WorldWideScience

Sample records for laminated circular cylindrical

  1. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  2. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  3. Free vibration of symmetric angle-ply laminated circular cylindrical shells

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Zainal Abdul; Amirah, H Z; Javed, Saira

    2014-01-01

    Free vibration of symmetric angle-ply laminated circular cylindrical shells is studied using Spline approximation. The equations of motions in longitudinal, circumferential and transverse displacement components, are derived using Love's first approximation theory. The coupled differential equations are solved using Spline approximation to obtain the generalized eigenvalue problem. Parametric studies are performed to analyse the frequency response of the shell with reference to the material properties, number of layers, ply orientation, length and circumferential node number and different boundary conditions

  4. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    Science.gov (United States)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  5. A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Boushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Farid, M. [Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Zahedinejad, P. [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2008-07-15

    A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown.

  6. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  7. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  8. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  9. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    DR OKE

    vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.

  10. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  11. Flow-induced vibrations of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.

    1977-06-01

    The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references

  12. static analysis of circular cylindrical shell under hydrostatic and ring

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    (Golzan et al, 2008). Circular cylindrical shells are used in a large variety of civil engineering structures, e.g. off-shore platforms, chimneys, silos, pipelines, bridge arches or wind turbine towers (Winterstetter et al, 2002). This work is concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.

  13. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    Science.gov (United States)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  14. Acoustic characteristics of sand sediment with circular cylindrical pores

    International Nuclear Information System (INIS)

    Roh, Heui-Seol; Lee, Kang-Il; Yoon, Suk-Wang

    2004-01-01

    The acoustic pressure transmission coefficient and the phase velocity are experimentally measured as functions of the frequency and the porosity in sand sediment slabs with circular cylindrical pores filled with water and air. They are also theoretically estimated with the modified Biot-Attenborough (MBA) model, which uses a separate treatment of the viscous and the thermal effects in a non-rigid porous medium with water- and air-filled cylindrical pores. In this study, the fast (first kind) wave and the slow (second kind) wave are not separated in the transmitted signals through a sediment slab without the circular cylindrical pores, but they are separated in the transmitted signals through a sediment slab with pores. Both the phase velocities and the transmission coefficients of the fast wave and the slow wave in the sediment slabs with water- and air-filled cylindrical pores are sensitive to the air and the water porosities. It is proposed that the fast and the slow waves have opposite behaviors for several acoustic characteristics. The generalized tortuosity factor and the dynamic shape factor are introduced from the acoustic characteristics of the fast wave. The experimental results show reasonable agreement with the theoretical results estimated with the MBA model. These results suggest the possibility of predicting the acoustic characteristics of a sediment as functions of arbitrary water and air porosities. This study may also be applicable to understanding acoustic wave propagations in a bubbly liquid sediment for underwater applications and in cancellous bone for the diagnosis of osteoporosis.

  15. Axisymmetrical impulsive responses of an infinite circular cylindrical shell filled with liquid

    International Nuclear Information System (INIS)

    Ujihashi, Sadayuki; Matsumoto, Hiroyuki; Nakahara, Ichiro; Shigeta, Masayuki.

    1986-01-01

    In this paper, dynamic interaction phenomena on solid and liquid interfaces are discussed. Axisymmetrical responses of an infinite circular cylindrical shell perfectly filled with liquid are analyzed, based on Fluegge's theory for a circular cylindrical shell and the potential theory for the ideal fluid under conditions of the impulsive external band pressure given on the outer surface of the shell. The deflection and the moment of the shell and the pressure in the fluid are evaluated by using the numerical inversion of the Laplace transformation method. The approximate solution for the shell with an equivalent mass on it is analyzed and is evaluated, based on the solution for the solid and liquid interaction. (author)

  16. Study of laminated anisotropic cylindrical shells sensitive to transverse stresses

    International Nuclear Information System (INIS)

    Massard, Thierry

    1979-01-01

    A variational method for the determination of stresses and displacements in a multilayered cylindrical shell is presented. All included materials are linearly anisotropic (monoclinic) - i.e. directional fibres reinforced materials. This study uses a functional which is derived from the potential energy of the structure. The incoming stresses are σ RR , σ Rθ , σ RZ , and the displacements are u θ and u Z . This mixed group is the main variables of the formulation. It is shown that the stationarity conditions of the functional are the equilibrium equations and the associated boundary conditions. An approximate solution can be found using a finite element method which realizes a tridimensional discretization of the structure. The program issued is a specific mean for studying the transverse shear stresses in laminated cylindrical structures. From the results obtained it can be concluded that it meets all requirements for the purposes of this range of problems. (author) [fr

  17. Enhancement of critical currents in superconducting cylindrical samples by circular magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A; Makiej, B

    1986-07-16

    Evidence is presented for an enhancement of the critical current by a circular magnetization in cylindrical samples of superconductors such as Sn, In, and In-Pb alloy containing 20 wt% ferromagnetic carbon steel particles. The mechanism of this phenomenon is explained.

  18. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    Science.gov (United States)

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cylindrical acoustic levitator/concentrator having non-circular cross-section

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2003-11-11

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.

  20. A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS

    International Nuclear Information System (INIS)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-01-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  1. A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Chinchilla, T. [Catholic University of America, Washington, DC (United States); Linton, M. G. [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Hidalgo, M. A. [Dept. de Fisica, UAH, Alcala de Henares, Madrid (Spain); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Savani, N. P.; Szabo, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Farrugia, C.; Yu, W., E-mail: Teresa.Nieves@nasa.gov [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States)

    2016-05-20

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  2. Simplified vibrocreep buckling analysis of circular cylindrical shells

    International Nuclear Information System (INIS)

    Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.

    1981-01-01

    The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)

  3. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  4. A High-Order Theory for the Analysis of Circular Cylindrical Composite Sandwich Shells with Transversely Compliant Core Subjected to External Loads

    DEFF Research Database (Denmark)

    Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo

    2012-01-01

    A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, which is based on a 3D elasticity solution for the core material, can be used as a benchmark in future studies of the free vibration and buckling of circular cylindrical composite sandwich shells with a transversely compliant core....

  5. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Science.gov (United States)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  6. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  7. Effect of length to thickness ratio on free vibration analysis of thick fiber reinforced plastic skew cross-ply laminate with circular cutout

    Science.gov (United States)

    Srividya, K.; Reddy, Ch. Kishore; Sumanth, Ch. Mohan; Krishnaiah, P. Gopala; Kishan, V. Mallikharjuna

    2018-04-01

    The present investigation deals with the free vibration analysis of a thick four-layered symmetric cross-ply skew laminated composite plate with a circular cutout. Three dimensional finite element models (FEM) which use the elasticity theory for the determination of stiffness matrices are modeled in ANSYS software to evaluate first five natural frequencies of the laminate. The variations of the first five natural frequencies with respect to length to thickness ratio (S) for different diameter to length ratios (d/l) are presented. It is observed that, the natural frequencies decreases with increase of thickness ratio(S).

  8. Techniques for the construction of an elliptical-cylindrical model using circular rotating tools in non CNC machines

    International Nuclear Information System (INIS)

    Villalobos Mendoza, Brenda; Cordero Davila, Alberto; Gonzalez Garcia, Jorge

    2011-01-01

    This paper describes the construction of an elliptical-cylindrical model without spherical aberration using vertical rotating tools. The engine of the circular tool is placed on one arm so that the tool fits on the surface and this in turn is moved by an X-Y table. The test method and computer algorithms that predict the desired wear are described.

  9. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  10. Expression of the axial magnetic attenuation for a circularly cylindrical magnetic shield with partial openings

    CERN Document Server

    Chang, L H; Luo, G H; Lin, M C

    2002-01-01

    This paper presents a novel empirical formula for evaluating the axial magnetic attenuation of a circularly cylindrical shield with partial openings at both ends, which is derived under the assumption of scaling law with help of the 3-D magnetostatic code TOSCA for computing the magnetic attenuation of some canonical models. Our formula allows a quick evaluation of the magnetic shielding for design application to a superconducting radio-frequency cavity with less than 10% discrepancy in comparison with that obtained from pure numerical simulations.

  11. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    Science.gov (United States)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  12. Flow-induced vibration of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1985-06-01

    This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs

  13. A numerical study of wave dispersion curves in cylindrical rods with circular cross-section

    Directory of Open Access Journals (Sweden)

    Valsamos G.

    2013-06-01

    Full Text Available This work presents a finite element approach for modeling longitudinal wave propagation in thick cylindrical rods with circular cross-section. The formulation is based on simple time domain response of the structure to a properly chosen excitation, and is calculated with an explicit finite element solver. The proposed post-treatment procedure identifies the wavenumber for each mode of wave propagation at the desired frequency. The procedure is implemented and integrated in an efficient way in the explicit finite element code Europlexus. The numerical results are compared to the analytical ones obtained from the solution of the Pochhammer — Chree equation, which provides the dispersion curves for wavetrains in solid cylinders of infinite length.

  14. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  15. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    of heat exchanger tube banks are typical examples. Recently, flow-induced vibration has been studied extensively for several reasons. First, with the use of high-strength materials, structures become more slender and more susceptible to vibration. Second, the development of advanced nuclear power reactors requires high-velocity fluid flowing through components, which can cause detrimental vibrations. Third, the dynamic interaction of structure and fluid is one of the most fascinating problems in engineering mechanics. The increasing study is evidenced by many conferences directed to this subject and numerous publications, including reviews and books. In a broad sense, flow-induced vibration encompasses all topics on the dynamic responses of structures submerged in fluid, containing fluid, or subjected to external flow. In this report, discussions focus on circular cylindrical structures with emphasis on nuclear reactor system components.

  16. PHYSICAL FIELDS OF CIRCULAR CYLINDRICAL PIEZOCERAMIC RECEIVER IN PRESENCE OF A FLAT ACOUSTIC SOFT SCREEN

    Directory of Open Access Journals (Sweden)

    A. V. Derepa

    2017-01-01

    Full Text Available System in the form of a circular cylindrical piezoceramic transducer near a flat acoustic screen was analyzed. The aim of the work was to solve the problem of receiving plane sound waves by «cylindrical piezoceramic transducer – flat acoustically soft screen» system.Considered system was characterized by a violation of the radial symmetry of the radiation load of the transducer while maintaining the radial symmetry of the electric load. At the same time, the energy perceived by the system under consideration is distributed between all modes of oscillation of the transducer, while the conversion of mechanical energy into electric is realized only at zero mole of oscillations.Special attention was paid to the method of coupled fields in multiply connected domains using the imaging method. The design model of the «transducer–creen» system was formulated taking into account the interaction of acoustic, mechanical and electric fields in the process of energy conversion, the interaction of a cylindrical transducer with a flat screen and the interaction of a converter with elastic media outside and inside it. The physical fields of the system under consideration were determined by following solutions: the wave equation; equations of motion of thin piezoceramic cylindrical shells in displacements; equations of stimulated electrostatics for piezoceramics for given boundary conditions, conditions for coupling fields at interfaces and electrical conditions.A general conclusion was made concerning solving of an infinite system of linear algebraic equations with respect to the unknown coefficients of the expansion of the fields. As an example of the application of the obtained relations, a calculation was made and an analysis of the dependences of the electric fields of the system under consideration for various parameters of its construction on the direction of arrival on the plane wave system was conducted.

  17. Transient response of rotating laminated functionally graded cylindrical shells in thermal environment

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Heydarpour, Y.; Haghighi, M.R. Golbahar; Vaghefi, M.

    2012-01-01

    Based on the elasticity theory, the transient analysis of dynamically pressurized rotating multi-layered functionally graded (FG) cylindrical shells in thermal environment is presented. The variations of the field variables across the shell thickness are accurately modeled by dividing the shell into a set of co-axial mathematical layers in the radial direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The differential quadrature method and Newmark's time integration scheme are employed to discretize the obtained governing equations of each mathematical layer. After performing the convergence and comparison studies, parametric studies for two common types of FG sandwich shells, namely, the shell with homogeneous inner/outer layers and FG core and the shell with FG inner/outer layers and homogeneous core are carried out. The influences of the temperature dependence of material properties, material graded index, the convective heat transfer coefficient, the angular velocity, the boundary condition and the geometrical parameters (length and thickness to outer radius ratios) on the dynamic response of the FG shells are investigated. Highlights: ► As a first endeavor, transient analysis of rotating laminated functionally graded cylinders. ► Employing an elasticity based discrete layer-differential quadrature method. ► Evaluating and including the initial thermo-mechanical stresses accurately. ► Considering the temperature-dependence of the material properties. ► Presenting some new results, which can be used as benchmark solution for future works.

  18. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Dr Oke

    1 ,2 Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal-462003, INDIA ... In this communication, a numerical analysis regarding free vibration of thick laminated .... ANSYS finite element software.

  19. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  20. Multipole Analysis of Circular Cylindircal Magnetic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Selvaggi, Jerry P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six

  1. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    International Nuclear Information System (INIS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-01-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  2. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2017-04-15

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  3. Low-energy impact of adaptive cylindrical piezoelectric-composite shells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanos, D.A. [University of Patras (United Kingdom). Dept. of Mechanical Engineering and Aeronautics; Christoforou, A.P. [Kuwait Univ. (Kuwait). Dept. of Mechanical Engineering

    2002-04-01

    A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric-composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force. (author)

  4. Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading

    Directory of Open Access Journals (Sweden)

    G. Balaganesan

    Full Text Available Abstract Composite laminates are made of glass woven roving mats of 610gsm, epoxy resin and nano clay which are subjected to projectile impact. Nano clay dispersion is varied from 1% to 5%. Impact tests are conducted in a gas gun setup with a spherical nose cylindrical projectile of diameter 9.5 mm of mass 7.6 g. The energy absorbed by the laminates when subjected to impact loading is studied, the velocity range is below ballistic limit. The effect of nano clay on energy absorption in vibration, delamination and matrix crack is studied for different weight % of nano clay and for different thickness values of the laminates. The natural frequencies and damping factors are obtained for the laminates during impact and the effect of nano clay is studied. The results show considerable improvement in energy absorption due to the presence of nano clay

  5. Sound insulation of composite cylindrical shells: a comparison between a laminated and a sandwich cylinder

    OpenAIRE

    Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan

    2012-01-01

    The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...

  6. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.; Goriely, A.

    2011-01-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common

  7. Comparative studies of parameters based on the most probable versus an approximate linear extrapolation distance estimates for circular cylindrical absorbing rod

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Estimates and techniques that are valid to calculate the linear extrapolation distance for an infinitely long circular cylindrical absorbing region are reviewed. Two estimates, in particular, are put into consideration, that is the most probable and the value resulting from an approximate technique based on matching the integral transport equation inside the absorber with the diffusion approximation in the surrounding infinite scattering medium. Consequently, the effective diffusion parameters and the blackness of the cylinder are derived and subjected to comparative studies. A computer code is set up to calculate and compare the different parameters, which is useful in reactor analysis and serves to establish a beneficial estimates that are amenable to direct application to reactor design codes

  8. Analysis on and Optimization of a Circular Piezoelectric Composite Laminate for a Micro-Pump Driver

    International Nuclear Information System (INIS)

    Jia, Jianyuan; Wang, Weidong; Huang, Xinbo

    2002-01-01

    Among the various micro-pump actuation devices, piezoelectric composite laminate actuation has become an effective method. Due to lacking of analysis treatments, the design of this type micro-pump is in a great limitation. In this paper, an electromechanical-coupled mechanics model is established for the circle-flake micro-actuator. A kind of analysis and design method is presented that piezoelectric plate's radial strain induced by inverse piezoelectric effect is equivalently substituted with transverse stress on piezoelectric composite laminates. It is pointed out that the equivalent transverse load depends on the edge electric field distribution of parallel plate capacitor. The question has been solved that where the neutral plane in the piezoelectric composite laminates lies. Finally, an optimization design is developed on the radius ratio of piezoelectric-to-silicon plate radius by utilizing of FEA modeling

  9. Construction of self-supporting cylindrical multiwire proportional chambers

    International Nuclear Information System (INIS)

    Kobayashi, Masaaki; Fujitani, Takeo; Omori, Tsunehiko; Sugimoto, Shojiro; Yamaguchi, Yoshitake; Nakagawa, Yuji; Wada, Toshiaki.

    1984-08-01

    Cylindrical MWPC's have been constructed with 240-430 mm in anode diameter and 750 mm in length. They are supported by inner and outer cathode cylinders made of approximately 6 mm thick aramid fibre/phenolic resin honeycomb, sandwiched between 50 μm thick Kapton sheets with or without Cu strips laminated to them. The chambers have been successfully used throughout the E68(P-barPC) experiment at the KEK 12 GeV Proton Synchrotrons. Constructional details are described. (author)

  10. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-24

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r2 in the some of the expressions.

  11. Nonlinear spin-up in a circular cylinder

    NARCIS (Netherlands)

    van de Konijnenberg, J.A.; Heijst, van G.J.F.

    1995-01-01

    Nonlinear spin-up in a circular cylindrical tank is investigated experimentally and compared with the Wedemeyer model. The experiments were performed with water, using tracer particles floating at the free surface in order to visualize the flow field. The experimentally determined vorticity profiles

  12. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  13. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    OpenAIRE

    Emad4 AbdulGabbar

    2013-01-01

    The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm), ...

  14. Cylindrical magnetization model for glass-coated microwires with circular anisotropy: Statics

    International Nuclear Information System (INIS)

    Torrejon, J.; Thiaville, A.; Adenot-Engelvin, A.L.; Vazquez, M.; Acher, O.

    2011-01-01

    The static magnetization profile of glass-coated microwires with effective circular anisotropy is investigated using micromagnetics. In this family of microwires, the ferromagnetic nucleus with an amorphous character presents a magnetic structure composed of an inner region with axial domains and an outer region with circular domains, due to magnetoelastic anisotropy. A one-dimensional micromagnetic model is developed, taking into account both the exchange and magnetoelastic anisotropy energies, and solved quasi analytically. The total energy, magnetization profiles and magnetization curves are investigated as a function of radius and anisotropy constant of the nucleus. This work represents a fundamental study of the magnetization process in these amorphous microwires and provides guidelines for the production of microwires with tailored magnetic properties. En passant, the nucleation problem in an infinite cylinder, introduced by W.F. Brown, is revisited. - Research highlights: → Magnetic microwires with circular anisotropy are studied by micromagnetic model. → The ratio R/Δ is a fundamental quantity to determine the magnetic structure. → Reduction of diameter and anisotropy favours the growth of axial core.

  15. Optical properties of helical cylindrical molecular aggregates : the homogeneous limit

    NARCIS (Netherlands)

    Didraga, C.; Klugkist, J.A.; Knoester, J.

    2002-01-01

    Using a Frenkel exciton model, we study the optical absorption spectrum and linear and circular dichroism (CD) spectra of cylindrical molecular aggregates. We demonstrate that such aggregates can always be described as a stack of molecular rings with nearest-neighbor rings rotated relative to each

  16. Optical Properties of Helical Cylindrical Molecular Aggregates : The Homogeneous Limit

    NARCIS (Netherlands)

    Didraga, Cătălin; Klugkist, Joost A.; Knoester, Jasper

    2002-01-01

    Using a Frenkel exciton model, we study the optical absorption spectrum and linear and circular dichroism (CD) spectra of cylindrical molecular aggregates. We demonstrate that such aggregates can always be described as a stack of molecular rings with nearest-neighbor rings rotated relative to each

  17. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  18. Modified Vertical Bearing Capacity for Circular Foundations in Sand Using Reduced Friction Angle

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2012-01-01

    Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity of a circ......Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity...... of a circular plate, several loading tests on small scale bucket foundations including the circular surface footings are performed at Aalborg University. In current research, the vertical bearing capacity of circular surface footings is investigated using reduced friction angle. It is also presented a linear...

