Access Journals (Sweden)

    Yu.Z. Gendon

    2007-01-01

    Full Text Available The article considers the results of infantile mass vaccination with inactivated subunit influenza vaccine (Influvac. It shows that vaccination of 57–72% of children aged 3–17 from organized collectives residing in Mytishchi and Orekhovoczuevo districts of Moscow region was accompanied with nearly triple reduce of flu rates vs. Narofominsk and Odintsovo districts where vaccination was occasional (< 1% of children. The efficiency of the vaccination made 63,7%. Low reactogenicity of the influenza vaccine was recorded. Its convenient packing allows vaccination of large number of children in a short time. The article justifies the necessity of yearly vaccinations even in case of similarity of flu virus strain.Key words: children, mass vaccination, subunit flu vaccine, safety.

  2. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29.

    Science.gov (United States)

    Testi, M G; Croce, R; Polverino-De Laureto, P; Bassi, R

    1996-12-16

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of the electron carriers. A previously unknown reversible phosphorylation event has recently been described on the CP29 subunit which leads to conformational changes and protection from cold stress (Bergantino, E., Dainese, P., Cerovic, Z. Sechi, S. and Bassi, R. (1995) J. Biol Chem. 270, 8474-8481). In this study, we have identified the phosphorylation site on the N-terminal, stroma-exposed domain, showing that it is located in a sequence not homologous to the other members of the Lhc family. The phosphorylated sequence is unique in chloroplast membranes since it meets the requirements for CK2 (casein kinase II) kinases. The possibility that this phosphorylation is involved in a signal transduction pathway is discussed.

  3. Cytoplasmic Dynein Regulation by Subunit Heterogeneity and Its Role in Apical Transport

    Science.gov (United States)

    Tai, Andrew W.; Chuang, Jen-Zen; Sung, Ching-Hwa

    2001-01-01

    Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia. PMID:11425878

  4. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.

    Science.gov (United States)

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2017-01-01

    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  5. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    Science.gov (United States)

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  6. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  7. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.

    Science.gov (United States)

    Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D

    2012-06-01

    Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.

  8. Tuning of the Na,K-ATPase by the beta subunit

    DEFF Research Database (Denmark)

    Hilbers, Florian; Kopec, Wojciech; Isaksen, Toke Jost

    2016-01-01

    The vital gradients of Na(+) and K(+) across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor...... to the cerebellar Na(+) and K(+) gradients....... physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na(+)-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix...

  9. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    Science.gov (United States)

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  10. SDS-PAGE Electrophoretic Property of Human Chorionic Gonadotropin (hCG) and its β-subunit

    OpenAIRE

    Gam, Lay-Harn; Latiff, Aishah

    2005-01-01

    The microheterogeneity property of hCG with regards to its sialic acid contents resulted in variable mobility of the glycoprotein in SDS-PAGE. The intact hCG molecule is composed of two dissimilar subunits, namely α- and β-subunits. The identification of hCG bands in SDS-PAGE was accomplished by the immunoblotting experiment, whereby the antibody directed toward the specific region of β-subunit of hCG was used. The data shows that the different mobility of intact hCG was attributed to the dif...

  11. The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target.

    Science.gov (United States)

    Thorpe, Andrew J; Offord, James

    2010-07-01

    Currently, there are two drugs on the market, gabapentin (Neurontin) and pregabalin (Lyrica), that are proposed to exert their therapeutic effect through binding to the alpha2-delta subunit of voltage-sensitive calcium channels. This activity was unexpected, as the alpha2-delta subunit had previously been considered not to be a pharmacological target. In this review, the role of the alpha2-delta subunits is discussed and the mechanism of action of the alpha2-delta ligands in vitro and in vivo is summarized. Finally, new insights into the mechanism of drugs that bind to this protein are discussed.

