WorldWideScience

Sample records for lacking brain serotonin

  1. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  2. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  3. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  4. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  5. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    Science.gov (United States)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  6. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    Directory of Open Access Journals (Sweden)

    Michael J Kane

    Full Text Available Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2 for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/- showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  7. Serotonin shapes risky decision making in monkeys.

    Science.gov (United States)

    Long, Arwen B; Kuhn, Cynthia M; Platt, Michael L

    2009-12-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.

  8. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    Science.gov (United States)

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical

  9. High brain serotonin levels in migraine between attacks

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Migraine has been hypothesized to be a syndrome of chronic low serotonin (5-HT) levels, but investigations of brain 5-HT levels have given equivocal results. Here, we used positron emission tomography (PET) imaging of the 5-HT4receptor as a proxy for brain 5-HT levels. Given that the 5-HT4receptor...

  10. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    Science.gov (United States)

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  11. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  12. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  13. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  14. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  15. Boosting serotonin in the brain: is it time to revamp the treatment of depression?

    Science.gov (United States)

    Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E

    2012-05-01

    Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.

  16. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    International Nuclear Information System (INIS)

    Zeng Zhizhen; Chen, T.-B.; Miller, Patricia J.; Dean, Dennis; Tang, Y.S.; Sur, Cyrille; Williams, David L.

    2006-01-01

    We have characterized the interaction of the serotonin transporter ligand [ 3 H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [ 3 H]-DASB, a tritiated version of the widely used [ 11 C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K d =0.20±0.04 nM). The serotonin transporter density (B max ) obtained for rhesus frontal cortex was found to be 66±8 fmol/mg protein using [ 3 H]-DASB, similar to the B max value obtained using the reference radioligand [ 3 H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83±22 fmol/mg protein). Specific binding sites of both [ 3 H]-DASB and [ 3 H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [ 3 H]-citalopram binding in a competition autoradiographic study, with K i values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [ 3 H]-DASB and [ 3 H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [ 11 C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates

  17. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  19. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  20. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  1. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  2. Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome.

    Science.gov (United States)

    Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P seizure threshold (P seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.

  3. Serotonin and brain function: a tale of two receptors.

    Science.gov (United States)

    Carhart-Harris, R L; Nutt, D J

    2017-09-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.

  4. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  5. Lower brain levels of serotonin in rainbow trout larvae with a propensity for social dominance

    DEFF Research Database (Denmark)

    Höglund, Erik; Åberg Andersson, Madelene

    performed on socially naive animals, predisposed to different levels of aggression, are needed to investigate to which extent inherited differences in 5-HTergic transmission underlie this behavioral variability. In this work we show that rainbow trout larvae, having a large yolk during emergence from......There is general consensus that low levels of brain serotonin are associated with aggression and social dominance. However, most of the studies investigating the relationship between serotonin (5-HT) and aggressive behavior have been performed in animals with previous social experience. Studies...... the spawning nests, also have higher probability to become social dominant. Furthermore, newly emerged socially naïve individuals with larger yolk also had lower brain 5-HT levels. This demonstrates a propensity to social dominance, which is associated with lower brain serotonin levels, in larvae that emerge...

  6. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    Science.gov (United States)

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  7. Effects of sugar rich diet on brain serotonin, hyperphagia and anxiety in animal model of both genders.

    Science.gov (United States)

    Inam, Qurrat-ul-Aen; Ikram, Huma; Shireen, Erum; Haleem, Darakhshan Jabeen

    2016-05-01

    Lower levels of 5-hydroxytryptamine (5-HT; serotonin) in the brain elicit sugar craving, while ingestion of sugar rich diet improves mood and alleviates anxiety. Gender differences occur not only in brain serotonin metabolism but also in a serotonin mediated functional responses. The present study was therefore designed to investigate gender related differences on the effects of long term consumption of sugar rich diet on the metabolism of serotonin in the hypothalamus and whole brain which may be relevant with the hyperphagic and anxiety reducing effects of sugar rich diet. Male and female rats were fed freely on a sugar rich diet for five weeks. Hyperphagic effects were monitored by measuring total food intake and body weights changes during the intervention. Anxiolytic effects of sugar rich diet was monitored in light-dark transition test. The results show that ingestion of sugar rich diet decreased serotonin metabolism more in female than male rats. Anxiolytic effects were elicited only in male rats. Hyperphagia was comparable in both male and female rats. Finings would help in understanding the role of sugar rich diet-induced greater decreases of serotonin in sweet craving in women during stress.

  8. Effects of diets containing unripe plantain diet on brain serotonin in ...

    African Journals Online (AJOL)

    In this study, the effect of plantain-containing mouse diet on brain serotonin mice was investigated in mice. Thirty adult Swiss mice were divided into three groups of ten each and fed normal rodent chow containing 0%, 50% and 100% unripe plantain. After thirty days, the brain levels of 5-HT and 5-HTP were measured using ...

  9. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  10. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  11. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  12. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  13. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  14. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin

    Science.gov (United States)

    Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo

    2015-01-01

    Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2 flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2 null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2 null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2 null/null mice. Finally, we set

  15. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...

  16. High brain serotonin levels in migraine between attacks

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D.; Hougaard, Anders

    2017-01-01

    Objectives To investigate brain 5-HT4-receptor binding with positron emission tomography (PET) as a proxy of serotonin (5-hydroxytryptamine, 5-HT) levels in migraine patients between attacks. Methods Brain 5-HT4-receptor binding, assessed with PET imaging of the specific 5-HT4-receptor radioligand......, [11C]SB207145, is inversely related to long-term changes in brain 5-HT-levels. Eighteen migraine patients without aura (≥48 hours migraine free) and 16 age- and sex-matched controls underwent PET-scanning after injection of [11C]SB207145. Patients who reported a migraine attack ≤48 hours after...... the scan were excluded. The mean neocortical [11C]SB207145 binding potential (BPND) was calculated in a blinded manner. Results Fifteen patients (age 29.6 ± 10.2 years, 2 men) and 16 controls (28.9 ± 10.2 years, 3 men) completed the study. Migraine patients had significantly lower neocortical 5-HT4...

  17. New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain.

    Science.gov (United States)

    Shokry, Ibrahim M; Callanan, John J; Sousa, John; Tao, Rui

    2016-01-01

    In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP), intracerebroventricular (ICV) and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible reason for the

  18. New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain.

    Directory of Open Access Journals (Sweden)

    Ibrahim M Shokry

    Full Text Available In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP, intracerebroventricular (ICV and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible

  19. SPECT imaging with the serotonin transporter radiotracer [123I]p ZIENT in nonhuman primate brain

    International Nuclear Information System (INIS)

    Cosgrove, Kelly P.; Staley, Julie K.; Baldwin, Ronald M.; Bois, Frederic; Plisson, Christophe; Al-Tikriti, Mohammed S.; Seibyl, John P.; Goodman, Mark M.; Tamagnan, Gilles D.

    2010-01-01

    Introduction: Serotonin dysfunction has been linked to a variety of psychiatric diseases; however, an adequate SPECT radioligand to probe the serotonin transporter system has not been successfully developed. The purpose of this study was to characterize and determine the in vivo selectivity of iodine-123-labeled 2β-carbomethoxy-3β-(4'-((Z)-2-iodoethenyl)phenyl)nortropane, [ 123 I]p ZIENT, in nonhuman primate brain. Methods: Two ovariohysterectomized female baboons participated in nine studies (one bolus and eight bolus to constant infusion at a ratio of 9.0 h) to evaluate [ 123 I]p ZIENT. To evaluate the selectivity of [ 123 I]p ZIENT, the serotonin transporter blockers fenfluramine (1.5, 2.5 mg/kg) and citalopram (5 mg/kg), the dopamine transporter blocker methylphenidate (0.5 mg/kg) and the norepinephrine transporter blocker nisoxetine (1 mg/kg) were given at 8 h post-radiotracer injection. Results: In the bolus to constant infusion studies, equilibrium was established by 4-8 h. [ 123 I]p ZIENT was 93% and 90% protein bound in the two baboons and there was no detection of lipophilic radiolabeled metabolites entering the brain. In the high-density serotonin transporter regions (diencephalon and brainstem), fenfluramine and citalopram resulted in 35-71% and 129-151% displacement, respectively, whereas methylphenidate and nisoxetine did not produce significant changes ( 123 I]p ZIENT is a favorable compound for in vivo SPECT imaging of serotonin transporters with negligible binding to norepinephrine and dopamine transporters.

  20. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    Science.gov (United States)

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-12-01

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify...

  2. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study.

    Science.gov (United States)

    Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars

    2015-11-01

    A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.

  3. Brain serotonin, psychoactive drugs, and effects on reproduction.

    Science.gov (United States)

    Ayala, María Elena

    2009-12-01

    Serotonin, a biogenic amine, is present in significant amounts in many structures of the CNS. It is involved in regulation of a wide variety of physiological functions, such as sensory and motor functions, memory, mood, and secretion of hormones including reproductive hormones. It has also been implicated in the etiology of a range of psychiatric disorders such as anxiety, depression, and eating disorders, along with other conditions such as obesity and migraine. While some drugs that affect serotonin, such as fenfluramine and fluoxetine, have been successfully used in treatment of a range of psychiatric diseases, others, such as the amphetamine analogues MDMA and METH, are potent psychostimulant drugs of abuse. Alterations in serotonergic neurons caused by many of these drugs are well characterized; however, little is known about the reproductive consequences of such alterations. This review evaluates the effects of drugs such as MDMA, pCA, fenfluramine, and fluoxetine on serotonergic transmission in the brain, examines the relationships of these drug effects with the neuroendocrine mechanisms modulating reproductive events such as gonadotropin secretion, ovulation, spermatogenesis, and sexual behavior in animal models, and discusses possible reproductive implications of these drugs in humans.

  4. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  5. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  6. [Autism spectrum disorders and bisphenol A: Is serotonin the lacking link in the chain?

    Science.gov (United States)

    Sarrouilhe, D; Dejean, C

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is believed to be multifactorial and to involve genetic and environmental components. Environmental chemical exposures are increasingly understood to be important in causing neurotoxicity in fetuses and newborns. Recent data from the Centers for Disease Control and Prevention in the United States suggest a substantial increase in ASD prevalence, only partly explicable by factors such as diagnostic substitution. Bisphenol A (BPA) is an ubiquitous xenoestrogen widely employed in a variety of consumer products including plastic and metal food and beverage containers, dental sealants and fillings, medical equipment and thermal receipts. Therefore, most people are exposed almost continuously to BPA in industrialized countries. Sources of BPA exposure are predominantly diet, but also through inhalation or dermal absorption. BPA can be measured in many human fluids and tissues including saliva, serum, urine, amniotic fluid, follicular fluid, placental tissue and breast milk. There is concern that BPA exposure may influence human brain development and may contribute to the increasing prevalence of neurodevelopmental and behavioural problems. Epigenetic mechanisms are suggested by a mouse study that demonstrated that BPA exposure during gestation had long lasting, transgenerational effects on social recognition. Previous epidemiological studies suggested a relationship between maternal BPA exposure and ASD. A recent study of 46 children with ASD and 52 controls found for the first time a direct association between children with ASD and BPA exposure and demonstrated that BPA is not metabolized well in children with ASD. The metabolomic analyses showed a correlation between ASD and essential amino acid metabolism pathways. Essential amino acids are precursors of neurotransmitters, for example tryptophan for serotonin. Fetal and prenatal BPA exposure was suggested to perturb the serotonergic system in rat and mice models. On

  7. The evolution of violence in men: the function of central cholesterol and serotonin.

    Science.gov (United States)

    Wallner, Bernard; Machatschke, Ivo H

    2009-04-30

    Numerous studies point to central serotonin as an important modulator of maladaptive behaviors. In men, for instance, low concentrations of this neurotransmitter are related to hostile aggression. A key player in serotonin metabolism seems to be central cholesterol. It plays a fundamental role in maintaining the soundness of neuron membranes, especially in the exocytosis transport of serotonin vesicles into the synaptic cleft. In this review, we attempt an evolutionary approach to the neurobiological basis of human male violence. Hominid evolution was shaped by periods of starvation but also by energy demands of an increasingly complex brain. A lack of food resources reduces uptake of glucose and results in a decreased energy-supply for autonomous brain cholesterol synthesis. Consequently, concentrations of neuromembrane cholesterol decrease, which lead to a failure of the presynaptic re-uptake mechanism of serotonin and ultimately to low central serotonin. We propose that starvation might have affected the larger male brains earlier than those of females. Furthermore, this neurophysiological process diminished the threshold for hostile aggression, which in effect represented a prerequisite for being a successful hunter or scavenger. In a Darwinian sense, the odds to acquire reliable energetic resources made those males to attractive spouses in terms of paternal care and mate support. To underpin these mechanisms, a hypothetical four-stage model of synaptic membrane destabilization effected by a prolonged shortage of high-energy, cholesterol-containing food is illustrated.

  8. SPECT imaging with the serotonin transporter radiotracer [{sup 123}I]p ZIENT in nonhuman primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Kelly P., E-mail: kelly.cosgrove@yale.ed [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Staley, Julie K.; Baldwin, Ronald M.; Bois, Frederic [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Plisson, Christophe [Emory University School of Medicine, Atlanta, GA 30322 (United States); Al-Tikriti, Mohammed S. [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States); Goodman, Mark M. [Emory University School of Medicine, Atlanta, GA 30322 (United States); Tamagnan, Gilles D. [Yale University School of Medicine, VA Connecticut HCS (116A6), West Haven, CT 06516 (United States); Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States)

    2010-07-15

    Introduction: Serotonin dysfunction has been linked to a variety of psychiatric diseases; however, an adequate SPECT radioligand to probe the serotonin transporter system has not been successfully developed. The purpose of this study was to characterize and determine the in vivo selectivity of iodine-123-labeled 2{beta}-carbomethoxy-3{beta}-(4'-((Z)-2-iodoethenyl)phenyl)nortropane, [{sup 123}I]p ZIENT, in nonhuman primate brain. Methods: Two ovariohysterectomized female baboons participated in nine studies (one bolus and eight bolus to constant infusion at a ratio of 9.0 h) to evaluate [{sup 123}I]p ZIENT. To evaluate the selectivity of [{sup 123}I]p ZIENT, the serotonin transporter blockers fenfluramine (1.5, 2.5 mg/kg) and citalopram (5 mg/kg), the dopamine transporter blocker methylphenidate (0.5 mg/kg) and the norepinephrine transporter blocker nisoxetine (1 mg/kg) were given at 8 h post-radiotracer injection. Results: In the bolus to constant infusion studies, equilibrium was established by 4-8 h. [{sup 123}I]p ZIENT was 93% and 90% protein bound in the two baboons and there was no detection of lipophilic radiolabeled metabolites entering the brain. In the high-density serotonin transporter regions (diencephalon and brainstem), fenfluramine and citalopram resulted in 35-71% and 129-151% displacement, respectively, whereas methylphenidate and nisoxetine did not produce significant changes (<10%). Conclusion: These findings suggest that [{sup 123}I]p ZIENT is a favorable compound for in vivo SPECT imaging of serotonin transporters with negligible binding to norepinephrine and dopamine transporters.

  9. Tryptophan as an evolutionarily conserved signal to brain serotonin : Molecular evidence and psychiatric implications

    NARCIS (Netherlands)

    Russo, Sascha; Kema, Ido P.; Bosker, Fokko; Haavik, Jan; Korf, Jakob

    2009-01-01

    The role of serotonin (5-HT) in psychopathology has been investigated for decades. Among others, symptoms of depression, panic, aggression and suicidality have been associated with serotonergic dysfunction. Here we summarize the evidence that low brain 5-HT signals a metabolic imbalance that is

  10. Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons

    NARCIS (Netherlands)

    Reneman, L.; Booij, J.; de Bruin, K.; Reitsma, J. B.; de Wolff, F. A.; Gunning, W. B.; den Heeten, G. J.; van den Brink, W.

    2001-01-01

    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to damage brain serotonin neurons in high doses. However, effects of moderate MDMA use on serotonin neurons have not been studied, and sex differences and the long-term effects of MDMA

  11. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  12. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Science.gov (United States)

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  13. A role for the serotonin reuptake transporter in the brain and intestinal features of autism spectrum disorders and developmental antidepressant exposure.

    Science.gov (United States)

    Margolis, Kara Gross

    2017-10-01

    Many disease conditions considered CNS-predominant harbor significant intestinal comorbidities. Serotonin (5-HT) and the serotonin reuptake transporter (SERT) have increasingly been shown to play important roles in both brain and intestinal development and long-term function. 5-HT and SERT may thus modulate critical functions in the development and perpetuation of brain-gut axis disease. We discuss the potential roles of 5-HT and SERT in the brain and intestinal manifestations of autism spectrum disorders and developmental antidepressant exposure. The potential therapeutic value of 5-HT 4 modulation in the subsequent treatment of these conditions is also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In vitro and in vivo characterisation of nor-β-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain

    International Nuclear Information System (INIS)

    Bergstroem, K.A.; Halldin, C.; Hall, H.; Lundkvist, C.; Ginovart, N.; Swahn, C.G.; Farde, L.

    1997-01-01

    Radiolabelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) has been used in clinical studies for the imaging of dopamine and serotonin transporters with single-photon emission tomography (SPET). 2β-Carbomethoxy-3β-(4-iodophenyl)nortropane (nor-β-CIT) is a des-methyl analogue of β-CIT, which in vitro has tenfold higher affinity (IC 50 =0.36 nM) to the serotonin transporter than β-CIT (IC 50 =4.2 nM). Nor-β-CIT may thus be a useful radioligand for imaging of the serotonin transporter. In the present study iodine-125 and carbon-11 labelled nor-β-CIT were prepared for in vitro autoradiographic studies on post-mortem human brain cryosections and for in vivo positron emission tomography (PET) studies in Cynomolgus monkeys. Whole hemisphere autoradiography with [ 125 I[nor-β-CIT demonstrated high binding in the striatum, the thalamus and cortical regions of the human brain. Addition of a high concentration (1 μM) of citalopram inhibited binding in the thalamus and the neocortex, but not in the striatum. In PET studies with [ 11 C[nor-β-CIT there was rapid uptake of radioactivity in the monkey brain (6% of injected dose at 15 min) and high accumulation of radioactivity in the striatum, thalamus and neocortex. Thalamus to cerebellum and cortex to cerebellum ratios were 2.5 and 1.8 at 60 min, respectively. The ratios obtained with [ 11 C[nor-β-CIT were 20%-40% higher than those previously obtained with [ 11 C[β-CIT. Radioactivity in the thalamus and the neocortex but not in the striatum was displaceable with citalopram (5 mg/kg). In conclusion, nor-β-CIT binds to the serotonin transporter in the primate brain in vitro and in vivo and has potential for PET and SPET imaging of the serotonin transporter in human brain. (orig.). With 4 figs

  15. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  16. Changes in sensitivity of brain dopamine and serotonin receptors during long-term treatment with carbidine

    International Nuclear Information System (INIS)

    Zharkovskii, A.M.; Allikmets, L.K.; Chereshka, K.S.; Zharkovskaya, T.A.

    1986-01-01

    The authors study the state of the dopamine and serotonin receptors of the brain during chronic administration of carbidine to animals. Parts of the brain from two rats were pooled and binding of tritium-spiperone and tritium-LSD was determined. Statistical analysis of the data for apomorphine sterotypy was carried out and the Student's test was used for analysis of the remaining data. It is shown that after discontinuation of carbidine binding of tritium-spiperone and tritium-LSD in the cortex was reduced

  17. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Savitskij, I.V.; Tsybul'skij, V.V.; Grivtsev, B.A.

    1985-01-01

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  18. In vitro and in vivo characterisation of nor-{beta}-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, K.A. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)]|[Kuopio University Hospital, Clinical Physiology, FIN-70210 Kuopio (Finland); Halldin, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Hall, H. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Lundkvist, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Ginovart, N. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Swahn, C.G. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Farde, L. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)

    1997-06-10

    Radiolabelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) has been used in clinical studies for the imaging of dopamine and serotonin transporters with single-photon emission tomography (SPET). 2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)nortropane (nor-{beta}-CIT) is a des-methyl analogue of {beta}-CIT, which in vitro has tenfold higher affinity (IC{sub 50}=0.36 nM) to the serotonin transporter than {beta}-CIT (IC{sub 50}=4.2 nM). Nor-{beta}-CIT may thus be a useful radioligand for imaging of the serotonin transporter. In the present study iodine-125 and carbon-11 labelled nor-{beta}-CIT were prepared for in vitro autoradiographic studies on post-mortem human brain cryosections and for in vivo positron emission tomography (PET) studies in Cynomolgus monkeys. Whole hemisphere autoradiography with [{sup 125}I]nor-{beta}-CIT demonstrated high binding in the striatum, the thalamus and cortical regions of the human brain. Addition of a high concentration (1 {mu}M) of citalopram inhibited binding in the thalamus and the neocortex, but not in the striatum. In PET studies with [{sup 11}C]nor-{beta}-CIT there was rapid uptake of radioactivity in the monkey brain (6% of injected dose at 15 min) and high accumulation of radioactivity in the striatum, thalamus and neocortex. Thalamus to cerebellum and cortex to cerebellum ratios were 2.5 and 1.8 at 60 min, respectively. The ratios obtained with [{sup 11}C]nor-{beta}-CIT were 20%-40% higher than those previously obtained with [{sup 11}C]{beta}-CIT. Radioactivity in the thalamus and the neocortex but not in the striatum was displaceable with citalopram (5 mg/kg). In conclusion, nor-{beta}-CIT binds to the serotonin transporter in the primate brain in vitro and in vivo and has potential for PET and SPET imaging of the serotonin transporter in human brain. (orig.). With 4 figs.

  19. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  20. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Cortes, R.; Palacios, J.M.

    1985-01-01

    The distribution of serotonin-2 (5-HT 2 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [ 3 H]ketanserin, [ 3 H]mesulergine, [ 3 H]LSD and [ 3 H]spiperone, which are reported to show high affinity for 5-HT 2 receptors. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT 2 receptors. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT 2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT 2 -selective drugs. (Auth.)

  1. Brain serotonin signaling does not determine sexual preference in male mice.

    Directory of Open Access Journals (Sweden)

    Mariana Angoa-Pérez

    Full Text Available It was reported recently that male mice lacking brain serotonin (5-HT lose their preference for females (Liu et al., 2011, Nature, 472, 95-100, suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO and the main olfactory epithelium (MOE. Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2, which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female or animate (male or female mouse in estrus sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.

  2. The serotonin system in autism spectrum disorder: from biomarker to animal models

    Science.gov (United States)

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  3. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  4. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men

    NARCIS (Netherlands)

    Koopman, K. E.; Roefs, A.; Elbers, D. C. E.; Fliers, E.; Booij, J.; Serlie, M. J.; La Fleur, S. E.

    2016-01-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between

  5. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  6. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  7. Behavioral and neuropharmacological evidence that serotonin crosses the blood-brain barrier in Coturnix japonica (Galliformes; Aves

    Directory of Open Access Journals (Sweden)

    PA. Polo

    Full Text Available This study was carried out aiming to reach behavioral and neuropharmacological evidence of the permeability of the blood-brain barrier (BBB to serotonin systemically administered in quails. Serotonin injected by a parenteral route (250-1000 µg.kg-1, sc elicited a sequence of behavioral events concerned with a sleeping-like state. Sleeping-like behaviors began with feather bristling, rapid oral movements, blinking and finally crouching and closure of the eyes. Previous administration of 5-HT2C antagonist, LY53857 (3 mg.kg-1, sc reduced the episodes of feather bristling and rapid oral movements significantly but without altering the frequency of blinking and closure of the eyes. Treatment with the 5-HT2A/2C antagonist, ketanserin (3 mg.kg-1, sc did not affect any of the responses evoked by the serotonin. Quipazine (5 mg.kg-1, sc a 5-HT2A/2C/3 agonist induced intense hypomotility, long periods of yawning-like and sleeping-like states. Previous ketanserin suppressed gaping responses and reduced hypomotility, rapid oral movements and bristling but was ineffective for remaining responses induced by quipazine. Results showed that unlike mammals, serotonin permeates the BBB and activates hypnogenic mechanisms in quails. Studies using serotoninergic agonist and antagonists have disclosed that among the actions of the serotonin, feather bristling, rapid oral movements and yawning-like state originated from activation of 5-HT2 receptors while blinking and closure of the eyes possibly require other subtypes of receptors.

  8. The influence of serotonin depletion on rat behavior in the Vogel test and brain 3H-zolpidem binding.

    Science.gov (United States)

    Nazar, M; Siemiatkowski, M; Bidziński, A; Członkowska, A; Sienkiewicz-Jarosz, H; Płaźnik, A

    1999-01-01

    The influence of p-chlorophenylalanine (p-CPA) and 5,7-dihydroxytryptamine (5,7-DHT)-induced serotonin depletion on rat behavior as well as on zolpidem's the behavioral effects and binding to some brain areas of zolpidem, was examined with the help of Vogel's punished drinking test and autoradiography, respectively. Moreover, changes in the serotonin levels and turnover rate were studied in the forebrain and brainstem of rats pretreated with various ligands at the benzodiazepine (BDZ) receptors (midazolam, bretazenil, abecarnil, zolpidem). These drugs were given at doses shown previously to significantly disinhibit animal behavior suppressed by punishment in the Vogel test (Nazar et al., 1997). It was found that serotonin decrease in the frontal cortex and hippocampus after p-CPA significantly and inversely correlated with rat behavior controlled by fear in the VT. p-CPA produced an anticonflict activity in the absence of effect on spontaneous drinking, pain threshold and motility of animals. All applied benzodiazepine receptor ligands decreased the 5-HT turnover rate in the frontal cortex and hippocampus, whereas in the brainstem only abecarnil and zolpidem diminished 5-hydroxyindoleacetic acid levels. This part of the study replicated earlier data with neurotoxins and indicated that the anxiolytic-like effect of 5-HT depletion in some models of anxiety did not depend on changes in animal appetitive behavior or stimulus control. Moreover, the fact that all nonselective and selective (zolpidem) agonists of the type 1 benzodiazepine receptors seemed to produce the same anticonflict effect and decreasing 5-HT turnover indicates that this subtype of benzodiazepine receptor may be important for the interaction between brain 5-HT and GABA/BDZ systems. Accordingly, it was found that serotonin decrease enhanced the anticonflict effect of zolpidem in the Vogel test and increased 3H-zolpidem binding to the occipital cortex and substantia nigra. Altogether, the present study

  9. Effect of beta-endorphin imprinting during late pregnancy on the brain serotonin and plasma nocistatin levels of adult male rats.