  19. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    Directory of Open Access Journals (Sweden)

    Emad4 AbdulGabbar

    2013-05-01

    Full Text Available The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm, and the models fixed on the channel bed vertically to the direction of flow. The result shows that the increase in the ratio of head to weir radius ratio (Hw/R value causes an increase in discharge coefficient (Cd value for the same height of weir. It was observed that the cylinder size (i.e. radius of cylindrical weir (R has an effect on the (Cd. The flow magnification factor (qw/qs increases with an increase in (Hw/R value and values of (qw/qs were always higher than one for all values of (Hw/R, this means that weirs of cylindrical shape performed better than those of sharp crest for any value of weir radius tested in this study.

  20. Design guide for calculating fluid damping for circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1983-06-01

    Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow

  1. Laminates

    Science.gov (United States)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  2. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  3. Scattering from a Buried Circular Cylinder Illuminated by a Three-Dimensional Source

    DEFF Research Database (Denmark)

    Hansen, T.B.; Meincke, Peter

    2002-01-01

    We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflect...... commonly used transmitter-receiver configuration for ground-penetrating radar (GPR). Numerical simulations involving time domain fields and fixed-offset configurations determine the radar responses of various types of pipes and conductive soils encountered in GPR.......We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflected...

  4. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  5. High energy density matter issues related to future circular collider. Simulations of full beam impact with a solid copper cylindrical target

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Burkart, F.; Schmidt, R.; Wollmann, D. [CERN-AB, Geneva (Switzerland); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [E.T.S.I. Industrials, University of Castilla-La Mancha, Ciudad Real (Spain)

    2017-11-15

    This paper presents numerical simulations of the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is subjected to the full impact of one future circular collider (FCC) ultra-relativistic proton beam. The target is facially irradiated so that the beam axis coincides with the cylinder axis. The simulations have been carried out employing an energy deposition code, FLUKA, and a 2D hydrodynamic code, BIG2, iteratively. The simulations show that, although the static range of a single FCC proton and its shower in solid copper is ∝1.5 m, the full beam may penetrate up to 350 m into the target as a result of hydrodynamic tunnelling. Moreover, simulations also show that a major part of the target is converted into high energy density (HED) matter, including warm dense matter (WDM) and strongly coupled plasma. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel producers afford to present their products either in sized semi-finished form or as covered in general by the in additional investments realized. The fact that the laminated material has a certain market share as well as the increase in demand for furniture types finished in various profiles have put the laminated sheets which provide very comprehensive design facilities at the top place and caused such boards to spread over the market rather more quickly. In line with this development, great developments have also been recorded during recent years in laminate utilization in furniture factoring sector and fast steps taken towards a more rational working environment. In this study, laminates types and manufacturing technologies were investigated.

  7. The lifetime of a long cylindrical shell under external pressure at elevated temperature

    CERN Document Server

    Bargmann, H W

    1972-01-01

    This paper is concerned with creep collapse of a long, thin walled, circular, cylindrical shell subjected to external pressure. The problem has been studied by Hoff et al. (1959), where elasticity has been neglected in the material equations. In the present paper it is pointed out that elasticity must not be neglected in stability problems as it may reduce the lifetime considerably. The improved equation for the lifetime of the shell is presented. Moreover, a procedure is indicated to derive the necessary creep parameters easily from usually available creep data. Numerical values of the lifetime of thin-walled, circular, cylindrical shells under external atmospheric pressure are presented for a wide range of shells of different geometrical characteristics for a number of high-temperature alloys and the temperature range up to 1000 degrees C. Experimental results are reported which are in good agreement with the theoretical prediction. (11 refs).

  8. Laminated articles

    International Nuclear Information System (INIS)

    Ridgway, P.C.; Case, D.F.

    1979-01-01

    In a method of bonding laminations of a magnetic core, photo-resist material consisting of a co-polymer is applied as a film to a sheet of magnetic material to define lamination shapes to enable the laminations to be formed by etching. The film of photo-resist material on the laminations is then utilised to bond the laminations together in a stack. In order to permit the core to operate at temperatures higher than the softening temperature of the photo-resist material, the bonded stack is irradiated with 1 - 2 Mer gamma radiation to a dose of 1 - 5 Mrads in 2 - 10 hrs to cause changes to the bonding material such that the material does not soften at the operating temperature of the core. (U.K.)

  9. Specific contribution of lamin A and lamin C in the development of laminopathies

    International Nuclear Information System (INIS)

    Sylvius, Nicolas; Hathaway, Andrea; Boudreau, Emilie; Gupta, Pallavi; Labib, Sarah; Bolongo, Pierrette M.; Rippstein, Peter; McBride, Heidi; Bilinska, Zofia T.; Tesson, Frederique

    2008-01-01

    Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies

  10. Analytic, high β, flux conserving equilibria for cylindrical tokamaks

    International Nuclear Information System (INIS)

    Sigmar, D.J.; Vahala, G.

    1978-09-01

    Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed

  11. Analytic, high β, flux conserving equilibria for cylindrical tokamaks

    International Nuclear Information System (INIS)

    Sigmar, D.J.; Vahala, G.

    1978-01-01

    Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed

  12. Arbitrarily elliptical-cylindrical invisible cloaking

    International Nuclear Information System (INIS)

    Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y

    2008-01-01

    Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking

  13. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  14. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    International Nuclear Information System (INIS)

    Korayem, M. H.; Khaksar, H.; Taheri, M.

    2013-01-01

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of

  15. Invertebrate lamins

    International Nuclear Information System (INIS)

    Melcer, Shai; Gruenbaum, Yosef; Krohne, Georg

    2007-01-01

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions

  16. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    Science.gov (United States)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  17. Experimental and Numerical Simulation Analysis of Typical Carbon Woven Fabric/Epoxy Laminates Subjected to Lightning Strike

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-12-01

    To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal-electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.

  18. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis.

    Science.gov (United States)

    Boosman, R; Németh, F; Gruys, E

    1991-07-01

    This review deals with the features of clinical and subclinical laminitis in cattle. Prominent clinical signs of acute laminitis are a tender gait and arched back. The sole horn reveals red and yellowish discolourations within five days. In subacute and chronic cases clinical signs are less severe. In chronic laminitis the shape of the claws is altered. Laminitis is frequently followed by sole ulceration and white zone lesions. Blood tests showed no significant changes for laminitic animals. Arteriographic studies of claws affected by laminitis indicated that blood vessels had narrowed lumens. Gross pathology revealed congestion of the corium and rotation of the distal phalanx. Histopathologic studies indicate that laminitis is associated with changes of the vasculature. Peripartum management and nutrition are important factors in its aetiology. It is hypothesised that laminitis is evoked by disturbed digital circulation. In the pathogenesis of acute laminitis three factors are considered important: the occurrence of thrombosis, haemodynamic aspects of the corium, and endotoxins which trigger these pathologic events.

  19. Dynamic tensile stress–strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    Directory of Open Access Journals (Sweden)

    Nakai Kenji

    2015-01-01

    Full Text Available The effect of strain rate up to approximately ε̇ = 102/s on the tensile stress–strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress–strain curves up to fracture are determined using the split Hopkinson bar (SHB. The low and intermediate strain-rate tensile stress–strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  20. Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    1998-01-01

    Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.

  1. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  2. Mathematical simulation of stressed-deformed state in rod cylindrical fuel elemnts KONDOR program

    International Nuclear Information System (INIS)

    Khmelevskij, M.Ya.; Malakhova, E.I.; Dolmatov, P.S.

    1987-01-01

    A mathematical model for numerical computation of stressed-deformed stae in a rod cylindrical fuel element is developed. The model is based on preliminary discretization of the design scheme and linearization of radial parameters as radius functions. The formulation generality enables to calculate strength parameter kinetics in any circular cylindrical fuel element (e.g. annular fuel element; solid or tubular core; ceramic, metallic or dispersion fuel) for arbitrary transient operating conditions and taking into account all possible loading factors. The method is realized in the KONDOR programm (FORTRAN, ES-1061 computer). An example illustrating computation of stress kinetics in a fast reactor fuel element during transient operation is given

  3. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  4. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    Science.gov (United States)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  5. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  6. Dynamics of cylindrical domain walls in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Wigham, E J

    2009-01-01

    An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal

  7. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  8. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  9. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    Science.gov (United States)

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  11. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  12. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  13. Control and characterization of a bistable laminate generated with piezoelectricity

    Science.gov (United States)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-08-01

    Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.

  14. Self-consistent equilibrium in a cylindrical, dissipative reverse field pinch

    International Nuclear Information System (INIS)

    Guo, S.C.; Paccagnella, R.

    1994-01-01

    One of the authors (C.L.S.) recently proposed a dissipative model to self-consistently solve the equilibrium problem in a free-boundary plasma column under cylindrical symmetry. In the present paper, on one hand the problem is strongly specialized to circular symmetry and to Ohm's and Fourier's laws without off-diagonal contributions; on the other hand, it is generalized by adding a dynamo effective electric field E d in Ohm's law, based on the standard turbulent model. This seems appropriate enough to study RFP equilibria, since it is well known that a stationary and cylindrically symmetric RFP is incompatible with a classical Ohm's law. Reasonably, only numerical solutions are expected to be accessible in general; but the further simplified problem with scalar and constant electric resistivity and constant dynamo coefficient α (E d =αB) can be solved analytically by elementary means. (author) 4 refs., 2 figs

  15. "Subclinical" laminitis in dairy cattle.

    Science.gov (United States)

    Vermunt, J J

    1992-12-01

    In dairying countries worldwide, the economic importance of lameness in cattle is now recognised. Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders such as white zone lesions, sole ulcer, and heel horn erosion. The existence of subclinical laminitis was first suggested in the late 1970s by Dutch workers describing the symptoms of sole haemorrhages and yellowish-coloured, soft sole horn. In an attempt to clarify some of the confusing and often conflicting terminology, the literature on laminitis is reviewed. Disturbed haemodynamics, in particular repeated or prolonged dilation of arteriovenous anastomoses, have been implicated in the pathogenesis of both equine and bovine laminitis. Some characteristics of the vascular system of the bovine claw which may be of importance in the pathophysiology of the subclinical laminitis syndrome are therefore discussed. Clinical observations suggest that subclinical laminitis is a multifactorial disease. The different factors that are or may be involved in its aetiology vary in complexity and severity according to the management protocol of the animals. The possible involvement of subclinical laminitis in claw lesions is assessed.

  16. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Inui, Y.; Kobayashi, Y.; Watanabe, Y.; Watase, Y.; Kitamura, Y.

    2007-01-01

    The authors develop two-dimensional and three-dimensional simulation codes of the transient response of the temperature distribution in the lithium ion secondary battery during a discharge cycle. At first, a two-dimensional simulation code for a cylindrical battery is developed, and the simulation results for a commercially available small size battery are compared with the corresponding experimental results. The simulation results of the transient temperature and voltage variations coincide very well with the experimental results. The simulation result of the temperature difference between the center of the battery body and the center of the battery side is also in reasonable agreement with the experimental result. Next, the authors develop a three-dimensional simulation code and perform numerical simulations for three large size prismatic batteries with the same capacity and different cross sectional shapes. It is made clear that selecting the battery with the laminated cross section has a remarkable effect on the suppression of the temperature rise in comparison with the battery with square cross section, whereas the effect of the lamination on the suppression of the temperature unevenness is unexpectedly small. These results indicate the accuracy and usefulness of the developed simulation codes

  17. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  18. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibation frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  19. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  20. DESIGN ALTERNATIVES ON THE LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel manufacturers use increasing volumes of laminates. Laminates are resistant to the water, humidity, scratch, abrasion, burning and chemicals. These products consist of printed decor papers that have been saturated with thermosetting resin. In this study, laminate types, composition form and design alternatives were investigated.

  1. A theory of piezoelectric laminates

    International Nuclear Information System (INIS)

    Giangreco, E.

    1997-01-01

    A theory of piezoelectric laminates is rationally derived from the three-dimensional Voigt theory of piezoelectricity. The present theory is a generalization to piezoelectric laminates of the Reissner-Mindlin-type layer-wise theory of elastic laminates. Both a differential formulation and a variational formulation of the piezoelectric laminate problem are presented. The proposed theory is adopted in the analysis of simple problems, in order to verify its effectiveness. The results it provides turn out to be in good agreement with the results supplied by the Voigt theory of piezoelectricity

  2. Evaluation of Interlaminar Stresses in Composite Laminates with a Bolt-Filled Hole Using a Linear Elastic Traction-Separation Description

    Directory of Open Access Journals (Sweden)

    Yong Cao

    2017-01-01

    Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.

  3. Exposure rates from concrete covered cylindrical units containing radioactive waste

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1983-03-01

    Exposure rates from cylindrical waste units containing the nuclides 60 Co, 134 Cs and 137 Cs homogeneously mixed in a solidification product have been calculated. Analyses have been made for single drums and for two disposal geometries, one with the units placed below ground near the surface in a circular geometry, and one with the units placed on the ground in a pile behind a concrete wall. Due to self-shielding of the units, the exposure rate from the two geometries will be a factor of only 10 - 20 higher than from a single unit, even without soil or wall shielding. With one meter of soil above the circular pile below ground, a reduction factor of 5.10 3 to 5.10 4 can be achieved, depending on the nuclide considered. Placing a one-meter concrete wall in front of the drum pile on the ground gives rise to a reduction factor in the range of 5.10 5 to 2.10 7 . (author)

  4. A historical perspective of laminitis.

    Science.gov (United States)

    Heymering, Henry W

    2010-04-01

    The causes of laminitis are many-often interrelated, sometimes direct opposites. The history of laminitis has been a search for the cause or causes of laminitis and for effective treatment. Going in and out of fashion, many treatments have lasted for centuries, some for millennia, but very few have been proven. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Composite lamination method

    Science.gov (United States)

    Dickerson, G. E. (Inventor)

    1977-01-01

    A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.

  6. Glucocorticoids and laminitis in the horse.

    Science.gov (United States)

    Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M

    2002-08-01

    The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically

  7. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  8. Predisposing factors of laminitis in cattle.

    Science.gov (United States)

    Vermunt, J J; Greenough, P R

    1994-01-01

    Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders. Despite intensive study, both by experiment and by clinical observation, knowledge of the precise aetiology and pathogenesis of bovine laminitis is still incomplete. It is often hypothesized that changes in the micro-circulation of the corum (dermis) of the bovine claw contribute significantly to the development of laminitis; arteriovenous anastomoses (AVAs) playing a crucial role. Many factors have been implicated as contributing causes of laminitis in cattle; the disease has a multifactorial aetiology. The cause of laminitis should be considered as a combination of predisposing factors leading to vascular (AVAs in particular) reactivity and inhibition of normal horn synthesis. Nutrition, disease, management and behaviour appear to be closely involved in the pathogenesis of bovine laminitis. The major factors predisposing to laminitis in cattle, as reported or suggested in the literature, are reviewed, including systemic disease, nutrition (barley grain, protein, carbohydrate and fibre), management (housing, bedding and exercise), calving, season, age, growth, genetics, conformation and behaviour.

  9. Laminitis and the equine metabolic syndrome.

    Science.gov (United States)

    Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T

    2010-08-01

    Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    Science.gov (United States)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their

  11. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  12. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    Science.gov (United States)

    Libby, E.; Azofeifa, D. E.; Hernández-Jiménez, M.; Barboza-Aguilar, C.; Solís, A.; García-Aguilar, I.; Arce-Marenco, L.; Hernández, A.; Vargas, W. E.

    2014-08-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals.

  13. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    International Nuclear Information System (INIS)

    Libby, E; Azofeifa, D E; Hernández-Jiménez, M; García-Aguilar, I; Arce-Marenco, L; Hernández, A; Vargas, W E; Barboza-Aguilar, C; Solís, A

    2014-01-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals. (fast track communication)

  14. Research on Radial Vibration of a Circular Plate

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.

  15. The Newtonian force experienced by a point mass near a finite cylindrical source

    International Nuclear Information System (INIS)

    Selvaggi, Jerry P; Salon, Sheppard; Chari, M V K

    2008-01-01

    The Newtonian gravitational force experienced by a point mass located at some external point from a thick-walled, hollow and uniform finite circular cylindrical body was recently solved by Lockerbie, Veryaskin and Xu (1993 Class. Quantum Grav. 10 2419). Their method of attack relied on the introduction of the circular cylindrical free-space Green function representation for the inverse distance which appears in the formulation of the Newtonian potential function. This ultimately leads Lockerbie et al to a final expression for the Newtonian potential function which is expressed as a double summation of even-ordered Legendre polynomials. However, the kernel of the cylindrical free-space Green function which is represented by an infinite integral of the product of two Bessel functions and a decaying exponential can be analytically evaluated in terms of a toroidal function. This leads to a simplification in the mathematical analysis developed by Lockerbie et al. Also, each term in the infinite series solution for the Newtonian potential function can be expressed in closed form in terms of elementary functions. The authors develop the Newtonian potential function by employing toroidal functions of zeroth order or Legendre functions of half-integral degree, Q m-1/2 (β)(Bouwkamp and de Bruijn 1947 J. Appl. Phys.18 562, Cohl et al 2001 Phys. Rev.A 64 052509-1, Selvaggi et al 2004 IEEE Trans. Magn.40 3278). These functions are monotonically decreasing and converge rapidly (Moon and Spencer 1961 Field Theory for Engineers (New Jersey: Van Nostrand Company) pp 368-76, Cohl and Tohline 1999 Astrophys. J.527 86). The introduction of the toroidal harmonic expansion leads to an infinite series solution for which each term can be expressed as an elementary function. This enables one to easily compute the axial and radial forces experienced by an internal or an external point mass

  16. Wettability of graphene-laminated micropillar structures

    International Nuclear Information System (INIS)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun; Park, Ji-Hoon; Ahn, Joung Real

    2014-01-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues

  17. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  18. Verification and Validation of Carbon-Fiber Laminate Low Velocity Impact Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy; Brown, Arthur A.

    2014-10-01

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

  19. Cylindrical vector beams of light from an electrically excited plasmonic lens

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuiyan, E-mail: shuiyan.cao@u-psud.fr; Le Moal, Eric; Boer-Duchemin, Elizabeth; Dujardin, Gérald [Institut des Sciences Moléculaires d' Orsay, CNRS—Université Paris-Sud (UMR 8214), Orsay (France); Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France)

    2014-09-15

    The production of cylindrical vector beams from a low-energy, electric, microscale light source is demonstrated both experimentally and theoretically. This is achieved by combining a “plasmonic lens” with the ability to locally and electrically excite propagating surface plasmons on gold films. The plasmonic lens consists of concentric circular subwavelength slits that are etched in a thick gold film. The local excitation arises from the inelastic tunneling of electrons from the tip of a scanning tunneling microscope. We report on the emission of radially polarized beams with an angular divergence of less than ±4°.

  20. Lamins, laminopathies and disease mechanisms

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of ... Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different ... June 2018.

  1. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    Science.gov (United States)

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  2. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  3. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  4. Performance improvement of the circular tubular PEMFC by using different architectures and number of layers

    International Nuclear Information System (INIS)

    Mohammadi-Ahmar, Akbar; Osanloo, Behzad; Solati, Ali; Ghasemi, Jalal

    2016-01-01

    Highlights: • A full three-dimensional model was developed for cylindrical PEMFC. • CFD study on reactants distribution, current density and final power was performed. • Five cylindrical configurations were investigated (CP, C2C, C4C, C6C and C8C). - Abstract: The effects of arrangement and number of Membrane, Catalyst layer (CL) and Gas Diffusion layer (GDL) is investigated in present study. A full three-dimensional model was developed for tubular shaped PEMFC and the distribution of reactant concentration along anode and cathode channels, current density, power consumption and production were studied through computational Fluid dynamics (CFD). In order to do so, five arrangements of the tubular-shaped PEMFC namely: circular peripheral (CP), circular with two channels (C2C), circular with four channels (C4C), circular with six channels (C6C) and circular with eight channels (C8C) are presented. Comparison was made for new arrangements of layers, for the same active area and input mass flow in the anode and cathode. The results of polarization curve and power density shows that via increasing the number of layers, and thereby reducing the length of the fuel cell, more reactants are consumed along the tubular-shaped PEMFC. Among the five new arrangements, the CP case due to having high flow velocity for the same flow rate, has lower consumption along the channel and demonstrates undesirable results. Also in the dual-channel case (C2C) the core of the reacting flow is far from the reaction location (i.e. CL) therefor showed the lowest consumption and thus lowest power density. Whereas the eight-channel (C8C) configuration because of the appropriate distance between Membrane, CL and GDL layers and the core of the flow, increases the power output and reduces the cost, simultaneously due to shortest length in comparison to other cases. The results of present study can be employed for the manufacturing of new tubular-shaped PEMFC.