  12. Alpha subunit of glycoprotein hormones in the sera of acromegalic patients and its mRNA in the tumors.

    Science.gov (United States)

    Machiavelli, G A; Artese, R; Benencia, H; Bruno, O; Guerra, L; Basso, A; Burdman, J A

    1999-04-01

    Within a population of 16 pituitary adenomas we found high levels of glycoprotein alpha subunits in the sera of patients with somatotrophic tumors. This finding was correlated with the presence of mRNA alpha subunit in these tumors indicating the adenomas themselves as the origin of the circulating alpha-subunit. Synthesis of these two hormones, which are chemically very different, by the same tumor cells indicates a high degree of differentiation of these cells. We are unable at this time to conclusively correlate differentiation of these tumors aggressively.

  13. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    Science.gov (United States)

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  14. High Affinity IgE-Fc Receptor alpha and gamma Subunit Interactions

    International Nuclear Information System (INIS)

    Rashid, A.; Housden, J. E. M.; Sabban, S.; Helm, B.

    2014-01-01

    Objective: To explore the relationships between the subunits (alpha, beta and gamma) of the high affinity IgE receptor (Fc and RI) and its ability to mediate transmembrane signaling. Study Design: Experimental study. Place and Duration of Study: Department of Molecular Biology and Biotechnology, University of Sheffield, UK, from 2008 to 2009. Methodology: The approach employed was to create a chimera (human alpha-gamma-gamma) using the extracellular (EC) domain of the human high affinity IgE receptor. The alpha subunit (huFc and RIalpha) of IgE receptor was spliced onto the rodent gamma TM and cytoplasmic domain (CD). This was transfected into the Rat Basophilic Leukemia cell line in order to assess the possibility of selectively activating cells transfected with this single pass construct for antigen induced mediator release. Results: The RBLs cell lines transfected with the huFc and RIalpha/gamma/gamma cDNA constructs were assessed for the cell surface expression of the huFc and RIalpha subunit and the response to the antigenic stimulus by looking for degranulation and intracellular Ca2+ mobilisation. The results obtained showed the absence of huFc and RIalpha subunit expression on the surface of transfected cells as seen by flowcytometric studies, beta-hexosaminidase assays and intracellular calcium mobilisation studies. Conclusion: In the present study the grounds for non-expression of huFc and RIalpha/gamma/gamma cDNA remains elusive but may be due to the fact that the human-rodent chimeric receptors are assembled differently than the endogenous rodent receptors as seen in study in which COS 7 cells were transfected with human/rat chimeric complexes. (author)

  15. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp.

    Science.gov (United States)

    Dagar, Sumit S; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K

    2011-09-01

    This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation.

  16. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  18. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences

    NARCIS (Netherlands)

    Domené, Horacio M.; Hwa, Vivian; Argente, Jesús; Wit, Jan M.; Wit, Jaan M.; Camacho-Hübner, Cecilia; Jasper, Héctor G.; Pozo, Jesús; van Duyvenvoorde, Hermine A.; Yakar, Shoshana; Fofanova-Gambetti, Olga V.; Rosenfeld, Ron G.; Scaglia, Paula A.; Bengolea, Sonia V.; Lteif, Aida; Kirmani, Salman; Mahmud, Farid H.; Frystyk, Jan; Hermus, Ad; Twickler, T. B.; Kempers, Marlies J. E.; Barrios, Vicente; Martos-Moreno, Gabriel A.; David, Alessia; Rose, Stephen

    2009-01-01

    The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes.

  19. The subunits analysis of R-phycoerythrin from marine red algae by ...

    African Journals Online (AJOL)

    Subunit components of R-phycoerythrins (R-PEs) prepared from five marine macro red algae were analyzed by sodium dodecyl sulfate -polyarylamide gel electrophoresis (SDS-PAGE) and by isoelectric focusing (IEF) in pH gradients range of 3.0 to 9.5, 2.5 to 5.0 and 4.0 to 6.5. Riboflavin was used to catalyze ...

  20. Synthesis and evaluation of sequence-specific DNA alkylating agents: effect of alkylation subunits.

    Science.gov (United States)

    Shimizu, Tatsuhiko; Sasaki, Shunta; Minoshima, Masafumi; Shinohara, Ken-ichi; Bando, Toshikazu; Sugiyama, Hiroshi

    2006-01-01

    We have demonstrated that hairpin pyrrole (Py)- imidazole (Im) polyamide-CBI conjugates selectively alkylate predetermined sequences. In this study, we investigated the effect of alkylation subunits, for example conjugates 1-4 with three types of DNA alkylating units, and Py-Im polyamides with indole linker. Conjugate 3 and 4 selectively alkylated the predetermined sequences as described previously, while conjugates 1 and 2 alkylate at mismatched sites.