    Science.gov (United States)

    Tekes, K; Gyenge, M; Hantos, M; Csaba, G

    2007-07-01

    Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).

  10. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine

    2010-01-01

    Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given......-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders....

  11. The serotonin system in autism spectrum disorder: from biomarker to animal models

    OpenAIRE

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophy...

  12. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus.

    Directory of Open Access Journals (Sweden)

    Cecilia Berg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI fluoxetine (FLU, Prozac® is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.

  13. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    Science.gov (United States)

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.

  14. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  15. MS-377, a novel selective sigma(1) receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain.

    Science.gov (United States)

    Takahashi, S; Horikomi, K; Kato, T

    2001-09-21

    A novel selective sigma(1) receptor ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), inhibits phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced behaviors in animal models. In this study, we measured extracellular dopamine and serotonin levels in the rat brain after treatment with MS-377 alone, using in vivo microdialysis. We also examined the effects of MS-377 on extracellular dopamine and serotonin levels in the rat medial prefrontal cortex after treatment with PCP. MS-377 itself had no significant effects on dopamine release in the striatum (10 mg/kg, p.o.) nor on dopamine or serotonin release in the medial prefrontal cortex (1 and 10 mg/kg, p.o.). PCP (3 mg/kg, i.p.) markedly increased dopamine and serotonin release in the medial prefrontal cortex. MS-377 (1 mg/kg, p.o.), when administered 60 min prior to PCP, significantly attenuated this effect of PCP. These results suggest that the inhibitory effects of MS-377 on PCP-induced behaviors are partly mediated by inhibition of the increase in dopamine and serotonin release in the rat medial prefrontal cortex caused by PCP.

  16. Interaction of antidepressants with the serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Sørensen, Lena; Andersen, Jacob; Thomsen, Mette

    2012-01-01

    The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used...

  17. Serotonin 2A receptor agonist binding in the human brain with [C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, A.; da Cunha-Bang, S.; McMahon, Barry P.

    2014-01-01

    [C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely ....... Thus, we here describe [C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT receptors in the human brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 April 2014; doi:10.1038/jcbfm.2014.68....... than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT receptors with [C]Cimbi-36 PET. The two-tissue compartment model using arterial input...

  18. (-)1-(Benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain.

    Science.gov (United States)

    Knoll, J; Yoneda, F; Knoll, B; Ohde, H; Miklya, I

    1999-12-01

    1. The brain constituents beta-phenylethylamine (PEA) and tryptamine enhance the impulse propagation mediated transmitter release (exocytosis) from the catecholaminergic and serotoninergic neurons in the brain ('catecholaminergic/serotoninergic activity enhancer, CAE/SAE, effect'). (-)Deprenyl (Selegiline) and (-)1-phenyl-2-propylaminopentane [(-)PPAP] are amphetamine derived CAE substances devoid of the catecholamine releasing property. 2. By changing the aromatic ring in PPAP we developed highly potent and selective CAE/SAE substances, structurally unrelated to the amphetamines. Out of 65 newly synthetized compounds, a tryptamine derived structure, (-)1-(benzofuran-2-yl)-2-propylaminopentane [(-)BPAP] was selected as a potential follower of (-)deprenyl in the clinic and as a reference compound for further analysis of the CAE/SAE mechanism in the mammalian brain. 3. (-)BPAP significantly enhanced in 0.18 micromol 1(-1) concentration the impulse propagation mediated release of [(3)H]-noradrenaline and [(3)H]-dopamine and in 36 nmol 1(-1) concentration the release of [(3)H]-serotonin from the isolated brain stem of rats. The amount of catecholamines and serotonin released from isolated discrete rat brain regions (dopamine from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from the locus coeruleus and serotonin from the raphe) enhanced significantly in the presence of 10(-12) - 10(-14) M (-)BPAP. BPAP protected cultured hippocampal neurons from the neurotoxic effect of beta-amyloid in 10(-14) M concentration. In rats (-)BPAP significantly enhanced the activity of the catecholaminergic and serotoninergic neurons in the brain 30 min after acute injection of 0.1 microg kg(-1) s.c. In the shuttle box, (-)BPAP in rats was about 130 times more potent than (-)deprenyl in antagonizing tetrabenazine induced inhibition of performance.

  19. One-step preparation of [18F]FPBM for PET imaging of serotonin transporter (SERT) in the brain

    International Nuclear Information System (INIS)

    Qiao, Hongwen; Zhang, Yan; Wu, Zehui; Zhu, Lin; Choi, Seok Rye; Ploessl, Karl; Kung, Hank F.

    2016-01-01

    Serotonin transporters (SERT) in the brain play an important role in normal brain function. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, paroxetine, escitalopram, etc., specifically target SERT binding in the brain. Development of SERT imaging agents may be useful for studying the function of SERT by in vivo imaging. A one-step preparation of [ 18 F]FPBM, 2-(2′-(dimethylamino)methyl)-4′-(3-([ 18 F]fluoropropoxy)phenylthio) benzenamine, for positron emission tomography (PET) imaging of SERT binding in the brain was achieved. An active OTs intermediate, 9, was reacted with [ 18 F]F − /K 222 to produce [ 18 F]FPBM in one step and in high radiochemical yield. This labeling reaction was evaluated and optimized under different temperatures, bases, solvents, and varying amounts of precursor 9. The radiolabeling reaction led to the desired [ 18 F]FPBM in one step and the crude product was purified by HPLC purification to give no-carrier-added [ 18 F]FPBM (radiochemical yield, 24–33%, decay corrected; radiochemical purity > 99%). PET imaging studies in normal monkeys (n = 4) showed fast, pronounced uptakes in the midbrain and thalamus, regions known to be rich in SERT binding sites. A displacement experiment with escitalopram (5 mg/kg iv injection at 30 min after [ 18 F]FPBM injection) showed a rapid and complete reversal of SERT binding, suggesting that binding by [ 18 F]FPBM was highly specific and reversible. A one-step radiolabeling method coupled with HPLC purification for preparation of [ 18 F]FPBM was developed. Imaging studies suggest that it is feasible to use this method to prepare [ 18 F]FPBM for in vivo PET imaging of SERT binding in the brain.

  20. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    Science.gov (United States)

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  1. Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine

    International Nuclear Information System (INIS)

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.; Snyder, S.H.

    1987-01-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes [ 3 H]citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for [ 3 H]citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of [ 3 H]citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of [ 3 H]citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of [ 3 H]imipramine binding reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific [ 3 H]imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of [ 3 H]imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in [ 3 H]citalopram and serotonin-sensitive [ 3 H]imipramine binding with only a small effect on serotonin-insensitive [ 3 H]imipramine binding. The dissociation rate of [ 3 H]imipramine or [ 3 H]citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive [ 3 H]imipramine high affinity binding sites closely resembles that of [ 3 H]citalopram binding

  2. Enhancement of brain serotonin by long term oral administration of tryptophan produces no effect on food intake

    International Nuclear Information System (INIS)

    Haider, S.; Akhtar, N.; Kidwai, I.M.; Haleem, D.J.

    1999-01-01

    L-tryptophan (TRP) is widely used to enhance serotonin mediate brain functions. In the Present study effects of oral administration of TRP (100mg/kg) daily for 5 weeks, were investigated on the food intake, growth rate and brain indole amine metabolism in young rats. TRP ingestion significantly increased growth rate but did not alter food intake in rats. The levels of TRP and 5-hydroxytryptamine (5-HT) were higher in the hypothalamus of TRP treated rats. Increases of 5-hydroxyindole acetic acid (5-HIAA) were hot significant. TRP, 5-HT and 5-HIAA all increased in the rest of the brain of TRP treated rats. The present study shows that long term TRP administration thorough increases brain 5-ht metabolism and turnover but functional responses to 5-ht are not necessarily increases. (author)

  3. BDNF val66met association with serotonin transporter binding in healthy humans

    DEFF Research Database (Denmark)

    Fisher, P. M.; Ozenne, B.; Svarer, C.

    2017-01-01

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted......-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT...

  4. Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Hauser Michael A

    2011-05-01

    Full Text Available Abstract Background Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD. Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4 have been shown to modulate amygdala and prefrontal cortex (PFC activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. Methods We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531 and several downstream single nucleotide polymorphisms (SNPs modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22 and a trauma-exposed control group (n = 20 in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. Results In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. Conclusions The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify

  5. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin.

    Science.gov (United States)

    Tonello, Lucio; Gashi, Bekim; Scuotto, Alessandro; Cappello, Glenda; Cocchi, Massimo; Gabrielli, Fabio; Tuszynski, Jack A

    2018-01-01

    Living organisms tend to find viable strategies under ambient conditions that optimize their search for, and utilization of, life-sustaining resources. For plants, a leading role in this process is performed by auxin, a plant hormone that drives morphological development, dynamics, and movement to optimize the absorption of light (through branches and leaves) and chemical "food" (through roots). Similarly to auxin in plants, serotonin seems to play an important role in higher animals, especially humans. Here, it is proposed that morphological and functional similarities between (i) plant leaves and the animal/human brain and (ii) plant roots and the animal/human gastro-intestinal tract have general features in common. Plants interact with light and use it for biological energy, whereas, neurons in the central nervous system seem to interact with bio-photons and use them for proper brain function. Further, as auxin drives roots "arborescence" within the soil, similarly serotonin seems to facilitate enteric nervous system connectivity within the human gastro-intestinal tract. This auxin/serotonin parallel suggests the root-branches axis in plants may be an evolutionary precursor to the gastro-intestinal-brain axis in humans. Finally, we hypothesize that light might be an important factor, both in gastro-intestinal dynamics and brain function. Such a comparison may indicate a key role for the interaction of light and serotonin in neuronal physiology (possibly in both the central nervous system and the enteric nervous system), and according to recent work, mind and consciousness.

  6. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats.

    Science.gov (United States)

    Dalal, Arindam; Poddar, Mrinal K

    2010-07-01

    Long-term consumption of artificial food color(s) can induce behavioral hyperactivity in human and experimental animals, but no neurobiochemical mechanism is defined. This study investigates the role of brain regional serotonin metabolism including its turnover, MAO-A activity, and plasma corticosterone status in relation to behavioral disturbances due to an artificial food color, erythrosine. Long-term (15 or 30 consecutive days) erythrosine administration with higher dosage (10 or 100 mg/kg/day, p.o.) produced optimal hyperactive state in exploratory behavior (rearing motor activity) after 2 h of last erythrosine administration, in young adult male albino rats. Erythrosine-induced stimulation in brain regional (medulla-pons, hypothalamus, hippocampus, and corpus striatum) serotonin metabolism (measuring steady state levels of 5-HT and 5-HIAA, MAO-A activity), including its turnover (pargyline-induced 5-HT accumulation and 5-HIAA declination rate), as well as plasma corticosterone were also observed depending on dosage(s) and duration(s) of erythrosine administration under similar experimental conditions. The lower dosage of erythrosine (1 mg/kg/day, p.o.) under similar conditions did not affect either of the above. These findings suggests (a) the induction as well as optimal effect of long-term erythrosine (artificial food color) on behavioral hyperactivity in parallel with increase in 5-HT level in brain regions, (b) the activation of brain regional serotonin biosynthesis in accordance with plasma corticosterone status under such behavioral hyperactivity, and (c) a possible inhibitory influence of the enhanced glucocorticoids-serotonin interaction on erythrosine-induced rearing motor hyperactivity in young adult mammals.

  7. Serotonin transporter and dopamine transporter imaging in the canine brain

    International Nuclear Information System (INIS)

    Peremans, Kathelijne; Goethals, Ingeborg; De Vos, Filip; Dobbeleir, A.; Ham, Hamphrey; Van Bree, Henri; Heeringen, Cees van; Audenaert, Kurt

    2006-01-01

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [ 123 I]-β-CIT and [ 123 I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models

  8. No effect of C1473G polymorphism in the tryptophan hydroxylase 2 gene on the response of the brain serotonin system to chronic fluoxetine treatment in mice.

    Science.gov (United States)

    Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V

    2017-07-13

    Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on serotonin markers in Göttingen minipig brain

    DEFF Research Database (Denmark)

    Cumming, Paul; Møller, Mette; Benda, Kjeld

    2007-01-01

    The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neuroch......The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive...... with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days...... reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion...

  10. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  11. BDNF Val66met and 5-HTTLPR polymorphisms predict a human in vivo marker for brain serotonin levels

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Holst, Klaus K; Adamsen, Dea

    2015-01-01

    ) polymorphism. We applied a linear latent variable model (LVM) using regional 5-HT4 binding values (neocortex, amygdala, caudate, hippocampus, and putamen) from 68 healthy humans, allowing us to explicitly model brain-wide and region-specific genotype effects on 5-HT4 binding. Our data supported an LVM wherein...... specifically affects 5-HT4 binding in the neocortex. These findings implicate serotonin signaling as an important molecular mediator underlying the effects of BDNF val66met and 5-HTTLPR on behavior and related risk for neuropsychiatric illness in humans. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc....

  12. The importance of serotonin in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Jarosław Koza

    2017-12-01

    Description of the current knowledge and conclusions. Serotonin is responsible for some symptoms of carcinoid syndrome. It is the result of higher 5-hydroxytryptamine content in the body. Moreover disrupted serotonin system is found in different gastrointestinal disorders e.g. in gastroesophageal reflux disease, functional heartburn, hypersensitive esophagus, functional dyspepsia, irritable bowel syndrome (both diarrhoea predominant and constipation predominant as well as in inflammatory bowel diseases. Knowledge of changed mechanisms in particular diseases facilitates the optimal choice of treatment. Drugs affecting the serotonin system in gastroenterological clinical practice are useful especially in the case of abnormalities in the brain - gut axis.

  13. Serotonin transporter and dopamine transporter imaging in the canine brain

    Energy Technology Data Exchange (ETDEWEB)

    Peremans, Kathelijne [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Goethals, Ingeborg [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); De Vos, Filip [Laboratory of Radiopharmacy, Pharmaceutical Sciences, Ghent University, B-9000 Ghent (Belgium); Dobbeleir, A. [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Ham, Hamphrey [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); Van Bree, Henri [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Heeringen, Cees van [Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium); Audenaert, Kurt [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium) and Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium)]. E-mail: kurt.audenaert@ugent.be

    2006-10-15

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [{sup 123}I]-{beta}-CIT and [{sup 123}I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models.

  14. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Directory of Open Access Journals (Sweden)

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  15. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2014-06-01

    Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. © FASEB.

  16. The postirradiation effect of noradrenaline, serotonin and dopamine on Na-K-pump activity in rat brain sections

    International Nuclear Information System (INIS)

    Dvoretskij, A.I.; Kulikova, I.A.

    1993-01-01

    Whole-body X-irradiation with doses of 0.155 and 0.310 C/kg was shown to modify in different ways the activating effects of noradrenaline and serotonin, as well as a biphase effect of dopamine of neuronal membranes. The resulting effect was a function of a combination of radiation doses and neurotransmitter concentrations and thus showed different modes of interaction between neurotransmitter and ion-transport systems of brain cells in radiation sickness

  17. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  18. In vivo quantification by SPECT of [123I] ADAM bound to serotonin transporters in the brains of rabbits

    International Nuclear Information System (INIS)

    Ye, X.-X.; Hwang, J.-J.; Hsieh, J.-F.; Chen, J.-C.; Chou, Y.-T.; Tu, K.-Y.; Wey, S.-P.; Ting Gann

    2004-01-01

    Background: A novel radioiodine ligand [ 123 I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [ 123 I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [ 123 I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [ 123 I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89±0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [ 123 I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with [ 123 I] ADAM showed

  19. (−)1-(Benzofuran-2-yl)-2-propylaminopentane, [(−)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain

    Science.gov (United States)

    Knoll, Joseph; Yoneda, Fumio; Knoll, Berta; Ohde, Hironori; Miklya, Ildikó

    1999-01-01

    The brain constituents β-phenylethylamine (PEA) and tryptamine enhance the impulse propagation mediated transmitter release (exocytosis) from the catecholaminergic and serotoninergic neurons in the brain (‘catecholaminergic/serotoninergic activity enhancer, CAE/SAE, effect'). (−)Deprenyl (Selegiline) and (−)1-phenyl-2-propylaminopentane [(−)PPAP] are amphetamine derived CAE substances devoid of the catecholamine releasing property.By changing the aromatic ring in PPAP we developed highly potent and selective CAE/SAE substances, structurally unrelated to the amphetamines. Out of 65 newly synthetized compounds, a tryptamine derived structure, (−)1-(benzofuran-2-yl)-2-propylaminopentane [(−)BPAP] was selected as a potential follower of (−)deprenyl in the clinic and as a reference compound for further analysis of the CAE/SAE mechanism in the mammalian brain.(−)BPAP significantly enhanced in 0.18 μmol 1−1 concentration the impulse propagation mediated release of [3H]-noradrenaline and [3H]-dopamine and in 36 nmol 1−1 concentration the release of [3H]-serotonin from the isolated brain stem of rats. The amount of catecholamines and serotonin released from isolated discrete rat brain regions (dopamine from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from the locus coeruleus and serotonin from the raphe) enhanced significantly in the presence of 10−12–10−14 M (−)BPAP. BPAP protected cultured hippocampal neurons from the neurotoxic effect of β-amyloid in 10−14 M concentration. In rats (−)BPAP significantly enhanced the activity of the catecholaminergic and serotoninergic neurons in the brain 30 min after acute injection of 0.1 μg kg−1 s.c. In the shuttle box, (−)BPAP in rats was about 130 times more potent than (−)deprenyl in antagonizing tetrabenazine induced inhibition of performance. PMID:10588928

  20. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  1. Serotonin: A mediator of the gut-brain axis in multiple sclerosis.

    Science.gov (United States)

    Malinova, Tsveta S; Dijkstra, Christine D; de Vries, Helga E

    2017-11-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a microbial-modulated neurotransmitter (NT) as a showcase to demonstrate that NTs regulated by the gut microbiome are potent candidates for mediators of the gut-brain axis in demyelinating disorders. Methods, Results, and Conclusion: Our comprehensive overview of literature provides evidence that 5-HT levels in the gut are controlled by the microbiome, both via secretion and through regulation of metabolites. In addition, we demonstrate that the gut microbiome can influence the formation of the serotonergic system (SS) in the brain. We also show that SS alterations have been related to MS directly-altered expression of 5-HT transporters in central nervous system (CNS) and indirectly-beneficial effects of 5-HT modulating drugs on the course of the disease and higher prevalence of depression in patients with MS. Finally, we discuss briefly the role of other microbiome-modulated NTs such as γ-aminobutyric acid and dopamine in MS to highlight a new direction for future research aiming to relate microbiome-regulated NTs to demyelinating disorders.

  2. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    Energy Technology Data Exchange (ETDEWEB)

    Hummerich, Rene [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Schulze, Oliver [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Raedler, Thomas [Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Mikecz, Pal [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Reimold, Matthias [Department of Nuclear Medicine, University Hospital Tuebingen, D-72076 Tuebingen (Germany); Brenner, Winfried [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Clausen, Malte [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Schloss, Patrick [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Buchert, Ralph [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany)]. E-mail: buchert@uke.uni-hamburg.de

    2006-04-15

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [{sup 11C}] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [{sup 11}C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [{sup 11}C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [{sup 3}H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V {sub max} of SERT without affecting the Michaelis-Menten constant K {sub M}. Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [{sup 11}C] (+)McN5652 PET is not significantly affected by endogenous serotonin.

  3. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    International Nuclear Information System (INIS)

    Hummerich, Rene; Schulze, Oliver; Raedler, Thomas; Mikecz, Pal; Reimold, Matthias; Brenner, Winfried; Clausen, Malte; Schloss, Patrick; Buchert, Ralph

    2006-01-01

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [ 11C ] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [ 11 C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [ 11 C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [ 3 H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V max of SERT without affecting the Michaelis-Menten constant K M . Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [ 11 C] (+)McN5652 PET is not significantly affected by endogenous serotonin

  4. Synthesis and evaluation of racemic [11C]NS2456 and its enantiomers as selective serotonin reuptake radiotracers for PET

    International Nuclear Information System (INIS)

    Smith, D.F.; Bender, D.; Marthi, K.; Cumming, P.; Hansen, S.B.; Peters, D.; Oestergaard Nielsen, E.; Scheel-Krueger, J.; Gjedde, A.

    2001-01-01

    Positron emission tomography (PET) radiotracers are needed for quantifying serotonin uptake sites in the living brain. Therefore, we evaluated a new selective serotonin reuptake inhibitor, NS2456, to determine whether it is suited for use in PET. Racemic NS2456 [(1RS,5SR)-8-methyl-3-[4-trifluoromethoxyphenyl]-8-azabicyclo [3.2.1]oct-2-ene] and its N-demethylated analog, racemic NS2463, selectively inhibited serotonin uptake in rat brain synaptosomes; their IC 50 values were 3000-fold lower for [ 3 H]serotonin than for either [ 3 H]dopamine or [ 3 H]noradrenaline. The enantiomers of NS2463 were also potent inhibitors of serotonin uptake in vitro, but they failed to show stereoselectivity. Racemic NS2463 as well as its enantiomers were radiolabelled by N-methylation with C-11, yielding [ 11 C]NS2456 for use in PET of the living porcine brain. The compounds crossed the blood-brain barrier rapidly and accumulated preferentially in regions rich in serotonin uptake sites (e.g., brainstem, subthalamus and thalamus). However, their binding potentials were relatively low and no stereoselectivity was found. Thus, neither racemic [ 11 C]NS2456 nor its [ 11 C]-labelled enantiomers are ideal for PET neuroimaging of neuronal serotonin uptake sites

  5. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease.

    Science.gov (United States)

    Puig, M Victoria; Gener, Thomas

    2015-07-15

    There is mounting evidence that most cognitive functions depend upon the coordinated activity of neuronal networks often located far from each other in the brain. Ensembles of neurons synchronize their activity, generating oscillations at different frequencies that may encode behavior by allowing an efficient communication between brain areas. The serotonin system, by virtue of the widespread arborisation of serotonergic neurons, is in an excellent position to exert strong modulatory actions on brain rhythms. These include specific oscillatory activities in the prefrontal cortex and the hippocampus, two brain areas essential for many higher-order cognitive functions. Psychiatric patients show abnormal oscillatory activities in these areas, notably patients with schizophrenia who display psychotic symptoms as well as affective and cognitive impairments. Synchronization of neural activity between the prefrontal cortex and the hippocampus seems to be important for cognition and, in fact, reduced prefronto-hippocampal synchrony has been observed in a genetic mouse model of schizophrenia. Here, we review recent advances in the field of neuromodulation of brain rhythms by serotonin, focusing on the actions of serotonin in the prefrontal cortex and the hippocampus. Considering that the serotonergic system plays a crucial role in cognition and mood and is a target of many psychiatric treatments, it is surprising that this field of research is still in its infancy. In that regard, we point to future investigations that are much needed in this field.

  6. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  7. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies

    International Nuclear Information System (INIS)

    Lundquist, Pinelopi; Wilking, Helena; Hoeglund, A. Urban; Sandell, Johan; Bergstroem, Mats; Hartvig, Per; Langstroem, Bengt

    2005-01-01

    The serotonin transporter radioligand [ 11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [ 11 C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [ 11 C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [ 11 C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [ 11 C]DASB for transporter binding

  8. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Directory of Open Access Journals (Sweden)

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  9. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    International Nuclear Information System (INIS)

    Hartig, P.R.; Scheffel, U.; Frost, J.J.; Wagner, H.N. Jr.

    1985-01-01

    The binding of 125 I-LSD (2-[ 125 I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125 I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125 I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125 I-LSD. Serotonergic compounds potently inhibited 125 I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125 I-LSD labels serotonin 5-HT 2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125 I-LSD labeling occurs predominantly or entirely at serotonic 5-HT 2 sites. In the striatum, 125 I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125 I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT 2 receptors in the mammalian cortex

  10. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    Science.gov (United States)

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  11. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha...