  5. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  6. Self-Healing Laminate System

    Science.gov (United States)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  7. Polar plate theory for orthogonal anisotropy

    Science.gov (United States)

    Bailey, Michelle D.

    1998-11-01

    The following paper discusses the derivation and evaluation of the plate equations for a circular composite disk with orthogonal anisotropy. The work will be on a macromechanical level and include buckling, static and dynamic load applications. Necessary to a complete examination of the circular disk is the conversion of the stiffness matrix to cylindrical coordinates. In the transformed state, these coefficients are no longer constant, adding to the complexity of the proposed differential equations. Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to weight and stiffness-to-weight ratios. However, because of the typical anisotropic behavior of composites, determining the material properties on a microscopic level and the mechanics on a macroscopic level is much more difficult. This difficulty manifests itself particularly well in the evaluation of material properties and governing differential equations of a circular disk with the fibers of the lamina oriented orthogonally. One could encounter such a situation in space structures that require a circular geometry. For example, determining fastener pull through in a circular composite plate would best be performed in a polar coordinate system. In order to calculate the strain (which is a function of the angle, θ) from the displacements, the stiffness matrix and boundary conditions would need to be expressed in cylindrical coordinates. Naturally the composite would be constructed with fibers in orthogonal directions, then the necessary geometry would be cut out, thus the required lengthy transformation of coordinate systems. To bypass this derivation, numerical methods have been used and finite element models have been attempted. FEM over predicts plate stiffness by 20% and underpredicts failure by 70%. Obviously there is a need to transform classical plate theory to a cylindrical coordinate system.

  8. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  9. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  10. Administrative Circulars

    CERN Document Server

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  11. Laminar forced convection in a cylindrical collinear ohmic sterilizer

    Directory of Open Access Journals (Sweden)

    Pesso Tommaso

    2017-01-01

    Full Text Available The present work deals with a thermo-fluid analysis of a collinear cylindrical ohmic heater in laminar flow. The geometry of interest is a circular electrically insulated glass pipe with two electrodes at the pipe ends. For this application, since the electrical conductivity of a liquid food depends strongly on the temperature, the thermal analysis of an ohmic heater requires the simultaneous solution of the electric and thermal fields. In the present work the analysis involves decoupling the previous fields by means of an iterative procedure. The thermal field has been calculated using an analytical solution, which leads to fast calculations for the temperature distribution in the heater. Some considerations of practical interest for the design are also given.

  12. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  13. Design Investigation of a Laminated Waveguide Fed Multi-Band DRA for Military Applications

    Science.gov (United States)

    Kumar, Pramod; Dwari, Santanu; Singh, Shailendra; Agrawal, N. K.

    2017-12-01

    In this paper a laminated waveguide fed DR Antenna is investigated. It can use for moderate power military applications. Cylindrical DRA is excited by two closely spaced asymmetric longitudinal slots on the broad wall of the laminated cavity are responsible for producing three different frequency bands. Parametric study of slots has been done with the help of commercial software ANSOFT HFSS. All the bands have sharp rejection. The final model of the antenna is simulated, fabricated and experimentally measured. Measured results are in quite accordant with design results. SIW feeding structures have small losses, moderate power handling capacity, low costs, compact sizes and can be seamlessly integrated with planar circuits. At all the bands 9.76 GHz, 10.53 GHz and 11.8 GHz resonant frequency, the antenna shows 56 MHz, 160 MHz, and 250 MHz impedance bandwidth (for VSWR<2) with 6 dB,6.2 dB and 6.8 dB gain respectively. Simulated and measured results reveal outstanding performance with a cross-polar level of 29 dB lower than that of the co-polar level at 9.76 GHz, the cross-polar level of 32 dB lower than that of the co-polar level at 10.53, GHz, and similarly cross-polar level of 30 dB lower than that of the co-polar level at 11.8 GHz.

  14. Subclinical laminitis in dairy heifers.

    Science.gov (United States)

    Bradley, H K; Shannon, D; Neilson, D R

    1989-08-19

    By causing poorer horn quality, subclinical laminitis is considered to be a major predisposing cause of other hoof problems, particularly sole ulcers in newly calved heifers. In this study the hind hooves of 136 female Friesian/Holstein cattle aged between four months and two years were examined to discover at what age the signs of subclinical laminitis appeared. Sole haemorrhages were found in the hoof horn of calves as young as five months. The consistent finding of these lesions in heifers of all ages indicated that subclinical laminitis of varying degree was a common condition during the early growing period of young dairy heifers.

  15. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  16. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  17. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  18. Behaviour of Mechanically Laminated CLT Members

    Science.gov (United States)

    Kuklík, P.; Velebil, L.

    2015-11-01

    Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.

  19. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  20. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  1. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  2. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  3. Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks

    Science.gov (United States)

    McGee, O. G.; Kim, J. W.

    2010-02-01

    This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and

  4. Investigation into the Quality of Thermally Treated Package Lamination

    Directory of Open Access Journals (Sweden)

    Darius Kazlauskas

    2011-02-01

    Full Text Available The article deals with the problem of delaminating the package after pasteurization at relatively high temperatures. The main parameters of the lamination process influencing lamination strength were determined. The role of the amount of lamination glue and tension in the rewinder for two glue types were experimentally examined defining lamination regimes at which the process of delamination is excluded.Article in Lithuanian

  5. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  6. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    Science.gov (United States)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  7. Extinction cross-section cancellation of a cylindrical radiating active source near a rigid corner and acoustic invisibility

    Science.gov (United States)

    Mitri, F. G.

    2017-11-01

    Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.

  8. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  9. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    Science.gov (United States)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  10. An update on equine laminitis

    OpenAIRE

    Laskoski, Luciane Maria; Valadão, Carlos Augusto Araújo; Dittrich, Rosangela Locatelli; Deconto, Ivan; Faleiros, Rafael Resende

    2016-01-01

    ABSTRACT: Laminitis is a severe podal affection, which pathophysiology remains partially renowned. Ischemic, enzymatic, metabolic and inflammatory mechanisms are connected to the development of laminar lesions. However, few therapeutic measures are effective to prevent or control the severity of acute laminitis and its prodromal stage, which often determines serious complications such as rotation and/or sinking of the distal phalanx and even the loss of hoof. The purpose of this study is to c...

  11. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    International Nuclear Information System (INIS)

    Liu, L.; Huang, Z.-M.; He, C.L.; Han, X.J.

    2006-01-01

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 μm. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly

  12. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  13. Circular Coinduction

    Science.gov (United States)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  14. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    Science.gov (United States)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  15. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  16. The mechanical behavior of GLARE laminates for aircraft structures

    Science.gov (United States)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  17. A MEMS lamination technology based on sequential multilayer electrodeposition

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Jooncheol; Herrault, Florian; Schafer, Richard; Allen, Mark G

    2013-01-01

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required. (paper)

  18. Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates

    Science.gov (United States)

    2013-06-01

    laminate . The model individually models each layer of the laminate and predicts stiffness degradation as metal layers plastically deform and as prepreg ...eliminating four of the possible ECM laminates . Additionally, since at least four individual layers (two aluminum and two prepreg ) are used in FML an...AFRL-AFOSR-UK-TR-2013-0023 Analytical and Experimental Characterization of Thick- Section Fiber-Metal Laminates Dr. Rene

  19. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.

    2011-03-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.

  20. Influences of lamin A levels on induction of pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bingfeng Zuo

    2012-09-01

    Lamin A is an inner nuclear membrane protein that maintains nuclear structure integrity, is involved in transcription, DNA damage response and genomic stability, and also links to cell differentiation, senescence, premature aging and associated diseases. Induced pluripotent stem (iPS cells have been successfully generated from various types of cells and used to model human diseases. It remains unclear whether levels of lamin A influence reprogramming of somatic cells to pluripotent states during iPS induction. Consistently, lamin A is expressed more in differentiated than in relatively undifferentiated somatic cells, and increases in expression levels with age. Somatic cells with various expression levels of lamin A differ in their dynamics and efficiency during iPS cell induction. Cells with higher levels of lamin A show slower reprogramming and decreased efficiency to iPS cells. Furthermore, depletion of lamin A by transient shRNA accelerates iPS cell induction from fibroblasts. Reduced levels of lamin A are associated with increased expression of pluripotent genes Oct4 and Nanog, and telomerase genes Tert and Terc. On the contrary, overexpression of lamin A retards somatic cell reprogramming to iPS-like colony formation. Our data suggest that levels of lamin A influence reprogramming of somatic cells to pluripotent stem cells and that artificial silencing of lamin A facilitates iPS cell induction. These findings may have implications in enhancing rejuvenation of senescent or older cells by iPS technology and manipulating lamin A levels.

  1. Minimum weight design of composite laminates for multiple loads

    International Nuclear Information System (INIS)

    Krikanov, A.A.; Soni, S.R.

    1995-01-01

    A new design method of constructing optimum weight composite laminates for multiple loads is proposed in this paper. A netting analysis approach is used to develop an optimization procedure. Three ply orientations permit development of optimum laminate design without using stress-strain relations. It is proved that stresses in minimum weight laminate reach allowable values in each ply with given load. The optimum ply thickness is defined at maximum value among tensile and compressive loads. Two examples are given to obtain optimum ply orientations, thicknesses and materials. For comparison purposes, calculations of stresses are done in orthotropic material using classical lamination theory. Based upon these calculations, matrix degrades at 30 to 50% of ultimate load. There is no fiber failure and therefore laminates withstand all applied loads in both examples

  2. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  3. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  4. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim

    2011-01-01

    of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...

  5. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  6. [Laminitis in cattle: a literature review].

    Science.gov (United States)

    Lischer, C; Ossent, P

    1994-10-01

    Worldwide afflictions of the claws belong to the economically important diseases in dairy cattle. The significance of laminitis has gained importance in the last years since the condition is regarded as the most important predisposing factor for the development of lesions such as sole ulcer, white line disease and heel horn erosion. Apart from the clinical stages (acute, subacute, chronic, chronic-recurrent) there is also a subclinical form of laminitis which does not cause lameness. It is characterized by soft yellowish sole and heel horn with haemorrhages in the sole and along the white line. Laminitis is a multifactorial event in which nutrition, genetic disposition and the perinatal period, combined with the associated diseases of high-yielding cows, have a particular significance. Currently, two principally different hypotheses on the pathogenesis are discussed. The generally accepted theory bases on a disturbance in the microcirculation of the corium. According to the other theory the circulatory disturbances are secondary to changes which occur in the horn producing cells of the stratum basale of the epidermis. The predisposing factors and the pathogenesis of laminitis are discussed in the light of possible therapeutic and prophylactic measures.

  7. Circular Solutions

    NARCIS (Netherlands)

    Annevelink, E.; Bos, H.L.; Meesters, K.P.H.; Oever, van den M.J.A.; Haas, de W.; Kuikman, P.J.; Rietra, R.P.J.J.; Sikirica, N.

    2016-01-01

    The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.

  8. Current perpendicular to plane giant magnetoresistance in laminated nanostructures

    International Nuclear Information System (INIS)

    Vedyayev, A.; Zhukov, I.; Dieny, B.

    2005-01-01

    We theoretically studied spin-dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of giant magnetoresistance (GMR). This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones even though lamination induces a significant increase in CPP resistance

  9. Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Mean, Byoung Jean; Lee, Jae Hun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-12-15

    The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current (I{sub c}) was measured at 77 K and self-field. Depending on whether the I{sub c} of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of I{sub c}, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

  10. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  11. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  12. The LEP e+e−ring at the energy frontier of circular lepton colliders

    CERN Document Server

    Hofmann, Albert

    2016-01-01

    The Large Electron Positron ring (LEP) was a circular lepton collider at CERN. It operated at beam energies around 47GeV to produce the neutral Z0 particle and above 80 GeV to create pairs of the charged W± bosons. At these high energies the emission of synchrotron radiation was important and demanded a very high voltage of the RF-system. It also influenced the choice of many other machine parameters. This presentation tries to show how the basic accelerator physics was used to optimize the machine and to find innovative solutions for some problems: magnets with concrete between the laminations, modulated cavities, Nb-Cu superconducting cavities, nonevaporable getter pumps, optics analysis from multi-turn data and many more.

  13. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  14. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    model for the analysis of laminated composite beams is proposed. The structural analysis is performed in a beam finite element context. The development of a finite element based tool for the analysis of the cross section stiffness properties is described. The resulting beam finite element formulation...... is able to account for the effects of material anisotropy and inhomogeneity in the global response of the beam. Beam finite element models allow for a significant reduction in problem size and are therefore an efficient alternative in computationally intensive applications like optimization frameworks...... design of laminated composite beams. The devised framework is applied in the optimal design of laminated composite beams with different cross section geometries and subjected to different load cases. Design criteria such as beam stiffness, weight, magnitude of the natural frequencies of vibration...

  15. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    Science.gov (United States)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine

  16. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  17. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    Science.gov (United States)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  18. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  19. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-10-15

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  20. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2017-01-01

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  1. The Effect of Thermal Lamination Processes on Colorimetric Change in Spot Colours

    Directory of Open Access Journals (Sweden)

    Eduard Galić

    2015-03-01

    Full Text Available Understanding the effect of laminating processes on spot colours is of great importance in the offset printing process, especially given the application versatility of spot colours. Laminating process, as a very common process and one of the first in a sequence of finishing processes in graphics production, can affect print’s visual impression to varying degrees. Spot colours, as mixtures of different ratios of inks, are subject to a change due to matt or gloss lamination process. The research examined the impact of thermal lamination processes on printed spot colours on different printing substrates. The degree of change on prints caused by laminating films in the thermal process was determined using spectrophotometric and densitometric methods. Particular emphasis is placed on the spot colour because of its specific characteristics. Research results are shown in charts and they are showing clearly the modality and the extent laminating processes effect the colorimetric difference in laminated and non-laminated prints. This scientific research provides objective conclusions that help in predicting the possible variations within the usage of laminating processes.

  2. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  3. Tensile strength of glulam laminations of Nordic spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Bräuner, Lise; Boström, Lars

    1999-01-01

    Design of glulam according to the European timber code Eurocode 5 is based on the standard document prEN1194 , according to which glulam beam strength is to be established either by full scale testing or by calculation. The calculation must be based on a knowledge of lamination tensile strength....... This knowledge may be obtained either by adopting a general rule that the characteristic tensile strength is sixty percent of the characteristic bending strength, or by performing tensile tests on an adequate number of laminations representative of the whole population. The present paper presents...... an investigation aimed at establishing such an adequate experimental background for the assignment of strength classes for glulam made of visually strength graded laminations from Nordic sawmills. The investigation includes more than 1800 boards (laminations) of Norway spruce (Picea abies) sampled from eight...

  4. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al....... The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...

  5. Comparative analysis of a fusion reactor blanket in cylindrical and toroidal geometry using Monte Carlo

    International Nuclear Information System (INIS)

    Chapin, D.L.

    1976-03-01

    Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius

  6. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  7. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  8. Deflection of Cross-Ply Composite Laminates Induced by Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Chi-Sheng Lin

    2010-01-01

    Full Text Available The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.

  9. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  10. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  11. Free vibration of finite cylindrical shells by the variational method

    International Nuclear Information System (INIS)

    Campen, D.H. van; Huetink, J.

    1975-01-01

    The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)

  12. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  13. A transparent, solvent-free laminated top electrode for perovskite solar cells

    OpenAIRE

    Makha, Mohammed; Fernandes, Silvia Let?cia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, J?rg; Tisserant, Jean-Nicolas; V?ron, Anna C.; Hany, Roland

    2016-01-01

    Abstract A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per mil...

  14. Administrative circular

    CERN Multimedia

    2003-01-01

    • N° 21 - August 2003 Special leave This circular has been amended. Copies of this circular are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://cern.ch/hr-div/internal/admin_services/admincirc/listadmincirc.asp Human Resources Division Tel. 74128

  15. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    Science.gov (United States)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  16. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  17. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  18. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  19. On Subsurface Crack Growth in Fibre Metal Laminate Materials

    National Research Council Canada - National Science Library

    Randall, Christian

    2003-01-01

    Fatigue crack growth in fibre metal laminates (FMLs) is significantly more complex than in monolithic materials due to the interaction of various physical mechanisms that govern the growth of cracks in laminates...

  20. Ring-element analysis of layered orthotropic bodies

    DEFF Research Database (Denmark)

    Jørgensen, O.

    1993-01-01

    For the analysis of arbitrarily laminated circular bodies, a displacement-based ring-element is presented. The analysis is performed in a cylindrical coordinate system. The method of analysis requires the boundary conditions as well as the external forces to be pi-periodic. The element formulation...... accounts for a desired degree of approximation of the displacement field in the direction of the circumference. This is done by a truncated Fourier expansion of the angular dependence of the displacements in terms of trigonometric functions. Thus the Fourier expansion coefficients are the unknowns...... to that of solutions obtained by traditional 3D elements. A scheme for analytical integration of the angular dependence of the stiffness matrix is given....

  1. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  2. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  3. Optimization of elastic elements of a damping devices for cylindrical hinges in crane-manipulating installations of mobile machines

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-03-01

    Full Text Available The article considers the problems of designing an original damping devices worn for cylindrical hinges in crane-manipulating installations of mobile machines. These devices can significantly reduce the additional impact load on a steel structure manipulators due to the presence of increased gaps in the hinges. Formulated the general formulation of nonlinear constrained optimization of the sizes of the elastic elements of the damping devices. Considered a promising design variants of elastic elements. For circular and arc elastic elements with circular and rectangular cross-section for-mulated the problems of optimal design including criterion functions and systems of geometric, technological, stiffness and strength penalty constraints. Analysis of the impact of various operating and design parameters on the results of optimal design of elastic elements was performed. Were set to the recommended the use of the constructive types of elastic elements to generate the required stiffness of the damper devices.

  4. The modelling and control of failure in bi-material ceramic laminates

    International Nuclear Information System (INIS)

    Phillipps, A.J.; Howard, S.J.; Clegg, W.J.; Clyne, T.W.

    1993-01-01

    Recent experimental and theoretical work on simple, single phase, laminated systems has indicated that failure resistant ceramics can be produced using an elegant method that avoids many of the problems and limitations of comparable fibrous ceramic composites. Theoretical work on these laminated systems has shown good agreement with experiment and simulated the effects of material properties and laminate structure on the composite performance. This work has provided guidelines for optimised laminate performance. In the current study, theoretical work has been simply extended to predict the behaviour of bi-material laminates with alternating layers of weak and strong material with different stiffnesses. Expressions for the strain energy release rates of internal advancing cracks are derived and combined with existing criteria to predict the failure behaviour of these laminates during bending. The modelling indicates three modes of failure dictated by the relative proportions, thicknesses and interfacial properties of the weak and strong phases. A critical percentage of strong phase is necessary to improve failure behaviour, in an identical argument to that for fibre composites. Incorporation of compliant layers is also investigated and implications for laminate design discussed. (orig.)

  5. Attenuation correction for the collimated gamma ray assay of cylindrical samples

    International Nuclear Information System (INIS)

    Patra, Sabyasachi; Agarwal, Chhavi; Goswami, A.; Gathibandhe, M.