  1. Divergence of RNA polymerase ? subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    OpenAIRE

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP ? subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled an...

  2. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  3. Functional characterization of the mammalian iAAA protease subunit, YME1L

    OpenAIRE

    Majczak, Joanna

    2008-01-01

    The iAAA protease is an ATP-dependent proteolytic complex in the mitochondrial inner membrane and belongs to the highly conserved family of AAA proteins. In the yeast Saccharomyces cerevisiae, the iAAA protease is a homo-oligomeric complex composed of Yme1p subunits which are active in the intermembrane space and mediate protein quality control. Yeast cells lacking Yme1p are characterized by pleiotropic phenotypes including a respiratory deficiency at elevated temperature and an aberrant mito...

  4. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  5. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    Science.gov (United States)

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  6. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  7. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  8. A novel mitochondrial protein of Neurospora crassa immunoprecipitates with known enzyme subunits but is not antigenic

    International Nuclear Information System (INIS)

    Nixon, E.

    1989-01-01

    14 C labeled 4'-phosphopantetheine (PAN) is detectable as 2 bands after SDS-PAGE of mitochondrial proteins. The bands comigrate with subunit 6 of cytochrome oxidase (COX) and a small ATPase subunit in tube gel slices of immunoprecipitates. However, other work demonstrated these bands to be due to modification of a novel protein, related to acyl carrier protein (ACP) of spinach and E. coli, that exists in two forms. To resolve this discrepancy, 1-dimensional (1D) slab and 2-dimensional (2D) SDS-PAGE was used for increased resolution over tube gels. Total mitochondrial protein gels from PAN labeled cells were western blotted, probed for COX, and autoradiographed. In 1D there is exact migration of PAN with COX6. In 2D PAN overlaps a protein distinct from and not antigenically related to COX subunits. These data suggest it is the ACP-like protein that in PAN-modified. Its possible association with COX during assembly will be discussed

  9. NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition

    Directory of Open Access Journals (Sweden)

    María Verónica Baez

    2018-01-01

    Full Text Available NMDA ionotropic glutamate receptors (NMDARs are crucial in activity-dependent synaptic changes and in learning and memory. NMDARs are composed of two GluN1 essential subunits and two regulatory subunits which define their pharmacological and physiological profile. In CNS structures involved in cognitive functions as the hippocampus and prefrontal cortex, GluN2A and GluN2B are major regulatory subunits; their expression is dynamic and tightly regulated, but little is known about specific changes after plasticity induction or memory acquisition. Data strongly suggest that following appropriate stimulation, there is a rapid increase in surface GluN2A-NMDAR at the postsynapses, attributed to lateral receptor mobilization from adjacent locations. Whenever synaptic plasticity is induced or memory is consolidated, more GluN2A-NMDARs are assembled likely using GluN2A from a local translation and GluN1 from local ER. Later on, NMDARs are mobilized from other pools, and there are de novo syntheses at the neuron soma. Changes in GluN1 or NMDAR levels induced by synaptic plasticity and by spatial memory formation seem to occur in different waves of NMDAR transport/expression/degradation, with a net increase at the postsynaptic side and a rise in expression at both the spine and neuronal soma. This review aims to put together that information and the proposed hypotheses.

  10. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  11. Tuning of the Na,K-ATPase by the beta subunit

    Science.gov (United States)

    Hilbers, Florian; Kopec, Wojciech; Isaksen, Toke Jost; Holm, Thomas Hellesøe; Lykke-Hartmann, Karin; Nissen, Poul; Khandelia, Himanshu; Poulsen, Hanne

    2016-02-01

    The vital gradients of Na+ and K+ across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na+-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix correlates with its functional effect, suggesting that the relative orientation of β modulates ion binding at the α subunit. β2 is primarily expressed in granule neurons and glomeruli in the cerebellum, and we propose that its unique functional characteristics are important to respond appropriately to the cerebellar Na+ and K+ gradients.