  12. Characterization of bromine-76-labelled 5-bromo-6-nitroquipazine for PET studies of the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Lundkvist, Camilla E-mail: Lundkvis@shfj.cea.fr; Loc' h, Christian; Halldin, Christer; Bottlaender, Michel; Ottaviani, Michele; Coulon, Christine; Fuseau, Chantal; Mathis, Chester; Farde, Lars; Maziere, Bernard

    1999-07-01

    The development of suitable radioligands for brain imaging of the serotonin transporter is of great importance for the study of depression and other affective disorders. The potent and selective serotonin transporter ligand, 5-iodo-6-nitro-2-piperazinylquinoline, has been labelled with iodine-123 and used as a radioligand for single photon emission computerized tomography. To evaluate the potential of the bromine-76-labelled analogue, 5-bromo-6-nitroquipazine, as a radioligand for positron emission tomography (PET), its brain distribution and binding characteristics were examined in rats. In vivo brain distribution and ex vivo autoradiography demonstrated that [{sup 76}Br]5-bromo-6-nitroquipazine enters the brain rapidly. The regional brain distribution of [{sup 76}Br]5-bromo-6-nitroquipazine was consistent with the known distribution of serotonin transporters in the midbrain, pons, thalamus, striatum, and neocortex. Specific binding was inhibited by the selective serotonin reuptake inhibitor citalopram. The peripheral metabolism in plasma was rapid, but more than 90% of the radioactivity in brain represented unchanged radioligand 2 h postinjection (p.i.). A preliminary PET study was also performed in a baboon. Following the intravenous injection of [{sup 76}Br]5-bromo-6-nitroquipazine in a baboon, there was a conspicuous accumulation of radioactivity in thalamus, striatum, and pons. The radioactivity in these brain regions was 1.5 times higher than in the cerebellum at 3 h and 2.5-4 times higher at 24 h. A rapid metabolism of the radioligand in plasma was observed (38% unchanged after 5 min). The results indicate that [{sup 76}Br]5-bromo-6-nitroquipazine has potential for PET imaging of the serotonin transporter.

  13. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin

    Science.gov (United States)

    Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Rached, Marie-Therese; Zhou, Bin; Wang, Ji; Townes, Tim M.; Hen, Rene; DePinho, Ronald A.; Guo, X. Edward; Kousteni, Stavroula

    2012-01-01

    Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element–binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation. PMID:22945629

  14. Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates.

    Science.gov (United States)

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-05-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.

  15. [{sup 14}C]Serotonin uptake and [O-methyl-{sup 11}C]venlafaxine kinetics in porcine brain

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.F. E-mail: dfsmith@inet.uni2.dk; Hansen, S.B.; Oestergaard, L.; Gee, A.D.; Danielsen, E.; Ishizu, K.; Bender, D.; Poulsen, P.H.; Gjedde, A

    2001-08-01

    As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-{sup 11}C]-labeled for PET. Synaptosomal studies showed that the active uptake of [{sup 14}C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphe region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-{sup 11}C]venlafaxine from blood to brain was highest in the hypothalamus, raphe region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-{sup 11}C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.

  16. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites

    International Nuclear Information System (INIS)

    Battaglia, G.; Yeh, S.Y.; O'Hearn, E.; Molliver, M.E.; Kuhar, M.J.; De Souza, E.B.

    1987-01-01

    This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%) in the density of [ 3 H]paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of [ 3 H]mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals

  17. Exercise and sleep in aging: emphasis on serotonin.

    Science.gov (United States)

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.

    Science.gov (United States)

    Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje

    2017-11-22

    Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This

  19. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    Directory of Open Access Journals (Sweden)

    Dea Siggaard Stenbæk

    Full Text Available Serotonin (5-HT brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R brain availability, which has recently become possible to image with Positron Emission Tomography (PET. This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females, the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17 or the latent construct of global 5-HT4R levels (all p-values > .37. Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  20. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    Science.gov (United States)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  1. In vivo quantification by SPECT of [{sup 123}I] ADAM bound to serotonin transporters in the brains of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hsieh, J.-F. [Department of Nuclear Medicine, Chi-Mei Foundation Medical Center, Yungkang City 710, Taiwan (China); Chen, J.-C. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jcchen@ym.edu.tw; Chou, Y.-T. [Institute of Physiology, National Yang-Ming University, Taipei 112, Taiwan (China); Tu, K.-Y. [Department of Nuclear Medicine, Mackey Memorial Hospital, Taipei, Taiwan 104 (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan 333 (China); Ting Gann [Institute of Nuclear Energy Research, Tao- Yuan 335, Taiwan (China)

    2004-11-01

    Background: A novel radioiodine ligand [{sup 123}I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [{sup 123}I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [{sup 123}I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [{sup 123}I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89{+-}0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [{sup 123}I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with

  2. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  4. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.

    2012-01-01

    in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved......'s food intake. They also suggest that pharmacological stimulation of the cerebral 5-HT4R may reduce reward-related overeating in humans....

  5. Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo

    Science.gov (United States)

    Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo

    2014-01-01

    The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305

  6. Serotonin and Blood Pressure Regulation

    Science.gov (United States)

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  7. Evening dietary tryptophan improves post-sleep behavioral and brain measures of memory function in healthy subjects

    NARCIS (Netherlands)

    Markus, C.R.; Jonkman, L.M.; Lammers, J.H.C.M.; Deutz, N.E.P.

    2006-01-01

    Brain serotonin function has been implicated in the control of sleep and sleep related memory dysfunctions are attributed to deficient brain serotonin activity. Depletion of the serotonin precursor tryptophan reduces brain serotonin function and is found to cause sleep abnormalities and cognitive

  8. From Blood to Brain: Adult-Born Neurons in the Crayfish Brain Are the Progeny of Cells Generated by the Immune System

    Directory of Open Access Journals (Sweden)

    Barbara S. Beltz

    2017-12-01

    Full Text Available New neurons continue to be born and integrated into the brains of adult decapod crustaceans. Evidence in crayfish indicates that the 1st-generation neural precursors that generate these adult-born neurons originate in the immune system and travel to the neurogenic niche via the circulatory system. These precursors are attracted to the niche, become integrated amongst niche cells, and undergo mitosis within a few days; both daughters of this division migrate away from the niche toward the brain clusters where they will divide again and differentiate into neurons. In the crustacean brain, the rate of neuronal production is highly sensitive to serotonin (5-hydroxytryptamine, 5-HT levels. These effects are lineage-dependent, as serotonin's influence is limited to late 2nd-generation neural precursors and their progeny. Experiments indicate that serotonin regulates adult neurogenesis in the crustacean brain by multiple mechanisms: via direct effects of serotonin released from brain neurons into the hemolymph or by local release onto target cells, or by indirect influences via a serotonin-mediated release of agents from other regions, such as hormones from the sinus gland and cytokines from hematopoietic tissues. Evidence in crayfish also indicates that serotonin mediates the attraction of neural precursors generated by the immune system to the neurogenic niche. Thus, studies in the crustacean brain have revealed multiple roles for this monoamine in adult neurogenesis, and identified several pathways by which serotonin influences the generation of new neurons.

  9. Expression analysis for inverted effects of serotonin transporter inactivation

    International Nuclear Information System (INIS)

    Ichikawa, Manabu; Okamura-Oho, Yuko; Shimokawa, Kazuro; Kondo, Shinji; Nakamura, Sakiko; Yokota, Hideo; Himeno, Ryutaro; Lesch, Klaus-Peter; Hayashizaki, Yoshihide

    2008-01-01

    Inactivation of serotonin transporter (HTT) by pharmacologically in the neonate or genetically increases risk for depression in adulthood, whereas pharmacological inhibition of HTT ameliorates symptoms in depressed patients. The differing role of HTT function during early development and in adult brain plasticity in causing or reversing depression remains an unexplained paradox. To address this we profiled the gene expression of adult Htt knockout (Htt KO) mice and HTT inhibitor-treated mice. Inverted profile changes between the two experimental conditions were seen in 30 genes. Consistent results of the upstream regulatory element search and the co-localization search of these genes indicated that the regulation may be executed by Pax5, Pax7 and Gata3, known to be involved in the survival, proliferation, and migration of serotonergic neurons in the developing brain, and these factors are supposed to keep functioning to regulate downstream genes related to serotonin system in the adult brain

  10. SPECT imaging of dopamine and serotonin transporters with [[sup 123]I][beta]-CIT. Binding kinetics in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Bruecke, T; Asenbaum, S; Frassine, H; Podreka, I [Vienna Univ. (Austria). Neurologische Klinik; Kornhuber, J [Wuerzburg Univ. (Germany); Angelberger, P [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1993-01-01

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [[sup 123]I]-2-[beta]-carbomethoxy-3-[beta]-(4-iodophenyl)-tropane ([[sup 123]I][beta]-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [[sup 123]I][beta]-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [[sup 123]I][beta]-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain.

  11. Different components of 3H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    International Nuclear Information System (INIS)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous 3 H-imipramine ( 3 H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM 3 H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three 3 H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific 3 H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables

  12. Effects of ageing on serotonin transporters in healthy females

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Tammela, L.; Karhunen, L.; Uusitupa, M.; Bergstroem, K.A.; Tiihonen, J.

    2001-01-01

    The effect of ageing on brain serotonin transporters was evaluated in 19 healthy female volunteers (age range 22-74 years) using single-photon emission tomography and [ 123 I] nor-β-CIT. The study subjects were scanned 0.3, 3, 6 and 23 h after injection of 185 MBq of [ 123 I] nor-β-CIT. The ratio of the distribution volume for tracer in the midbrain to that in the cerebellum minus 1 was used as an index for serotonin transporter binding. An age-related decline of 2% per decade (r=-0.47; P 123 I] nor-β-CIT binding in the serotonin transporter-rich area is much less than that in dopamine transporters in the striatum (6% per decade). (orig.)

  13. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.

    2010-01-01

    The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine...

  14. Effects of early serotonin programming on behavior and central monoamine concentrations in an avian model

    Science.gov (United States)

    Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...

  15. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  16. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  17. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  18. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  19. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification.

    Directory of Open Access Journals (Sweden)

    Lise Gutknecht

    Full Text Available Brain serotonin (5-HT is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2. Tph2 inactivation (Tph2-/- resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A and 5-HT(1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.

  20. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    International Nuclear Information System (INIS)

    Hussain, M.N.; Benedict, C.R.

    1987-01-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day

  1. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    International Nuclear Information System (INIS)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  3. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    International Nuclear Information System (INIS)

    Li, I-H.; Huang, W.-S.; Yeh, C.-B.; Liao, M.-H.; Chen, C.-C.; Shen, L.-H.; Liu, J.-C.; Ma, K.-H.

    2009-01-01

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [ 99m Tc]TRODAT-1 (a dopamine transporter imaging agent) and [ 123 I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [ 99m Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [ 123 I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [ 99m Tc]TRODAT-1 and [ 123 I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  4. Gender differences in alpha-[(11)C]MTrp brain trapping, an index of serotonin synthesis, in medication-free individuals with major depressive disorder: a positron emission tomography study.

    Science.gov (United States)

    Frey, Benicio N; Skelin, Ivan; Sakai, Yojiro; Nishikawa, Masami; Diksic, Mirko

    2010-08-30

    Women are at higher risk than men for developing major depressive disorder (MDD), but the mechanisms underlying this higher risk are unknown. Here, we report proportionally normalized alpha-[(11)C]methyl-L-tryptophan brain trapping constant (alpha-[(11)C]MTrp K*(N)), an index of serotonin synthesis, in 25 medication-free individuals with MDD and in 25 gender- and age-matched healthy subjects who were studied using positron emission tomography (PET). Comparisons of alpha-[(11)C]MTrp K*(N) values between the men and women were conducted at the voxel and cluster levels using Statistical Parametric Mapping 2 (SPM2) analysis. In addition, the alpha-[(11)C]MTrp K*(N) values on both sides of the brain were extracted and compared to identify the left to right differences, as well as the gender differences. Women with MDD displayed higher alpha-[(11)C]MTrp K*(N) than men in the inferior frontal gyrus, anterior cingulate cortex (ACC), parahippocampal gyrus, precuneus, superior parietal lobule, and occipital lingual gyrus. In a matched group of normal subjects the gender differences were opposite from those found in MDD patients. Significant hemispheric differences in fronto-limbic structures between men and women with MDD were also observed. The K*(N) extracted from the volumes identified in MDD patients and in male and female normal subjects suggested no significant differences between males and females. In conclusion, depressed women have higher serotonin synthesis in multiple regions of the prefrontal cortex and limbic system involved with mood regulation, as compared with depressed men. Gender differences in brain serotonin synthesis may be related to higher risk for MDD in women. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Changes in EEG indices and serotonin concentrations in depression and anxiety disorders

    Directory of Open Access Journals (Sweden)

    I. V. Kichuk

    2016-01-01

    Full Text Available Electroencephalogram (EEG is an important tool to study brain function. EEG can evaluate the current functional state of the brain with high temporal resolution and identify metabolic and ion disorders that cannot be detected by magnetic resonance imaging.Objective: to analyze the relationship between some neurophysiological and biochemical parameters with a Neuro-KM hardware-software complex for the topographic mapping of brain electrical activity.Patients and methods. 75 patients with depression, 101 with anxiety disorders (AD, and 86 control individuals were examined. EEG spectrum and coherence changes were estimated in the depression and AD groups versus the control group. Correlation analysis of EEG indices and blood serotonin concentrations was carried out.Results and discussion. The patients with depression and those with AD as compared to the controls were observed to have similar EEG spectral changes in the beta band. Coherence analysis in the beta-band showed that both disease groups versus the control group had oppositely directed changes: a reduction in intra- and interhemispheric coherence for depression and its increase for AD (p < 0.001. That in the theta and alpha bands revealed that both disease groups had unidirectional interhemispheric coherence changes: a decrease in integration in the alpha band and its increase in the theta and delta bands in the depression and AD groups (p < 0.05 and multidirectional changes in intrahemispheric coherence: its reduction in the depression group and an increase in the AD group (p < 0.05. Correlation analysis of EEG parameters and platelet serotonin concentrations showed opposite correlations of serotonin concentrations and EEG percentage power in the theta and beta bands. When there were higher serotonin concentrations in the patients with depression, EEG demonstrated a preponderance of a synchronization pattern; when these were in the patients with AD, there was a predominance

  6. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    Science.gov (United States)

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  7. Contribution to the study of the radioprotective effect of serotonin on brain spontaneous and evoked electrical activities in the adult rabbit following whole-body lethal $gamma$-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fatome, M; Court, L

    1973-11-01

    Thesis. Submitted to Paris Univ., (France). A 1 to 12 mg/kg serotonin- creatine-sulfate intravenous injection seems to act only slightly on the chronic implanted rabbit CNS except for an increase in latencies and delays of the fast components of evoked potentials and a generalized decrease in the total energy of the signal occurring 20 to 60 min after the injection. The CNS is given a real protection by a 10 mg/kg serotonin injec, tion 20 min before a 650 R whole-body exposure, the spontaneous or induced electrical activity being slightly disturbed. In the hours following irradiation the total energy increase is less important than in the unprotected animal, and there is no clear variation towards the low frequencies. Serotonin could act on the brain structures and the total energy of the signal through its depressing effect. Its radioprotective effect could act, at least partly, through the CNS. (auth)

  8. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Anniek K.D.; Waarde, Aren van; Willemsen, Antoon T.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Bosker, Fokko J. [University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Luiten, Paul G.M. [University of Groningen, Center for Behavior and Neurosciences, Department of Molecular Neurobiology, Haren (Netherlands); Boer, Johan A. den [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Kema, Ido P. [University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Dierckx, Rudi A.J.O. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2011-03-15

    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are {alpha}-[{sup 11}C]methyltryptophan ([{sup 11}C]AMT) and 5-hydroxy-L-[{beta}-{sup 11}C]tryptophan ([{sup 11}C]5-HTP). Both tracers have advantages and disadvantages. [{sup 11}C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [{sup 11}C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain. (orig.)

  9. No evidence for a role of the serotonin 4 receptor in five-factor personality traits

    DEFF Research Database (Denmark)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo...... serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone...... in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated...

  10. Co-treatment with imipramine averted haloperidol-instigated tardive dyskinesia: Association with serotonin in brain regions.

    Science.gov (United States)

    Samad, Noreen; Yasmin, Farzana; Haleem, Darakhshan Jabeen

    2016-11-01

    Outcome of imipramine (IMI) treatment was scrutinized on progression of haloperidol instigated tardive dyskinesia (TD). 0.2 mg/kg/rat dosage of haloperidol provided orally to rats for 2 weeks enhanced vacuous chewing movements that escalated when the process proceeded for 5 weeks. Following 2 weeks co-injection 5 mg/kg dosage of IMI was diminished haloperidol-instigated VCMs and fully averted following five weeks. The potency of 8-OH-DPAT-instigated locomotor activity exhibited higher in saline+haloperidol treated rats while not observed in IMI+ haloperidol treated rats. 8-OH-DPAT-instigated low 5-hydroxytryptamine (5-HT; serotonin) metabolism was higher in saline+ haloperidol treated rats when compare to IMI+ haloperidol treated rats in both regions of brain (striatum and midbrain). It is recommended that IMI possibly competent in averting TD, in cases receiving treatment to antipsychotics.

  11. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain.

    Science.gov (United States)

    Bonnin, A; Levitt, P

    2011-12-01

    In addition to its role in neurotransmission, embryonic serotonin (5-HT) has been implicated in the regulation of neurodevelopmental processes. For example, we recently showed that a subset of 5-HT1-receptors expressed in the fetal forebrain mediate a serotonergic modulation of thalamocortical axons response to axon guidance cues, both in vitro and in vivo. This influence of 5-HT signaling on fetal brain wiring raised important questions regarding the source of the ligand during pregnancy. Until recently, it was thought that 5-HT sources impacting brain development arose from maternal transport to the fetus, or from raphe neurons in the brainstem of the fetus. Using genetic mouse models, we uncovered previously unknown differences in 5-HT accumulation between the fore- and hindbrain during early and late fetal stages, through an exogenous source of 5-HT. Using additional genetic strategies, a new technology for studying placental biology ex vivo, and direct manipulation of placental neosynthesis, we investigated the nature of this exogenous source and uncovered a placental 5-HT synthetic pathway from a maternal tryptophan precursor, in both mice and humans. These results implicate a new, direct role for placental metabolic pathways in modulating fetal brain development and suggest an important role for maternal-placental-fetal interactions and 5-HT in the fetal programming of adult mental disorders. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  13. In vivo regulation of the serotonin-2 receptor in rat brain

    International Nuclear Information System (INIS)

    Stockmeier, C.A.; Kellar, K.J.

    1986-01-01

    Serotonin-2 (5-HT-2) receptors in brain were measured using ( 3 H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on ( 3 H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC 50 nor the Hill coefficient of 5-HT in competing for ( 3 H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of ( 3 H)5-HT or ( 3 H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables

  14. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  16. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Energy Technology Data Exchange (ETDEWEB)

    Li, I-H. [Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan (China); Huang, W.-S. [Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Yeh, C.-B. [Department of Psychiatry, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Liao, M.-H.; Chen, C.-C.; Shen, L.-H. [Division of Isotope Application, Institute of Nuclear Energy Research, Taoyaun, 325 Taiwan (China); Liu, J.-C. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China); Ma, K.-H. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China)], E-mail: kuohsing91@yahoo.com.tw

    2009-08-15

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [{sup 99m}Tc]TRODAT-1 (a dopamine transporter imaging agent) and [{sup 123}I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [{sup 99m}Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [{sup 123}I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [{sup 99m}Tc]TRODAT-1 and [{sup 123}I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  17. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, Anders; Svarer, Claus; McMahon, Brenda

    2016-01-01

    INTRODUCTION: [(11)C]Cimbi-36 is a recently developed serotonin 2A (5-HT2A) receptor agonist positron emission tomography (PET) radioligand that has been successfully applied for human neuroimaging. Here, we investigate the test-retest variability of cerebral [(11)C]Cimbi-36 PET and compare [(11)C...... test-retest variability in [(11)C]Cimbi-36 binding measures, and another eight were scanned after a bolus plus constant infusion with [(18)F]altanserin. Regional differences in the brain distribution of [(11)C]Cimbi-36 and [(18)F]altanserin were assessed with a correlation of regional binding measures...... and with voxel-based analysis. RESULTS: Test-retest variability of [(11)C]Cimbi-36 non-displaceable binding potential (BPND) was consistently correlation between regional...

  18. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  19. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  20. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  1. Transient serotonin syndrome by concurrent use of electroconvulsive therapy and selective serotonin reuptake inhibitor: a case report and review of the literature.

    Science.gov (United States)

    Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki

    2012-01-01

    The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  2. Effects of Postnatal Serotonin Agonism on Fear Response and Memory

    Science.gov (United States)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...

  3. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  4. Serotonin: A mediator of the gut-brain axis in multiple sclerosis

    NARCIS (Netherlands)

    Malinova, Tsveta S.; Dijkstra, Christine D.; de Vries, Helga E.

    2017-01-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a

  5. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.

    Science.gov (United States)

    Gillman, P Ken

    2010-02-01

    The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.

  6. Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability.

    Science.gov (United States)

    Pijl, H; de Meijer, P H; Langius, J; Coenegracht, C I; van den Berk, A H; Chandie Shaw, P K; Boom, H; Schoemaker, R C; Cohen, A F; Burggraaf, J; Meinders, A E

    2001-12-01

    We explored energy and macronutrient intake in patients with Graves' hyperthyroidism. We specifically hypothesized that hyperthyroidism is associated with increased appetite for carbohydrates, because of enhanced sympathetic tone and diminished serotonin mediated neurotransmission in the brain. To test this hypothesis, we measured food intake by dietary history and food selected for lunch in the laboratory in 14 patients with Graves' hyperthyroidism. Twenty-four-hour catecholamine excretion was used as a measure of activity of the sympathetic nervous system (SNS) and the plasma [Trp]/[NAA] ratio was measured to estimate (rate limiting) precursor availability for brain 5-hydroxytryptamine synthesis. All measurements were repeated after the subjects had been treated to establish euthyroidism. In addition, the effects of nonselective beta-adrenoceptor blockade upon these parameters were studied to evaluate the influence of beta-adrenergic hyperactivity on food intake. Hyperthyroidism was marked by increased SNS activity and reduced plasma [Trp]/[NAA] ratio. Accordingly, energy intake was considerably and significantly increased in hyper vs. euthyroidism, which was fully attributable to enhanced carbohydrate consumption, as protein and fat intake were not affected. These results suggest that hyperthyroidism alters the neurophysiology of food intake regulation. Increased SNS activity and reduced Trp precursor availability for 5-hydroxytryptamine synthesis in the brain may drive the marked hyperphagia and craving for carbohydrates that appears to characterize hyperthyroid patients. Because propranolol did not affect food intake in hyperthyroidism, the potential effect of catecholamines on food intake might be mediated by alpha-adrenoceptors.

  7. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  8. Effects of Early Serotonin Programming on Fear Response, Memory and Aggression

    Science.gov (United States)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter development of serotonergic circuitry, altering behaviors mediated by 5-HT signaling, including memory, fear and aggression. The present study was desi...

  9. Abnormal serotonin transporter availability in the brains of adults with conduct disorder.

    Science.gov (United States)

    Chang, Chieh; Gau, Susan Shur-Fen; Huang, Wen-Sheng; Shiue, Chyng-Yann; Yeh, Chin-Bin

    2017-06-01

    The aims of the current study were to determine whether patients with conduct disorder (CD) showed an abnormal availability of serotonin reuptake transporter (SERT), and if their hyperkinetic symptoms, impulsivity, and quality of life were correlated with the availability of SERT. We recruited 14 drug-naïve patients with CD and eight age-matched healthy controls (HCs). The adult attention-deficit/hyperactivity disorder (ADHD) self-report scale (ASRS), Barrett impulsivity scale (BIS), and the World Health Organization quality of life-brief version (WHOQOL-BREF) scale were administered. Positron emission tomography (PET) of the brain with 4-[ 18 F]-ADAM was arranged for SERT imaging. SERT availability was significantly reduced in the striatum and midbrain of patients with CD. Quality of life and inattention symptoms were also significantly correlated with the availability of SERT in the prefrontal cortex. The study suggested that a reduction in the availability of SERT might be associated with CD and could potentially predict poor quality of life or symptoms of inattention for these patients. The implications of our results might be limited to individuals with CD; a future study with a larger sample to validate our preliminary results is warranted. Copyright © 2016. Published by Elsevier B.V.

  10. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.J.A.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  11. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; de Bruin, A.

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  12. Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice.

    Science.gov (United States)

    Kyzar, Evan J; Stewart, Adam Michael; Kalueff, Allan V

    2016-01-01

    Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biodistribution and dosimetry of 123I-mZIENT: a novel ligand for imaging serotonin transporters

    International Nuclear Information System (INIS)

    Nicol, Alice; Krishnadas, Rajeev; Champion, Sue; Tamagnan, Gilles; Stehouwer, Jeffrey S.; Goodman, Mark M.; Hadley, Donald M.; Pimlott, Sally L.

    2012-01-01

    123 I-labelled mZIENT (2β-carbomethoxy-3β-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. 123 I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  14. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  15. Compositions and methods related to serotonin 5-HT1A receptors

    Science.gov (United States)

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  16. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration.

    Science.gov (United States)

    Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve; Machlus, Kellie R; Mailhot, Benoit; Zufferey, Anne; Levesque, Tania; Becker, Yann; Tessandier, Nicolas; Melki, Imene; Zhi, Huiying; Poirier, Guy; Rondina, Matthew T; Italiano, Joseph E; Flamand, Louis; McKenzie, Steven E; Cote, Francine; Nieswandt, Bernhard; Khan, Waliul I; Flick, Matthew J; Newman, Peter J; Lacroix, Steve; Fortin, Paul R; Boilard, Eric

    2018-02-13

    There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.