    2015-01-01

    The Hybrid Monte Carlo (HMC) method developed earlier for attenuation correction of non-collimated samples [Agarwal et al., 2008, Nucl. Instrum. Methods A 597, 198], has been extended to the segmented gamma ray assay of cylindrical samples. The method has been validated both experimentally and theoretically. For experimental validation, the results of HMC calculation have been compared with the experimentally obtained attenuation correction factors. The HMC attenuation correction factors have also been compared with the results obtained from literature available near-field and far-field formulae at two sample-to-detector distances (10.3 cm and 20.4 cm). The method has been found to be valid at all sample-to-detector distances over a wide range of transmittance. On the other hand, the literature available near-field and far-field formulae have been found to work over a limited range of sample-to detector distances and transmittances. The HMC method has been further extended to circular collimated geometries where analytical formula for attenuation correction does not exist. - Highlights: • Hybrid Monte Carlo method for attenuation correction developed for SGA system. • Method found to work for all sample-detector geometries for all transmittances. • The near-field formula applicable only after certain sample-detector distance. • The far-field formula applicable only for higher transmittances (>18%). • Hybrid Monte Carlo method further extended to circular collimated geometry

  6. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  7. On the plastic behaviour of multi directional epoxy-bolted CFRP laminates

    DEFF Research Database (Denmark)

    Jensen, Aage; Poulsen, Ervin

    2004-01-01

    The second generation of CFRP laminate has recently been developed. It is a multi directional CFRP laminate, i.e. a laminate with carbon fibres having several directions other than the first generation. The paper describes the laboratory tests carried out in order to develop anchorage devices for...

  8. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  9. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-01-24

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  10. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    Science.gov (United States)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  11. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    Science.gov (United States)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  12. IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Thernisien, A.

    2011-01-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  13. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  14. A transparent, solvent-free laminated top electrode for perovskite solar cells.

    Science.gov (United States)

    Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland

    2016-01-01

    A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.

  15. Lamin A/C might be involved in the EMT signalling pathway.

    Science.gov (United States)

    Zuo, Lingkun; Zhao, Huanying; Yang, Ronghui; Wang, Liyong; Ma, Hui; Xu, Xiaoxue; Zhou, Ping; Kong, Lu

    2018-07-15

    We have previously reported a heterogeneous expression pattern of the nuclear membrane protein lamin A/C in low- and high-Gleason score (GS) prostate cancer (PC) tissues, and we have now found that this change is not associated with LMNA mutations. This expression pattern appears to be similar to the process of epithelial to mesenchymal transition (EMT) or to that of mesenchymal to epithelial transition (MET). The role of lamin A/C in EMT or MET in PC remains unclear. Therefore, we first investigated the expression levels of and the associations between lamin A/C and several common EMT markers, such as E-cadherin, N-cadherin, β-catenin, snail, slug and vimentin in PC tissues with different GS values and in different cell lines with varying invasion abilities. Our results suggest that lamin A/C might constitute a type of epithelial marker that better signifies EMT and MET in PC tissue, since a decrease in lamin A/C expression in GS 4 + 5 cases is likely associated with the EMT process, while the re-expression of lamin A/C in GS 5 + 4 cases is likely linked with MET. The detailed GS better exhibited the changes in lamin A/C and the EMT markers examined. Lamin A/C overexpression or knockdown had an impact on EMT biomarkers in a cell model by direct regulation of β-catenin. Hence, we suggest that lamin A/C might serve as a reliable epithelial biomarker for the distinction of PC cell differentiation and might also be a fundamental factor in the occurrence of EMT or MET in PC. Copyright © 2018. Published by Elsevier B.V.

  16. Study of the Formability of Laminated Lightweight Metallic Materials

    Directory of Open Access Journals (Sweden)

    Girjob Claudia

    2017-01-01

    Full Text Available The main objective of this work was to test the formability of laminated materials. Laminated materials are considered a good choice when parts with reduced weight are considered. Thus, a laminated material, aluminum - polypropylene - aluminum (Al-PP-Al, as sheet 1.2 mm and 1.4 mm thickness was used. Before processing the material by means of unconventional plastic deformation, its formability was determined by running the Nakajima test. After obtaining the forming limit curves, the material was machined by means of incremental forming.

  17. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  18. 78 FR 16662 - Determination Under the Textile and Apparel Commercial Availability Provision of the United...

    Science.gov (United States)

    2013-03-18

    ... polyester woven/micro velour grid one-way stretch with polyurethane laminate. Overall Fabric Construction: Woven face/polyurethane laminate/circular knit velour with grid pattern. Overall Fiber Content: 90-96... Fabric Details: Construction: circular knit with a dropped stitch for the grid- brushed looped pile Fiber...

  19. Design for Circular Behaviour: Considering Users in a Circular Economy

    Directory of Open Access Journals (Sweden)

    Thomas Wastling

    2018-05-01

    Full Text Available In a linear economy, a product is manufactured and sold to a customer. Then, little concern is given to what the user actually does with it when they have it. However, in a circular economy where the aim is to circulate products at their highest level of value, the customer’s behaviour can become an important part of the system. Circular design strategies have tended to focus on the physical aspects of a product (e.g., disassembly, material selection, but the design of products and services can also have an influence on user behaviour and, to date, this aspect of circular design has not been fully explored. This project aims to define what key user behaviours are required for circular business models to work and to outline how design can enable these ‘circular behaviours’. This research project consists of a literature review, case study analysis and expert interviews with practitioners. A theoretical framework for designing products and services to encourage circular behaviour is developed. This work provides an initial step towards a better understanding of the user’s role in the transition to a circular economy as well as a preliminary model for how design for behaviour change strategies could be implemented in this context.

  20. LamLum : a tool for evaluating the financial feasibility of laminated lumber plants

    Science.gov (United States)

    E.M. (Ted) Bilek; John F. Hunt

    2006-01-01

    A spreadsheet-based computer program called LamLum was created to analyze the economics of value- added laminated lumber manufacturing facilities. Such facilities manufacture laminations, typically from lower grades of structural lumber, then glue these laminations together to make various types of higher value laminated lumber products. This report provides the...

  1. A three-dimensional breakdown model of SOI lateral power transistors with a circular layout

    International Nuclear Information System (INIS)

    Guo Yufeng; Wang Zhigong; Sheu Gene

    2009-01-01

    This paper presents an analytical three-dimensional breakdown model of SOI lateral power devices with a circular layout. The Poisson equation is solved in cylindrical coordinates to obtain the radial surface potential and electric field distributions for both fully- and partially-depleted drift regions. The breakdown voltages for N + N and P + N junctions are derived and employed to investigate the impact of cathode region curvature. A modified RESURF criterion is proposed to provide a design guideline for optimizing the breakdown voltage and doping concentration in the drift region in three dimensional space. The analytical results agree well with MEDICI simulation results and experimental data from earlier publications. (semiconductor devices)

  2. Cylindrical prominences and the magnetic influence of the photospheric boundary

    International Nuclear Information System (INIS)

    Lerche, I.; Chicago Univ., IL; Low, B.C.

    1980-01-01

    We construct exact, non-linear, solutions for an horizontal, cylindrical, current-carrying, prominence supported against solar gravity by the action of a Lorentz force. The solutions incorporate the photosphere boundary condition, proposed by van Tend and Kuperus (1978), and analyzed by them for line filaments. Our solutions have finite radius for the prominence material and, as well as satisfying the equations of magnetostatic equilibrium, they allow for the continuity of gas pressure, and of the normal and tangential components of magnetic field across the circular prominence boundary. We show that an infinity of solutions is possible and we illustrate the basic behavior by investigation of a special case. We also give a prescription for constructing equilibrium fields for any horizontal prominence with arbitrary cross-section and with an arbitrary external magnetic field. The prescription is ideally suited for numerical codes and we suggest that both the equilibrium of such shapes can easily be accomplished numerically together with their evolutionary history. (orig.)

  3. Lamination and end plate design studies of SSC Low Energy Booster magnet prototypes

    International Nuclear Information System (INIS)

    Li, N.

    1993-01-01

    The LEB machine includes six kinds of laminated magnets and 4 kinds of laminations. The main quadrupole magnet and low field and high field corrector quadrupoles use the same lamination shape. The chromaticity sextupole, corrector dipole, and main dipole have different lamination designs. To test the physical design and production procedure for the magnets, it is necessary to build 2 or 3 prototypes for each kind of magnet. The ZVI plant in Moscow, manufactured all 4 kinds of lamination punching dies for the LEB magnets. Each die takes 3 to 5 months to fabricate. SSCL manufactured laser cut laminated magnet prototypes in the SSC shop at the same time. Since the LEB cycles at 10 Hz, the high frequency current and laminated end plate design causes a delamination problem on the magnet end. This problem is of concern and will be addressed

  4. Process-induced viscoelastic stress in composite laminates

    International Nuclear Information System (INIS)

    Stango, R.J.

    1985-01-01

    In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates

  5. Simulation of a method for determining one-dimensional {sup 137}Cs distribution using multiple gamma spectroscopic measurements with an adjustable cylindrical collimator and center shield

    Energy Technology Data Exchange (ETDEWEB)

    Whetstone, Z.D.; Dewey, S.C. [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States); Kearfott, K.J., E-mail: kearfott@umich.ed [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States)

    2011-05-15

    With multiple in situ gamma spectroscopic measurements obtained with an adjustable cylindrical collimator and a circular shield, the arbitrary one-dimensional distribution of radioactive material can be determined. The detector responses are theoretically calculated, field measurements obtained, and a system of equations relating detector response to measurement geometry and activity distribution solved to estimate the distribution. This paper demonstrates the method by simulating multiple scenarios and providing analysis of the system conditioning.

  6. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope.

    Directory of Open Access Journals (Sweden)

    Jose M González-Granado

    Full Text Available Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6, a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.

  7. Sorting Nexin 6 Enhances Lamin A Synthesis and Incorporation into the Nuclear Envelope

    Science.gov (United States)

    González-Granado, Jose M.; Navarro-Puche, Ana; Molina-Sanchez, Pedro; Blanco-Berrocal, Marta; Viana, Rosa; de Mora, Jaime Font; Andrés, Vicente

    2014-01-01

    Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope. PMID:25535984

  8. Effects of face sheet damage on residual strength of GRP sandwich panels in naval ships

    DEFF Research Database (Denmark)

    Hayman, Brian; Echtermeyer, Andreas T.; Berggreen, Christian

    2010-01-01

    is represented by machined cracks and circular holes in the face laminates. Tests have been performed on laminate specimens with and without circular holes under tensile loading and on sandwich face sheets with holes, cracks and real impact damage under compressive loading. The results are compared...

  9. Elliptic-cylindrical analytical flux-rope model for ICMEs

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  10. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  11. NiCoCrAl/YSZ laminate composites fabricated by EB-PVD

    International Nuclear Information System (INIS)

    Shi Guodong; Wang Zhi; Liang Jun; Wu Zhanjun

    2011-01-01

    Highlights: → The metal-ceramic laminate composites were fabricated by EB-PVD. → Both metal and ceramic layers consisted of straight columns with banded structures. → Columnar grain size was limited by the periodic layer interfaces in the laminates. → Effect of columns on fracture property was decreased by limiting layer thickness. → Laminates showed greater specific strength than monolithic metal foil. - Abstract: Two NiCoCrAl/YSZ laminate composites (A and B) with different metal-layer thickness (∼35 μm and 14 μm, respectively) were fabricated by electron beam physical vapor deposition (EB-PVD). Their microstructure was examined and their mechanical properties were compared with the 289 μm thick NiCoCrAl monolithic foil produced by EB-PVD. Both the YSZ and NiCoCrAl layers of the laminate composites had columnar grain structure. But the periodic layer interfaces limited the columnar grain size. Some pores between the columns were also observed. It was found that the strength of the laminate A was equal approximately to that of the NiCoCrAl monolithic foil, and that laminate B had the greater strength. Moreover, the density of the foils decreased with the increasing thickness ratio of YSZ/NiCoCrAl layers and the increasing the layer number. Thus, comparing with the NiCoCrAl monolithic foil, the NiCoCrAl/YSZ laminate composites not only had the equal or greater strength, but also had the much greater specific strength.

  12. Nuclear lamins: laminopathies and their role in premature ageing

    NARCIS (Netherlands)

    Broers, J.L.V.; Ramaekers, F.C.S.; Bonne, G.; Yaou, R.; Hutchison, C.J.

    2006-01-01

    It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of

  13. Modal analysis of pre and post impacted nano composite laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    Full Text Available Modal analysis is carried out on pre and post impacted nano composite laminates. The laminates are prepared using 3, 5 and 8 layers of 610gsm glass woven roving mats(WRM with epoxy resin and montmorillonite(MMT clay content is varied from 1% to 5%. Impulse hammer technique is used to find natural frequency and damping factor of laminates. Medium velocity impact tests are conducted by using a gas gun. The vibration responses of natural frequency and damping factor are obtained and are studied for laminates with all edges clamped boundary conditions. Results show considerable improvement in natural frequency and damping factor due to nano clay addition. It is also seen that the nano clay controls the delamination due to impact loading.

  14. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  15. Arteriographical and pathological changes in chronic laminitis in dairy cattle.

    Science.gov (United States)

    Boosman, R; Nemeth, F; Gruys, E; Klarenbeek, A

    1989-07-01

    The arteriographic appearance of 76 bovine hind digits, obtained from a slaughterhouse, was related to the macroscopic signs of chronic laminitis in the digits. There were statistically significant correlations between the macroscopic and the arteriographic appearance of the claws. Subsequent histological examination of the radiographically abnormal arteries revealed features indicative of arteriosclerosis. The results of this study indicate that chronic laminitis develops following a subclinical attack of laminitis due to a continous hypoperfusion of the digit.

  16. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The ...

  17. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  18. Field performance of stress-laminated timber bridges on low-volume roads

    Science.gov (United States)

    M. A. Ritter; J. P. Wacker; S. R. Duwadi

    1995-01-01

    Stress-laminated timber bridges were first introduced in the United States in the late 1980s. Since that time, the concept of stress-laminating has received a great deal of attention and hundreds of bridges have been built. Most of these bridges are located on rural low-volume roads. To evaluate the performance of stress-laminated bridges, the United States Department...

  19. Field performance of timber bridges. 13, Mohawk Canal stress-laminated bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; X. Lauderdale

    The Mohawk Canal bridge was constructed in August 1994, just outside Roll, Arizona. It is a simple-span, double-lane, stress-laminated deck superstructure, approximately 6.4 m (21 ft) long and 10.4 m (34 ft) wide and constructed with Combination 16F-V3 Douglas Fir glued-laminated timber beam laminations. The performance of the bridge was monitored continuously for 2...

  20. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  1. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  2. A piezoelectric linear ultrasonic motor with the structure of a circular cylindrical stator and slider

    International Nuclear Information System (INIS)

    Sun, Dongming; Wang, Sheng; Sakurai, Junpei; Hata, Seiichi; Choi, Kee-Bong; Shimokohbe, Akira

    2010-01-01

    A piezoelectric linear ultrasonic motor is proposed, with a cylindrical stator and slider structure. The length and diameter of the motor are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe. The stator is designed based on theoretical analyses and finite element method (FEM) simulation. The traveling wave propagation is obtained in the FEM simulation under the proper geometrical sizes, suitable boundary conditions and driving voltage signals. The trajectories of particles on the TFMG pipe are elliptical motion. In the experiment, a 25 µm thick TFMG pipe is fabricated using the rotating magnetron sputtering technique and the vibration characteristics of the stator are measured by a laser Doppler vibrometer (LDV) system. Bidirectional motion of the slider is observed around 600 kHz, the maximum velocity is near to 40 mm s −1 at 50 Vp–p for the loose slider and the maximum output force is 6 mN at 70 Vp–p for the tight slider

  3. Development of waste packages for TRU-disposal. 5. Development of cylindrical metal package for TRU wastes

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mizubayashi, Hiroshi; Asano, Hidekazu; Owada, Hitoshi; Otsuki, Akiyoshi

    2005-01-01

    Development of the TRU waste package for hulls and endpieces compression canisters, which include long-lived and low sorption nuclides like C-14 is essential and will contribute a lot to a reasonable enhancement of safety and economy of the TRU-disposal system. The cylindrical metal package made of carbon steel for canisters to enhance the efficiency of the TRU-disposal system and to economically improve their stacking conditions was developed. The package is a welded cylindrical construction with a deep drawn upper cover and a disc plate for a bottom cover. Since the welding is mainly made only for an upper cover and a bottom disc plate, this package has a better containment performance for radioactive nuclide and can reduce the cost for construction and manufacturing including its welding control. Furthermore, this package can be laid down in pile for stacking in the circular cross section disposal tunnel for the sedimentary rock, which can drastically minimize the space for disposal tunnel as mentioned previously in TRU report. This paper reports the results of the study for application of newly developed metal package into the previous TRU-disposal system and for the stacking equipment for the package. (author)

  4. Hybrid Laminates for Application in North Conditions

    Science.gov (United States)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  5. Lateral testing of glued laminated timber tudor arch

    Science.gov (United States)

    Douglas R. Rammer; Philip Line

    2016-01-01

    Glued laminated timber Tudor arches have been in wide use in the United States since the 1930s, but detailed knowledge related to seismic design in modern U.S. building codes is lacking. FEMA P-695 (P-695) is a methodology to determine seismic performance factors for a seismic force resisting system. A limited P-695 study for glued laminated timber arch structures...

  6. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  7. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  8. Isoprenylation is required for the processing of the lamin A precursor

    International Nuclear Information System (INIS)

    Beck, L.A.; Hosick, T.J.; Sinensky, M.

    1990-01-01

    The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev-1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5-3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated

  9. Producing accurate wave propagation time histories using the global matrix method

    International Nuclear Information System (INIS)

    Obenchain, Matthew B; Cesnik, Carlos E S

    2013-01-01

    This paper presents a reliable method for producing accurate displacement time histories for wave propagation in laminated plates using the global matrix method. The existence of inward and outward propagating waves in the general solution is highlighted while examining the axisymmetric case of a circular actuator on an aluminum plate. Problems with previous attempts to isolate the outward wave for anisotropic laminates are shown. The updated method develops a correction signal that can be added to the original time history solution to cancel the inward wave and leave only the outward propagating wave. The paper demonstrates the effectiveness of the new method for circular and square actuators bonded to the surface of isotropic laminates, and these results are compared with exact solutions. Results for circular actuators on cross-ply laminates are also presented and compared with experimental results, showing the ability of the new method to successfully capture the displacement time histories for composite laminates. (paper)

  10. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    Science.gov (United States)

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  11. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    Science.gov (United States)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  12. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  13. Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings

    Science.gov (United States)

    Leger, C. A.; Chan, W. S.

    1993-04-01

    A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.

  14. Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations

    Science.gov (United States)

    Harris, Charles E.; Allen, David H.; Nottorf, Eric W.

    1989-01-01

    A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.

  15. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates

    International Nuclear Information System (INIS)

    Rassmann, S.; Paskaramoorthy, R.; Reid, R.G.

    2011-01-01

    The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.

  16. Computational Fatigue Life Analysis of Carbon Fiber Laminate

    Science.gov (United States)

    Shastry, Shrimukhi G.; Chandrashekara, C. V., Dr.

    2018-02-01

    In the present scenario, many traditional materials are being replaced by composite materials for its light weight and high strength properties. Industries like automotive industry, aerospace industry etc., are some of the examples which uses composite materials for most of its components. Replacing of components which are subjected to static load or impact load are less challenging compared to components which are subjected to dynamic loading. Replacing the components made up of composite materials demands many stages of parametric study. One such parametric study is the fatigue analysis of composite material. This paper focuses on the fatigue life analysis of the composite material by using computational techniques. A composite plate is considered for the study which has a hole at the center. The analysis is carried on (0°/90°/90°/90°/90°)s laminate sequence and (45°/-45°)2s laminate sequence by using a computer script. The life cycles for both the lay-up sequence are compared with each other. It is observed that, for the same material and geometry of the component, cross ply laminates show better fatigue life than that of angled ply laminates.

  17. Photodegradation in ballistic laminates: Spectroscopy and lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; Stallard, B.R.; White, C.A.; Garcia, M.J.; Morse, H.E. [Sandia National Labs., Albuquerque, NM (United States). Properties of Organic Materials Dept.