  12. Evaluation of Pakistani wheat germplasm for bread quality based on allelic variation in HMW glutenin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Tabasum, A; Iqbal, N; Hameed, A; Arshad, R [Nuclear Institute for Agriculture and Biology, Faisalabad (Pakistan)

    2011-06-15

    Seventy six Pakistani wheat genotypes including land races were investigated for Bread quality (BQ) based on allelic variation in HMW glutenin subunits at the Glu-1 loci through SDS- polyacrylamide gel electropherosis. Twenty five different allelic combinations were detected with a total of 14 Glu-1 loci. Highest polymorphism was revealed by Glu-B locus and some single/ rare sub units were also screened out. The frequencies of dominant subunits were 50% for 2*, 42.11% for subunit pair 17+18 and 48.68% for 5+10 and 2+12 respectively. The quality scores displayed a range from 4 to 10, however generally good quality score of eight was more frequent (39. 47%). The highest quality scores of 10 and 9 were observed in 22.36% and 19.74% of genotypes respectively. The UPGMA analysis grouped genotypes into three major with two additional sub clusters for each. The cluster 'a' 'b' and 'C' were separated at 73% genetic distance which was further differentiated at a genetic distance of 50% into their sub clusters. Pakistani wheat varieties/land races exhibited large variation in term of HMW-GS. The generated information will lead to the pyrimiding of sub units for high BQ through mission oriented marker assisted breeding programmes for quality improvement of wheat. (author)

  13. Evaluation of Pakistani wheat germplasm for bread quality based on allelic variation in HMW glutenin subunits

    International Nuclear Information System (INIS)

    Tabasum, A.; Iqbal, N.; Hameed, A.; Arshad, R.

    2011-01-01

    Seventy six Pakistani wheat genotypes including land races were investigated for Bread quality (BQ) based on allelic variation in HMW glutenin subunits at the Glu-1 loci through SDS- polyacrylamide gel electropherosis. Twenty five different allelic combinations were detected with a total of 14 Glu-1 loci. Highest polymorphism was revealed by Glu-B locus and some single/ rare sub units were also screened out. The frequencies of dominant subunits were 50% for 2*, 42.11% for subunit pair 17+18 and 48.68% for 5+10 and 2+12 respectively. The quality scores displayed a range from 4 to 10, however generally good quality score of eight was more frequent (39. 47%). The highest quality scores of 10 and 9 were observed in 22.36% and 19.74% of genotypes respectively. The UPGMA analysis grouped genotypes into three major with two additional sub clusters for each. The cluster 'a' 'b' and 'C' were separated at 73% genetic distance which was further differentiated at a genetic distance of 50% into their sub clusters. Pakistani wheat varieties/land races exhibited large variation in term of HMW-GS. The generated information will lead to the pyrimiding of sub units for high BQ through mission oriented marker assisted breeding programmes for quality improvement of wheat. (author)

  14. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    International Nuclear Information System (INIS)

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2 1 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction

  15. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  16. Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis.

    Science.gov (United States)

    Hewing, Bernd; Ludwig, Antje; Dan, Cristian; Pötzsch, Max; Hannemann, Carmen; Petry, Andreas; Lauer, Dilyara; Görlach, Agnes; Kaschina, Elena; Müller, Dominik N; Baumann, Gert; Stangl, Verena; Stangl, Karl; Wilck, Nicola

    2017-10-17

    Management of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit β5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of β5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease. LDLR -/- LMP7 -/- and LDLR -/- mice were fed a Western-type diet for either 6 or 24 weeks to induce early and advanced stage atherosclerosis, respectively. Lesion burden was similar between genotypes in both stages. Macrophage content and abundance of polyubiquitin conjugates in aortic root plaques were unaltered by β5i/LMP7-deficiency. In vitro experiments using bone marrow-derived macrophages (BMDM) showed that β5i/LMP7-deficiency did not influence macrophage polarization or accumulation of polyubiquitinated proteins and cell survival upon hydrogen peroxide and interferon-γ treatment. Analyses of proteasome core particle composition by Western blot revealed incorporation of standard proteasome subunits in β5i/LMP7-deficient BMDM and spleen. Chymotrypsin-, trypsin- and caspase-like activities assessed by using short fluorogenic peptides in BMDM whole cell lysates were similar in both genotypes. Taken together, deficiency of IP subunit β5i/LMP7 does not disturb protein homeostasis and does not aggravate atherogenesis in LDLR -/- mice.