  17. The 5-HTTLPR variant in the serotonin transporter gene modifies degeneration of brain regions important for emotion in behavioral variant frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Jennifer S. Yokoyama

    2015-01-01

    Full Text Available The serotonin transporter length polymorphism (5-HTTLPR short allele (5-HTTLPR-s has been associated with differential susceptibility for anxiety and depression in multiple psychiatric disorders. 5-HTTLPR-s modifies the serotonergic systems that support emotion and behavioral regulation by reducing gene expression, which slows the reuptake of serotonin, and is associated with distinct morphological and functional effects. Serotonergic systems are also shown to be dysfunctional in behavioral variant frontotemporal dementia (bvFTD, a disease characterized by marked socioemotional dysfunction. However, studies of 5-HTTLPR-s effects in bvFTD have been inconsistent. Our objective was to investigate the patterns of gray matter volume by 5-HTTLPR-s genotype in both healthy older controls and bvFTD patients. We performed voxel-based morphometry of 179 cognitively normal older adults and 24 bvFTD cases to determine brain changes associated with dose (0/1/2 of 5-HTTLPR-s allele. 5-HTTLPR-s frequency did not differ between controls and bvFTD. We found a significant interaction effect whereby carrying more 5-HTTLPR-s alleles in bvFTD was associated with smaller volume in left inferior frontal gyrus (T = 4.86, PFWE = 0.03 and larger volume in right temporal lobe (T = 5.01, PFWE = 0.01. These results suggest that the 5-HTTLPR-s allele differentially influences brain morphology in bvFTD. We propose that patients with bvFTD and 5-HTTLPR-s have altered volumes in regions that support socioemotional behavior, which may be a developmental or disease-related compensation for altered serotonergic activity.

  18. Biodistribution and dosimetry of {sup 123}I-mZIENT: a novel ligand for imaging serotonin transporters

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, Alice [NHS Greater Glasgow and Clyde, Department of Nuclear Medicine, Southern General Hospital, Glasgow (United Kingdom); Krishnadas, Rajeev [University of Glasgow, Sackler Institute of Psychobiological Research, Glasgow (United Kingdom); Champion, Sue [University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow (United Kingdom); Tamagnan, Gilles [Institute for Neurodegenerative Disorders, New Haven, CT (United States); Stehouwer, Jeffrey S.; Goodman, Mark M. [Emory University, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Hadley, Donald M. [NHS Greater Glasgow and Clyde, Department of Neuro-Radiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Pimlott, Sally L. [NHS Greater Glasgow and Clyde, West of Scotland Radionuclide Dispensary, Glasgow (United Kingdom)

    2012-05-15

    {sup 123}I-labelled mZIENT (2{beta}-carbomethoxy-3{beta}-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. {sup 123}I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  19. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, J.R.; Nijman, I.J.; Kuijpers, S.; Cuppen, E.

    2010-01-01

    BACKGROUND: Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4) has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain

  20. Autoradiographic imaging of the serotonin transporter, using S-[18F](fluoromethyl)-(+)-McN5652 ([18F]Me-McN) in the brains of several animal species

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Zessin, J.; Brust, P.; Cumming, P.; Bergmann, R.

    2002-01-01

    The [ 18 F]fluoromethyl analogue of (+)-McN5652 ([ 18 F]Me-McN) was recently proposed as a new potential PET tracer [1]. To further validate its use in PET, we studied the binding of [ 18 F]Me-McN in the brains of rats and pigs using autoradiography. The binding was compared with the uptake of the known 5-HT uptake inhibitor [ 3 H] citalopram [2] and the radioligand (+)-[ 11 C]McN5652. The binding of the three compounds was qualitatively identical in the autoradiograms of the individual brains. Intense labelling was observed in regions known to be serotonin uptake sites. The binding was specifically inhibited, using the 5-HT uptake inhibitors citalopram and fluoxetine. (orig.)

  1. Cognitive function is related to fronto-striatal serotonin transporter levels--a brain PET study in young healthy subjects

    DEFF Research Database (Denmark)

    Madsen, Karine; Erritzøe, David Frederik; Mortensen, Erik Lykke

    2011-01-01

    Pharmacological manipulation of serotonergic neurotransmission in healthy volunteers impacts on cognitive test performance. Specifically, markers of serotonin function are associated with attention and executive functioning, long-term memory, and general cognitive ability. The serotonin transporter...

  2. Serotonin 6 receptor controls Alzheimer's disease and depression.

    Science.gov (United States)

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.

  3. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  5. Memory function and serotonin transporter promoter gene polymorphism in ecstasy (MDMA) users

    NARCIS (Netherlands)

    Reneman, Liesbeth; Schilt, T.; de Win, Maartje M.; Booij, Jan; Schmand, Ben; van den Brink, Wim; Bakker, Onno

    2006-01-01

    Although 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) has been shown to damage brain serotonin (5-HT) neurons in animals and possibly humans, little is known about the long-term consequences of MDMA-induced 5-HT neurotoxic lesions on functions in which 5-HT is involved, such as cognitive

  6. Preclinical pharmacological study on I-ADAM as a serotonin transporter ligand

    International Nuclear Information System (INIS)

    Wu Chunying; Lu Chunxiong; Jiang Quanfu; Zou Meifen; Chen Zhengping; Wang Songpei; Li Xiaomin; Zhang Tongxing; Zhu Junqing; Lin Xiangtong

    2004-01-01

    Objective: To evaluate the new ligand: I-2-( (22( (dimethylamino) methyl) phenyl) thio)-5- iodophenylamine (ADAM) as a serotonin imaging agent. Methods: Biological evaluations were performed in rats and mice. Results: Biodistribution studies in rats showed that the initial uptake of 131 I-ADAM in the brain was high (1.087%ID/organ at 2 min postinjection), and consistently displayed the highest binding (between 60-240 min postinjection) in hypothalamus, a region with the highest density of serotonin transporter (SERT). The specific binding [(TPCB)-1] of 131 I-ADAM in hypothalamus was 2.94, 3.03 and 3.09 at 60, 120 and 240 min postinjection, respectively. The (TPCB)-1 was significantly blocked by pretreatment with Paroxetine, which is known as a serotonin site reuptake inhibitor, while another nonselective competing drug, Ketanserin, showed no blocking effect. The rat brain autoradiography and analysis showed that there was high 131 I-ADAM uptake in hypothalamus, the ratio of hypothalamus/cerebellum was significantly reduced from 7.94 ± 0.39 to 1.30 ± 0.56 by pretreatment with Paroxetine at 60 min postinjection. Blood clearance kinetics was studied in rats, and the initial half-life of 13.79 min and late half-life of 357.14 min were obtained. The kinetic equation was: C=3.6147·e -0.0725t + 1.0413 e -0.0028t . The thyroid uptake was 0.009 and 1.421% ID/organ at 2 min and 120 min postinjection, respectively, suggesting that in vivo deiodination maybe the major route of metabolism. Toxicity trial showed that the dose per kilogram administered to mice was 1000 times greater than that to human beings, assuming a body-weight of 50 kg. Conclusion: These data suggest that 131 I-ADAM may be useful for SPECT imaging of SERT binding sits in the brain. (authors)

  7. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3

  8. Serotonin manipulations and social behavior : Studies in individuals at familial risk for depression

    NARCIS (Netherlands)

    Hogenelst, Koen

    2016-01-01

    Interactions with others affect our mood, and vice versa. Unsurprisingly, people with a mood disorder such as depression often have difficulties in their social relationships. Depression is often thought to be associated with a decreased availability of serotonin, a signaling molecule in the brain

  9. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  10. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    Science.gov (United States)

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    International Nuclear Information System (INIS)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-01-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression

  13. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  14. Central fatigue and nycthemeral change of serum tryptophan and serotonin in the athletic horse

    Directory of Open Access Journals (Sweden)

    Percipalle Maurizio

    2005-04-01

    Full Text Available Abstract Background The serotonergic system is associated with numerous brain functions, including the resetting of the mammalian circadian clock. The synthesis and metabolism of 5-HT in the brain increases in response to exercise and is correlated with high levels of blood-borne tryptophan (TRP. The present investigation was aimed at testing the existence of a daily rhythm of TRP and 5-HT in the blood of athletic horses. Methods Blood samples from 5 Thoroughbred mares were collected at 4-hour intervals for 48 hours (starting at 08:00 hours on day 1 and finishing at 4:00 on day 2 via an intravenous cannula inserted into the jugular vein. Tryptophan and serotonin concentrations were assessed by HPLC. Data analysis was conducted by one-way repeated measures analysis of variance (ANOVA and by the single cosinor method. Results ANOVA showed a highly significant influence of time both on tryptophan and on serotonin, in all horses, on either day, with p values Conclusion The results showed that serotonin and tryptophan blood levels undergo nycthemeral variation with typical evening acrophases. These results enhance the understanding of the athlete horse's chronoperformance and facilitate the establishment of training programs that take into account the nycthemeral pattern of aminoacids deeply involved in the onset of central fatigue.

  15. Microautoradiography of [123I]ADAM in mice treated with fluoxetine and serotonin reuptake inhibitors

    International Nuclear Information System (INIS)

    Ye, X.-X.; Chen, J.-C.; Liu, R.-S.; Wey, S.-P.; Lee, J.-S.; Chen, C.-C.; Fu, Y.-K.; Ting, Gann; Hwang, J.-J.

    2004-01-01

    A radiopharmaceutical, 123 I-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ([ 123 I]ADAM), has been developed recently for evaluation of how serotonin transporters (SERT) function in the brain. However, the detailed biodistribution and specific binding in certain brain areas are not well investigated. In this study, both phosphor plate imaging and microautoradiography were applied to explore the binding characteristics of [ 123 I]ADAM in SERT neurons. The effect of two psychotropics and one narcotic on the binding of [ 123 I]ADAM to SERT was also studied. Fluoxetine and desipramine, both are psychotropics and specific SERT ligands and decreased the affinity of [ 123 I]ADAM, while p-chloroamphetamine (PCA), a narcotic, destroyed most of serotonergic neurons, as well as reducing the concentration of serotonin and the number of SERT in the brain as shown by the biodistribution of [ 123 I]ADAM. Significant and selective accumulation of [ 123 I]ADAM in the areas from midbrain to brain stem in normal mice with maximum target-to-background ratio was found at 90 minutes postinjection. A rapid clearance of [ 131 I]ADAM at 120 minutes postinjection was found in the CA1, CA3 and ThN brain areas. In addition, the inhibition effect on binding ability of [ 123 I]ADAM to SERT by the psychotropics and the narcotic was found to have the order of: PCA > fluoxetine > desipramine

  16. The brain functional connectome is robustly altered by lack of sleep.

    Science.gov (United States)

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  18. Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU patients

    Directory of Open Access Journals (Sweden)

    Joseph Leung

    2018-06-01

    Full Text Available Introduction: Phenylketonuria (PKU is an inborn error of metabolism associated with an increased risk of behavioural and mood disorders. There are currently no reliable markers for monitoring mood in PKU. The purpose of this study was to evaluate salivary serotonin as a possible non-invasive marker of long-term mood symptoms and central serotonin activity in patients with PKU. Methods: 20 patients were recruited from our Adult Metabolic Diseases Clinic. Age, sex, plasma phenylalanine (Phe level, DASS (Depression Anxiety Stress Scales depression score, DASS anxiety score, BMI, salivary serotonin, salivary cortisol, 2-year average Phe, 2-year average tyrosine (Tyr, and 2-year average Phe:Tyr ratio were collected for each patient. Spearman's ρ correlation analysis was used to determine if there was any relationship between any of the parameters. Results: There were positive correlations between DASS anxiety and DASS depression scores (Spearman's ρ = 0.8708, p-value < 0.0001, BMI and plasma Phe level (Spearman's ρ = 0.6228, p-value = .0034, and 2-year average Phe and BMI (Spearman's ρ = 0.5448, p-value = .0130. There was also a negative correlation between salivary cortisol and plasma Phe level (Spearman's ρ = −0.5018, p-value = .0338. All other correlations were not statistically significant. Conclusion: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, implying that salivary serotonin does not reflect central serotonin turnover. Additionally, this study suggests that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU. Synopsis: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, suggesting that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU

  19. [11C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats

    International Nuclear Information System (INIS)

    Zessin, Joerg; Deuther-Conrad, Winnie; Kretzschmar, Marion; Wuest, Frank; Pawelke, Beate; Brust, Peter; Steinbach, Joerg; Bergmann, Ralf

    2006-01-01

    N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (S Me-Adam, 1) is a highly potent and selective inhibitor of the serotonin transporter (SPERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [ 11 C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [ 11 C]S Me-Adam. The radiochemical yield was 27±5%, and the specific radioactivity was 26-40 GBq/μmol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SPERT, such as the thalamus/hypothalamus region (3.59±0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74±0.95 at 60 min postinjection. The [ 11 C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38±11% of the control value. Furthermore, no metabolites of [ 11 C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [ 11 C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain

  20. [11C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats.

    Science.gov (United States)

    Zessin, Jörg; Deuther-Conrad, Winnie; Kretzschmar, Marion; Wüst, Frank; Pawelke, Beate; Brust, Peter; Steinbach, Jörg; Bergmann, Ralf

    2006-01-01

    N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (SMe-ADAM, 1) is a highly potent and selective inhibitor of the serotonin transporter (SERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [(11)C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [(11)C]SMe-ADAM. The radiochemical yield was 27 +/- 5%, and the specific radioactivity was 26-40 GBq/micromol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SERT, such as the thalamus/hypothalamus region (3.59 +/- 0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74 +/- 0.95 at 60 min postinjection. The [(11)C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38 +/- 11% of the control value. Furthermore, no metabolites of [(11)C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [(11)C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain.

  1. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Herr, Nadine; Bode, Christoph; Duerschmied, Daniel

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  2. Serotonin transporter density in binge eating disorder and pathological gambling: A PET study with [11C]MADAM.

    Science.gov (United States)

    Majuri, Joonas; Joutsa, Juho; Johansson, Jarkko; Voon, Valerie; Parkkola, Riitta; Alho, Hannu; Arponen, Eveliina; Kaasinen, Valtteri

    2017-12-01

    Behavioral addictions, such as pathological gambling (PG) and binge eating disorder (BED), appear to be associated with specific changes in brain dopamine and opioid function, but the role of other neurotransmitter systems is less clear. Given the crucial role of serotonin in a number of psychiatric disorders, we aimed to compare brain serotonergic function among individuals with BED, PG and healthy controls. Seven BED patients, 13 PG patients and 16 healthy controls were scanned with high-resolution positron emission tomography (PET) using the serotonin transporter (SERT) tracer [ 11 C]MADAM. Both region-of-interest and voxel-wise whole brain analyses were performed. Patients with BED showed increased SERT binding in the parieto-occipital cortical regions compared to both PG and healthy controls, with parallel decreases in binding in the nucleus accumbens, inferior temporal gyrus and lateral orbitofrontal cortex. No differences between PG patients and controls were observed. None of the subjects were on SSRI medications at the time of imaging, and there were no differences in the level of depression between PG and BED patients. The results highlight differences in brain SERT binding between individuals with BED and PG and provide further evidence of different neurobiological underpinnings in behavioral addictions that are unrelated to the co-existing mood disorder. The results aid in the conceptualization of behavioral addictions by characterizing the underlying serotonin changes and provide a framework for additional studies to examine syndrome-specific pharmaceutical treatments. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  3. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness.

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B; Santini, Martin A; Knudsen, Gitte M; Henn, Fritz; Gass, Peter; Vollmayr, Barbara

    2010-07-01

    Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging. Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls. These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression, particularly in the elderly.

  4. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    Science.gov (United States)

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Directory of Open Access Journals (Sweden)

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  6. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour.

    Science.gov (United States)

    Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise

    2012-09-05

    Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.

  7. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    DEFF Research Database (Denmark)

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...... tomography. Within each individual, a regional intercorrelation for the various brain regions was seen with both markers, most notably for 5-HT2A receptor binding. An inverted U-shaped relationship between the 5-HT2A receptor and the SERT binding was identified. The observed regional intercorrelation...

  8. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Mortensen, Erik L.; Nielsen, Finn Årup

    2008-01-01

    Background: Serotonergic dysfunction has been associated with affective disorders. High trait neuroticism, as measured on personality inventories, is a risk factor for major depression. In this study we investigated whether neuroticism is associated with serotonin 2A receptor binding in brain...... regions of relevance for affective disorders. Methods: Eighty-three healthy volunteers completed the standardized personality questionnaire NEO-PI-R (Revised NEO Personality Inventory) and underwent [F-18]altanserin positron emission tomography imaging for assessment of serotonin 2A receptor binding...... remained significant after correction for multiple comparisons (r = .35, p = .009). Conclusions: In healthy subjects the personality dimension neuroticism and particularly its constituent trait, vulnerability, are positively associated with frontolimbic serotonin 2A binding. Our findings point...

  9. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  10. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  11. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Sullivan, Gregory M; Oquendo, Maria A; Milak, Matthew; Miller, Jeffrey M; Burke, Ainsley; Ogden, R Todd; Parsey, Ramin V; Mann, J John

    2015-02-01

    Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with

  12. TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons

    Directory of Open Access Journals (Sweden)

    Yong Gao

    2017-01-01

    Full Text Available The molecular mechanisms underlying acute leptin and serotonin 2C receptor-induced hypophagia remain unclear. Here, we show that neuronal and pro-opiomelanocortin (Pomc-specific loss of transient receptor potential cation 5 (TrpC5 subunits is sufficient to decrease energy expenditure and increase food intake resulting in elevated body weight. Deficiency of Trpc5 subunits in Pomc neurons is also sufficient to block the anorexigenic effects of leptin and serotonin 2C receptor (Ht2Cr agonists. The loss of acute anorexigenic effects of these receptors is concomitant with a blunted electrophysiological response to both leptin and Ht2Cr agonists in arcuate Pomc neurons. We also demonstrate that the Ht2Cr agonist lorcaserin-induced improvements in glucose and insulin tolerance are blocked by TrpC5 deficiency in Pomc neurons. Together, our results link TrpC5 subunits in the brain with leptin- and serotonin 2C receptor-dependent changes in neuronal activity, as well as energy balance, feeding behavior, and glucose metabolism.

  13. The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Kira V. Derkach

    2015-01-01

    Full Text Available In the last years the treatment of type 2 diabetes mellitus (DM2 was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC activity in the hypothalamus and normalized AC stimulation by β-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.

  14. Iodine-123 labelled nor-β-CIT binds to the serotonin transporter in vivo as assessed by biodistribution studies in rats

    International Nuclear Information System (INIS)

    Booij, J.; Knol, R.J.J.; Reneman, L.; De Bruin, K.; Van Royen, E.A.; Janssen, A.G.M.

    1998-01-01

    Iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)nortropane (nor-β-CIT), a radioiodinated cocaine analogue, was evaluated as an agent for the in vivo labelling of serotonin transporters by biodistribution studies in rats. Intravenous injection of [ 123 I]nor-β-CIT resulted in high accumulation of radioactivity in brain areas with high densities of serotonin (hypothalamus) and dopamine transporters (striatum), although the binding was less pronounced in the hypothalamus. While binding of [ 123 I]nor-β-CIT in the hypothalamus was blocked significantly by fluvoxamine (a selective serotonin transporter blocker) but not by GBR12,909 (a selective dopamine transporter blocker), the opposite was observed in the striatum. The results of this study indicate that [ 123 I]nor-β-CIT, although not being a selective radioligand, binds specifically to serotonin transporters in the hypothalamus in vivo and thus suggest that [ 123 I]nor-β-CIT promises to be a suitable radioligand for single-photon emission tomography imaging of serotonin transporters in humans. (orig.)

  15. Role of serotonin in pathogenesis of analgesic induced headache

    Energy Technology Data Exchange (ETDEWEB)

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  16. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  17. Radioprotective action of serotonin

    Energy Technology Data Exchange (ETDEWEB)

    Vodop' yanova, L G; Vinogradova, M F [Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.

    1975-09-01

    Tests in vitro were performed to study the effect of serotonin on oxidative phosphorylation in the mitochondria of rat liver. Serotonin (2.10/sup -4/ M) was shown to suppress oxidation of ..cap alpha..-ketoglutaric acid without significantly changing succinic acid consumption. A comparison of the results obtained with those from the literature allowed to assume that the radioprotective effect of serotonin was based not only on its previously known ability to cause tissue hypoxia, but also on its ability to affect oxidation processes in mitochondria.

  18. Both stimulatory and inhibitory effects of dietary 5-hydroxytryptophan and tyrosine are found on urinary excretion of serotonin and dopamine in a large human population

    Directory of Open Access Journals (Sweden)

    George J Trachte

    2009-04-01

    Full Text Available George J Trachte1, Thomas Uncini2, Marty Hinz31Department of Physiology and Pharmacology, University of MN Medical School Duluth, Duluth, MN, USA; 2Chief Medical Examiner, St. Louis County, Hibbing, MN, USA; 3Clinical Research, NeuroResearch Clinics, Inc., Duluth, MN, USA Abstract: Amino acid precursors of dopamine and serotonin have been administered for decades to treat a variety of clinical conditions including depression, anxiety, insomnia, obesity, and a host of other illnesses. Dietary administration of these amino acids is designed to increase dopamine and serotonin levels within the body, particularly the brain. Convincing evidence exists that these precursors normally elevate dopamine and serotonin levels within critical brain tissues and other organs. However, their effects on urinary excretion of neurotransmitters are described in few studies and the results appear equivocal. The purpose of this study was to define, as precisely as possible, the influence of both 5-hydroxytryptophan (5-HTP and tyrosine on urinary excretion of serotonin and dopamine in a large human population consuming both 5-HTP and tyrosine. Curiously, only 5-HTP exhibited a marginal stimulatory influence on urinary serotonin excretion when 5-HTP doses were compared to urinary serotonin excretion; however, a robust relationship was observed when alterations in 5-HTP dose were compared to alterations in urinary serotonin excretion in individual patients. The data indicate three statistically discernible components to 5-HTP responses, including inverse, direct, and no relationships between urinary serotonin excretion and 5-HTP doses. The response to tyrosine was more consistent but primarily yielded an unexpected reduction in urinary dopamine excretion. These data indicate that the urinary excretion pattern of neurotransmitters after consumption of their precursors is far more complex than previously appreciated. These data on urinary neurotransmitter excretion might

  19. Molecular cloning, expression and characterization of a bovine serotonin transporter

    DEFF Research Database (Denmark)

    Mortensen, O V; Kristensen, A S; Rudnick, G

    1999-01-01

    The serotonin transporter (SERT) is a member of a highly homologous family of sodium/chloride dependent neurotransmitter transporters responsible for reuptake of biogenic amines from the extracellular fluid. SERT constitutes the pharmacological target of several clinically important antidepressan......-methylenedioxymethamphetamine (MDMA) was mainly unchanged. RT-PCR amplification of RNA from different tissues demonstrated expression of SERT in placenta, brain stem, bone marrow, kidney, lung, heart, adrenal gland, liver, parathyroid gland, thyroid gland, small intestine and pancreas....

  20. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters.

    Science.gov (United States)

    Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi

    2017-09-01

    Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. [{sup 11}C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zessin, Joerg [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany)]. E-mail: j.zessin@fz-rossendorf.de; Deuther-Conrad, Winnie [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Kretzschmar, Marion [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Wuest, Frank [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Pawelke, Beate [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Brust, Peter [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Steinbach, Joerg [Institut fuer Interdisziplinaere Isotopenforschung, 04318 Leipzig (Germany); Bergmann, Ralf [Institut fuer Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf, 01314 Dresden (Germany)

    2006-01-15

    N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (S Me-Adam, 1) is a highly potent and selective inhibitor of the serotonin transporter (SPERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [{sup 11}C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [{sup 11}C]S Me-Adam. The radiochemical yield was 27{+-}5%, and the specific radioactivity was 26-40 GBq/{mu}mol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SPERT, such as the thalamus/hypothalamus region (3.59{+-}0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74{+-}0.95 at 60 min postinjection. The [{sup 11}C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38{+-}11% of the control value. Furthermore, no metabolites of [{sup 11}C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [{sup 11}C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain.

  2. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Thase, Michael E.; Moses-Kolko, Eydie L.; Price, Julie; Frank, Ellen; Kupfer, David J.; Mathis, Chester

    2007-01-01

    Introduction: Serotonin-1A receptor (5-HT 1A R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT 1A R agonists in vivo and to 5-HT 1A R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT 1A R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl- 11 C]WAY-100635, and we have demonstrated reduced 5-HT 1A R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl- 11 C]WAY-100635, 5-HT 1A R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT 1A R BP was reduced by 26% in the MTC (P 1A R binding were similar to those found postmortem in 5-HT 1A R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT 1A R-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There

  3. Autoradiographic imaging of the serotonin transporter, using S-[{sup 18}F](fluoromethyl)-(+)-McN5652 ([{sup 18}F]Me-McN) in the brains of several animal species

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Zessin, J.; Brust, P.; Cumming, P. [PET Centre of Aarhus Univ. Hospitals, Aarhus C (Denmark); Bergmann, R.

    2002-01-01

    The [{sup 18}F]fluoromethyl analogue of (+)-McN5652 ([{sup 18}F]Me-McN) was recently proposed as a new potential PET tracer [1]. To further validate its use in PET, we studied the binding of [{sup 18}F]Me-McN in the brains of rats and pigs using autoradiography. The binding was compared with the uptake of the known 5-HT uptake inhibitor [{sup 3}H] citalopram [2] and the radioligand (+)-[{sup 11}C]McN5652. The binding of the three compounds was qualitatively identical in the autoradiograms of the individual brains. Intense labelling was observed in regions known to be serotonin uptake sites. The binding was specifically inhibited, using the 5-HT uptake inhibitors citalopram and fluoxetine. (orig.)