    1996-06-01

    Several years ago, the Materials and Process Sciences Center (Org. 1800) was asked by Dept. 9613 to study the materials aging issues which had led to the loss of ballistic protection by Armored Tractor (AT) windshields and windows. The authors speculated that this loss of impact strength was due to photodegradation of the polycarbonate (PC) inboard ply. They developed a spectroscopic method to identify changes in the outboard surface of the PC, and showed that the changes in the surface which occurred upon natural aging in the field could be reproduced by exposing the laminates to a simulated solar flux. Based on these results, they recommended changes in the adhesive interlayers to filter out the ultraviolet (UV) light causing the aging problem. Working with the laminate vendor, PPG, they re-designed the laminates to implement these changes and block essentially all UV light from the inboard ply. The most recent phase of this work involved accelerated solar aging of laminates made with the new design to verify that photoaging effects have been blocked by the new materials. They report here the results of that study, and recommended follow-on work.

  18. Development of High Performance CFRP/Metal Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  19. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  20. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  1. Modeling delamination of FRP laminates under low velocity impact

    Science.gov (United States)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  2. Numerical analysis of laminated elastomer by FEM

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.

    1993-01-01

    A Computer code based on mixed finite element method was developed for three dimensional large strain analyses of laminated elastomers including nonlinear bulk stress vs. bulk strain relationships. The adopted element is the variable node element with maximum node numbers of 27 for displacements and 4 for pressures. At first, the displacements and pressures were calculated by the code using single element under various loading conditions. The results were compared with theoretical solutions and the both results' exactly coincided with each other. Next, the analyses of laminated elastomers subjected to axial loadings were conducted using both the new code and ABAQUS code, and the results were compared with the test results. The agreement of the results of the present code were better than ABAQUS code mainly due to the capability of handling wider range of material properties. Lastly, the shearing tests of laminated elastomers were simulated by the new code. The results were shown to be in good agreement with the test results. (author)

  3. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-09-10

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  4. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  5. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  6. The role of endotoxin in the pathogenesis of acute bovine laminitis.

    Science.gov (United States)

    Boosman, R; Mutsaers, C W; Klarenbeek, A

    1991-07-01

    To study the possible role of endotoxin in the pathogenesis of bovine laminitis, local and systemic injections of endotoxin (E. coli 0111 B4) with different doses were given to three groups of four cows each. Clinical and haematologic parameters indicated an acute-phase response, including positive plasma ethanol gelation (soluble fibrin), the occurrence of fibrin degradation products and decreased thrombocyte counts. Local Shwartzman reactions were not evoked. Clinical examination of the claws and the gait of the animals revealed no signs of laminitis. However, on histopathological examination of the claw corium signs of laminitis such as vacuolisation of the Stratum basale, lymphocyte and leucocyte infiltration and thrombosis were found. These results indicate that endotoxin indeed may be involved in the pathogenesis of laminitis. For the development of a clinical acute laminitis model in cattle either another dosage, other toxins or factors in addition to the endotoxin used in this experiment are needed.

  7. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  8. A-type nuclear lamins act as transcriptional repressors when targeted to promoters

    International Nuclear Information System (INIS)

    Lee, Damian C.; Welton, K. Linnea; Smith, Erica D.; Kennedy, Brian K.

    2009-01-01

    Regions of heterochromatin are often found at the periphery of the mammalian nucleus, juxtaposed to the nuclear lamina. Genes in these regions are likely maintained in a transcriptionally silent state, although other locations at the nuclear periphery associated with nuclear pores are sites of active transcription. As primary components of the nuclear lamina, A- and B-type nuclear lamins are intermediate filament proteins that interact with DNA, histones and known transcriptional repressors, leading to speculation that they may promote establishment of repressive domains. However, no direct evidence of a role for nuclear lamins in transcriptional repression has been reported. Here we find that human lamin A, when expressed in yeast and cultured human cells as a fusion protein to the Gal4 DNA-binding domain (DBD), can mediate robust transcriptional repression of promoters with Gal4 binding sites. Full repression by lamin A requires both the coiled-coil rod domain and the C-terminal tail domain. In human cells, other intermediate filament proteins such as lamin B and vimentin are unable to confer robust repression as Gal4-DBD fusions, indicating that this property is specific to A-type nuclear lamins. These findings indicate that A-type lamins can promote transcriptional repression when in proximity of a promoter

  9. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  10. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    International Nuclear Information System (INIS)

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-01-01

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures

  11. Feeding practices and potential risk factors for laminitis in dairy cows in Thailand

    OpenAIRE

    Pilachai, R.

    2013-01-01

    Laminitis is considered an important health problem facing the Thai dairy industry. Although the etiology of laminitis is multifactorial, nutrition is considered an important risk factor. Rumen acidosis, lipopolysaccharides (LPS) and histamine may play a role in the development of laminitis in dairy cattle. However, the relevancy of these risk factors in relation to the occurrence of laminitis under practical feeding conditions in Thailand is not clear. In Thailand, dairy rations are generall...

  12. The role of shape memory alloy on impact response of glass/epoxy laminates under low temperature

    International Nuclear Information System (INIS)

    Kang, K. W.; Kim, H. J.

    2007-01-01

    The paper aims to evaluate the impact response of glass/epoxy laminates with embedded shape memory alloy (SMA) subject to low velocity impact at various temperatures. For the goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: 293K, 263K and 233K for the baseline (laminates without SMA wires) and SMA laminates (laminates with embedded SMA wires). And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration, the impact resistance parameters were employed to evaluate damage resistance of laminates with embedded SMA wires. As a result, it was observed that the damage resistance of glass/epoxy laminates is influenced by embedded SMA wires and embedding SMA wires into laminates does not compromise the structure any differently to laminates without wires. In fact, it has been shown that under lower temperature, the SMA laminates have a little superior damage resistance compared with the baseline laminates

  13. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  14. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  15. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    In the present study optimal design of composite laminates, with and without rectangular cut-out, is carried out for maximizing the buckling load. Optimization study is carried out for obtaining the maximum buckling load with design variables as ply thickness, cut-out size and orientation of cut-out with respect to laminate.

  16. Optimization of Laminated Composite Structures

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup

    of the contributions of the PhD project are included in the second part of the thesis. Paper A presents a framework for free material optimization where commercially available finite element analysis software is used as analysis tool. Robust buckling optimization of laminated composite structures by including...... allows for a higher degree of tailoring of the resulting material. To enable better utilization of the composite materials, optimum design procedures can be used to assist the engineer. This PhD thesis is focused on developing numerical methods for optimization of laminated composite structures...... nonlinear analysis of structures, buckling and post-buckling analysis of structures, and formulations for optimization of structures considering stiffness, buckling, and post-buckling criteria. Lastly, descriptions, main findings, and conclusions of the papers are presented. The papers forming the basis...

  17. A Novel Differential Time-of-Arrival Estimation Technique for Impact Localization on Carbon Fiber Laminate Sheets

    Directory of Open Access Journals (Sweden)

    Eugenio Marino Merlo

    2017-10-01

    Full Text Available Composite material structures are commonly used in many industrial sectors (aerospace, automotive, transportation, and can operate in harsh environments where impacts with other parts or debris may cause critical safety and functionality issues. This work presents a method for improving the accuracy of impact position determination using acoustic source triangulation schemes based on the data collected by piezoelectric sensors attached to the structure. A novel approach is used to estimate the Differential Time-of-Arrival (DToA between the impact response signals collected by a triplet of sensors, overcoming the limitations of classical methods that rely on amplitude thresholds calibrated for a specific sensor type. An experimental evaluation of the proposed technique was performed with specially made circular piezopolymer (PVDF sensors designed for Structural Health Monitoring (SHM applications, and compared with commercial piezoelectric SHM sensors of similar dimensions. Test impacts at low energies from 35 mJ to 600 mJ were generated in a laboratory by free-falling metal spheres on a 500 mm × 500 mm × 1.25 mm quasi-isotropic Carbon Fiber Reinforced Polymer (CFRP laminate plate. From the analysis of many impact signals, the resulting localization error was improved for all types of sensors and, in particular, for the circular PVDF sensor an average error of 20.3 mm and a standard deviation of 8.9 mm was obtained.

  18. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Feeding practices and potential risk factors for laminitis in dairy cows in Thailand

    NARCIS (Netherlands)

    Pilachai, R.

    2013-01-01

    Laminitis is considered an important health problem facing the Thai dairy industry. Although the etiology of laminitis is multifactorial, nutrition is considered an important risk factor. Rumen acidosis, lipopolysaccharides (LPS) and histamine may play a role in the development of laminitis in dairy

  20. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  1. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  2. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    Science.gov (United States)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  3. Bonding techniques for flexural strengthening of R.C. beams using CFRP laminates

    Directory of Open Access Journals (Sweden)

    Alaa Morsy

    2013-09-01

    Full Text Available This paper presents an experimental study of an alternative method of attaching FRP laminates to reinforced concrete beams by the way of fasting steel rivets through the FRP laminate and concrete substrate. Five full scale R.C. beams were casted and strengthened in flexural using FRP laminate bonded with conventional epoxy and compared with other beams strengthened with FRP laminate and bonded with fastener “steel rivets” of 50 mm length and 10 mm diameter. Based on experimental evidence the beam strengthened with conventional bonding methods failed due to de-bonding with about 13% increase over the un-strengthened beam. On the other hand, the beams strengthened with FRP laminate and bonded by four steel fastener rivets only failed by de-bonding also but at higher flexural capacity with increase 19% over the un-strengthened beam.

  4. 78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...

  5. Laminated lumber may be more profitable than sawn lumber

    Science.gov (United States)

    P. Koch

    1976-01-01

    By laminating 1/4-in. rotary-cut veneer into structural lumber, manufacturers can expand lumber output by at least 30% without increasing volume logged. The idea merits intensive study. Manufacturing plus raw material costs should total about $142/Mbf; sales price for desirable widths and lengths of the strong laminated product should approach or exceed $200/Mbf.

  6. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  7. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    International Nuclear Information System (INIS)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-01-01

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10 4  S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks

  8. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    Science.gov (United States)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  9. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  10. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  11. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  12. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-01-18

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  13. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  14. Laminitis in a mature elk hind (Cervus elaphus)

    DEFF Research Database (Denmark)

    Gray, Heather E.; Card, Claire; Baptiste, Keith E.

    2001-01-01

    Laminitis should be considered as a differential diagnosis in elk presenting with shifting leg lameness, reluctance to move, recumbency and hoof wall ridging. Eliminating the underlying cause and corrective trimming lead to a good prognosis for recovery.......Laminitis should be considered as a differential diagnosis in elk presenting with shifting leg lameness, reluctance to move, recumbency and hoof wall ridging. Eliminating the underlying cause and corrective trimming lead to a good prognosis for recovery....

  15. Retortable Laminate/Polymeric Food Tubes for Specialized Feeding

    Science.gov (United States)

    2012-06-01

    Report STP #3010 Results and Accomplishments (June 2010 – June 2012) Report No: FTR 303 CDRL Sequence: A003 June 2012 CORANET CONTRACT #: SP4701-08-D...June 2010 - June 2012 Retortable Laminate/Polymeric Food Tubes for Specialized Feeding - STP # 3010 SP4701-08-D-0004 MANTECH (0708011S) CORANET A003...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all

  16. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  17. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  18. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  19. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  20. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.

  1. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  2. Self-heating forecasting for thick laminates testing coupons in fatigue

    NARCIS (Netherlands)

    Lahuerta, F.; Westphal, T.; Nijssen, R.P.L.

    2012-01-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations. Due to the poor thermal conductivity properties of composites and the material self-heating that

  3. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  4. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  5. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  6. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  7. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-10

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  8. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  9. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-01-01

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  10. Delamination Resistance Of Laminate Made With VBO MTM46/HTS Prepreg

    Directory of Open Access Journals (Sweden)

    Czarnocki Piotr

    2015-09-01

    Full Text Available A laminate made with the Vacuum Bag Only (VBO prepregs can be cured out of autoclave. Because of low curing pressure such a process can result in deterioration of laminate mechanical properties. They can be significantly lower than those displayed by the autoclave cured ones. The resistance against delamination can be among the most affected. Since this property is a week point of all the laminates it was of particular interest. Delamination resistance of unidirectional laminate made from VBO MTM46/HTS(12K prepreg was in the scope of the presented research and the critical values of the Strain Energy Release Rates and the Paris-type equations corresponding to Mode I, Mode II and Mixed-Mode I/II static and cyclic loadings, respectively, were determined.

  11. Dowelled structural connections in laminated bamboo and timber

    OpenAIRE

    Reynolds, Thomas Peter; Sharma, Bhavna; Harries, Kent; Ramage, Michael Hector

    2015-01-01

    Structural sections of laminated bamboo can be connected using methods common in timber engineering, however the different material properties of timber and laminated bamboo suggest that the behaviour of connections in the two materials would not be the same. This study investigates the dowelled connection, in which a connector is passed through a hole in the material, and load is resisted by shear in the connector and embedment into the surrounding material. Steel dowels were used in a conne...

  12. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  13. Laminated dosimetric card

    International Nuclear Information System (INIS)

    Cox, F.M.; Chamberlain, J.D.; Shrader, E.F.; Shoffner, B.M.; Szalanczy, A.

    1975-01-01

    A laminated card with one or more apertures, each adapted to peripherally seal an encapsulated dosimeter, is formed by bonding a foraminous, code-adaptable, rigid sheet of low-Z material with a codedly transparent sheet of low-Z material in light-transmitting registry with particular code-holes of the rigid sheet. The laminated card may be coded to identify the person carrying it, and/or the location or circumstances related to its exposure to radiation. This card is particularly adapted for use in an instrument capable of evaluating a multiplicity of cards, substantially continuously. The coded identification from the card may be displayed by an appropriate machine, and if desired an evaluation may be recorded because of a ''parity checking'' system incorporated in each card, which permits ''auto-correction.'' Alternatively, where means for effecting the correction automatically are available, the operation of the machine may be interrupted to permit visual examination of a rejected card. The card of this invention is also coded for identifying the type of card with respect to its specific function, and whether or not a card is correctly positioned at any predetermined location during its sequential progress through the instrument in which it is evaluated. Dosimeters are evaluated and the card identified in one pass through the instrument. (auth)

  14. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Markiewicz, Ewa; Bekker-Jensen, Simon

    2015-01-01

    Lamins A/C have been implicated in DNA damage response pathways. We show that the DNA repair protein 53BP1 is a lamin A/C binding protein. In undamaged human dermal fibroblasts (HDF), 53BP1 is a nucleoskeleton protein. 53BP1 binds to lamins A/C via its Tudor domain, and this is abrogated by DNA...... damage. Lamins A/C regulate 53BP1 levels and consequently lamin A/C-null HDF display a 53BP1 null-like phenotype. Our data favour a model in which lamins A/C maintain a nucleoplasmic pool of 53BP1 in order to facilitate its rapid recruitment to sites of DNA damage and could explain why an absence...

  15. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  16. Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs

    Science.gov (United States)

    横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二

    Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.

  17. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  18. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  19. Vibrations of laminated composite thick shells of revolution having meridionally varying curvature

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Shikanai, Genji; Baba, Iwato

    1998-01-01

    An exact solution is presented for solving free vibrations of laminated composite thick shells of revolution having meridionally varying curvature. Based on the thick lamination theory considering the shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated cross-ply shells. Frequencies and mode shapes of shells of revolution having elliptical and parabolical meridians are presented for both ends clamped, and the effects of shear deformation and rotary inertia are discussed by comparing the results from the present theory with those from the thin lamination theory. (author)

  20. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  1. Performance of stress-laminated timber highway bridges in cold climates

    Science.gov (United States)

    James P. Wacker

    2009-01-01

    This paper summarizes recent laboratory and field data studies on thermal performance of stress-laminated timber highway bridges. Concerns about the reliability of stress-laminated deck bridges when exposed to sub-freezing temperatures triggered several investigations. Two laboratory studies were conducted to study the effects of wood species, preservative, moisture...

  2. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat and Conical Baffles

    Directory of Open Access Journals (Sweden)

    Gnitko V.

    2017-12-01

    Full Text Available This paper presents an analysis of low-frequency liquid vibrations in rigid partially filled containers with baffles. The liquid is supposed to be an ideal and incompressible one and its flow is irrotational. A compound shell of revolution is considered as the container model. For evaluating the velocity potential the system of singular boundary integral equations has been obtained. The single-domain and multi-domain reduced boundary element methods have been used for its numerical solution. The numerical simulation is performed to validate the proposed method and to estimate the sloshing frequencies and modes of fluid-filled cylindrical shells with baffles in the forms of circular plates and truncated cones. Both axisymmetric and non-axisymmetric modes of liquid vibrations in baffled and un-baffled tanks have been considered. The proposed method makes it possible to determine a suitable place with a proper height for installing baffles in tanks by using the numerical experiment.

  3. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  4. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  5. Subclinical Laminitis in Dairy Cattle: 205 Selected Cases

    OpenAIRE

    BAKIR, Ali BELGE Bahtiyar

    2005-01-01

    The economic importance of lameness in dairy cattle has newly been recognized in Turkey. Lameness incidence in Turkey has been reported to be between 13% and 58%, which is similar to that of other countries where 4% and 55% incidence rates have been reported. The objective of this study was to determine the prevalence of sole lesions associated with subclinical laminitis in the hooves of dairy cattle in Van, Turkey. The risk factors for subclinical laminitis are proposed and discussed. The so...

  6. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  7. Preparation of Chitin-PLA laminated composite for implantable application.

    Science.gov (United States)

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  8. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  9. Failure modes of laminate structures

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, L.B.; Druce, R.L.; Wilson, M.J.

    1987-06-01

    Laminate structures composed of alternating thin layers of conductor and dielectric material are commonly used in energy storage and transmission components. The failure of the dielectric layers in regions of high field stress, with applied 60 Hz ac, dc and impulse voltages, was studied. Several geometries were compared, including staggered and flush edges. Electrical trees developed between the laminated dielectric layers. The visual characteristics and growth rates of the electrical trees under ac, dc and impulse stresses were different. Partial discharge detection and analysis was used to measure the inception voltage and discharge activity at the conductor edge voids, to observe tree formation and growth, and to predict impending failure due to dielectric erosion. Electric field distributions were modeled and partial discharge inception levels were estimated from known void geometries. The staggered edge geometry appears to enhance the electric field stress at the recessed electrode.

  10. Numerical evaluation of delamination in CFRP laminates by stereo X-ray pictures

    International Nuclear Information System (INIS)

    Kunoo, Kazuo; Uda, Nobuhide; Ono, Kousei; Onohara, Kaoru; Takahashi, Toshiaki; Tanaka, Hisahiro.

    1989-01-01

    This paper presents a method for quantifying damage in composite laminates by stereo X-ray pictures. A three dimensional image of delamination, which is one of the characteristic types of damage in composite laminates can be reconstructed with this method. A digital image processing technique is used to analyze X-ray pictures. Experimental results of reconstructing delaminations in carbon/epoxy cross-ply laminates show that this method is accurate enough for practical usage. (author)

  11. Transient thermal stresses in a transversely isotropic finite composite hollow circular cylinder due to arbitrary surface heat-generations and surrounding temperatures

    International Nuclear Information System (INIS)

    Sugano, Y.

    1981-01-01

    An exact solution is given for the temperature distribution, the thermal stresses and displacements in a transversely isotropic finite composite hollow circular cylinder composed of two distinct cylindrical laminae. The temperature field is determined by using of the Laplace transform and the finite Fourier-cosine transform, respectively, with respect to time and axial coordinate included in the governing equation and the associated thermal stresses and displacements are analvsed by the use of a set of stress functions closely related to the Love's function valid for the axisymmetric isothermal problem of isotropic bodies. (orig.)

  12. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; Bonne, G.; Eymard, B.; Duboc, D.; Talim, B.; van der Valk, M.; Reiss, P.; Richard, P.; Demay, L.; Merlini, L.; Schwartz, K.; Busch, H. F. M.; de Visser, M.