  17. Localization in the Nucleolus and Coiled Bodies of Protein Subunits of the Ribonucleoprotein Ribonuclease P

    Science.gov (United States)

    Jarrous, Nayef; Wolenski, Joseph S.; Wesolowski, Donna; Lee, Christopher; Altman, Sidney

    1999-01-01

    The precise location of the tRNA processing ribonucleoprotein ribonuclease P (RNase P) and the mechanism of its intranuclear distribution have not been completely delineated. We show that three protein subunits of human RNase P (Rpp), Rpp14, Rpp29 and Rpp38, are found in the nucleolus and that each can localize a reporter protein to nucleoli of cells in tissue culture. In contrast to Rpp38, which is uniformly distributed in nucleoli, Rpp14 and Rpp29 are confined to the dense fibrillar component. Rpp29 and Rpp38 possess functional, yet distinct domains required for subnucleolar localization. The subunit Rpp14 lacks such a domain and appears to be dependent on a piggyback process to reach the nucleolus. Biochemical analysis suggests that catalytically active RNase P exists in the nucleolus. We also provide evidence that Rpp29 and Rpp38 reside in coiled bodies, organelles that are implicated in the biogenesis of several other small nuclear ribonucleoproteins required for processing of precursor mRNA. Because some protein subunits of RNase P are shared by the ribosomal RNA processing ribonucleoprotein RNase MRP, these two evolutionary related holoenzymes may share common intranuclear localization and assembly pathways to coordinate the processing of tRNA and rRNA precursors. PMID:10444065

  18. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2 tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.

  19. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob; Chettri, Jiwan Kumar; Holm Mattsson, Andreas; Dalsgaard, Inger; Kania, Per Walter; Buchmann, Kurt

    2017-01-01

    Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis and a major fish health problem in salmonid aquaculture worldwide. Injection vaccination with commercial mineral oil-adjuvanted bacterin vaccines has been partly successful in preventing the disease but in Danish rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i.p.) injection. The fish were exposed to virulent A. salmonicida 7 weeks after immunization. To assess the efficacy of the subunit vaccines we evaluated the immune response in fish after immunization and challenge infection by measuring the antibody levels and monitoring the survival of fish in different groups. The survival of fish at 3 weeks after challenge infection showed that all 3 groups of fish immunized with 3 different protein combinations exhibited significantly lower mortalities (17-30%) compared to the control groups (48% and 56%). The ELISA results revealed significantly elevated antibody levels in fish against several protein antigens, which in some cases were positively correlated to the survival.

  20. Glycoprotein hormone α subunit secretion by pituitary adenomas: influence of external irradiation

    International Nuclear Information System (INIS)

    Macfarlane, I.A.; Beardwell, C.G.; Shalet, S.M.; Darbyshire, P.J.; Hayward, E.; Sutton, M.L.

    1980-01-01

    In ninety-nine patients with pituitary adenomas, forty-six with acromegaly, the serum level of the glycoprotein hormone α subunit was elevated in eighteen cases. Thirteen of these were acromegalic and one had an FSH-producing tumour. Alpha levels varied little during the day, from one day to the next and over a 6 month period. In twenty-five patients with a variety of other hypothalamic-pituitary disorders examined, one patient with a craniopharyngioma had a mildly elevated α level. External pituitary irradiation was followed by an acute and often transient fall in α level in several of these patients. Of the fifty-four patients with pituitary adenomas who had received external irradiation before testing, only five had elevated α subunit levels compared with thirteen patients of the forty-five who had not been irradiated. This difference in incidence of elevated α level was statistically significant (P<0.025). It is concluded that external irradiation may reduce α subunit level chronically in many patients with pituitary adenoma. (author)