  4. Comparing the Expression of Genes Related to Serotonin (5-HT in C57BL/6J Mice and Humans Based on Data Available at the Allen Mouse Brain Atlas and Allen Human Brain Atlas

    Directory of Open Access Journals (Sweden)

    C. A. Acevedo-Triana

    2017-01-01

    Full Text Available Brain atlases are tools based on comprehensive studies used to locate biological characteristics (structures, connections, proteins, and gene expression in different regions of the brain. These atlases have been disseminated to the point where tools have been created to store, manage, and share the information they contain. This study used the data published by the Allen Mouse Brain Atlas (2004 for mice (C57BL/6J and Allen Human Brain Atlas (2010 for humans (6 donors to compare the expression of serotonin-related genes. Genes of interest were searched for manually in each case (in situ hybridization for mice and microarrays for humans, normalized expression data (z-scores were extracted, and the results were graphed. Despite the differences in methodology, quantification, and subjects used in the process, a high degree of similarity was found between expression data. Here we compare expression in a way that allows the use of translational research methods to infer and validate knowledge. This type of study allows part of the relationship between structures and functions to be identified, by examining expression patterns and comparing levels of expression in different states, anatomical correlations, and phenotypes between different species. The study concludes by discussing the importance of knowing, managing, and disseminating comprehensive, open-access studies in neuroscience.

  5. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder.

    Science.gov (United States)

    Schenk, Susan; Aronsen, Dane

    As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.

  6. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David

    2009-01-01

    at risk for developing depression. The aim of this study was to explore whether abnormalities in SERT might be present in healthy individuals with familial predisposition to mood disorder. Nine individuals at high familial risk (mean age 32.2+/-4.2 years) and 11 individuals at low risk (mean age 32......Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects.......4+/-5.0 years) for developing mood disorder were included. The subjects were healthy twins with or without a co-twin history of mood disorder identified by linking information from the Danish Twin Register and the Danish Psychiatric Central Register. Regional in vivo brain serotonin transporter binding...

  7. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    Science.gov (United States)

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p serotonin receptor antagonist significantly (p serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  8. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies.

    Science.gov (United States)

    Kaye, Walter H; Frank, Guido K; Bailer, Ursula F; Henry, Shannan E; Meltzer, Carolyn C; Price, Julie C; Mathis, Chester A; Wagner, Angela

    2005-05-19

    Anorexia nervosa (AN) and bulimia nervosa (BN) are related disorders with relatively homogenous presentations such as age of onset and gender distribution. In addition, they share symptoms, such as extremes of food consumption, body image distortion, anxiety and obsessions, and ego-syntonic neglect, raises the possibility that these symptoms reflect disturbed brain function that contributes to the pathophysiology of this illness. Recent brain imaging studies have identified altered activity in frontal, cingulate, temporal, and parietal cortical regions in AN and BN. Importantly, such disturbances are present when subjects are ill and persist after recovery, suggesting that these may be traits that are independent of the state of the illness. Emerging data point to a dysregulation of serotonin pathways in cortical and limbic structures that may be related to anxiety, behavioral inhibition, and body image distortions. In specific, recent studies using PET with serotonin specific radioligands implicate alterations of 5-HT1A and 5-HT2A receptors and the 5-HT transporter. Alterations of these circuits may affect mood and impulse control as well as the motivating and hedonic aspects of feeding behavior. Such imaging studies may offer insights into new pharmacology and psychotherapy approaches.

  9. Nutrients affecting brain composition and behavior

    Science.gov (United States)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  10. Microautoradiography of [{sup 123}I]ADAM in mice treated with fluoxetine and serotonin reuptake inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X.; Chen, J.-C.; Liu, R.-S.; Wey, S.-P.; Lee, J.-S.; Chen, C.-C.; Fu, Y.-K.; Ting, Gann; Hwang, J.-J. E-mail: jjhwang@ym.edu.tw

    2004-07-01

    A radiopharmaceutical, {sup 123}I-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ([{sup 123}I]ADAM), has been developed recently for evaluation of how serotonin transporters (SERT) function in the brain. However, the detailed biodistribution and specific binding in certain brain areas are not well investigated. In this study, both phosphor plate imaging and microautoradiography were applied to explore the binding characteristics of [{sup 123}I]ADAM in SERT neurons. The effect of two psychotropics and one narcotic on the binding of [{sup 123}I]ADAM to SERT was also studied. Fluoxetine and desipramine, both are psychotropics and specific SERT ligands and decreased the affinity of [{sup 123}I]ADAM, while p-chloroamphetamine (PCA), a narcotic, destroyed most of serotonergic neurons, as well as reducing the concentration of serotonin and the number of SERT in the brain as shown by the biodistribution of [{sup 123}I]ADAM. Significant and selective accumulation of [{sup 123}I]ADAM in the areas from midbrain to brain stem in normal mice with maximum target-to-background ratio was found at 90 minutes postinjection. A rapid clearance of [{sup 131}I]ADAM at 120 minutes postinjection was found in the CA1, CA3 and ThN brain areas. In addition, the inhibition effect on binding ability of [{sup 123}I]ADAM to SERT by the psychotropics and the narcotic was found to have the order of: PCA > fluoxetine > desipramine.

  11. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  12. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: as a Model

    Directory of Open Access Journals (Sweden)

    Sergio D. Paredes

    2009-01-01

    Full Text Available In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove ( Streptopelia risoria as a suitable model.

  13. Iodine-123 labelled nor-{beta}-CIT binds to the serotonin transporter in vivo as assessed by biodistribution studies in rats

    Energy Technology Data Exchange (ETDEWEB)

    Booij, J.; Knol, R.J.J.; Reneman, L.; De Bruin, K.; Van Royen, E.A. [Dept. of Nuclear Medicine, Univ. of Amsterdam (Netherlands); Janssen, A.G.M. [Amersham Cygne and Eindhoven University of Technology (Netherlands)

    1998-12-01

    Iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)nortropane (nor-{beta}-CIT), a radioiodinated cocaine analogue, was evaluated as an agent for the in vivo labelling of serotonin transporters by biodistribution studies in rats. Intravenous injection of [{sup 123}I]nor-{beta}-CIT resulted in high accumulation of radioactivity in brain areas with high densities of serotonin (hypothalamus) and dopamine transporters (striatum), although the binding was less pronounced in the hypothalamus. While binding of [{sup 123}I]nor-{beta}-CIT in the hypothalamus was blocked significantly by fluvoxamine (a selective serotonin transporter blocker) but not by GBR12,909 (a selective dopamine transporter blocker), the opposite was observed in the striatum. The results of this study indicate that [{sup 123}I]nor-{beta}-CIT, although not being a selective radioligand, binds specifically to serotonin transporters in the hypothalamus in vivo and thus suggest that [{sup 123}I]nor-{beta}-CIT promises to be a suitable radioligand for single-photon emission tomography imaging of serotonin transporters in humans. (orig.) With 1 fig., 2 tabs., 15 refs.

  14. Treatment with selective serotonin reuptake inhibitors and mirtapazine results in differential brain activation by visual erotic stimuli in patients with major depressive disorder.

    Science.gov (United States)

    Kim, Won; Jin, Bo-Ra; Yang, Wan-Seok; Lee, Kyuong-Uk; Juh, Ra-Hyung; Ahn, Kook-Jin; Chung, Yong-An; Chae, Jeong-Ho

    2009-06-01

    The objective of this study was to identify patterns of brain activation elicited by erotic visual stimuli in patients treated with either Selective Serotonin Reuptake Inhibitors (SSRIs) or mirtazipine. Nine middle-aged men with major depressive disorder treated with an SSRI and ten middle-aged men with major depressive disorder treated with mirtazapine completed the trial. Ten subjects with no psychiatric illness were included as a control group. We conducted functional brain magnetic resonance imaging (fMRI) while a film alternatively played erotic and non-erotic contents for 14 minutes and 9 seconds. The control group showed activation in the occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, and caudate nucleus. For subjects treated with SSRIs, the intensity of activity in these regions was much lower compared to the control group. Intensity of activation in the group treated with mirtazapine was less than the control group but grea-ter than those treated with SSRIs. Using subtraction analysis, the SSRI group showed significantly lower activation than the mirtazapine group in the anterior cingulate gyrus and the caudate nucleus. Our study suggests that the different rates of sexual side effects between the patients in the SSRI-treated group and the mirtazapine-treated group may be due to different effects on brain activation.

  15. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    OpenAIRE

    Gantz, Stephanie C.; Levitt, Erica S.; Llamosas Muñozguren, Nerea; Neve, Kim A.; Williams, John T.

    2015-01-01

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigr...

  16. The distribution and function of serotonin in the large milkweed bug, Oncopeltus fasciatus. a comparative study with the blood-feeding bug, Rhodnius prolixus.

    Science.gov (United States)

    Miggiani, L; Orchard, I; TeBrugge, V

    1999-11-01

    The blood-feeding hemipteran, Rhodnius prolixus, ingests a large blood meal at the end of each larval stage. To accommodate and process this meal, its cuticle undergoes plasticisation, and its gut and Malpighian tubules respectively absorb and secrete a large volume of water and salts for rapid diuresis. Serotonin has been found to be integral to the feeding process in this animal, along with a diuretic peptide(s). The large milkweed bug, Oncopeltus fasciatus, tends to feed in a more continuous and abstemious manner, and therefore may have different physiological requirements than the blood feeder. Unlike R. prolixus, O. fasciatus is lacking serotonin-like immunoreactive dorsal unpaired median neurons in the mesothoracic ganglionic mass, and lacks serotonin-like immunoreactive neurohaemal areas and processes on the abdominal nerves, integument, salivary glands, and anterior junction of the foregut and crop. The salivary glands and crop do, however, respond to serotonin with increased levels of cAMP, while the integument and Malpighian tubules do not. In addition, O. fasciatus Malpighian tubules respond to both O. fasciatus and R. prolixus partially purified CNS extracts, which are likely to contain any native diuretic peptides. Thus, while serotonin and diuretic peptides may be involved in tubule control in R. prolixus, the latter may be of greater importance in O. fasciatus.

  17. An Open-Label Pilot Study of Combined Augmentation With Creatine Monohydrate and 5-Hydroxytryptophan for Selective Serotonin Reuptake Inhibitor- or Serotonin-Norepinephrine Reuptake Inhibitor-Resistant Depression in Adult Women.

    Science.gov (United States)

    Kious, Brent M; Sabic, Hana; Sung, Young-Hoon; Kondo, Douglas G; Renshaw, Perry

    2017-10-01

    Many women with major depressive disorder (MDD) respond inadequately to standard treatments. Augmentation of conventional antidepressants with creatine monohydrate and 5-hydroxytryptophan (5-HTP) could correct deficits in serotonin production and brain bioenergetics associated with depression in women, yielding synergistic benefit. We describe an open-label study of 5-HTP and creatine augmentation in women with MDD who had failed selective serotonin reuptake inhibitor (SSRI) or serotonin-norepinephrine reuptake inhibitor (SNRI) monotherapy. Fifteen women who were adequately adherent to an SSRI or SNRI and currently experiencing MDD, with a 17-item Hamilton Depression Rating Scale (HAM-D) score of 16 or higher, were treated with 5 g of creatine monohydrate daily and 100 mg of 5-HTP twice daily for 8 weeks, with 4 weeks of posttreatment follow-up. The primary outcome was change in mean HAM-D scores. Mean HAM-D scores declined from 18.9 (SD, 2.5) at pretreatment visits to 7.5 (SD, 4.4) (P creatine and 5-HTP may represent an effective augmentation strategy for women with SSRI- or SNRI-resistant depression. Given the limitations of this small, open-label trial, future study in randomized, placebo-controlled trials is warranted.

  18. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available The pattern of cerebral dopamine (DA abnormalities in Huntington disease (HD is complex, as reflected by the variable clinical benefit of both DA antagonists and agonists in treating HD symptoms. In addition, little is known about serotonin metabolism despite the early occurrence of anxiety and depression in HD. Post-mortem enzymatic changes are likely to interfere with the in vivo profile of biogenic amines. Hence, in order to reliably characterize the regional and chronological profile of brain neurotransmitters in a HD mouse model, we used a microwave fixation system that preserves in vivo concentrations of dopaminergic and serotoninergic amines. DA was decreased in the striatum of R6/2 mice at 8 and 12 weeks of age while DA metabolites, 3-methoxytyramine and homovanillic acid, were already significantly reduced in 4-week-old motorically asymptomatic R6/2 mice. In the striatum, hippocampus and frontal cortex of 4, 8 and 12-week-old R6/2 mice, serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly decreased in association with a decreased turnover of serotonin. In addition, automated high-resolution behavioural analyses displayed stress-like behaviours such as jumping and grooming and altered spatial learning in R6/2 mice at age 4 and 6 weeks respectively. Therefore, we describe the earliest alterations of DA and serotonin metabolism in a HD murine model. Our findings likely underpin the neuropsychological symptoms at time of disease onset in HD.

  19. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis.

    Science.gov (United States)

    Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W

    2016-01-01

    The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.

  20. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding

    NARCIS (Netherlands)

    Versteeg, Ruth I.; Schrantee, Anouk; Adriaanse, Sofie M.; Unmehopa, Unga A.; Booij, Jan; Reneman, Liesbeth; Fliers, Eric; la Fleur, Susanne E.; Serlie, Mireille J.

    2017-01-01

    Recent studies have shown that meal timing throughout the day contributes to maintaining or regaining weight after hypocaloric diets. Although brain serotonin and dopamine are well known to be involved in regulating feeding, it is unknown whether meal timing during energy restriction affects these

  1. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day.

    Science.gov (United States)

    Medanic, M; Gillette, M U

    1992-05-01

    1. The suprachiasmatic nucleus (SCN) of the hypothalamus is the primary pacemaker for circadian rhythms in mammals. The 24 h pacemaker is endogenous to the SCN and persists for multiple cycles in the suprachiasmatic brain slice. 2. While serotonin is not endogenous to the SCN, a major midbrain hypothalamic afferent pathway is serotonergic. Within this tract the dorsal raphe nucleus sends direct projections to the ventrolateral portions of the SCN. We investigated a possible regulatory role for serotonin in the mammalian circadian system by examining its effect, when applied at projection sites, on the circadian rhythm of neuronal activity in rat SCN in vitro. 3. Eight-week-old male rats from our inbred colony, housed on a 12 h light: 12 h dark schedule, were used. Hypothalamic brain slices containing the paired SCN were prepared in the day and maintained in glucose and bicarbonate-supplemented balanced salt solution for up to 53 h. 4. A 10(-11) ml drop of 10(-6) M-serotonin (5-hydroxytryptamine (5-HT) creatinine sulphate complex) in medium was applied to the ventrolateral portion of one of the SCN for 5 min on the first day in vitro. The effect of the treatment at each of seven time points across the circadian cycle was examined. The rhythm of spontaneous neuronal activity was recorded extracellularly on the second and third days in vitro. Phase shifts were determined by comparing the time-of-peak of neuronal activity in serotonin- vs. media-treated slices. 5. Application of serotonin during the subjective day induced significant advances in the phase of the electrical activity rhythm (n = 11). The most sensitive time of treatment was CT 7 (circadian time 7 is 7 h after 'lights on' in the animal colony), when a 7.0 +/- 0.1 h phase advance was observed (n = 3). This phase advance was perpetuated on day 3 in vitro without decrement. Serotonin treatment during the subjective night had no effect on the timing of the electrical activity rhythm (n = 9). 6. The

  2. Preparation and evaluation of serotonin labelled with 125I

    International Nuclear Information System (INIS)

    Sivaprasad, N.; Geetha, R.; Ghodke, A.S.; Karmalkar, C.P.; Pilkhwal, N.S.; Sarnaik, J.S.; Borkute, S.D.; Nadkarni, G.D.

    1999-01-01

    Radiolabelled serotonin is an important tool for studying serotonin receptors and estimating serotonin levels in plants and animals. In this paper we report the synthesis of serotonin - 125 I. Tyrosine Methyl Ester (TME) was first labelled with 125 I using chloramine-T method. 125 I-TME was then conjugated with serotonin using carbodimide. The labelled conjugate was purified using gel filtration. Yield and radiochemical purity were estimated using electrophoresis and ITLC in different solvent systems. The binding of the purified tracer to serotonin receptors and serotonin antibodies was studied. (author)

  3. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model

    Directory of Open Access Journals (Sweden)

    Sergio D. Paredes

    2009-01-01

    Full Text Available In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age- related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopelia risoria as a suitable model.

  4. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.

    Directory of Open Access Journals (Sweden)

    Kota Tamada

    Full Text Available Autism spectrum disorders (ASDs have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+ mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.

  5. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    Science.gov (United States)

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  6. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Directory of Open Access Journals (Sweden)

    Takeaki Saijo

    Full Text Available A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A receptor, called Wf-516 (structural formula: (2S-1-[4-(3,4-dichlorophenylpiperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-ylbenzo[b]furan-4-yloxy]propan-2-ol monohydrochloride, has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A receptors. In addition, [(35S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  7. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Science.gov (United States)

    Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto

    2012-01-01

    A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  8. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  9. Serotonin transporter (SERT and translocator protein (TSPO expression in the obese ob/ob mouse

    Directory of Open Access Journals (Sweden)

    Santini Ferruccio

    2011-02-01

    Full Text Available Abstract Background An ever growing body of evidences is emerging concerning metabolism hormones, neurotransmitters or stress-related biomarkers as effective modulators of eating behavior and body weight in mammals. The present study sought at examining the density and affinity of two proteins related to neurotransmission and cell metabolism, the serotonin transporter SERT and the cholesterol import-benzodiazepine site TSPO (translocator protein, in a rodent leptin-lacking mutant, the obese ob/ob mouse. Binding studies were thus carried out in brain or peripheral tissues, blood platelets (SERT and kidneys (TSPO, of ob/ob and WT mice supplied with a standard diet, using the selective radiochemical ligands [3H]-paroxetine and [3H]-PK11195. Results We observed comparable SERT number or affinity in brain and platelets of ob/ob and WT mice, whilst a significantly higher [3H]-PK11195 density was reported in the brain of ob/ob animals. TSPO binding parameters were similar in the kidneys of all tested mice. By [3H]-PK11195 autoradiography of coronal hypothalamic-hippocampal sections, an increased TSPO signal was detected in the dentate gyrus (hippocampus and choroids plexus of ob/ob mice, without appreciable changes in the cortex or hypothalamic-thalamic regions. Conclusions These findings show that TSPO expression is up-regulated in cerebral regions of ob/ob leptin-deficient mice, suggesting a role of the translocator protein in leptin-dependent CNS trophism and metabolism. Unchanged SERT in mutant mice is discussed herein in the context of previous literature as the forerunner to a deeper biochemical investigation.

  10. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  11. Ecstasy use and serotonin syndrome: a neglected danger to adolescents and young adults prescribed selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Dobry, Yuriy; Rice, Timothy; Sher, Leo

    2013-01-01

    At present, there are scarce clinical and basic lab data concerning the risk of acute serotonin toxicity from selective serotonin reuptake inhibitors (SSRIs) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) co-administration. The health care community can strongly benefit from efforts to address the high risks associated with serotonin syndrome from this specific drug combination. The aim of this work is to review the risk of serotonin syndrome in adolescents and young adults prescribed with SSRIs and are concurrently using ecstasy. An electronic search of the major behavioral science bibliographic databases (Pubmed, PsycINFO, Medline) was conducted to retrieve peer-reviewed articles, which detail the clinical characteristics, biological mechanisms and social implications of SSRIs, MDMA, and their potential synergism in causing serotonin syndrome in the pediatric and young adult population. Search terms included "serotonin syndrome", "ecstasy", "MDMA", "pediatric", and "SSRI". Additional references were incorporated from the bibliographies of these retrieved articles. MDMA, in combination with the widely-prescribed SSRI antidepressant class, can lead to rapid, synergistic rise of serotonin (5-HT) concentration in the central nervous system, leading to the acute medical emergency known as serotonin syndrome. This review addresses such complication through an exploration of the theoretical mechanisms and clinical manifestations of this life-threatening pharmacological interaction. The increasing incidences of recreational ecstasy use and SSRI pharmacotherapy among multiple psychiatric disorders in the adolescent population have made this an overlooked yet increasingly relevant danger, which poses a threat to public health. This can be curbed through further research, as well as greater health care provision and attention from a regulatory body owing.

  12. Modulation of defensive reflex conditioning in snails by serotonin

    Science.gov (United States)

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  13. Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain

    DEFF Research Database (Denmark)

    Jørgensen, Louise M; Weikop, Pia; Svarer, Claus

    2018-01-01

    of extracellular serotonin levels with microdialysis after various acute interventions (saline, escitalopram, fenfluramine). The interventions increased the cerebral extracellular serotonin levels to two to six times baseline, with fenfluramine being the most potent pharmacological enhancer of serotonin release...

  14. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain

    Directory of Open Access Journals (Sweden)

    Teschemacher Anja G

    2009-03-01

    Full Text Available Abstract Background 5-hydroxytryptamine (5 HT, serotonin is one of the key neuromodulators in mammalian brain, but many fundamental properties of serotonergic neurones and 5 HT release remain unknown. The objective of this study was to generate an adenoviral vector system for selective targeting of serotonergic neurones and apply it to study quantal characteristics of 5 HT release in the rat brain. Results We have generated adenoviral vectors which incorporate a 3.6 kb fragment of the rat tryptophan hydroxylase-2 (TPH-2 gene which selectively (97% co-localisation with TPH-2 target raphe serotonergic neurones. In order to enhance the level of expression a two-step transcriptional amplification strategy was employed. This allowed direct visualization of serotonergic neurones by EGFP fluorescence. Using these vectors we have performed initial characterization of EGFP-expressing serotonergic neurones in rat organotypic brain slice cultures. Fluorescent serotonergic neurones were identified and studied using patch clamp and confocal Ca2+ imaging and had features consistent with those previously reported using post-hoc identification approaches. Fine processes of serotonergic neurones could also be visualized in un-fixed tissue and morphometric analysis suggested two putative types of axonal varicosities. We used micro-amperometry to analyse the quantal characteristics of 5 HT release and found that central 5 HT exocytosis occurs predominantly in quanta of ~28000 molecules from varicosities and ~34000 molecules from cell bodies. In addition, in somata, we observed a minority of large release events discharging on average ~800000 molecules. Conclusion For the first time quantal release of 5 HT from somato-dendritic compartments and axonal varicosities in mammalian brain has been demonstrated directly and characterised. Release from somato-dendritic and axonal compartments might have different physiological functions. Novel vectors generated in this

  15. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain.

    Science.gov (United States)

    Buckholtz, N S; Zhou, D F; Freedman, D X; Potter, W Z

    1990-04-01

    A dosage regimen of lysergic acid diethylamide (LSD) that reliably produces behavioral tolerance in rats was evaluated for effects on neurotransmitter receptor binding in rat brain using a variety of radioligands selective for amine receptor subtypes. Daily administration of LSD [130 micrograms/kg (0.27 mumol/kg) intraperitoneally (IP)] for 5 days produced a decrease in serotonin2 (5-hydroxytryptamine2, 5-HT2) binding in cortex (measured 24 hours after the last drug administration) but did not affect binding to other receptor systems (5-HT1A, 5-HT1B, beta-adrenergic, alpha 1- or alpha 2-adrenergic, D2-dopaminergic) or to a recognition site for 5-HT uptake. The decrease was evident within 3 days of LSD administration but was not demonstrable after the first LSD dose. Following 5 days of LSD administration the decrease was still present 48 hours, but not 96 hours, after the last administration. The indole hallucinogen psilocybin [1.0 mg/kg (3.5 mumol/kg) for 8 days] also produced a significant decrease in 5HT2 binding, but neither the nonhallucinogenic analog bromo-LSD [1.3 mg/kg (2.4 mumol/kg) for 5 days] nor mescaline [10 mg/kg (40.3 mumol/kg) for 5 or 10 days] affected 5-HT2 binding. These observations suggest that LSD and other indole hallucinogens may act as 5-HT2 agonists at postsynaptic 5-HT2 receptors. Decreased 5-HT2 binding strikingly parallels the development and loss of behavioral tolerance seen with repeated LSD administration, but the decreased binding per se cannot explain the gamut of behavioral tolerance and cross-tolerance phenomena among the indole and phenylethylamine hallucinogens.

  16. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  17. The effect of partial agonist of serotonin-1A receptor on cognitive functions in animal model of schizophrenia

    OpenAIRE

    Antošová, Eliška

    2011-01-01

    Serotoin is a neurotransmitter participating in regulation of many physiologic fuctions. Main serotogenous neurons can be found in nukleus raphe of the brain stem. Nucleus raphe inervates many areas of the brain including the cerebal cortex and hipocampus. These structures are important for controling of higher cognitive functions. 5HT1A receptor is one of many subtypes of serotonin receptors and its activation inhibits iniciating of the action potencials. 5HT1A receptor is expressed presynap...

  18. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  19. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders B; Santini, Martin A

    2010-01-01

    . These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression....... Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber...

  20. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  1. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    Science.gov (United States)

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  2. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans.

    NARCIS (Netherlands)

    Molteni, R.; Cattaneo, A.; Calabrese, F.; Macchi, F.; Olivier, J.D.A.; Racagni, G.; Ellenbroek, A.A.; Gennarelli, M.; Riva, M.A.

    2010-01-01

    In order to identify the molecular mechanisms that may contribute to the enhanced susceptibility to depression under serotonin transporter (SERT) dysfunction, we analyzed the expression of brain-derived neurotrophic factor (BDNF), a key player in neuronal plasticity, which is implicated in the

  3. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  4. Simplified dietary acute tryptophan depletion: effects of a novel amino acid mixture on the neurochemistry of C57BL/6J mice

    OpenAIRE

    Sánchez, Cristina L.; Van Swearingen, Amanda E. D.; Arrant, Andrew E.; Biskup, Caroline S.; Kuhn, Cynthia M.; Zepf, Florian D.