    2002-01-01

    Mutations in the lamin A/C gene are found in Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy with cardiac conduction disturbances, dilated cardiomyopathy with conduction system disease, and familial partial lipodystrophy. Cases with lamin A/C mutations presenting with lipodystrophy

  13. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  14. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  15. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  16. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko, E-mail: fhirose@sci.u-hyogo.ac.jp

    2016-03-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  17. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    International Nuclear Information System (INIS)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko

    2016-01-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  18. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  19. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  20. Laser displacement sensor to monitor the layup process of composite laminate production

    Science.gov (United States)

    Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze

    2013-04-01

    Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.

  1. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  2. The role of nonlinear viscoelasticity on the functionality of laminating shortenings

    Energy Technology Data Exchange (ETDEWEB)

    Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.

    2017-11-01

    The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminating shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.

  3. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  4. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    Science.gov (United States)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  5. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  6. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  7. Environmental Effects on Flutter Characteristics of Laminated Composite Rectangular and Skew Panels

    Directory of Open Access Journals (Sweden)

    T.V.R. Chowdary

    1996-01-01

    Full Text Available A finite element method is presented for predicting the flutter response of laminated composite panels subjected to moisture concentration and temperature. The analysis accounts for material properties at elevated temperature and moisture concentration. The analysis is based on the first-order approximation to the linear piston theory and laminated plate theory that includes shear deformation. Both rectangular and skew panels are considered. Stability boundaries at moisture concentrations and temperatures for various lamination schemes and boundary conditions are discussed.

  8. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  9. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  10. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  11. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  12. Delamination behaviour in differently copper laminated REBCO coated conductor tapes under transverse loading

    Energy Technology Data Exchange (ETDEWEB)

    Gorospe, Alking [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Department of Engineering, Aurora State College of Technology, Baler Aurora 3200 (Philippines); Nisay, Arman [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Shin, Hyung-Seop, E-mail: hsshin@andong.ac.kr [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of)

    2014-09-15

    Highlights: • I{sub c} degradation behavior under transverse tension loading in different CC tape structure. • Weibull distribution analysis applied on delamination mechanism of CC tape. • Delamination mechanism on CC tapes depending on copper lamination type. • SEM and WDS mapping analysis of delamination sites under transverse loading. - Abstract: Laminated HTS coated conductor (CC) tapes having a unique multi-layer structure made them vulnerable when exposed to transverse loading. Electromechanical transport properties of these CC tapes can be affected by excessive transverse stresses. Due to the coefficient of thermal expansion (CTE) mismatch and incompatibility among constituent materials used in coil applications, delamination among layers occurs and causes critical current, I{sub c} degradation in the CC tapes. In this study, the delamination behaviors in copper (Cu) solder-laminated CC tapes by soldering and surround Cu-stabilized ones by electroplating under transverse tension loading were investigated. Similarly to the surround Cu-stabilized CC tapes in our previous reports, the Cu solder-laminated CC tapes also showed an abrupt and gradual I{sub c} degradation behavior. However, the Cu solder-laminated CC tapes showed different delamination morphologies as compared to the surround Cu-stabilized CC tapes; the superconducting side and the substrate side of the Cu solder laminated CC tapes were totally separated by delamination. On the other hand, the brass laminate did not show any significant effect on the delamination strength when it is added upon the surround Cu-stabilized CC tapes.

  13. Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience

    OpenAIRE

    Ibrahim Akin; Deniz Alic Ural; Mehmet Gultekin; Kerem Ural

    2015-01-01

    ABSTRACTObjective. The aim of this field trial was to investigate the relationships among subclinical laminitis, hematological, ruminal and faecal alterations. Materials and Methods. To this extent dairy cows presenting subclinical laminitis (n=11) and to those of other healthy cows without laminitis (n=10) were enrolled and assigned into two groups. All animals were receiving the same daily ration formulated to contain 47% cornsilage and 18% hay, mainly. Effects of subclinical laminitis chal...

  14. Laminated piezoelectric transformer

    Science.gov (United States)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  15. Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory

    Science.gov (United States)

    Heckler, H. C.

    1973-01-01

    The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.

  16. Laminate mechanics for balanced woven fabrics

    NARCIS (Netherlands)

    Akkerman, Remko

    2006-01-01

    Laminate mechanics equations are presented for composites with balanced woven fabric reinforcements. It is shown that mimicking these textile composites with equivalent transversely isotropic (‘unidirectional’) layers requires disputable manipulations. Various micromechanics predictions of textile

  17. Detection of layup errors in prepreg laminates using shear ultrasonic waves

    Science.gov (United States)

    Hsu, David K.; Fischer, Brent A.

    1996-11-01

    The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.

  18. Histopathology of dairy cows' hooves with signs of naturally acquired laminitis

    Directory of Open Access Journals (Sweden)

    Heloisa M.F. Mendes

    2013-05-01

    Full Text Available The purpose of this study was to investigate histological changes in dairy cows' hooves with or without injuries from naturally acquired laminitis. Cull cows with no clinical signs of hoof abnormalities (G1, n=9 and those with macroscopic lesions associated with laminitis without (G2, n=23 or with lameness (G3, n=7 were used in the study. After slaughter, samples of dermo-epidermal junctions of sole, axial and dorsal regions of the hoof were obtained and histologically processed using HE and PAS staining. Congestion, hemorrhage and inflammatory infiltrate in the dermis of sole, axial and dorsal regions were blindly and semiquantitatively evaluated by the same researcher. Inflammatory infiltrate was evaluated in the dermal laminae of axial and dorsal regions. The morphology of epidermal cells and the presence of irregularities in three regions of the basement membrane (BM length were examined using PAS staining. Scores of lesions in different regions of the hoof in the same group and in different groups for each region of the hoof were compared using non-parametric analyses. Inflammatory infiltrate in the dermis of all regions of the hoof was detected in all groups with no significant statistical difference. Cows with no clinical signs of hoof abnormalities secondary to laminitis (G1 have inflammation scores and epidermal cell changes similar to those of groups with laminitis injuries, suggesting the existence of a prodromal phase for this disease in bovines. BM had irregularities with a variable intensity along its length, however, with no difference among groups. The pattern of BM irregularities found has not been reported so far and does not resemble the BM collapse described in horses and cattle with induced acute laminitis. Is it concluded that even in the absence of macroscopic hoof signs associated to laminitis, dairy cows have histological injuries compatible with inflammation of the dermo-epidermal junction as in affected animals

  19. PROCESS AND APPARATUS FOR SEPARATING INDIVIDUAL PANES FROM A LAMINATED GLASS SHEET

    OpenAIRE

    Kübler, R.; Rist, T.; Hoetger, B.

    2011-01-01

    The invention relates to a process for separating at least one individual pane of predefined size and edge form from a laminated glass sheet, which has at least two laminated glass sheet panes which are arranged one above another in adjacent form and between which there is arranged a plastic film, which permanently bonds the laminated glass sheet panes to one another, wherein - a laser track channel which at least weakens the plastic structure of the plastic film is laid into the plastic film...

  20. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    Science.gov (United States)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  1. Contribution of radon daughters plated-out in a cylindrical device by track-technique

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, A.F. (Alexandria Univ. (Egypt). Dept. of Physics); Kotb, M.A. (Alexandria Univ. (Egypt). Biophysics Dept.); Toth-Szilagyi, M. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1991-01-01

    CR-39 plastic nuclear track detector is used to measure the fraction of alpha-particle tracks due to radon daughters activities plated-out on the internal walls of a cylindrical-shaped plastic can. Radium chloride solution is used as a radon source, the exposure time is ranged from 4 hours to 3 days. To assess the percentage of plate-out effect on CR-39 nuclear track detector, two different methods were used. In one experiment, a few circular parallel pairs of CR-39 sheets were hanged in the can device. In the other experiment, the estimation of the plate-out effect has been performed, after exposure to the radon source, by detecting tracks with a second unexposed sheet placed in close contact to the exposed wall and detectors. In the two methods, it was found that the chemically etched tracks related to plated-out activities contribute about 50% of the measured alpha-particles tracks. (orig.).

  2. Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice

    Science.gov (United States)

    Vidal, Christopher; McCorquodale, Thomas; Herrmann, Markus; Fatkin, Diane; Duque, Gustavo

    2011-01-01

    Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna −/−) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna −/− mice revealed a significant decrease in bone mass and microarchitecture in Lmna −/− mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna −/− mice compared with their WT littermates. In addition, Lmna −/− mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss. PMID:21547077

  3. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  4. 77 FR 61025 - Certain Prepregs, Laminates, and Finished Circuit Boards: Notice of Institution of Formal...

    Science.gov (United States)

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-659] Certain Prepregs, Laminates, and Finished..., and the sale within the United States after importation of certain prepregs, laminates, and finished... for sale, and selling for importation into the United States prepregs and laminates that are the...

  5. Influence of porosity on the interlaminar shear strength of fibre-metal laminates

    NARCIS (Netherlands)

    Lopes, C.S.; Remmers, J.J.C.; Gürdal, Z.

    2008-01-01

    Structures manufactured in fibre-metal laminates (e.g. Glare) have been designedconsidering ideal mechanical properties determined by the Classical Lamination Theory. Thismeans that among other assumptions, perfect bonding conditions between layers are assumed.However, more than often, perfect

  6. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.

    Science.gov (United States)

    Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J

    2016-01-27

    There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.

  7. Argonaute2 and LaminB modulate gene expression by controlling chromatin topology.

    Directory of Open Access Journals (Sweden)

    Ezequiel Nazer

    2018-03-01

    Full Text Available Drosophila Argonaute2 (AGO2 has been shown to regulate expression of certain loci in an RNA interference (RNAi-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs. Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht, which is immersed in a LAD located within a repressive topologically-associated domain (TAD. Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression.

  8. Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators

    International Nuclear Information System (INIS)

    Huang, Bin; Soo Kim, Heung

    2014-01-01

    The control of free-edge interlaminar stresses in laminated composite structures using a stress function-based approach is proposed. The assumed stress fields satisfy pointwise traction and free boundary conditions at surfaces. Governing equations are derived using the principle of complementary virtual work. A general eigenvalue solution procedure was adopted to obtain accurate stress states of the laminated composite structure. The results obtained from the proposed method were compared with those obtained by three-dimensional finite element analyses. It was found that interlaminar stresses generated by mechanical loadings could be significantly reduced by applying proper electric fields to piezoelectric actuators, which were surface bonded or embedded in composite laminates. Locations of piezoelectric actuators also influenced the distributions of interlaminar stresses. The results provided that piezoelectric actuators have potential in the application to actively control interlaminar stresses in composite laminates. (paper)

  9. Evaluation of Force-Time Changes During Impact of Hybrid Laminates Made of Titanium and Fibrous Composite

    Directory of Open Access Journals (Sweden)

    Jakubczak P.

    2016-06-01

    Full Text Available Fibre metal laminates (FML are the modern hybrid materials with potential wide range of applications in aerospace technology due to their excellent mechanical properties (particularly fatigue strength, resistance to impacts and also excellent corrosion resistance. The study describes the resistance to low velocity impacts in Ti/CFRP laminates. Tested laminates were produced in autoclave process. The laminates were characterized in terms of their response to impacts in specified energy range (5J, 10J, 20J. The tests were performed in accordance with ASTM D7137 standard. The laminates were subjected to impacts by means of hemispherical impactor with diameter of 12,7 mm. The following values have been determined: impact force vs. time, maximum force and the force at which the material destruction process commences (Pi. It has been found that fibre titanium laminates are characterized by high resistance to impacts. This feature is associated with elasto-plastic properties of metal and high rigidity of epoxy - fibre composite. It has been observed that Ti/CFRP laminates are characterized by more instable force during impact in stage of stabilization of impactor-laminate system and stage of force growth that glass fibre laminates. It has been observed more stable force decrease in stage of stress relaxation and withdrawal of the impactor. In energy range under test, the laminates based on titanium with glass and carbon fibres reinforcement demonstrate similar and high resistance to low-velocity impact, measured by means of failure initiation force and impact maximum force.

  10. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  11. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects

    DEFF Research Database (Denmark)

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle

    2014-01-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects.METHODS AND RESULTS: We included 41 Lamin A/C...

  12. Analysis of noncoplanar pressurized laminations in X2 steel pipes by non-linear finite element

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo [Instituto Tecnologico de Puebla (Mexico). Dept. de Posgrado; Gonzalez, Jorge L.; Hallen, Jose M. [Instituto Politecnico Nacional (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2005-07-01

    Hydrogen induced cracking is of great interest in the mechanical integrity assessment of sour gas pipelines. Multiple stepwise cracks with internal pressure called laminations are often observed in pipelines and their interaction and coalescence may significantly affect the residual strength of the pipes. In this work, the interacting fields of non coplanar pressurized laminations in the wall of a pipe under pressure are analyzed by non-lineal finite element, considering an isotropic hardening law and the real tensile properties of the X52 steel. The results are presented as the evolution of the stress fields in the interlaminar region as a function of the pressure inside the laminations. It is found that for two approaching stepwise laminations the critical pressure follows a hyperbolic type law, thus the effect of the lamination length is principal for greater lengths and for shorter lengths the effect is minimum. The critical pressure is defined as pressure inside the lamination that causes plastification of the interlaminar region. (author)

  13. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  14. An Investigation on Tensile Properties of Glass Fiber/Aluminium Laminates

    Directory of Open Access Journals (Sweden)

    M. Sadighi

    2009-12-01

    Full Text Available The idea of combining low weight and good mechanical properties has led to efforts to develop a new light fiber/metal laminate (FML in the last decade. FMLs are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced epoxy prepregs. In this study, the effect of fiber orientation on tensile properties of this material is investigated both analytically and experimentally. An analytical constitutive model based on classical lamination theory by using Kirchhoff-Love assumption, which incorporates the elastic-plastic behavior of the aluminium alloy was applied. Test results show that fiber sheet, with zero angle in laminates, improve the tensile strength. The composite layers with different fiber orientation change specimens' mode of fracture. Good agreement is obtained between the model predictions and experimental results.

  15. Thermal stress state of laminated shells of revolution made of isotropic and linearly orthotropic materials

    International Nuclear Information System (INIS)

    Savchenko, V.G.

    1995-01-01

    In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces

  16. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  17. Nuclear Structures Surrounding Internal Lamin Invaginations

    Czech Academy of Sciences Publication Activity Database

    Legartová, Soňa; Stixová, Lenka; Laur, O.; Kozubek, Stanislav; Sehnalová, Petra; Bártová, Eva

    2014-01-01

    Roč. 115, č. 3 (2014), s. 476-487 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LD11020 Institutional support: RVO:68081707 Keywords : LAMINS * NUCLEAR PORES * CHROMATIN Subject RIV: BO - Biophysics Impact factor: 3.263, year: 2014

  18. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  19. Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation

    International Nuclear Information System (INIS)

    Hassinen, Tomi; Ruotsalainen, Teemu; Laakso, Petri; Penttilä, Raimo; Sandberg, Henrik G.O.

    2014-01-01

    We present roll-to-roll printing compatible techniques for manufacturing organic thin film transistors using two separately processed foils that are laminated together. The introduction of heat-assisted lamination opens up possibilities for material and processing combinations. The lamination of two separately processed substrates together will allow usage of pre-patterned electrodes on both substrates and materials with non-compatible solvents. Also, the surface microstructure is formed differently when laminating dry films together compared to film formation from liquid phase. Demonstrator transistors, inverters and ring oscillators were produced using lamination techniques. Finally, a roll-to-roll compatible lamination concept is proposed where also the source and drain electrodes are patterned by laser ablation. The demonstrator transistors have shown very good lifetime in air, which is contributed partly to the good material combination and partly to the enhanced interface formation in heat-assisted lamination process. - Highlights: • A roll-to-roll compatible lamination technique for printed electronics is proposed. • Laser ablation allows highly defined metal top and bottom electrodes. • Method opens up processing possibilities for incompatible materials and solvents. • Shearing forces may enhance molecular orientation and packing. • An air stable polymer transistor is demonstrated with a lifetime of years

  20. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    Science.gov (United States)

    Mitri, F. G.

    2017-08-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  1. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    International Nuclear Information System (INIS)

    Mitri, F G

    2017-01-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  2. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  3. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  4. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)

    2017-01-15

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.

  5. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    International Nuclear Information System (INIS)

    Balci, Murat; Gundogdu, Omer

    2017-01-01

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed

  6. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  7. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet

    OpenAIRE

    上田, 政人; 三宅, 崇太郎; 長谷川, 寛幸; 平野, 義鎭; Ueda, Masahito; Miyake, Sotaro; Hasegawa, Hiroyuki; Hirano, Yoshiyasu

    2012-01-01

    A modified self-piercing rivet (SPR) has been proposed to mechanically fasten CFRP laminates. The modified SPR consists of a rivet body and two flat washers. The two flat washers were used to suppress delamination in the CFRP laminates at the point of piercing. The advantages of the modified SPR for fastening CFRP laminates are instantaneous process time and low cost. Any pretreatments such as surface treatments or hole drilling are not required. In this study, the viability of the modified S...

  8. Fabrication of CFRP/Al Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  9. Damage in woven CFRP laminates subjected to low velocity impacts

    International Nuclear Information System (INIS)

    Ullah, H; Abdel-Wahab, A A; Harland, A R; Silberschmidt, V V

    2012-01-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  10. Analysis of interlocking performances on non-oriented electrical steels

    Science.gov (United States)

    Liu, Li-Hsiang; Liu, Lee-Cheng

    2018-05-01

    In order to reduce energy loss in motor, applications of high-efficiency non-oriented electrical steel sheets and optimal laminating process are both important elements. The motor core loss deterioration is influenced by a number of factors, such as flux distribution, stress and strain, space harmonics, temperature, and short circuits between lamination. In conventional clamping method, steel sheets are laminated via interlocking or welding in general manner. The measured energy loss by welding was much larger than that by interlocking. Therefore, interlocking is well known and usually employed with benefit of easy conducting. The protuberance shapes affected the fastening strength. Generally, the intensity of rectangular type is stronger than the circular counterparts. However, the circular interlocking has better magnetic characteristics. To clarify the method effectiveness, interlocking performances regarding fastened strength and magnetic deterioration by lamination were investigated. The key parameters of protuberance shape and forming depth were designed. Precisely manufacturing operation was applied to avoid interlocking failure. Magnetic properties largely influenced by clamping method are crucial to minimizing the magnetic deterioration during laminating procedure. Several experiments for various processing conditions were undertaken, and the quantification results showed the rectangular interlocking had better fastened strength but worsened iron loss comparing with the circular arrangement. To acquire the comprehensive mechanical and electrical identities for electrical steel lamination, deliberate producing conditions regarding minimizing the magnetic deterioration should be adopted prudently.

  11. Minimality of invariant laminations for partially hyperbolic attractors

    International Nuclear Information System (INIS)

    Nobili, Felipe

    2015-01-01

    Let f : M → M be a C 1 -diffeomorphism over a compact boundaryless Riemannian manifold M, and Λ a compact f-invariant subset of M admitting a partially hyperbolic spliting T f Λ = E s  ⊕ E c  ⊕ E u over the tangent bundle T f Λ. It's known from the Hirsch–Pugh–Shub theory that Λ admits two invariant laminations associated to the extremal bundles E s and E u . These laminations are families of dynamically defined immersed submanifolds of the M tangent, respectively, to the bundles E s and E u at every point in Λ. In this work, we prove that at least one of the invariant laminations of a transitive partially hyperbolic attractor with a one-dimensional center bundle is minimal: the orbit of every leaf intersects Λ densely. This result extends those in Bonatti et al (2002 J. Inst. Math. Jussieu 1 513–41) and Hertz et al (2007 Fields Institute Communications vol 51 (Providence, RI: American Mathematical Society) pp 103–9) about minimal foliations for robustly transitive diffeomorphisms. (paper)

  12. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    Science.gov (United States)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  13. Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD)

    Energy Technology Data Exchange (ETDEWEB)

    Magracheva, Eugenia; Kozlov, Serguei; Stewart, Colin L.; Wlodawer, Alexander; Zdanov, Alexander; (NCI)

    2009-08-07

    Proteins of the A-type lamin family, which consists of two members, lamin A and lamin C, are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A-type lamins have recently become the focus of extensive functional studies as a consequence of the linking of at least eight congenital diseases to mutations in the lamin A/C gene (LMNA). This spectrum of pathologies, which mostly manifest themselves as dominant traits, includes muscle dystrophies, dilated cardiomyopathies, the premature aging syndrome Hutchinson-Guilford progeria and familial partial lipodystrophy (FPLD). The crystal structure of the lamin A/C mutant R482W, a variant that causes FPLD, has been determined at 1.5 {angstrom} resolution. A completely novel aggregation state of the C-terminal globular domain and the position of the mutated amino-acid residue suggest means by which the mutation may affect lamin A/C-protein and protein-DNA interactions.

  14. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  15. Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates

    OpenAIRE

    Arteiro, Albertino; Borstnar, Gregor; Mavrogordato, Mark N.; Sinclair, Ian; Spearing, S. Mark; Camanho, Pedro P.; Cohen, Estelle; Kopp, Reed Alan; Furtado Pereira da Silva, Carolina; Ni, Xinchen; Wardle, Brian L

    2017-01-01

    Thin-ply carbon fiber laminates have exhibited superior mechanical properties, including higher initiation and ultimate strength, when compared to standard thickness plies and enable greater flexibility in laminate design. However, the increased ply count in thin-ply laminates also increases the number of ply-ply interfaces, thereby increasing the number of relatively weak and delamination-prone interlaminar regions. In this study, we report the first experimental realization of aligned carbo...

  16. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  17. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  18. Using palynology to re-assess the Dead Sea laminated sediments - Indeed varves?

    Science.gov (United States)

    Bookman, Revital; Lopez-Merino, Lourdes; Belmaker, Reuven; Eshel, Amram; Epshtein Epshtein, Valentina; Leroy, Suzanne

    2017-04-01

    Lacustrine laminated sediments are often varves representing annual rhythmic deposition. The Dead Sea high-stand laminated sections consist of mm-scale alternating detrital and authigenic aragonite laminae. Previous studies assumed these laminae were varves; detritus deposition during the winter and aragonite in the summer. These sequences were used for varve counting and chronology, however this assumption has never been robustly validated. Here, we report an examination of the seasonal deposition of detrital and aragonite couplets from two well-known Late Holocene laminated sections at the Ze'elim fan-delta using palynology and grain-size distribution analyses. These analyses are complemented by the study of contemporary flash-flood samples and multivariate statistical analysis. Because transport affects the pollen preservation state, well-preserved (mostly) air-borne transported pollen was analysed separately from badly-preserved pollen and fungal spores, which are more indicative of water transport and reworking from soils. Our results indicate that (i) both detrital and aragonite laminae were deposited during the rainy season; (ii) aragonite laminae have significantly lower reworked pollen and fungal spore concentrations than detrital and flash-flood samples; and (iii) detrital laminae are composed of recycling of local and distal sources, with coarser particles that were initially deposited in the Dead Sea watershed and later transported via run-off to the lake. The conclusions suggest that detrital and aragonite couplets in the Dead Sea laminated sediments are most likely not varves and that the laminae deposition is related to the occurrence of flash-flood events. Consequently, at least for the Holocene sequences, laminated sediments cannot be considered as varves and Quaternary laminated sequences should be re-evaluated. The Dead Sea Basin laminated sequences (as the ICDP Dead Sea Deep Drilling Project record) should be used for the reconstruction of

  19. The shock response of float-glass laminates

    International Nuclear Information System (INIS)

    Bourne, N.K.

    2005-01-01

    Interfaces within glass targets give rise to variations in the mode of failure of material components. The wide use of such laminates merits further investigation of the failure mechanism. It is already known that when shocked above a threshold of 4 GPa, glass fails under compression behind a propagating front following the compression front. Work is presented which indicates how this failure process is altered by bonding together two plates to introduce an interface, rather than leaving a monolithic target. After crossing an internal interface, the failure wave propagates only after a delay in soda-lime glass and the failed strength of the material is increased at the inner interface compared with that at the impact face. Addition of a second interface illustrates these effects. Recent work has shown that failure of more than two plates bonded together during impact shapes the pulse transmitted through materials. Indeed it has been suggested that glass sheets bonded together show some of the features of polycrystalline brittle materials. In this work, the stress has been monitored at different stations in the laminate to ascertain the effect of varying the number of tiles within the laminate. It is found that the pulse rises to ca. 4 GPa quickly and then is ramped more gradually as the number of glass sheets is increased

  20. Circular states of atomic hydrogen

    International Nuclear Information System (INIS)

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-01-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29→n=30 transition. copyright 1997 The American Physical Society

  1. Natural fabric sandwich laminate composites: development and ...

    Indian Academy of Sciences (India)

    3Department of Production Technology, MIT Campus, Anna University, Chennai 600044, India. MS received ... In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using ... and eco-friendly quality [22].

  2. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    Science.gov (United States)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  3. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Ajit D., E-mail: kelkar@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); Tian, Qiong [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States); School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Yu, Demei [School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Zhang, Lifeng, E-mail: lzhang@ncat.edu [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27401 (United States)

    2016-06-15

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  4. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Tian, Qiong; Yu, Demei; Zhang, Lifeng

    2016-01-01

    Boron nitride nanoparticles (BNNPs) were surface functionalized and subsequently applied to surface of fiberglass prepregs to fabricate hybrid BNNPs/fiberglass/epoxy composite laminate. A systematic and comparative study on BNNPs functionalization routes and their effects on morphology, mechanical property and thermal conductivity of final BNNPs enhanced composite laminates was performed. The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The composite laminates with surface functionalized BNNPs demonstrated improvement in tensile and flexural strength and modulus as well as in thermal conductivity compared to the composite laminate with pristine BNNPs while physically functionalized BNNPs outperformed chemically functionalized BNNPs in all cases. SEM images indicated better compatibility and dispersion of BNNPs in epoxy matrix following either of functionalization route. BNNPs bear great radiation-shielding capability. This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials. - Highlights: • BNNPs were surface functionalized and applied onto fiberglass prepreg. • The BNNPs enhanced prepreg was employed to make hybrid BNNPs/fiberglass/epoxy composite laminate. • The hybrid laminate presented significant improvement in mechanical strength and thermal conductivity. • This investigation revealed a novel and industrially feasible route to incorporate BNNPs in aerospace structural materials.

  5. Laminated multilayer sheet structure and its utilization

    International Nuclear Information System (INIS)

    Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.

    1980-01-01

    A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer

  6. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  7. Current injection phase thermography for low-velocity impact damage identification in composite laminates

    International Nuclear Information System (INIS)

    Grammatikos, S.A.; Kordatos, E.Z.; Matikas, T.E.; David, C.; Paipetis, A.S.

    2014-01-01

    Highlights: • A novel Current injection phase thermography NDE method has been developed. • Blind impact damage has been successfully detected in composite laminates. • Carbon nanotubes enhance detection by improving of through thickness conductivity. • Detection is feasible with considerably less energy than for IR excited thermography. - Abstract: An innovative non-destructive evaluation (NDE) technique is presented based on current stimulated thermography. Modulated electric current is injected to Carbon Fibre Reinforced Plastics (CFRP) laminates as an external source of thermal excitation. Pulsed Phase Thermography (PPT) is concurrently employed to identify low velocity impact induced (LVI) damage. The efficiency of the proposed method is demonstrated for both plain and with Carbon Nanotubes (CNTs) modified laminates, which are subjected to low-velocity impact damaged composite laminates at different energy levels. The presence of the nano reinforcing phase is important in achieving a uniform current flow along the laminate, as it improves the through thickness conductivity. The acquired thermographs are compared with optical PPT, C-scan images and Computer Tomography (CT) representations. The typical energy input for successful damage identification with current injection is three to four orders of magnitude less compared to the energy required for optical PPT

  8. Vibrations of composite circular shell structures due to transient loads

    International Nuclear Information System (INIS)

    Schrader, K.-H.; Krutzik, N.; Winkel, G.

    1975-01-01

    Referring to a container consisting of different shell structures - such as spherical, cylindrical and conical shells - the dynamic behavior of coupled spatial shell structures due to transient loads will be investigated. The spatial structure including the filling of water will be idealized as a three-dimensional model consisting of ring elements. The influence of the water filling on the vibrations will be considered by virtual masses added to the shell structures. In circular direction as well as in meridional direction a consistent mass model has been used. By variation of the virtual masses it will be clarified, how these additional masses influence the vibrational behavior of the composed system. Another aspect which will be investigated is the influence of different stiffnesses of substructures or parts of substructures on the natural frequencies, and on their affiliated eigensystems. Furthermore, the maximum and minimum stresses in the structures caused by transient loads acting on the inner surface of the shells will be explored. Here it seems to be possible to locate an area of maximum strain. Rotational loads as well as nonrotational loads will be considered

  9. Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results

    Science.gov (United States)

    Bellini, Costanzo; Sorrentino, Luca; Polini, Wilma; Parodo, Gianluca

    2018-05-01

    The phenomena that happen during the cure process of a composite material laminate are responsible for the rise of residual stresses and, consequently, for the deformation at the end of the manufacturing process. The most analyzed deformation is the spring-in, that represent the flange-to-flange angle deviance from the theoretical value. In this work, the influence of some parameters, such as the laminate thickness, the stacking sequence and the mold radius, on the spring-in angle of a U-shaped laminate was studied exploring a full factorial plan through numerical simulations. First of all, a numerical model proper for cure simulation was introduced and its suitability to simulate the deformation behavior was demonstrated. As a result, only the stacking sequence influenced the spring-in value, while the effect of the tool radius and laminate thickness was minimal.

  10. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    Effective implementation of ply-drops configurations substantially improve the damage tolerant design of flexible and aero-elastic wind turbine blades. Terminating a number of layers for an optimized blade design creates local bending effects. Inter-laminar stress states in tapered areas give rise...... to delamination and premature structural failure. Precise calculation of the stress levels for embedded ply-drops is required to predict failure initiation within acceptable limits. Multi-axial stress states in orthotropic laminates subjected to diverse loading mechanisms nucleate microscopic cracks....... By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  11. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  12. Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions

    NARCIS (Netherlands)

    Zhu, G.; Xiao, Y.; Yang, Y.; Wang, J.; Sun, B.; Boom, R.

    2012-01-01

    GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic aluminum alloys,

  13. Lamin A expression in circulating osteoprogenitors as a potential biomarker for frailty: The Nepean Osteoporosis and Frailty (NOF) Study.

    Science.gov (United States)

    Al Saedi, Ahmed; Gunawardene, Piumali; Bermeo, Sandra; Vogrin, Sara; Boersma, Derek; Phu, Steven; Singh, Lakshman; Suriyaarachchi, Pushpa; Duque, Gustavo

    2018-02-01

    Lamin A is a protein of the nuclear lamina. Low levels of lamin A expression are associated with osteosarcopenia in mice. In this study, we hypothesized that low lamin A expression is also associated with frailty in humans. We aimed to develop a non-invasive method to quantify lamin A expression in epithelial and circulating osteoprogenitor (COP) cells, and to determine the relationship between lamin A expression and frailty in older individuals. COP cells and buccal swabs were obtained from 66 subjects (median age 74; 60% female; 26 non-frail, 23 pre-frail, and 17 frail) participating at the Nepean Osteoporosis and Frailty (NOF) Study. We quantified physical performance and disability, and stratified frailty in this population. Lamin A expression in epithelial and COP cells was quantified by flow cytometry. Linear regression models estimated the relationship between lamin A expression in buccal and COP cells, and prevalent disability and frailty. Lamin A expression in buccal cells showed no association with either disability or frailty. Low lamin A expression values in COP cells were associated with frailty. Frail individuals showed 60% lower levels of lamin A compared to non-frail (95% CI -36 to -74%, p<0.001) and 62% lower levels compared to pre-frail (95%CI -40 to -76%, p<0.001). In summary, we have identified lamin A expression in COP cells as a strong indicator of frailty. Further work is needed to understand lamin A expression as a risk stratifier, biomarker, or therapeutic target in frail older persons. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The influences of contamination during lamination on the properties of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hall Beng, G.M. (Univ. of Portsmouth, School of Systems Engineering, Portsmouth (United Kingdom)); Mason, S.E. (Univ. of Portsmouth, School of Systems Engineering, Portsmouth (United Kingdom))

    1993-11-01

    The quality of a fibrous composite laminate can be largely attributed to the laminating process. It is therefore important to control parameters which will ultimately affect the desired quality of the laminate. Although several composite manufacturing organisations have installed clean room facilities with the hope of controlling potential contaminants, which may be detrimental to the process, the unavoidable reductions in productivity, coupled with the initial capital and maintenance costs make it an expensive solution to an unquantified problem. This study investigates the influences of contamination on structural fibre reinforced composites. Initial testing has involved contaminating Carbon/Epoxy (Fiberite 7714B) prepregs on a gross level. Contaminants have been selected on a tactile level in order to be as closely representative of situations likely to be encountered in the laminating process. The research has concentrated on airborne particulates, including fibres, condensation and humidity. Modes of contamination have been proposed for each, and suitable test methods selected to verify the modes. Test methods include the sort beam shear test (interlaminar shear strength), double cantilever beam test (interlaminar fracture data) and tensile tests. Such high levels of contamination enables the identification of those contaminants that are most detrimental to final laminate quality. Strategic reduction in the contamination levels of those identified will enable the clean room operating level to be sought. (orig.).

  15. Development of active CFRP/metal laminates and their demonstrations in complicated forms

    Science.gov (United States)

    Asanuma, H.; Nakata, T.; Tanaka, T.; Imori, M.; Haga, O.

    2006-03-01

    This paper describes development of high performance CFRP/metal active laminates and demonstrations of them in complicated forms. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature. The aluminum type active laminate was made into complicated forms, that is, a hatch, a stack, a coil and a lift types, and their actuation performances were successfully demonstrated.

  16. The influences of contamination during lamination on the properties of composite materials

    International Nuclear Information System (INIS)

    Hall Beng, G.M.; Mason, S.E.

    1993-01-01

    The quality of a fibrous composite laminate can be largely attributed to the laminating process. It is therefore important to control parameters which will ultimately affect the desired quality of the laminate. Although several composite manufacturing organisations have installed clean room facilities with the hope of controlling potential contaminants, which may be detrimental to the process, the unavoidable reductions in productivity, coupled with the initial capital and maintenance costs make it an expensive solution to an unquantified problem. This study investigates the influences of contamination on structural fibre reinforced composites. Initial testing has involved contaminating Carbon/Epoxy (Fiberite 7714B) prepregs on a gross level. Contaminants have been selected on a tactile level in order to be as closely representative of situations likely to be encountered in the laminating process. The research has concentrated on airborne particulates, including fibres, condensation and humidity. Modes of contamination have been proposed for each, and suitable test methods selected to verify the modes. Test methods include the sort beam shear test (interlaminar shear strength), double cantilever beam test (interlaminar fracture data) and tensile tests. Such high levels of contamination enables the identification of those contaminants that are most detrimental to final laminate quality. Strategic reduction in the contamination levels of those identified will enable the clean room operating level to be sought. (orig.)

  17. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  18. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  19. The performance of integrated active fiber composites in carbon fiber laminates

    International Nuclear Information System (INIS)

    Melnykowycz, M; Brunner, A J

    2011-01-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC–CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments

  20. Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites

    International Nuclear Information System (INIS)

    Kundalwal, S I; Suresh Kumar, R; Ray, M C

    2013-01-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1–3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs. (paper)

  1. Solid Angle Computations for a Circular Radiator and a Circular Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Tollander, B

    1963-02-15

    The problem of particle detection, when using an isotropic neutron point source at different distances from a circular target or a radioactive source as seen by a circular detector, e. g. a solid state counter, is dealt with. Tables are given for different distances of the source when the reaction at the target has an isotropic or a cosine angular distribution in the laboratory system.

  2. Hygrotermal effects evaluation using the losipescu shear test for glare laminates

    OpenAIRE

    Botelho, Edson Cocchieri [UNESP; Rezende, Mirabel C.; Pardini, Luis Claudio

    2008-01-01

    Fiber-metal laminates (FML) composed of alternating layers of unidirectional fibers-reinforced plastic (FRP) laminae and aluminum-alloy sheets offer some superior mechanical properties, compared with either conventional laminates consisting of only, FRP laminae or high-strength monolithic aluminum alloys. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, polymeric matrix absorbs moisture when exposed to humid...

  3. Hygrotermal effects evaluation using the iosipescu shear test for glare laminates

    OpenAIRE

    Botelho, Edson C.; Rezende, Mirabel C.; Pardini, Luis Claudio

    2008-01-01

    Fiber-metal laminates (FML) composed of alternating layers of unidirectional fiber-reinforced plastic (FRP) laminae and aluminum-alloy sheets offer some superior mechanical properties, compared with either conventional laminates consisting of only FRP laminae or high-strength monolithic aluminum alloys. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, polymeric matrix absorbs moisture when exposed to humid e...

  4. Reliability formulation for the strength and fire endurance of glued-laminated beams

    Science.gov (United States)

    D. A. Bender

    A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...

  5. Transient response of a cylindrical cavity in viscoelastic saturated porous medium

    Directory of Open Access Journals (Sweden)

    LIU Tao

    2016-10-01

    Full Text Available The study on dynamic characteristics for fluid-solid coupling system in saturated porous medium is of significant academic value and potential application foreground.In this paper,the transient response of a cylindrical cavity in infinite viscoelastic saturated porous medium with the circular lining is studied,and the corresponding results can be used in the design of foundation engineering,such as the tunnel analyses in saturated soil,the nuclear waste disposal engineering,and the exploitation and utilization of geothermal reservoirs and so on.Firstly,based on the porous media theory,the governing equations of coupled system are presented,and the corresponding boundary conditions,initial conditions as well as the joint conditions are derived.Then,the differential quadrature element method and the second-order backward difference scheme are applied to discretize the governing differential equations of the coupled system on the spatial and temporal domains,respectively.Finally,the Newton-Raphson method is adopted to solve the discretization equations with the initial conditions,the transient responses of the coupled system are analyzed,the effects of the parameters are considered,and the validity of the numerical method is verified.

  6. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  7. Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator

    International Nuclear Information System (INIS)

    Favale, Nicolas O.; Sterin Speziale, Norma B.; Fernandez Tome, Maria C.

    2007-01-01

    Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity

  8. Modeling transverse cracking in laminates with a single layer of elements per ply

    NARCIS (Netherlands)

    Van der Meer, F.P.; Davila, C.G.

    2012-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in [0/90]s laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under which conditions a three-dimensional model with cohesive cracks

  9. Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2014-01-01

    Electrical Resistance Tomography (ERT) is a promising health monitoring technique to assess damage in laminated composites. Yet, the missing link between the various complex degradation mechanisms within the laminate and its global change

  10. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  11. Damage in woven CFRP laminates under impact loading

    Science.gov (United States)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  12. Criterion of damage beginning: experimental identification for laminate composite

    International Nuclear Information System (INIS)

    Thiebaud, F.; Perreux, D.; Varchon, D.; Lebras, J.