    2015-01-01

    Background: Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA) mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT) or dopamine (DA) in the central nervous system. The availability of these substances within the brain is determined by the blood–brain barrier (BBB) that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP) compete with endogenou...

  5. Serotonin Test

    Science.gov (United States)

    ... microscope. (For more, see the article on Anatomic Pathology .) See More Common Questions See Less Common Questions ... tumor. Accessed December 2010. Vorvick, L. (Updated 2009 March 14). Serum serotonin level. MedlinePlus Medical Encyclopedia [On- ...

  6. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  7. The role of serotonin and norepinephrine in sleep-waking activity.

    Science.gov (United States)

    Morgane, P J; Stern, W C

    1975-11-01

    A critical review of the evidences relating the biogenic amines serotonin and norepinephrine to the states of slow-wave and rapid eye movement (REM) sleep is presented. Various alternative explanations for specific chemical regulation of the individual sleep states, including the phasic events of REM sleep, are evaluated within the overall framework of the monoamine theory of sleep. Several critical neuropsychopharmacological studies relating to metabolsim of the amines in relation to sleep-waking behavior are presented. Models of the chemical neuronal circuitry involved in sleep-waking activity are derived and interactions between several brainstem nuclei, particularly the raphé complex and locus coeruleus, are discussed. Activity in these aminergic systems in relation to oscillations in the sleep-waking cycles is evaluated. In particular, the assessment of single cell activity in specific chemical systems in relations to chemical models of sleep is reviewed. Overall, it appears that the biogenic amines, especially serotonin and norepinephrine, play key roles in the generation and maintenance of the sleep states. These neurotransmitters participate in some manner in the "triggering" processes necessary for actuating each sleep phase and in regulating the transitions from sleep to waking activity. The biogenic amines are, however, probably not "sleep factors" or direct inducers of the sleep states. Rather, they appear to be components of a multiplicity of interacting chemical circuitry in the brain whose activity maintains various chemical balances in different brain regions. Shifts in these balances appear to be involved in the triggering and maintenance of the various states comprising the vigilance continuum.

  8. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  9. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  10. Possible role of selective serotonin reuptake inhibitor sertraline on oxidative stress responses.

    Science.gov (United States)

    Battal, D; Yalin, S; Eker, E D; Aktas, A; Sahin, N O; Cebo, M; Berköz, M

    2014-01-01

    The naphthylamine derivative sertraline is a potent and selective inhibitor of serotonin reuptake into presynaptic terminals and the most widely used that has been shown to have both antidepressant and antianxiety effects. In the present study the possible role of sertraline (acute and chronically doses) was evaluated on lipid peroxidation levels and antioxidant enzyme activities in plasma and brain tissues of (10, 40, 80 mg/kg) sertraline treated Wistar albino rats (n=48). Lipid peroxidation levels (MDA) of plasma and brain tissue increased in all acute and chronic sertraline treated rats (p Catalase (CAT) levels of plasma and brain tissue and paraoxonase (PON) levels of plasma decreased (p < 0.05) as compared with vehicle group. Based on the data, it can be concluded that high dose sertraline administration enhances oxidative stress. Therefore, dose adjustment in depression patients seems significant as it may help prevention of further prognosis of the diseases.

  11. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  12. Elevated midbrain serotonin transporter availability in mixed mania: a case report

    Directory of Open Access Journals (Sweden)

    Kuikka Jyrki

    2004-09-01

    Full Text Available Abstract Background Results obtained from brain imaging studies indicate that serotonin transporter (SERT and dopamine transporter (DAT densities are altered in major depression. However, no such studies have been published on current mania or hypomania. Case presentation In this single photon emission computed tomography (SPECT study with [123I]nor-β-CIT we present a case with simultaneous symptoms of major depression and hypomania. She had an elevated serotonin transporter availability (SERT in the midbrain and elevated dopamine transporter availability (DAT in the striatum, which normalised in a one-year follow-up period during which she received eight months of psychodynamic psychotherapy. Conclusions To our knowledge, this is the first report on SERT and DAT associated with mania. In our case the availability of both SERT in the midbrain and DAT in the striatum were elevated at baseline and declined during psychotherapy, while the SERT and DAT of the depressed controls increased during psychotherapy. Symptoms of hypomania in the case were alleviated during psychotherapy. Clinical recovery was also reflected in the Hamilton Depression Rating Scale (HDRS scores.

  13. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  14. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    International Nuclear Information System (INIS)

    Simon, C.; Ternaux, J.P.

    1990-01-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population

  15. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    Science.gov (United States)

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  16. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  17. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  18. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression.

    Directory of Open Access Journals (Sweden)

    Dongsha Wang

    Full Text Available The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET measures of brain serotonin (5-HT synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC. Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25 who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20 where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.

  19. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"): preliminary findings

    NARCIS (Netherlands)

    Reneman, L.; Lavalaye, J.; Schmand, B.; de Wolff, F. A.; van den Brink, W.; den Heeten, G. J.; Booij, J.

    2001-01-01

    BACKGROUND: Although the popular drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") has been shown to damage brain serotonin (5-HT) neurons in animals, the fate and functional consequences of 5-HT neurons after MDMA injury are not known in humans. We investigated the long-term effects of

  20. Protective effect of serotonin on phospholipids and lipid peroxides contents in brain and liver of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.A.

    1999-01-01

    Treatment of normal rats with serotonin (2 mg/100 g body weight) produced no significant change in levels of phospholipids and lipid peroxides of the cerebral hemispheres and liver 1,3 and days after treatment. The content of lipid peroxides was measured as malondialdehyde (MDA). Whole body gamma-irradiation of rats at 8 Gy resulted in significant decrease in the level of phospholipids and significant increase in MDA level in cerebral hemispheres and lever. Changes were more pronounced in liver. Treatment with serotonin, 15 minutes before irradiation, had a pronounced protective effect against the radiation induced changes in the levels of phospholipids and MDA only in the liver through all the experimental period

  1. Decreased uptake of 3H-serotonin and endogenous content of serotonin in blood platelets in hypertensive patients

    International Nuclear Information System (INIS)

    Kamal, L.A.; Le Quan-Bui, K.H.; Meyer, P.

    1984-01-01

    The uptake and content of serotonin in blood platelets were studied in patients with essential hypertension and in five families in which at least one member was hypertensive. Blood was obtained from male and female normotensive volunteers and hypertensive patients who were free of medication. Lineweaver-Burk plots of 3H-serotonin uptake from both control subjects and hypertensive patients were linear, which suggested simple Michaelis-Menten uptake kinetics. The maximal uptake velocity (Vmax) in hypertensive patients was significantly lower than in control subjects (control . 41.7 +/- 3.3 pmol/min/10(8) platelets, n . 17; hypertensive . 26.6 +/- 3.0 pmol/min/10(8) platelets, n . 16; p less than 0.005). The affinity constant (Km) was slightly but significantly lower in hypertensive patients (control . 0.70 +/- 0.08 microM; hypertensive . 0.46 +/- 0.08 microM; p less than 0.05). The serotonin content in blood platelets determined by high pressure liquid chromatography with electrochemical detection was significantly lower in hypertensive patients (control . 165.0 +/- 12.9 nmol/10(11) platelets, n . 29; hypertensive . 105.9 +/- 10.4 nmol/10(11) platelets, n . 27; p less than 0.001). In the five families investigated, the lowered serotonin content was observed in some normotensive members. The reduced number of carriers of serotonin uptake and the slight decrease in the affinity constant observed in platelets of patients with essential hypertension suggest that serotonin metabolism is altered in essential hypertension and that blood platelets may be a useful model in studying the serotonergic modifications at the molecular level

  2. INFLUENCE OF A SEROTONIN-RICH AND DOPAMINE-RICH DIET ON PLATELET SEROTONIN CONTENT AND URINARY-EXCRETION OF BIOGENIC-AMINES AND THEIR METABOLITES

    NARCIS (Netherlands)

    KEMA, IP; SCHELLINGS, AMJ; MEIBORG, G; HOPPENBROUWERS, CJM; MUSKIET, FAJ

    Using high-performance liquid chromatography and gas chromatography, we reevaluated the 24-h influence of a serotonin- and dopamine-rich diet on platelet serotonin and serotonin, 5-hydroxyindoleacetic acid (5-HIAA), and major catecholamine metabolites in the urine of 15 healthy adults. Although

  3. [Metabolism of serotonin in autism in children].

    Science.gov (United States)

    Bursztejn, C; Ferrari, P; Dreux, C; Braconnier, A; Lancrenon, S

    1988-01-01

    In this controlled study of 22 autistic children and 22 normal controls matched for age and sex, the frequency of hyperserotonemia in infantile autism was confirmed. Platelet serotonin was elevated in patients. Comparative to controls, serotonin was also high in urine of autistic patients, while, on the contrary there was no difference for the urinary excretion of 5-HIAA. No difference was observed either for serotonin uptake and efflux or for MAO activity, in isolated platelets. The elevation of plasma free tryptophan - significant only with the Kolmogorov Smirnov test - suggests that 5-HT biosynthesis might be enhanced. In the group of patient reported in this study, disorders of serotonin metabolism are associated with disturbances of platelet catecholamines, and also with elevated immunoglobulins and enhanced cellular immunity reactions.

  4. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders B; Santini, Martin A

    2010-01-01

    Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging...... density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls...

  5. Sexual side effects of serotonergic antidepressants: mediated by inhibition of serotonin on central dopamine release?

    Science.gov (United States)

    Bijlsma, Elisabeth Y; Chan, Johnny S W; Olivier, Berend; Veening, Jan G; Millan, Mark J; Waldinger, Marcel D; Oosting, Ronald S

    2014-06-01

    Antidepressant-induced sexual dysfunction adversely affects the quality of life of antidepressant users and reduces compliance with treatment. Animal models provide an instructive approach for examining potential sexual side effects of novel drugs. This review discusses the stability and reproducibility of our standardized test procedure that assesses the acute, subchronic and chronic effects of psychoactive compounds in a 30 minute mating test. In addition, we present an overview of the effects of several different (putative) antidepressants on male rat sexual behavior, as tested in our standardized test procedure. By comparing the effects of these mechanistically distinct antidepressants (paroxetine, venlafaxine, bupropion, buspirone, DOV 216,303 and S32006), this review discusses the putative mechanism underlying sexual side effects of antidepressants and their normalization. This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects. Those sexual disturbances cannot be normalized by simultaneously increasing noradrenaline neurotransmission, but are normalized by increasing both noradrenaline and dopamine neurotransmission. Therefore, it is hypothesized that the sexual side effects of selective serotonin reuptake inhibitors may be mediated by their inhibitory effects on dopamine signaling in sex brain circuits. Clinical development of novel antidepressants should therefore focus on compounds that simultaneously increase both serotonin and dopamine signaling. © 2013 Elsevier Inc. All rights reserved.

  6. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    Science.gov (United States)

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  7. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Brain, nutrition and metabolism : Studies in lean, obese and insulin resistant humans

    NARCIS (Netherlands)

    Versteeg, R.I.

    2017-01-01

    This thesis describes studies on the effects of obesity, weight loss and meal timing on the human brain and glucose metabolism. We investigated effects of meal timing during a hypocaloric diet and weight loss on brain serotonin transporters (SERT) and dopamine transporters (DAT), neuronal activity

  9. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    Science.gov (United States)

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  11. Automated mass spectrometric analysis of urinary and plasma serotonin

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; Wilkens, Marianne H. L. I.; de Vries, Elisabeth G. E.; Kema, Ido P.

    Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim

  12. Pharmacokinetics and brain distribution in non human primate of R(-)[123I]DOI, A 5HT2A/2C serotonin agonist

    International Nuclear Information System (INIS)

    Zea-Ponce, Yolanda; Kegeles, Lawrence S.; Guo, Ningning; Raskin, Leonid; Bakthavachalam, Venkatesalu; Laruelle, Marc

    2002-01-01

    Our goal was to synthesize with high specific activity R(-)-1-(2,5-Dimethoxy-4-[ 123 I]iodophenyl)-2-aminopropane [R(-)[ 123 I]DOI], an in vitro potent and selective 5-HT 2A/2C serotonin agonist, and study in vivo its plasma pharmacokinetics and brain distribution in baboon by SPECT. The purpose was to evaluate this radiotracer as a potential tool in discerning the role of the agonist high affinity state of 5-HT 2 receptors in depression and other neurological disorders. The radiotracer was prepared by electrophilic radioiodination of the N-trifluoroacetyl precursor of R(-)-1-(2,5-Dimethoxyphenyl)-2-aminopropane [R(-)DMA-TFA] with high-purity sodium [ 123 I]iodide in the presence of chloramine-T, followed by amino deprotection with KOH in isopropanol (labeling yield: 73%, radiochemical yield: 62%, radiochemical purity: 99%). In vivo studies in baboon showed high accumulation of radioactivity in thalamus, the frontoparietal cortex, temporal, occipital and the striatum regions, with slightly lower accumulation in the midbrain and cerebellum. Ketanserin did not displaced the radioactivity in any of these brain regions. Plasma metabolite analysis was performed using methanol protein precipitation, the methanol fractions contained from 68% to 92% of the mixture of a labeled metabolite and parent compound. The recovery coefficient of unmetabolized R(-)[ 123 I]DOI was 68%. The percent parent compound present in the extracted fraction, measured by HPLC, decreased gradually with time from 99.8% to 0.3% still present after 4.7 hours post injection whereas the percentage of the only one detected metabolite increased conversely. Free fraction determination (f 1 ), was 31±0.9% (n=3). For comparison purposes, ex-vivo brain distribution, displacement and metabolite analysis was also carried out in rodents. Although R(-)[ 123 I]DOI displayed good brain uptake and localized in serotonergic areas of the brain, its target to non target ratio and its insensitivity to ketanserin

  13. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  14. Mice lacking major brain gangliosides develop parkinsonism.

    Science.gov (United States)

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  15. Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users

    International Nuclear Information System (INIS)

    Buchert, Ralph; Wilke, Florian; Nebeling, Bruno; Clausen, Malte; Thomasius, Rainer; Petersen, Kay; Obrocki, Jost; Wartberg, Lutz; Zapletalova, Pavlina

    2006-01-01

    Animal data suggest that the synthetic drug ecstasy may damage brain serotonin neurons. Previously we reported protracted reductions in the availability of the serotonin transporter (SERT), an index of integrity of the axon terminals of brain serotonergic neurons, in SERT-rich brain regions in current human ecstasy users. Comparison of current ecstasy users and former ecstasy users yielded some evidence that this reduction might be reversible. However, participant selection effects could not be ruled out. Therefore, follow-up examinations were performed in these subjects to test the following a priori hypothesis in a prospective longitudinal design that eliminates participant selection effects to a large extent: availability of the SERT increases towards normal levels when ecstasy use is stopped, and remains unchanged or is further decreased if use is continued. Two follow-up positron emission tomography measurements using the SERT ligand [ 11 C](+)McN5652 were completed by 15 current and nine former ecstasy users. All subjects used illicit drugs other than ecstasy, too. The time interval between repeated measurements was about 1 year. The time course of the availability of the SERT was analysed in the following SERT-rich regions: mesencephalon, putamen, caudate and thalamus. Current ecstasy users showed a consistent increase in the availability of the SERT in the mesencephalon during the study (Friedman test: p=0.010), which most likely was caused by a decrease in the intensity of ecstasy consumption (Spearman correlation coefficient -0.725, p=0.002). Former ecstasy users showed a consistent increase in SERT availability in the thalamus (Friedman test: p=0.006). Ecstasy-induced protracted alterations in the availability of the SERT might be reversible. (orig.)

  16. Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, Ralph; Wilke, Florian; Nebeling, Bruno; Clausen, Malte [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Thomasius, Rainer; Petersen, Kay; Obrocki, Jost; Wartberg, Lutz; Zapletalova, Pavlina [University Medical Center Hamburg-Eppendorf, Departments of Psychiatry and Psychotherapy, Hamburg (Germany)

    2006-02-01

    Animal data suggest that the synthetic drug ecstasy may damage brain serotonin neurons. Previously we reported protracted reductions in the availability of the serotonin transporter (SERT), an index of integrity of the axon terminals of brain serotonergic neurons, in SERT-rich brain regions in current human ecstasy users. Comparison of current ecstasy users and former ecstasy users yielded some evidence that this reduction might be reversible. However, participant selection effects could not be ruled out. Therefore, follow-up examinations were performed in these subjects to test the following a priori hypothesis in a prospective longitudinal design that eliminates participant selection effects to a large extent: availability of the SERT increases towards normal levels when ecstasy use is stopped, and remains unchanged or is further decreased if use is continued. Two follow-up positron emission tomography measurements using the SERT ligand [{sup 11}C](+)McN5652 were completed by 15 current and nine former ecstasy users. All subjects used illicit drugs other than ecstasy, too. The time interval between repeated measurements was about 1 year. The time course of the availability of the SERT was analysed in the following SERT-rich regions: mesencephalon, putamen, caudate and thalamus. Current ecstasy users showed a consistent increase in the availability of the SERT in the mesencephalon during the study (Friedman test: p=0.010), which most likely was caused by a decrease in the intensity of ecstasy consumption (Spearman correlation coefficient -0.725, p=0.002). Former ecstasy users showed a consistent increase in SERT availability in the thalamus (Friedman test: p=0.006). Ecstasy-induced protracted alterations in the availability of the SERT might be reversible. (orig.)

  17. Non-conventional features of peripheral serotonin signalling - the gut and beyond.

    Science.gov (United States)

    Spohn, Stephanie N; Mawe, Gary M

    2017-07-01

    Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.

  18. No evidence for a role of the serotonin 4 receptor in five-factor personality traits

    DEFF Research Database (Denmark)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick Mac Donald

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo...... in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated...... using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits...

  19. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  20. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  1. Serotonin induces peripheral antinociception via the opioidergic system.

    Science.gov (United States)

    Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima

    2018-01-01

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  3. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  4. Depression, osteoporosis, serotonin and cell membrane viscosity between biology and philosophical anthropology

    Directory of Open Access Journals (Sweden)

    Gabrielli Fabio

    2011-03-01

    Full Text Available Abstract Due to the relationship between biology and culture, we believe that depression, understood as a cultural and existential phenomenon, has clear markers in molecular biology. We begin from an existential analysis of depression constituting the human condition and then shift to analysis of biological data confirming, according to our judgment, its original (ontological structure. In this way philosophy is involved at the anthropological level, in as much as it detects the underlying meanings of depression in the original biological-cultural horizon of human life. Considering the integration of knowledge it is the task of molecular biology to identify the aforementioned markers, to which the existential aspects of depression are linked to. In particular, recent works show the existence of a link between serotonin and osteoporosis as a result of a modified expression of the low-density lipoprotein receptor-related protein 5 gene. Moreover, it is believed that the hereditary or acquired involvement of tryptophan hydroxylase 2 (Tph2 or 5-hydroxytryptamine transporter (5-HTT is responsible for the reduced concentration of serotonin in the central nervous system, causing depression and affective disorders. This work studies the depression-osteoporosis relationship, with the aim of focusing on depressive disorders that concern the quantitative dynamic of platelet membrane viscosity and interactome cytoskeleton modifications (in particular Tubulin and Gsα protein as a possible condition of the involvement of the serotonin axis (gut, brain and platelet, not only in depression but also in connection with osteoporosis.

  5. Brain Serotonin Transporter Occupancy by Oral Sibutramine Dosed to Steady State: A PET Study Using 11C-DASB in Healthy Humans

    Science.gov (United States)

    Talbot, Peter S; Bradley, Stefan; Clarke, Cyril P; Babalola, Kola O; Philipp, Andrew W; Brown, Gavin; McMahon, Adam W; Matthews, Julian C

    2010-01-01

    Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. 11C-DASB PET scans were performed on the HRRT camera. Binding potentials (BPND) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30±10%), was similar across brain regions, but varied widely across subjects (15–46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET. PMID:19890256

  6. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  7. The serotonin transporter in psychiatric disorders

    DEFF Research Database (Denmark)

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert

    2015-01-01

    Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology...... of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application...... of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder...

  8. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  9. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    International Nuclear Information System (INIS)

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  10. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Passchier, J.; Waarde, A. van

    2001-01-01

    The 5-HT 1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT 1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl- 11 C] WAY-100635 (WAY), [carbonyl- 11 C]desmethyl-WAY-100635 (DWAY), p-[ 18 F]MPPF and [ 11 C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT 1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  11. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin

    International Nuclear Information System (INIS)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.; Askenase, P.W.

    1982-01-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10 -6 M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD 1 = 4.5 x 10 - 8 M; KD 2 = 3.9 x 10 -6 M) did not bind to Con A. Moreover, binding of [ 3 H]serotonin to protein of Peak I was sensitive to inhibition by reserpine, while binding of [ 3 H]serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of [ 3 H] serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules

  12. The influence of a subanaesthetic dose of ketamine on circulating pro-inflammatory cytokines and serotonin in brain reply

    Czech Academy of Sciences Publication Activity Database

    Horáček, J.; Tejkalová, H.; Novák, T.; Bubeníková-Valešová, V.; Páleníček, T.; Rambousek, L.; Růžičková, Šárka; Vaculín, Š.; Hoeschl, C.

    2011-01-01

    Roč. 41, č. 8 (2011), s. 1787-1789 ISSN 0033-2917 Institutional research plan: CEZ:AV0Z50520701 Keywords : serotonin * proinflammatory * cytokines Subject RIV: AN - Psychology Impact factor: 6.159, year: 2011

  13. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  14. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  15. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  16. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.

    Science.gov (United States)

    Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung

    2018-03-01

    The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018

  17. Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish.

    Science.gov (United States)

    Backström, Tobias; Winberg, Svante

    2017-01-01

    Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.

  18. Serotonin Coordinates Responses to Social Stress—What We Can Learn from Fish

    Directory of Open Access Journals (Sweden)

    Tobias Backström

    2017-10-01

    Full Text Available Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.

  19. Serotonin syndrome:case report and current concepts.

    LENUS (Irish Health Repository)

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  20. Biochemical changes in tissue catecholamines and serotonin in duodenal ulceration caused by cysteamine or propionitrile in the rat

    International Nuclear Information System (INIS)

    Szabo, S.; Horner, H.C.; Maull, H.; Schnoor, J.; Chiueh, C.C.; Palkovits, M.

    1987-01-01

    Previous structure-activity and pharmacologic studies with duodenal ulcerogens cysteamine and propionitrile implicating catecholamines in the pathogenesis of duodenal ulceration have now been followed up by dose- and time-response biochemical investigations to assess the importance of monoamines in the development of duodenal ulcers. The concentrations of norepinephrine (noradrenaline), dopamine, serotonin and their metabolites were measured in total brain, brain regions, stomach, duodenum, pancreas and adrenals in the rat. Turnover of catecholamines was determined in rats pretreated with the inhibitor of tyrosine hydroxylase alpha-methyl-p-tyrosine. The duodenal ulcerogens caused a dose- and time-dependent depletion of norepinephrine in virtually all the tissues examined. The effect was maximal 4 or 7 hr after cysteamine or propionitrile, and norepinephrine levels returned to normal in 24 hr. Dopamine changes were selective and often biphasic, e.g., elevation in adrenals, biphasic in brain cortex, hippocampus and midbrain, but uniformly decreasing in glandular stomach and duodenum. In the median eminence dopamine levels decreased by 181 and 324% at 15 and 30 min, respectively, after cysteamine, but neither dopamine nor 3,4-dihydroxyphenylacetic acid was modified in the periventricular nucleus. Serotonin levels were relatively stable, revealing slight elevations or no changes in most of the tissues. The turnover of norepinephrine was accelerated by both chemicals in virtually all brain regions, but dopamine turnover was affected only in a few areas, e.g., in the corpus striatum and medulla oblongata cysteamine decreased dopamine turnover, whereas propionitrile first (at 1 hr) accelerated then (at 8 hr) significantly suppressed it.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Ca++ dependent bistability induced by serotonin in spinal motoneurons

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kiehn, O.

    1985-01-01

    The plateau potential, responsible for the bistable state of spinal motoneurons, recently described in the decerebrate cat, was suggested to depend on serotonin (Hounsgaard et al. 1984). In an in vitro preparation of the spinal cord of the turtle we now show that serotonin, applied directly...... to the bath, transforms the intrinsic response properties of motoneurons, uncovering a plateau potential and voltage sensitive bistability. The changes induced by serotonin were blocked by Mn++, while the plateau potential and the bistability remained after application of tetrodotoxin. We conclude...... that serotonin controls the expression of a Ca++ dependent plateau potential in motoneurons....

  2. The Effect Of Reversed Light-Dark Cycle And Restricted Feeding Regime On The Circadian Rhythm Of Cortisol And Serotonin In Male Rats

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.; El-Masry, H.; El-Hennamy, R.E.; Abdel-Kader, S.

    2013-01-01

    Biological clock plays an important role in the regulation of different physiological processes and behaviour. The present study aimed to investigate the effect of the reversed light-dark cycle and restricted feeding regime for one and two weeks on the circadian rhythm of cortisol and serotonin in male rats. Serum cortisol and brain serotonin levels were delayed after exposing rats to a reversed light-dark cycle for one week which may be due to the action of the gene Per2 that delay the phase of the clock. On the other hand, their levels highly elevated and peaked at the same time after two weeks which may be due to continuous stressful events. The serum cortisol reached its highest level at the meal time after one week of restricted feeding while after two weeks, its level was higher at several time intervals, which may be due to the need of the body to energy. The peak of the brain serotonin rhythm was delayed during the day after one week while after two weeks, it exhibited the same pattern of the circadian rhythm of control group. From the present results and previous studies, it could be concluded that the reversed light-dark cycle and restricted feeding regime are able to shift the phase of the circadian rhythm of the studied physiological parameters which led to many mental and physiological disorders

  3. Conundrums in neurology: diagnosing serotonin syndrome - a meta-analysis of cases.

    Science.gov (United States)

    Werneke, Ursula; Jamshidi, Fariba; Taylor, David M; Ott, Michael

    2016-07-12

    Serotonin syndrome is a toxic state, caused by serotonin (5HT) excess in the central nervous system. Serotonin syndrome's main feature is neuro-muscular hyperexcitability, which in many cases is mild but in some cases can become life-threatening. The diagnosis of serotonin syndrome remains challenging since it can only be made on clinical grounds. Three diagnostic criteria systems, Sternbach, Radomski and Hunter classifications, are available. Here we test the validity of four assumptions that have become widely accepted: (1) The Hunter classification performs clinically better than the Sternbach and Radomski criteria; (2) in contrast to neuroleptic malignant syndrome, the onset of serotonin syndrome is usually rapid; (3) hyperthermia is a hallmark of severe serotonin syndrome; and (4) serotonin syndrome can readily be distinguished from neuroleptic malignant syndrome on clinical grounds and on the basis of medication history. Systematic review and meta-analysis of all cases of serotonin syndrome and toxicity published between 2004 and 2014, using PubMed and Web of Science. Two of the four assumptions (1 and 2) are based on only one published study each and have not been independently validated. There is little agreement between current criteria systems for the diagnosis of serotonin syndrome. Although frequently thought to be the gold standard for the diagnosis of the serotonin syndrome, the Hunter criteria did not perform better than the Sternbach and Radomski criteria. Not all cases seem to be of rapid onset and only relatively few cases may present with hyperthermia. The 0 differential diagnosis between serotonin syndrome and neuroleptic malignant syndrome is not always clear-cut. Our findings challenge four commonly made assumptions about serotonin syndrome. We propose our meta-analysis of cases (MAC) method as a new way to systematically pool and interpret anecdotal but important clinical information concerning uncommon or emergent phenomena that cannot be

  4. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  6. Selective serotonin reuptake inhibitors and risk for gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Batić-Mujanović Olivera

    2014-01-01

    Full Text Available The most of the known effects of selective serotonin reuptake inhibitors, beneficial or harmful, are associated with the inhibitory action of the serotonin reuptake transporter. This mechanism is present not only in neurons, but also in other cells such as platelets. Serotoninergic mechanism seems to have an important role in hemostasis, which has long been underestimated. Abnormal activation may lead to a prothrombotic state in patients treated with selective serotonin reuptake inhibitors. On one hand there may be an increased risk of bleeding, and on the other hand reduction in thrombotic risk may be possible. Serotonin is critical to maintain a platelet haemostatic function, such as platelet aggregation. Evidences from the studies support the hypothesis that antidepressants with a relevant blockade of action of serotonin reuptake mechanism may increase the risk of bleeding, which can occur anywhere in the body. Epidemiological evidences are, however, the most robust for upper gastrointestinal bleeding. It is estimated that this bleeding can occur in 1 in 100 to 1 in 1.000 patient-years of exposure to the high-affinity selective serotonin reuptake inhibitors, with very old patients at the highest risk. The increased risk may be of particular relevance when selective serotonin reuptake inhibitors are taken simultaneously with nonsteroidal anti-inflammatory drugs, low dose of aspirin or warfarin.

  7. Regulation of Pituitary Beta Endorphin Release: Role of Serotonin Neurons

    Science.gov (United States)

    1983-12-15

    endogenous) may be related to pain and its transmission in the nervous system. Areas known to have a large number of opiate receptors both in primates and...serotonin meta- bolite 5-hydroxytrvptamine; serotonin 5-hydroxtryptophan; serotonin precursor intra- cerebro -ventricular administration intermediate lobe

  8. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  9. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  10. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  11. Whole-body biodistribution and dosimetry estimates of a novel radiotracer for imaging of serotonin 4 receptors in brain: [18F]MNI-698

    International Nuclear Information System (INIS)

    Tavares, Adriana Alexandre S.; Caillé, Fabien; Barret, Olivier; Papin, Caroline; Lee, Hsiaoju; Morley, Thomas J.; Fowles, Krista; Holden, Daniel; Seibyl, John P.; Alagille, David; Tamagnan, Gilles D.

    2014-01-01

    Introduction: A new radiotracer for imaging the serotonin 4 receptors (5-HT 4 ) in brain, [ 18 F]MNI-698, was recently developed by our group. Evaluation in nonhuman primates indicates the novel radiotracer holds promise as an imaging agent of 5-HT 4 in brain. This paper aims to describe the whole-body biodistribution and dosimetry estimates of [ 18 F]MNI-698. Methods: Whole-body positron emission tomography (PET) images were acquired over 240 minutes after intravenous bolus injection of [ 18 F]MNI-698 in adult rhesus monkeys. Different models were investigated for quantification of radiation absorbed and effective doses using OLINDA/EXM 1.0 software. Results: The radiotracer main elimination route was found to be urinary and the critical organ was the urinary bladder. Modeling of the urinary bladder voiding interval had a considerable effect on the estimated effective dose. Normalization of rhesus monkeys’ organs and whole-body masses to human equivalent reduced the calculated dosimetry values. The effective dose ranged between 0.017 and 0.027 mSv/MBq. Conclusion: The dosimetry estimates, obtained when normalizing organ and whole-body weights and applying the urinary bladder model, indicate that the radiation doses from [ 18 F]MNI-698 comply with limits and guidelines recommended by key regulatory authorities that govern the translation of radiotracers to human clinical trials. The timing of urinary bladder emptying should be considered when designing future clinical protocols with [ 18 F]MNI-698, in order to minimize the subject absorbed doses

  12. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  13. Association between salivary serotonin and the social sharing of happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others, we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative, as well as the presence of a friend (absent, positive, or negative. Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking, which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  14. Association between salivary serotonin and the social sharing of happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Ishii, Keiko; Ohtsubo, Yohsuke; Noguchi, Yasuki; Ochi, Misaki; Yamasue, Hidenori

    2017-01-01

    Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others), we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend (absent, positive, or negative). Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking), which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  15. Serotonin Toxicity Caused by Moclobemide Too Soon After Paroxetine-Selegiline

    Directory of Open Access Journals (Sweden)

    Ming-Ling Wu

    2009-08-01

    Full Text Available Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyper-reflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegi-line and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.

  16. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the

  17. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  18. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism.

    Science.gov (United States)

    Winter, Christine; Reutiman, Teri J; Folsom, Timothy D; Sohr, Reinhard; Wolf, Rainer J; Juckel, Georg; Fatemi, S Hossein

    2008-10-01

    Prenatal viral infection has been associated with neurodevelopmental disorders such as schizophrenia and autism. It has previously been demonstrated that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and middle-late second trimester (E18) administration of influenza virus. Neurochemical analysis following infection on E18 using this model has revealed significantly altered levels of serotonin, 5-hydroxyindoleacetic acid, and taurine, but not dopamine. In order to monitor these different patterns of monoamine expression in exposed offspring in more detail and to see if there are changes in the dopamine system at another time point, pregnant C57BL6J mice were infected with a sublethal dose of human influenza virus or sham-infected using vehicle solution on E16. Male offspring of the infected mice were collected at P0, P14, and P56, their brains removed and cerebellum dissected and flash frozen. Dopamine and serotonin levels were then measured using HPLC-ED technique. When compared to controls, there was a significant decrease in serotonin levels in the cerebella of offspring of virally exposed mice at P14. No differences in levels of dopamine were observed in exposed and control mice, although there was a significant decrease in dopamine at P14 and P56 when compared to P0. The present study shows that the serotonergic system is disrupted following prenatal viral infection, potentially modelling disruptions that occur in patients with schizophrenia and autism.

  19. Reduction of intraspecific aggression in adult rats by neonatal treatment with a selective serotonin reuptake inhibitor

    Directory of Open Access Journals (Sweden)

    Manhães de Castro R.

    2001-01-01

    Full Text Available Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days treated from the 1st to the 19th postnatal day with citalopram (CIT, a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days. Aggressive behavior was induced by placing a pair of rats (matched by weight in a box (20 x 20 x 20 cm, and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval. When compared to the control group (rats treated for the same period with equivalent volumes of saline solution, the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.

  20. Association of functional polymorphisms from brain-derived neurotrophic factor and serotonin-related genes with depressive symptoms after a medical stressor in older adults.

    Directory of Open Access Journals (Sweden)

    Kerri S Rawson

    Full Text Available Depressive symptoms are common in older adults after a disabling medical event and interfere with rehabilitation and recovery from the disability. This prospective study examined the role of genetic polymorphisms implicated in synaptic integrity and stress-associated depression as predictors of depressive symptoms after hip fracture. We recruited healthy comparisons from the community and participants with hip fracture after surgical fixation from Saint Louis, Missouri hospitals. We examined the valine (Val to methionine (Met polymorphism in brain-derived neurotrophic factor (BDNF, serotonin 1A receptor (5HT1a-rs6295 polymorphism, and the serotonin transporter-linked polymorphic region (5HTTLPR interaction with the rs25531 A to G single nucleotide polymorphism (5HTTLPR-rs25531 as predictors of depressive symptoms. We also examined whether depressive symptoms mediate the influence of BDNF genotype on functional recovery. Among 429 participants with hip fracture, BDNF Met/Met carriers developed significantly more depressive symptoms than Val/Val carriers during a four-week period after the fracture (p=.012. BDNF genotype also predicted functional recovery over the ensuing year, mediated by its effects on depressive symptoms (CI: 0.07-3.37. Unlike prior studies of stressful life events, the S' 5HTTLPR-rs25531 variant did not predict higher levels of depressive symptoms; instead, we report an exploratory finding of an epistatic effect between BDNF and 5HTTLPR-rs25531 whereby the compounded effects of two LA alleles and BDNF Met/Met genotype elevate risk of depressive symptoms after hip fracture (p=.006. No differences between 5HT1a genotypes were found. Our findings suggest plasticity-related genetic factors contribute to the neural mechanisms of mental and functional well-being after a disabling medical stressor.

  1. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P. E-mail: kunghf@sunmac.spect.upenn.edu; Acton, Paul D.; Kung, Hank F

    2000-02-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [{sup 125}I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[{sup 125}I]iodide, the radiolabeled [{sup 125}I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K{sub i}=2.8{+-}0.88 nM. Using LLC-PK{sub 1} cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K{sub i}=0.12{+-}0.02 nM). Inhibition constants for the other two transporters were lower (K{sub i}=3.9{+-}0.7 {mu}M and 20.0 {+-} 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [{sup 125}I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection

  2. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    International Nuclear Information System (INIS)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P.; Acton, Paul D.; Kung, Hank F.

    2000-01-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [ 125 I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[ 125 I]iodide, the radiolabeled [ 125 I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K i =2.8±0.88 nM. Using LLC-PK 1 cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K i =0.12±0.02 nM). Inhibition constants for the other two transporters were lower (K i =3.9±0.7 μM and 20.0 ± 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [ 125 I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection, respectively. The specific uptake in hypothalamus

  3. Serotonin: Modulator of a Drive to Withdraw

    Science.gov (United States)

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  4. Serotonin: Is it a marker for the diagnosis of hepatocellular ...

    African Journals Online (AJOL)

    Impaired metabolic function in liver cirrhosis and slow uptake and storage of serotonin by the platelets is a sequelae of kinetic change of serotonin transport mechanisms or abnormal serotonin release from dense granules of activated platelets is a condition defined as ''platelet exhaustion'', contributes to elevated plasma ...

  5. Dementia and memory improvement due to histological changes in the brain hippocampus and hormone secretion of brain by lecithin administration

    OpenAIRE

    GU, Yeun-Hwa; YAMASHITA, Takenori; KANG, Ki-Mun

    2014-01-01

    Abstract : In this study, senescence accelerated mice (SAMP8 male, 8w), were used for the study of spatial recognition ability. We studied the effects on the brain hippocampus by administering lecithin (500 mg/kg, po). As compared to sham control group, the peroxy radical was inhibited significant in the lecithin administration group. The brain peroxidized fat level had a tendency to decrease was found in the lecithin group. Also, in the intracerebral serotonin concentration, was increased in...

  6. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  7. Synthesis of a new technetium brain radiotracer

    International Nuclear Information System (INIS)

    El Aissi, Radhia

    2009-01-01

    The radiological diagnosis of brain diseases, including neurodegenerative ones, is still difficult because of the absence of specific biological markers. These diseases are then increasingly the subject of researches and new experiments. The biodistribution of a new cytectrenes-aniline derivative, having a lipophilic character and low molecular weight, showed a prolonged brain retention and a specific tissue distribution of the hippocampus. This radiotracer could contribute to establish early diagnosis of neurodegenerative diseases thanks to its affinity with a serotonin receptors-rich region. (Author)

  8. The serotonin-lir nervous system of the Bryozoa (Lophotrochozoa): a general pattern in the Gymnolaemata and implications for lophophore evolution of the phylum.

    Science.gov (United States)

    Schwaha, Thomas F; Wanninger, Andreas

    2015-10-14

    Serotonin represents an evolutionary ancient neurotransmitter that is ubiquitously found among animals including the lophotrochozoan phylum Bryozoa, a group of colonial filter-feeders. Comparatively little is known on their nervous system, and data on their serotonin-lir nervous system currently are mostly limited to the basal phylactolaemates. Previous investigations indicated a common ground-pattern of the serotonin-lir nervous system in these animals, but in order to assess this on a larger scale, 21 gymnolaemate species from 21 genera were comparatively analysed herein. Twenty-one species from 21 gymnolaemate genera were analysed by immunocytochemical stainings and confocal laser scanning microscopy. In all species the serotonin-lir signal is concentrated in the cerebral ganglion from where a nerve tract emanates laterally and traverses orally to engulf the foregut. Serotonin-lir perikarya are situated at the base of the tentacles that almost always correspond to the number of tentacles minus two. The oral side in almost all species shows three serotonin-lir perikarya followed by a 'serotonergic gap' that to our knowledge is not reflected in the morphology of the nervous system. Some species show additional serotonin-lir signal in tentacle nerves, visceral innervation and pore complexes. Paludicella articulata is exceptional as it shows signal in the latero-visceral nerves with serotonin-lir perikarya in the esophagus, parts of the tentacle sheath nerves as well as the frontal body wall around the parietal muscle bundles. In general, the serotonin-lir nervous system in the Bryozoa shows a consistent pattern among its different clades with few deviations. Preliminary data on phylactolaemates suggest the presence of a 'serotonergic gap' similar to gymnolaemates. Both show a subset of oral tentacles and the remaining tentacles in gymnolaemates which correspond to the lateral tentacles of phylactolaemates. The lophophoral concavity lacks serotonin-lir perikarya

  9. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Science.gov (United States)

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  10. Imaging of the brain serotonin transporters (SERT) with {sup 18}F-labelled fluoromethyl-McN5652 and PET in humans

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Swen [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Center, AdiposityDiseases, Leipzig (Germany); Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Research Site Leipzig, Leipzig (Germany); Maeding, Peter; Zessin, Joerg; Fuechtner, Frank [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Dresden (Germany); Becker, Georg-Alexander; Patt, Marianne; Seese, Anita; Sorger, Dietlind; Meyer, Philipp M.; Habermann, Bernd; Luthardt, Julia; Bresch, Anke; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Lobsien, Donald [University of Leipzig, Department of Neuroradiology, Leipzig (Germany); Laudi, Sven [University of Leipzig, Department of Anaesthesiology and Intensive Care, Leipzig (Germany); Steinbach, Joerg [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Research Site Leipzig, Leipzig (Germany)

    2012-06-15

    [{sup 11}C]DASB is currently the most frequently used highly selective radiotracer for visualization and quantification of central SERT. Its use, however, is hampered by the short half-life of {sup 11}C, the moderate cortical test-retest reliability, and the lack of quantifying endogenous serotonin. Labelling with {sup 18}F allows in principle longer acquisition times for kinetic analysis in brain tissue and may provide higher sensitivity. The aim of our study was to firstly use the new highly SERT-selective {sup 18}F-labelled fluoromethyl analogue of (+)-McN5652 ((+)-[{sup 18}F]FMe-McN5652) in humans and to evaluate its potential for SERT quantification. The PET data from five healthy volunteers (three men, two women, age 39 {+-} 10 years) coregistered with individual MRI scans were semiquantitatively assessed by volume-of-interest analysis using the software package PMOD. Rate constants and total distribution volumes (V{sub T}) were calculated using a two-tissue compartment model and arterial input function measurements were corrected for metabolite/plasma data. Standardized uptake region-to-cerebellum ratios as a measure of specific radiotracer accumulation were compared with those of a [{sup 11}C]DASB PET dataset from 21 healthy subjects (10 men, 11 women, age 38 {+-} 8 years). The two-tissue compartment model provided adequate fits to the data. Estimates of total distribution volume (V{sub T}) demonstrated good identifiability based on the coefficients of variation (COV) for the volumes of interest in SERT-rich and cortical areas (COV V{sub T} <10%). Compared with [{sup 11}C]DASB PET, there was a tendency to lower mean uptake values in (+)-[{sup 18}F]FMe-McN5652 PET; however, the standard deviation was also somewhat lower. Altogether, cerebral (+)-[{sup 18}F]FMe-McN5652 uptake corresponded well with the known SERT distribution in humans. The results showed that (+)-[{sup 18}F]FMe-McN5652 is also suitable for in vivo quantification of SERT with PET. Because of

  11. Imaging dopamine and opiate receptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1986-01-01

    Chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its nature. In 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spipeone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress

  12. The SPECT tracer [123I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    International Nuclear Information System (INIS)

    Giessen, Elsmarieke van de; Booij, Jan

    2010-01-01

    The tracer 123 I-2-([2-({dimethylamino}methyl)phenyl]thio)-5-iodophenylamine ([ 123 I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [ 123 I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [ 123 I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [ 123 I]ADAM binds selectively to SERTs. We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [ 123 I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Our preliminary findings suggest that [ 123 I]ADAM binds selectively to SERTs in human brain. (orig.)

  13. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  14. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas

    2016-01-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohor...

  15. Demonstration of endogenous imipramine like material in rat brain

    International Nuclear Information System (INIS)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-01-01

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits [ 3 H] imipramine specific binding and mimics the inhibitory effect of imipramine on [ 3 H] serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits [ 3 H] imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum

  16. Plasma serotonin in horses undergoing surgery for small intestinal colic

    Science.gov (United States)

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  17. Autoradiographic study of serotonin transporter during memory formation.

    Science.gov (United States)

    Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo

    2010-09-01

    Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Association of serotonin transporter promoter regulatory region polymorphism and cerebral activity to visual presentation of food.

    Science.gov (United States)

    Kaurijoki, Salla; Kuikka, Jyrki T; Niskanen, Eini; Carlson, Synnöve; Pietiläinen, Kirsi H; Pesonen, Ullamari; Kaprio, Jaakko M; Rissanen, Aila; Tiihonen, Jari; Karhunen, Leila

    2008-07-01

    Recent functional magnetic resonance imaging (fMRI) studies have revealed links between genetic polymorphisms and cognitive and behavioural processes. Serotonin is a classical neurotransmitter of central nervous system, and it is connected to the control of appetite and satiety. In this study, the relationship between the functional variation in the serotonin transporter gene and the activity in the left posterior cingulate cortex (PCC), a brain area activated by visual food stimuli was explored. Thirty subjects underwent serial fMRI studies and provided DNA for genetic analyses. Subjects homozygous for the long allele exhibited greater left PCC activity in the comparison food > non-food compared with individuals heterozygous or homozygous for the short allele. The association between genotype and activation was linear, the subjects with two copies of the long allele variant having the strongest activation. These results demonstrate the possible genetically driven variation in the response of the left PCC to visual presentation of food in humans.

  19. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  20. Serotonin Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Pedro Oliveira

    2018-01-01

    Full Text Available Serotonin Syndrome (SS is a potentially fatal iatrogenic condition that occurs as a result of an over-stimulation of the serotonergic receptors. Its typical presentation consists of the triad altered mental status, autonomic hyperactivity and neuromuscular alterations, although the clinical condition is highly variable. Despite being potentially treatable, many cases per year are underdiagnosed, a fact that has been mainly attributed to the lack of knowledge of this condition by the physicians. SS treatment relies on four pillars: removal of the precipitating agent and supportive therapy, antagonism of 5-HT2A receptors, and control of agitation, autonomic instability and hyperthermia. It is expected that its incidence will accompany the growth of the prescription of antidepressants, andincreasing physician’s awareness about its occurrence, could contribute to a timely diagnosis and to the success of the treatment. We present a clinical case of a patient diagnosed with Bipolar Affective Disorder, hospitalized for a depressive episode with a psychotic component, which developed a SS compatible condition. Based on this case report the authors undertake a theoretical review of this condition.

  1. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Directory of Open Access Journals (Sweden)

    Olle Eriksson

    Full Text Available To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD and asymptomatic controls.Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women.Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP, radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity-a proxy for serotonin precursor uptake and synthesis-was measured in 9 regions of interest (ROIs: the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single "whole brain".There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001. Menstrual phase changes in this asymmetry (premenstrual-follicular correlated with changes in self ratings of 'irritability' for the entire group (rs = -0.595, p = 0.006. The PMD group showed a strong inverse correlation between phase changes (premenstrual-follicular in plasma levels of estradiol and phase changes in the laterality (dx/sin of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027. The control group showed no such correlation.Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral

  2. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  3. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression.

    Directory of Open Access Journals (Sweden)

    Desmond J Oathes

    Full Text Available Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531 to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/L(G carriers showed less activity than their L(A/L(A counterparts in both regions and less activity than S/L(G healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.

  4. Serotonergic mechanisms in the migraine brain

    DEFF Research Database (Denmark)

    Christensen, Marie Deen; Christensen, Casper Emil; Hougaard, Anders

    2017-01-01

    role of brain serotonergic mechanisms remains a matter of controversy. Methods We systematically searched PubMed for studies investigating the serotonergic system in the migraine brain by either molecular neuroimaging or electrophysiological methods. Results The literature search resulted in 59 papers......, of which 13 were eligible for review. The reviewed papers collectively support the notion that migraine patients have alterations in serotonergic neurotransmission. Most likely, migraine patients have a low cerebral serotonin level between attacks, which elevates during a migraine attack. Conclusion...... This review suggests that novel methods of investigating the serotonergic system in the migraine brain are warranted. Uncovering the serotonergic mechanisms in migraine pathophysiology could prove useful for the development of future migraine drugs....

  5. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.

    Science.gov (United States)

    Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy

    2012-06-01

    The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.

  6. Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas

    DEFF Research Database (Denmark)

    Casar-Borota, Olivera; Botling, Johan; Granberg, Dan

    2017-01-01

    that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies......Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker...... in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic...

  7. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  8. In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter

    Science.gov (United States)

    Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.

    2015-01-01

    Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784

  9. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  10. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    Science.gov (United States)

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  11. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  12. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  13. Serotonin shapes risky decision making in monkeys

    OpenAIRE

    Long, Arwen B.; Kuhn, Cynthia M.; Platt, Michael L.

    2009-01-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in ...

  14. A radiometabolite study of the serotonin transporter PET radioligand [11C]MADAM

    International Nuclear Information System (INIS)

    Gourand, F.; Emond, P.; Bergström, J.P.; Takano, A.; Gulyás, B.; Guilloteau, D.; Barré, L.; Halldin, C.

    2014-01-01

    Introduction: 11 C]MADAM is a radioligand suitable for PET studies of the serotonin transporter (SERT). Metabolite analysis in human and non-human plasma samples using HPLC separation has shown that [ 11 C]MADAM was rapidly metabolized. A possible metabolic pathway is the S-oxidation which could lead to SOMADAM and SO 2 MADAM. In vitro evaluation of these two potential metabolites has shown that SOMADAM exhibited a good affinity for SERT and a good selectivity for SERT over NET and DAT. Methods: Comparative PET imaging studies in non-human primate brain with [ 11 C]MADAM and [ 11 C]SOMADAM were carried out, and plasma samples were analyzed using reverse phase HPLC. We have explored the metabolism of [ 11 C]MADAM in rat brain with a view to understand its possible interference for brain imaging with PET. Results: PET imaging studies in non-human primate brain using [ 11 C]SOMADAM indicated that this tracer does not bind with high amounts to brain regions known to be rich in SERT. The fraction of [ 11 C]SOMADAM in non-human primate plasma was approximately 5% at 4 min and 1% at 15 min after [ 11 C]MADAM injection. HPLC analysis of brain sample after [ 11 C]MADAM injection to rats demonstrated that [ 11 C]SOMADAM was not detected in the brain. Conclusions: 11 C]SOMADAM is not superior over [ 11 C]MADAM as a SERT PET radioligand. Nevertheless, [ 11 C]SOMADAM has been identified as a minor labeled metabolite of [ 11 C]MADAM measured in monkey plasma. [ 11 C]SOMADAM was not detected in rat brain

  15. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  16. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model

    Science.gov (United States)

    Wessels, Anna G.; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I.