    1996-01-01

    The aim of this study is to propose a criterion of damage beginning for laminate composite. The materials is a glass-epoxy laminate [+55 deg.,-55 deg.[ n performed by winding filament process. First of all a description of the damage is performed and allows to define a damage variable. Thanks to the potential of free energy, an associated variable is defined. The damage criterion is written by using this last one. The parameter of the criterion is identified using mechanical and acoustical methods. The result is compared and exhibit a good agreement. (authors). 13 refs., 5 figs

  13. Knockdown of Zebrafish Blood Vessel Epicardial Substance Results in Incomplete Retinal Lamination

    Directory of Open Access Journals (Sweden)

    Yu-Ching Wu

    2014-01-01

    Full Text Available Cell polarity during eye development determines the normal retinal lamination and differentiation of photoreceptor cells in the retina. In vertebrates, blood vessel epicardial substance (Bves is known to play an important role in the formation and maintenance of the tight junctions essential for epithelial cell polarity. In the current study, we generated a transgenic zebrafish Bves (zbves promoter-EGFP zebrafish line to investigate the expression pattern of Bves in the retina and to study the role of zbves in retinal lamination. Immunostaining with different specific antibodies from retinal cells and transmission electron microscopy were used to identify the morphological defects in normal and Bves knockdown zebrafish. In normal zebrafish, Bves is located at the apical junctions of embryonic retinal neuroepithelia during retinogenesis; later, it is strongly expressed around inner plexiform layer (IPL and retinal pigment epithelium (RPE. In contrast, a loss of normal retinal lamination and cellular polarity was found with undifferentiated photoreceptor cells in Bves knockdown zebrafish. Herein, our results indicated that disruption of Bves will result in a loss of normal retinal lamination.

  14. Effect of heat treatment regime on structural lamination in ferritic-austenitic steels

    International Nuclear Information System (INIS)

    Sizov, R.A.; Zakharova, M.I.; Novikov, I.I.; Bannykh, O.A.

    1983-01-01

    The effect of preliminary thermal treatment on lamination and viscosity of EhP-53 and KO-3 steels after durable aging at the temperature of 350 is studied. It is shown that preliminary heat treatment considerably affects lamination processes in the result of aging of 0Kh18G8N2T steel. The lowest rate of lamination and higher impact strength after aging at 350 deg C for 4500 hours corresponds to the following heat treatment: 10 hour aging at 650 deg C with cooling in the air, then quenching in water from 950 deg C after aging for 30 min and the following tempering (650 deg C, 5 hours). Unlike the 0Kh18G8N2T steel, lamination parameters of steel 0Kh22N6T practically do not change after the application of heat treatment. Nevertherless, taking into account results of impact strength, it is advisable to have thermal treatment according to the regime: quenching in water at 950 deg C after aging for 30 min

  15. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  16. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  17. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  18. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  19. Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Composites

    Directory of Open Access Journals (Sweden)

    Azrin Hani A.R

    2016-01-01

    Full Text Available The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C and woven Kevlar (K layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.

  20. Effect of diffusion of light on thin-film photovoltaic laminates

    Directory of Open Access Journals (Sweden)

    Lipi Mohanty

    Full Text Available A large fraction of the daylight incident on building-integrated photovoltaic (BIPV laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters. Keywords: Scattering, BRDF, Solar energy, Diffused irradiance, Photovoltaics, Goniophotometry

  1. Self-extinguishment of cross-laminated timber

    NARCIS (Netherlands)

    Crielaard, R.; van de Kuilen, J.W.G.; Terwel, K.C.; Ravenshorst, G.J.P.; Steenbakkers, P.; Breunesse, A.

    2016-01-01

    Cross-laminated timber, or CLT, is receiving attention for its potential use in tall buildings. As a combustible material, one of the challenges for the construction of these buildings is the fire risk that results from its use in the structure. Unprotected CLT can burn along with the fuel load

  2. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Miki, Kensuke [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan); Fujii, Michihiko, E-mail: mifuji@yokohama-cu.ac.jp [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ayusawa, Dai [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan)

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  3. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  4. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  5. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    Science.gov (United States)

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  6. Fatigue and fracture of fibre metal laminates

    CERN Document Server

    Alderliesten, René

    2017-01-01

    This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.

  7. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  8. 40 CFR 63.5820 - What are my options for meeting the standards for continuous lamination/casting operations?

    Science.gov (United States)

    2010-07-01

    ... standards for continuous lamination/casting operations? 63.5820 Section 63.5820 Protection of Environment... meeting the standards for continuous lamination/casting operations? You must use one or more of the... continuous lamination line and each continuous casting line complies with the applicable standard. (b...

  9. Effects of through-the-thickness stitching on impact and interlaminar fracture properties of textile graphite/epoxy laminates

    Science.gov (United States)

    Sharma, Suresh K.; Sankar, Bhavani V.

    1995-01-01

    This study investigated the effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and mode I and mode II fracture toughness of textile graphite/epoxy laminates. Uniweave resin-transfer-molded 48 ply graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar and glass yarns of different linear densities and stitch spacings. Delaminations were implanted during processing to simulate impact damage. Sublaminate buckling tests were performed to determine the effects of stitching on the compressive strength. The results showed outstanding improvements of up to 400 percent in the compression strength over the unstitched laminates. In impact and static indentation tests the onset of damage occurred at the same level, but the extent of damage was less in stitched laminates. Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6) stitched laminates was measured by conducting double-cantilever-beam tests. The critical strain energy release rate (G(sub Ic)) was found to be up to 30 times higher than the unstitched laminates. Mode II fracture toughness of the Uniweave laminates was measured by performing end-notched-flexure tests. Two new methods to compute the apparent G(sub IIc) are presented. The apparent G(sub IIc) was found to be at least 5-15 times higher for the stitched laminates.

  10. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  11. Seismic response of flexible cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T A; Boley, B A [comps.

    1977-01-01

    An experimental study of the seismic behavior of thin shell circular cylindrical liquid storage tanks is described. The investigation was planned to evaluate the adequacy of present methods of tank design, and was conducted using the Earthquake Simulator Facility of the University of California, Berkeley. The model tank considered in this paper was 6 ft high by 12 ft in diameter, and was welded from thin sheet aluminum to simulate a steel tank 36 feet in diameter. During testing the tank had an open top, held 60 inches of water, and was subjected to a time scaled El Centro (1940) earthquake, amplified to a peak acceleration of 0.5 g. Both base free and base fixed conditions were studied. Results of the experiments demonstrate that fluid pressures included both impulsive and convective components, and that the wave sloshing followed basic theory quite closely. But it also was apparent that the tank flexibility influenced the hydrodynamic pressures, as indicated by pressure amplification in the clamped tank, and by a total change of pressure history in the unclamped case. Significant out of round distortions of the tank were developed, of a three lobe form or the free base case and with four lobes in the fixed base case. Uplift of the tank base was closely related to the out-of-round deformation of the unanchored tank, whereas initial eccentricities apparently caused the section distortions in the anchored system. Stresses in the tank wall do not follow the expected pattern of response to overturning moment; instead they seem to be mainly associated with the section distortions. At present there is no analytical procedure for predicting these distortions .

  12. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  13. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  14. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  15. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  16. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  17. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  18. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    Science.gov (United States)

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  19. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  20. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  1. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number...... of plies in a laminated composite structure. The conceptual combinatorial design problem is relaxed to a continuous problem such that well-established gradient based optimization techniques can be applied, and the optimization problem is solved on basis of interpolation schemes with penalization...

  2. Damage visualization and deformation measurement in glass laminates during projectile penetration

    Directory of Open Access Journals (Sweden)

    Elmar Strassburger

    2014-06-01

    Full Text Available Transparent armor consists of glass-polymer laminates in most cases. The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates. In order to clarify the course of events during projectile penetration, an experimental technique was developed, which allows visualizing the onset and propagation of damage in each single layer of the laminate. A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up. With this technique, the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm × 500 mm. Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 11.1 g in the impact velocity range from 800 to 880 m/s. In order to measure the deformation of single glass plates within the laminates, a piece of reflecting tape was attached to the corresponding glass plate, and photonic Doppler velocimetry (PDV was applied. With the photonic Doppler velocimeter, an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector. The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture. The analysis of the experimental data was supported by numerical simulations, using the AUTODYN commercial hydro-code.

  3. Experimental Investigation for Behavior of Spliced Continuous RC Girders Strengthened with CFRP Laminates

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2016-03-01

    Full Text Available In this paper, the behavior of spliced continuous reinforced concrete girders was experimentally investigated. The main objective was to examine the contribution of the carbon fiber reinforced polymer (CFRP laminates in strengthening the spliced continuous reinforced concrete girders. Eight models of continuous reinforced concrete girder were constructed and tested. The test variables were strengthening the splice joints by different schemes of CFRP laminates, presence of horizontal stirrups through the interfaces of the joints and using binder material at the interfaces of the joints. The results showed that strengthening the continuous spliced girders with 45° inclined CFRP laminates led to an increase in the ultimate load in a range of (47 to 74%. Besides, strengthening the continuous spliced girder with horizontal CFRP laminates bonded at its lateral faces could increase the ultimate load by 70%. Additionally, the ultimate load of the continuous spliced girder was increased by (30% due to presence of the horizontal steel stirrups through the interfaces of the joints

  4. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  5. A-type and B-type lamins initiate layer assembly at distinct areas of the nuclear envelope in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kazuhiro, E-mail: furukawa@chem.sc.niigata-u.ac.jp [Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Ishida, Kazuya; Tsunoyama, Taka-aki; Toda, Suguru; Osoda, Shinichi; Horigome, Tsuneyoshi [Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Fisher, Paul A. [Department of Pharmacological Sciences, School of Medicine, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651 (United States); Sugiyama, Shin [Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan)

    2009-04-15

    To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm{sub 0}null mutant brain cells. Both exogenous lamin C (A-type) and Dm{sub 0} (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm{sub 0} did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm{sub 0} layer. Further, when lamin Dm{sub 0} and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.

  6. Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience

    Directory of Open Access Journals (Sweden)

    Ibrahim Akin

    2015-05-01

    Full Text Available ABSTRACT Objective. The aim of this field trial was to investigate the relationships among subclinical laminitis, hematological, ruminal and faecal alterations. Materials and Methods. To this extent dairy cows presenting subclinical laminitis (n=11 and to those of other healthy cows without laminitis (n=10 were enrolled and assigned into two groups. All animals were receiving the same daily ration formulated to contain 47% cornsilage and 18% hay, mainly. Effects of subclinical laminitis challenges on measurements of feces, and blood samples, were investigated to determine which of these measurements may aid in the diagnosis. pH changes in ruminal fluid collected via rumenocentesis were measured. Besides the following parameters were also measured; blood pH, faecal pH and faecal scoring. Blinded investigators performed the sample collection. Results. No statistical differences between the groups were detected for blood gas values studied regarding pCO2, HCO3, BE, indeed mean that pO2 values decreased statistically (p<0.05 and faecal pH was significantly decreased (p<0.05 in cows with subclinical laminitis in contrast to healthy controls. Conclusions. pO2 values and faecal pH may be valuable as indirect indicators of subclinical laminitis in cattle.

  7. Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate

    Directory of Open Access Journals (Sweden)

    Minghui Yao

    2014-01-01

    Full Text Available This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.

  8. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    Science.gov (United States)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens

  9. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure...... in resource loops, value bases and business model archetypes respectively, and they are applied for analysing and organizing the business models that are presented throughout the report. The investigations in the report show that circular business models are relevant to businesses because they hold...

  10. Plasma proteomics shows an elevation of the anti-inflammatory protein APOA-IV in chronic equine laminitis

    Directory of Open Access Journals (Sweden)

    Steelman Samantha M

    2012-09-01

    Full Text Available Abstract Background Equine laminitis is a devastating disease that causes severe pain in afflicted horses and places a major economic burden on the horse industry. In acute laminitis, the disintegration of the dermal-epidermal junction can cause the third phalanx to detach from the hoof wall, leaving the horse unable to bear weight on the affected limbs. Horses that survive the acute phase transition into a chronic form of laminitis, which is often termed “founder”. Some evidence suggests that chronic laminar inflammation might be associated with alterations in the endocrine and immune systems. We investigated this broad hypothesis by using DIGE to assess global differences in the plasma proteome between horses with chronic laminitis and controls. Results We identified 16 differentially expressed proteins; the majority of these were involved in the interrelated coagulation, clotting, and kininogen cascades. Clinical testing of functional coagulation parameters in foundered horses revealed a slight delay in prothrombin (PT clotting time, although most other indices were within normal ranges. Upregulation of the intestinal apolipoprotein APOA-IV in horses with chronic laminitis was confirmed by western blot. Conclusions Our results support the hypothesis that localized laminar inflammation may be linked to systemic alterations in immune regulation, particularly in the gastrointestinal system. Gastrointestinal inflammation has been implicated in the development of acute laminitis but has not previously been associated with chronic laminitis.

  11. Lamination effects on a 3D model of the magnetic core of power transformers

    Directory of Open Access Journals (Sweden)

    Poveda-Lerma Antonio

    2017-12-01

    Full Text Available In this paper the lamination effect on the model of a power transformer’s core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.

  12. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  13. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  14. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  15. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  16. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  17. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  18. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  19. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  20. Lamination sheet of AA BST magnet

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The AA had 2 types of bending magnets: BLG (window-frame, long and narrow)and BST (H-type, short and wide). The BST had a very wide aperture, 0.564 m of "good field". To demonstrate the size, the petite AA secretary, Val Mansfield, poses with a lamination sheet. See also 7811105, 7906163, 8006050.

  1. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  2. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Science.gov (United States)

    Peterson, Kenneth A [Albuquerque, NM

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  3. Calculation of deflection for cross laminated timber floor panel

    Directory of Open Access Journals (Sweden)

    Kozarić Ljiljana M.

    2016-01-01

    Full Text Available In this paper analytically calculated values of effective flexural stiffness and deflections of five-layer CLT panels height 14 cm due to the payload defined in Eurocode 1 for floors in residential buildings are compared. Effective flexural stiffness was calculated using Gamma method, K-method and Kreuzinger's analogy. Three floor panels with identical height but with different combinations of lamination thicknesses in cross-layers were analyzed. The panels are 4.5 meters long and 1 meter wide. Lamination thicknesses in cross-sections of panels are 33,4 cm+21,9 cm, then 33 cm+22,5 cm and 52,8 cm.

  4. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  5. Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available Abstract Finite element analysis and optimization design carry out for the quasi static responses of foam-filled double circular tube is presented in this paper. In the investigation of the crashworthiness capability, some aspects were considered for variations in geometry parameters of tubes and the loading condition to investigate the crashworthiness capability. Empty, foam-filled, and full foam-filled doublé tubes of thin walled structures were observed subjected to oblique impact (0˚ - 40˚. The numerical solution was used to determine the crashworthiness parameters. In addition, NSGA II and Radial Basis Function were used to optimize the crashworthiness capability of tubes. In conclution, the crash performaces of foam-filled double tube is better than the other structures in this work. The outcome that expected is the new design information of various kinds of cylindrical tubes for energy absorber application.

  6. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  7. On the time and temperature dependent behaviour of laminated amorphous polymers subjected to low-velocity impact

    CERN Document Server

    Rühl, Andreas

    2017-01-01

    The thesis investigates a polymeric laminate consisting of poly(methyl methacrylate) (PMMA) and thermoplastic polyurethane (TPU) experimentally and numerically with regard to its impact behaviour and applicability. After a basic characterization of the monolithic materials, PMMA-TPU-PMMA laminates were subjected to impact loadings at velocities up to 5 m/s using threepoint bending and dart impact tests. Based on the experimental basis, different material models for the Finite Element simulation are presented, which are able to capture the time and temperature dependent behaviour of the laminate. Final validation experiments, consisting of head-dummy impacts at 10 m/s on automotive side windows, were conducted for PMMA and the laminate in order to investigate their applicability as glass substitution products. The Content Introduction · Fundamentals · Experimental Investigation · Material Modelling of PMMA · Material Modelling of TPU · Simulation of PMMA-TPU Laminate · Component Tests and Validation · S...

  8. Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing

    Science.gov (United States)

    Qin, Liang; Wang, Hui; Cui, Shengqiang; Wu, Qian; Fan, Minyu; Yang, Zonghui; Tao, Jie

    2017-07-01

    The Ti/Al laminate composites were prepared by hot pressing to investigate the forming performance due to the corresponding potential applications in both the aerospace and auto industry. The bonding interface morphology and element distributions were characterized by SEM and EDS. The phase constituent was detected by XRD. It was observed that these composites presented good bonding interfaces between Ti and Al layers, and no low-sized voids and intermetallic compounds formed at the interface. In addition, the formability of these laminate composites was studied by the uniaxial tension tests, the limit drawing ratio (LDR) and the forming limit curve (FLC) experiments, respectively. The results indicated that the flow stress increased along with the strain rate increment. A constitutive equation was developed for deformation behavioral description of these laminate composites. The LDR value was 1.8, and the most susceptible region to present cracks was located at the punch profile radius. The forming limit curve of the laminate composites was located between the curves of titanium and aluminum and intersected with the major strain line at approximately 0.31. The macroscopic cracks of the FLC sample demonstrated a saw-toothed crack feature.

  9. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  10. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  11. Organization of the lamin scaffold in the internal nuclear matrix of normal and transformed hepatocytes

    International Nuclear Information System (INIS)

    Barboro, Paola; D'Arrigo, Cristina; Repaci, Erica; Patrone, Eligio; Balbi, Cecilia

    2010-01-01

    Nuclear lamins are among the more abundant proteins making up the internal nuclear matrix, but very little is known about their structure in the nucleoplasm. Using immunoelectron microscopy, we demonstrate the organization of lamins in the nuclear matrix isolated from rat hepatocytes for the first time. Lamin epitopes are arrayed both in locally ordered clusters and in quasi-regular rows. Fourier filtering of the images demonstrates that the epitopes are placed at the nodes and halfway between the nodes of square or rhombic lattices that are about 50 nm on each side, as well as along rows at regular ∼25-nm intervals. In addition, we have compared this structure with that of the internal nuclear matrix isolated from persistent hepatocyte nodules. In transformed hepatocytes, the islands of lamin lattice are lost, and only a partial regularity in the rows of gold particles remains. We suggest that orthogonal lattice assembly might be an intrinsic property of lamin molecules, and that the disassembly may be triggered by simple molecular events such as phosphorylation.

  12. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

    Science.gov (United States)

    Liu, Yanxiong; Liaw, Benjamin

    2010-02-01

    Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

  13. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  14. Effect of Stacking Layup on Spring-back Deformation of Symmetrical Flat Laminate Composites Manufactured through Autoclave Processing

    Science.gov (United States)

    Nasir, M. N. M.; Seman, M. A.; Mezeix, L.; Aminanda, Y.; Rivai, A.; Ali, K. M.

    2017-03-01

    The residual stresses that develop within fibre-reinforced laminate composites during autoclave processing lead to dimensional warpage known as spring-back deformation. A number of experiments have been conducted on flat laminate composites with unidirectional fibre orientation to examine the effects of both the intrinsic and extrinsic parameters on the warpage. This paper extends the study on to the symmetrical layup effect on spring-back for flat laminate composites. Plies stacked at various symmetrical sequences were fabricated to observe the severity of the resulting warpage. Essentially, the experimental results demonstrated that the symmetrical layups reduce the laminate stiffness in its principal direction compared to the unidirectional laminate thus, raising the spring-back warpage with the exception of the [45/-45]S layup due to its quasi-isotropic property.

  15. Structural Evaluation of the Second Oldest Glued-Laminated Structure in the United States

    Science.gov (United States)

    Douglas R. Rammer; Jorge de Melo Moura

    2013-01-01

    The second glued-laminated structure built in the United States was constructed at the USDA Forest Products Laboratory (FPL) in 1934 to demonstrate the performance of wooden arch buildings. After decades of use the structure was decommissioned in 2010. Shortly after construction, researchers structurally evaluated the glued-laminated arch structure for uniform loading...

  16. The potential role of Clostridium botulinum toxin in the treatment of equine laminitis

    NARCIS (Netherlands)

    Hardeman, L C

    2016-01-01

    Laminitis is a severe and painful disease in the horse that may lead to loosening of the attachment of the distal phalanx to the horny hoof capsule. Although a large variety of treatment options has come and gone since the first descriptions of laminitis, there is certainly a thus far unmet need for

  17. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  18. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  19. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  20. The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells.

    Science.gov (United States)

    Piekarowicz, Katarzyna; Machowska, Magdalena; Dratkiewicz, Ewelina; Lorek, Daria; Madej-Pilarczyk, Agnieszka; Rzepecki, Ryszard

    2017-08-01

    LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins' impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.