    2016-01-01

    In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth. PMID:26930301

  17. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1985-01-01

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  18. Determinação simultânea de precursores de serotonina - triptofano e 5-hidroxitriptofano - em café Simultaneous determination of serotonin precursors - tryptophan and 5-hidroxytryptophan - in coffee

    Directory of Open Access Journals (Sweden)

    Ana Carolina C. L. Martins

    2010-01-01

    Full Text Available Epidemiological studies attributed positive effects in the central nervous system (CNS to coffee. Among possible active constituents, serotonin, a neurotransmitter in the CNS, is present; but dietary sources do not cross the blood-brain barrier. Tryptophan and 5-hidroxytryptophan (5-HTP are serotonin precursors and can affect brain concentrations. An ion-pair-HPLC, post-column derivatization with o-phthalaldehyde and fluorimetric detection before and after hydrolysis with NaOH and extraction with methanol:water was developed for the simultaneous determination of these compounds. It was selective, sensitive (LOD = 0.3 and 0.2 μg/mL, precise (91.3 and 94.2% recovery for tryptophan and 5-HTP, respectively, and linear from 0.3 to 40 μg/mL for both compounds. It was applied to green and roasted arabica and robusta coffees.

  19. A new model for separation between brain dopamine and serotonin transporters in {sup 123}I-{beta}-CIT SPECT measurements: normal values and sex and age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Erik; Rosen, Ingmar [Department of Clinical Neurophysiology, University Hospital, Lund (Sweden); Lindstroem, Mats; Bosson, Peter; Traeskman-Bendz, Lil [Department of Psychiatry, University Hospital, Lund (Sweden); Braadvik, Bjoern; Grabowski, Martin [Department of Neurology, University Hospital, Lund (Sweden)

    2004-08-01

    {sup 123}I-{beta}-CIT is a radioactive ligand for single-photon emission computed tomography (SPECT) imaging of the pre-synaptic (transporter) re-uptake sites for dopamine (DAT) and serotonin (5HTT), and it is widely used to visualize monoamine turnover. Since {sup 123}I-{beta}-CIT uptake occurs at 5HTT and DAT sites in conjunction with the presence of freely soluble {sup 123}I-{beta}-CIT in brain tissue, adequate separation of these three components is necessary. However, only partial separation is possible with current methods. Two main strategies have previously been used for {sup 123}I-{beta}-CIT component separation, based on the following considerations: (1) the faster uptake rate for 5HTT compared with DAT enables temporal separation by performing 5HTT imaging at 1-2 h and DAT imaging at 20-24 h; (2) blocking the 5HTT re-uptake with citalopram renders {sup 123}I-{beta}-CIT imaging DAT (non-5HTT) specific. In a new analytical model, we combined these two approaches with methods to isolate the passively dissolved {sup 123}I-{beta}-CIT in brain tissue from the monoamine transporter uptake, and to correct the 5HTT and DAT values for concomitant uptake. The new analytical model was used to study brain 5HTT and DAT in 23 normal subjects, with the aim of clarifying the effect of age and sex. A significant correlation between 5HTT and DAT values was found only in the thalamus, indicating successful component separation. Negative correlations between age and DAT were found for basal ganglia, thalami, brain stem and temporal lobes, but not for the frontal, parietal or occipital regions. No correlation with age was found for 5HTT. We found no sex difference for 5HTT or DAT. (orig.)

  20. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain

    DEFF Research Database (Denmark)

    Yang, Kai-Chun; Stepanov, Vladimir; Martinsson, Stefan

    2017-01-01

    Background: [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the c...... sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain....

  1. Moderation of antidepressant response by the serotonin transporter gene

    DEFF Research Database (Denmark)

    Huezo-Diaz, Patricia; Uher, Rudolf; Smith, Rebecca

    2009-01-01

    Background: There have been conflicting reports on whether the length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) moderates the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs). We hypothesised that the pharmacogenetic effect of 5-HTTLPR...... the serotonin transporter gene were genotyped in 795 adults with moderate-to-severe depression treated with escitalopram or nortriptyline in the Genome Based Therapeutic Drugs for Depression (GENDEP) project. Results: The 5-HTTLPR moderated the response to escitalopram, with long-allele carriers improving more...

  2. Ethanol intake and 3H-serotonin uptake I: A study in Fawn-Hooded rats

    International Nuclear Information System (INIS)

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P.

    1991-01-01

    Ethanol intake and synaptosomal 3 H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal 3 H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces 3 H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system

  3. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  4. 17β-Estradiol augments antidepressant efficacy of escitalopram in ovariectomized rats: Neuroprotective and serotonin reuptake transporter modulatory effects.

    Science.gov (United States)

    Ibrahim, Weam W; Safar, Marwa M; Khattab, Mahmoud M; Agha, Azza M

    2016-12-01

    The prevalence or recurrence of depression is seriously increased in women during the transition to and after menopause. The chronic hypo-estrogenic state of menopause may reduce the response to antidepressants; however the influence of estrogen therapy on their efficacy is still controversial. This study aimed at investigating the effects of combining escitalopram with 17β-estradiol on depression and cognitive impairment induced by ovariectomy, an experimental model of human menopause. Young adult female Wistar rats were subjected to either sham operation or ovariectomy. Ovariectomized animals were treated chronically with escitalopram (10mg/kg/day, i.p) alone or with four doses of 17β-estradiol (40μg/kg, s.c) given prior to the behavioral tests. Co-administration of 17β-estradiol improved escitalopram-induced antidepressant effect in forced swimming test verified as more prominent decrease in the immobility time without opposing its memory enhancing effect in Morris water maze. 17β-estradiol augmented the modulatory effects of escitalopram on the hippocampal levels of brain-derived neurotrophic factor and serotonin reuptake transporter as well as tumor necrosis factor-alpha without altering its effects on the gene expressions of serotonin receptor 1A, estrogen receptors alpha and beta, or acetylcholinestearase content. This combined therapy afforded synergistic protective effects on the brain histopathological architecture, particularly, the hippocampus. The antidepressant effect of 17β-estradiol was abolished by pretreatment with estrogen receptor antagonist, tamoxifen (10mg/kg, p.o). In conclusion, 17β-estradiol-induced antidepressant effect was confined to intracellular estrogen receptors activation. Moreover, 17β-estradiol enhanced escitalopram's efficiency in ameliorating menopausal-like depression, via exerting synergistic neuroprotective and serotonin reuptake transporter modulatory effects, without impeding escitalopram-mediated cognitive

  5. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders

    Science.gov (United States)

    Dayer, Alexandre

    2014-01-01

    Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants. PMID:24733969

  6. Effects of delayed laboratory processing on platelet serotonin levels.

    Science.gov (United States)

    Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini

    2013-01-01

    Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.

  7. Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas: Markers in the Differential Diagnosis of Neuroendocrine Tumors of the Sellar Region.

    Science.gov (United States)

    Casar-Borota, Olivera; Botling, Johan; Granberg, Dan; Stigare, Jerker; Wikström, Johan; Boldt, Henning Bünsow; Kristensen, Bjarne Winther; Pontén, Fredrik; Trouillas, Jacqueline

    2017-09-01

    Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic case of an invasive serotonin and adrenocorticotroph hormone immunoreactive NET in the sellar region, we explored the immunohistochemical expression of serotonin, ATRX, and DAXX in a large series of pituitary endocrine tumors of different types from 246 patients and in 2 corticotroph carcinomas. None of the pituitary tumors expressed serotonin, suggesting that serotonin immunoreactive sellar tumors represent primary or secondary NETs of nonpituitary origin. Normal expression of ATRX and DAXX in pituitary tumors suggests that ATRX and DAXX do not play a role in the pathogenesis of pituitary endocrine tumors that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies on a larger cohort of pituitary carcinomas are needed to clarify whether ATRX mutations may contribute to the metastatic potential in a subset of pituitary NETs.

  8. A Preclinical Study of Casein Glycomacropeptide as a Dietary Intervention for Acute Mania

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Jensen, Erik; Larsen, Erik Roj

    2018-01-01

    Background: Casein glycomacropeptide is a peptide that lacks phenylalanine, tyrosine, and tryptophan. This profile may enable it to deplete phenylalanine, tyrosine, and tryptophan, and subsequently the synthesis of dopamine and serotonin in the brain. Dopamine- and serotonin-depleting amino acid...... mixtures have shown promise as acute antimanic treatments. In this study, we explore the depleting effects on amino acids, dopamine and serotonin as well as its actions on manic-like and other behavior in rats. Methods: Casein glycomacropeptide and a selection of amino acid mixtures were administered...... orally at 2, 4, or 8 h or for 1 week chronically. Amino acid and monoamine levels were measured in plasma and brain and behavior was assessed in the amphetamine-hyperlocomotion, forced swim, prepulse inhibition, and elevated plus maze tests. Results: Casein glycomacropeptide induced a time...

  9. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2017-07-01

    The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.

  10. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W

    2017-08-01

    Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.

  11. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  12. Lack of benefit of accumbens/capsular deep brain stimulation in a patient with both tics and obsessive-compulsive disorder.

    Science.gov (United States)

    Burdick, Adam; Foote, Kelly D; Goodman, Wayne; Ward, Herbert E; Ricciuti, Nicola; Murphy, Tanya; Haq, Ihtsham; Okun, Michael S

    2010-08-01

    LAY SUMMARY: This case report illustrates lack of clinical efficacy of deep brain stimulation (DBS) for control of tics in a case of mild Tourette syndrome (TS) with severe comorbid obsessive-compulsive disorder (OCD). The brain target for stimulation was the anterior limb internal capsule (ALIC). To investigate the effect of anterior limb of internal capsule/nucleus accumbens (ALIC-NA) DBS on mild motor and vocal tics in a Tourette syndrome (TS) patient with severe OCD. The optimum target to address symptoms of TS with DBS remains unknown. Earlier lesional therapy utilized thalamic targets and also the ALIC for select cases which had been diagnosed with other psychiatric disorders. Evidence regarding the efficacy of DBS for the symptoms of TS may aid in better defining a brain target's suitability for use. We report efficacy data on ALIC-NA DBS in a patient with severe OCD and mild TS. A 33-year-old man underwent bilateral ALIC-NA DBS. One month following implantation, a post-operative CT scan was obtained to verify lead locations. Yale Global Tic Severity Scales (YGTSS) and modified Rush Videotape Rating scales (MRVRS) were obtained throughout the first 6 months, as well as careful clinical examinations by a specialized neurology and psychiatry team. The patient has been followed for 30 months. YGTSS scores worsened by 17% during the first 6 months. MRVRS scores also worsened over 30 total months of follow-up. There was a lack of clinically significant tic reduction although subjectively the patient felt tics improved mildly. DBS in the ALIC-NA failed to effectively address mild vocal and motor tics in a patient with TS and severe comorbid OCD.

  13. Amine metabolism in the human brain : evaluation of the probenecid test

    NARCIS (Netherlands)

    Korf, Jacob

    1971-01-01

    There are indirect indications, that biogenic amines in the brain are concerned with pathological states such as depression (serotonin, 5HT and noradrenaline, NA) and Parkonsonism (dopamine, DA). These indications were obtained from measurements of amines and their metabolites in pe - ripheral

  14. The influence of superlethal γ-radiation doses on the content and metabolism of serotonin in the rat brain

    International Nuclear Information System (INIS)

    Silina, A.G.; Sverdlov, A.G.

    1987-01-01

    As early as 60 min after γ-irradiation of Wistar rats with a dose of 150 Gy the content of serotonin and 5-hydroxyindoleacetic acid decreases in the midbrain, hippocampus, and cerebral hemisphere cortex. The decrease is most pronounced in the midbrain where serotoninergic neurons are located. The changes are accumulated during the first 24 h following irradiation h

  15. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  16. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    Rationale The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  17. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  18. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.

    Science.gov (United States)

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim

    2008-11-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white

  19. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  20. Serotonin transporter gene polymorphism and myocardial infarction: Etude Cas-Témoins de l'Infarctus du Myocarde (ECTIM).

    Science.gov (United States)

    Fumeron, Frédéric; Betoulle, Dina; Nicaud, Viviane; Evans, Alun; Kee, Frank; Ruidavets, Jean-Bernard; Arveiler, Dominique; Luc, Gérald; Cambien, François

    2002-06-25

    Depression is a risk factor for myocardial infarction (MI). Selective serotonin reuptake inhibitors reduce this risk. The site of action is the serotonin transporter (SLC6A4), which is expressed in brain and blood cells. A functional polymorphism in the promoter region of the SLC6A4 gene has been described. This polymorphism may be associated with the risk of MI. The SLC6A4 polymorphism has been investigated by polymerase chain reaction in 671 male patients with MI and in 688 controls from the Etude Cas-Témoins de l'Infarctus du Myocarde (ECTIM) multicentric study. Percentages for LL, LS, and SS genotypes were 35.5%, 45.4%, and 19.1%, respectively, for cases versus 28.1%, 49.1%, and 22.8%, respectively, for controls. S allele frequency was 41.8% and 47.4% for cases and controls, respectively. After adjustment for age and center by using multivariable logistic regression, the odds ratio for MI associated with the LL genotype was 1.40 (95% CI 1.11 to 1.76, P=0.0047). The LL genotype of the SLC6A4 polymorphism is associated with a higher risk of MI. This could be attributable to the effect of the polymorphism on serotonin-mediated platelet activation or smooth muscle cell proliferation or on other risk factors, such as depression or response to stress.

  1. Serotonin enhances the impact of health information on food choice.

    Science.gov (United States)

    Vlaev, Ivo; Crockett, Molly J; Clark, Luke; Müller, Ulrich; Robbins, Trevor W

    2017-06-01

    Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.

  2. Serotonin inhibits low-threshold spike interneurons in the striatum

    Science.gov (United States)

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  3. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  4. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact...

  5. The SPECT tracer [{sup 123}I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    Energy Technology Data Exchange (ETDEWEB)

    Giessen, Elsmarieke van de [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, F2-236, Amsterdam (Netherlands)

    2010-08-15

    The tracer {sup 123}I-2-([2-({l_brace}dimethylamino{r_brace}methyl)phenyl]thio)-5-iodophenylamine ([{sup 123}I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [{sup 123}I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [{sup 123}I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [{sup 123}I]ADAM binds selectively to SERTs. We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [{sup 123}I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Our preliminary findings suggest that [{sup 123}I]ADAM binds selectively to SERTs in human brain. (orig.)

  6. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  7. Serotonin induces ecdysteroidogenesis and methyl farnesoate synthesis in the mud crab, Scylla serrata.

    Science.gov (United States)

    Girish, B P; Swetha, C H; Reddy, P Sreenivasula

    2017-09-02

    In the current study, we have examined the role of serotonin in regulating the levels of methyl farnesoate and ecdysteroids in the giant mud crab Scylla serrata and validated that serotonin indeed is a reproductive hormone. Administration of serotonin elevated circulatory levels of methyl farnesoate and ecdysteroids in crabs. Since methyl farnesoate and ecdysteroid act through retinoid X receptor (RXR) and ecdysteroid receptor (EcR) respectively and these receptors are involved in the regulation of reproduction in crustaceans, we have determined the mRNA levels of RXR and EcR in hepatopancreas and ovary after serotonin administration. The expression levels of both RXR and EcR increased significantly in the hepatopancreas and ovary of serotonin injected crabs when compared to the controls. In vitro organ culture studies revealed that incubation of Y-orgas and mandibular organ explants in the presence of serotonin resulted in a significant increase in the secretion of ecdysteroids by Y-organs, but without alterations in MF synthesis in mandibular organs. From the above studies it is evident that serotonin stimulates Y organs resulting in increased ecdysteroidogenesis. Though the circulatory levels methyl farnesoate elevated after serotonin administration, organ culture studies revealed serotonin mediated methyl farnesaote synthesis is indirect probably by inhibiting release of mandibular organ inhibiting hormone from eyestalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification of genes associated with reproduction in the Mud Crab (Scylla olivacea) and their differential expression following serotonin stimulation.

    Science.gov (United States)

    Kornthong, Napamanee; Cummins, Scott F; Chotwiwatthanakun, Charoonroj; Khornchatri, Kanjana; Engsusophon, Attakorn; Hanna, Peter J; Sobhon, Prasert

    2014-01-01

    The central nervous system (CNS) is often intimately involved in reproduction control and is therefore a target organ for transcriptomic investigations to identify reproduction-associated genes. In this study, 454 transcriptome sequencing was performed on pooled brain and ventral nerve cord of the female mud crab (Scylla olivacea) following serotonin injection (5 µg/g BW). A total of 197,468 sequence reads was obtained with an average length of 828 bp. Approximately 38.7% of 2,183 isotigs matched with significant similarity (E value reproductive-related genes, namely farnesoic acid o-methyltransferase (FAMeT), estrogen sulfotransferase (ESULT) and prostaglandin F synthase (PGFS). Following serotonin injection, which would normally initiate reproductive processes, we found up-regulation of FAMeT, ESULT and PGFS expression in the female CNS and ovary. Our data here provides an invaluable new resource for understanding the molecular role of the CNS on reproduction in S. olivacea.

  9. Similarities and differences of serotonin and its precursors in their interactions with model membranes studied by molecular dynamics simulation

    Science.gov (United States)

    Wood, Irene; Martini, M. Florencia; Pickholz, Mónica

    2013-08-01

    In this work, we report a molecular dynamics (MD) simulations study of relevant biological molecules as serotonin (neutral and protonated) and its precursors, tryptophan and 5-hydroxy-tryptophan, in a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC). The simulations were carried out at the fluid lamellar phase of POPC at constant pressure and temperature conditions. Two guest molecules of each type were initially placed at the water phase. We have analyzed, the main localization, preferential orientation and specific interactions of the guest molecules within the bilayer. During the simulation run, the four molecules were preferentially found at the water-lipid interphase. We found that the interactions that stabilized the systems are essentially hydrogen bonds, salt bridges and cation-π. None of the guest molecules have access to the hydrophobic region of the bilayer. Besides, zwitterionic molecules have access to the water phase, while protonated serotonin is anchored in the interphase. Even taking into account that these simulations were done using a model membrane, our results suggest that the studied molecules could not cross the blood brain barrier by diffusion. These results are in good agreement with works that show that serotonin and Trp do not cross the BBB by simple diffusion.

  10. Serotonin blockade delays learning performance in a cooperative fish.

    Science.gov (United States)

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger.

  11. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  12. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator- and apolipoprotein E-conjugated liposomes to the hippocampus

    Directory of Open Access Journals (Sweden)

    Kuo YC

    2016-12-01

    Full Text Available Yung-Chih Kuo, Yin-Jung Lee Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China Abstract: β-Amyloid (Aβ-targeting liposomes (LIP with surface serotonin modulator (SM and apolipoprotein E (ApoE were utilized to facilitate the delivery of nerve growth factor (NGF across the blood–brain barrier (BBB for neuroprotection in the hippocampus. The therapeutic efficacy of SM- and ApoE-grafted LIP carrying NGF (NGF-SM-ApoE-LIP was assessed by an in vitro Alzheimer’s disease (AD model of degenerated SK-N-MC cells and an in vivo AD model of Aβ-insulted Wistar rats. The experimental evidences revealed that the modified SM and ApoE on the surface of LIP increased the permeation of NGF across the BBB without serious damage to structural integrity of tight junction. When compared with free NGF, NGF-SM-ApoE-LIP upregulated the expression of phosphorylated neurotrophic tyrosine kinase receptor type 1 on cholinergic neurons and significantly improved their survival. In addition, NGF-SM-ApoE-LIP could reduce the secretion of acetylcholinesterase and malondialdehyde and rescue hippocampal neurons from apoptosis in rat brains. The synergistic effect of SM and ApoE is promising in the induction of NGF to inhibit the neurotoxicity of Aβ and NGF-SM-ApoE-LIP can be a potent antiapoptotic pharmacotherapy for clinical care of patients with AD. Keywords: Alzheimer’s disease, blood–brain barrier, serotonin modulator, apolipoprotein E, nerve growth factor, liposome

  13. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  14. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    Science.gov (United States)

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  16. Enhancing action of LSD on neuronal responsiveness to serotonin in a brain structure involved in obsessive-compulsive disorder.

    Science.gov (United States)

    Zghoul, Tarek; Blier, Pierre

    2003-03-01

    Potent serotonin (5-HT) reuptake inhibitors are the only drugs that consistently exert a therapeutic action in obsessive-compulsive disorder (OCD). Given that some hallucinogens were reported to exert an anti-OCD effect outlasting their psychotomimetic action, possible modifications of neuronal responsiveness to 5-HT by LSD were examined in two rat brain structures: one associated with OCD, the orbitofrontal cortex (OFC), and another linked to depression, the hippocampus. The effects of concurrent microiontophoretic application of LSD and 5-HT were examined on neuronal firing rate in the rat OFC and hippocampus under chloral hydrate anaesthesia. In order to determine whether LSD could also exert a modification of 5-HT neuronal responsiveness upon systemic administration, after a delay when hallucinosis is presumably no longer present, it was given once daily (100 microg/kg i.p.) for 4 d and the experiments were carried out 24 h after the last dose. LSD attenuated the firing activity of OFC neurons, and enhanced the inhibitory effect of 5-HT when concomitantly ejected on the same neurons. In the hippocampus, LSD also decreased firing rate by itself but decreased the inhibitory action of 5-HT. The inhibitory action of 5-HT was significantly greater in the OFC, but smaller in the hippocampus, when examined after subacute systemic administration of LSD. It is postulated that some hallucinogens could have a beneficial action in OCD by enhancing the responsiveness to 5-HT in the OFC, and not necessarily in direct relation to hallucinosis. The latter observation may have theoretical implications for the pharmacotherapy of OCD.

  17. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  18. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    Directory of Open Access Journals (Sweden)

    Anupam Kotwal

    2015-01-01

    Full Text Available Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity.

  19. Oscillatory serotonin function in depression.

    Science.gov (United States)

    Salomon, Ronald M; Cowan, Ronald L

    2013-11-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright

  20. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  1. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I

    DEFF Research Database (Denmark)

    Ziebell, Morten; Holm-Hansen, Signe; Thomsen, Gerda

    2010-01-01

    Current SPECT radioligands available for in vivo imaging of the dopamine transporter (DAT) also show affinity for monoamine transporters other than DAT, especially the serotonin transporter (SERT). The effect of this lack of selectivity for in vivo imaging is unknown. In this study, we compared...

  2. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Science.gov (United States)

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  3. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall

    DEFF Research Database (Denmark)

    Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice

    2017-01-01

    the association between cerebral 5-HT 4R binding and affective verbal memory recall. METHODS: Twenty-four healthy volunteers were scanned with the 5-HT 4R radioligand [11C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4R binding...... and affective verbal memory was evaluated using a linear latent variable structural equation model. RESULTS: We observed a significant inverse association across all regions between 5-HT 4R binding and affective verbal memory performances for positive (p = 5.5 × 10-4) and neutral (p = .004) word recall......BACKGROUND: We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining...

  4. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients.

    Science.gov (United States)

    Xia, Yan; Wang, Dawei; Zhang, Nan; Wang, Zhihao; Pang, Li

    2018-02-01

    To investigate the prognostic value of plasma serotonin levels in colorectal cancer (CRC). Preoperative plasma serotonin levels of 150 healthy control (HC) cases, 150 benign colorectal polyp (BCP) cases, and 176 CRC cases were determined using radioimmunoassay assay. Serotonin levels were compared between HC, BCP, and CRC cases, and those in CRC patients were related to 5-year outcome. Plasma serotonin levels were markedly higher in CRC patients than in either HCs or BCP cases. An elevated serotonin level was significantly associated with advanced tumor node metastasis. Receiver operating characteristic curve analysis showed that the level of serotonin had a high predictive value for disease recurrence and mortality. Multivariate analysis revealed that high serotonin level was significantly associated with poor recurrence-free survival and overall survival. Our results suggest that a high peri-operative plasma serotonin level is useful as a prognostic biomarker for CRC recurrence and poor survival. © 2017 Wiley Periodicals, Inc.

  5. Autoradiographic studies on the distribution of 14C-5,7-dihydroxytryptamine in the brain of new-born rat

    International Nuclear Information System (INIS)

    Lappe, U.

    1982-01-01

    The distribution of intracisternally injected 14 C-5,7-dihydroxy tryptamine (5,7-DHT) in the central nervous system of new-born rat is studied by means of autoradiography. The radio-active neurotoxin is incorporated into the neurones of all known serotonine nucleus groups. This labelling allows a detailed demonstration of the topography of the serotonine neurones in the brain stem of the new-born rat and to compare it with systems obtained by other methods. Serotonine neurones were mapped in 22 representative frontal sections through the brain stem. 14 C-5,7-DHT is incorporated into noradrenergic neurones, too. However, labelling is less marked than in serotonergic neurones. 14 C-5,7-DHT is incorporated at small quantities into the following extraneural elements: fibroblasts of the pia mater/arachnoidea, some endothelical cells of pial vessels, epithelial cells of the plexus choroideus, and subependymal macrophages. 6 h after injection of 25 μg 14 C-5,7-DHT, the vast majority of serotonergic neurones reveal strong degenerative changes which are irreversible. (orig./MG) [de

  6. Therapeutic Application of Diacylglycerol Oil for Obesity: Serotonin Hypothesis

    Directory of Open Access Journals (Sweden)

    Yuji Hirowatari

    2012-01-01

    Full Text Available ABSTRACT: Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG, and decreased high-density lipoprotein-cholesterol (HDL-C. Diacylglycerol (DAG oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG. Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL, and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2(1:1-10 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with â-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2, was significantly higher in 1-MOG

  7. Low frontal serotonin 2A receptor binding is a state marker for schizophrenia?

    DEFF Research Database (Denmark)

    Rasmussen, Hans; Frokjaer, Vibe G; Hilker, Rikke W

    2016-01-01

    Here we imaged serotonin 2A receptor (5-HT2AR) binding in a very rare population of monozygotic twins discordant for schizophrenia to provide insight into trait and state components in brain 5-HT2AR patterns. In four twin pairs not medicated with drugs that target 5-HT2AR, frontal 5-HT2AR binding...... was consistently lower (33%) in schizophrenic- relative to their healthy co-twins. Our results strongly imply low frontal 5-HT2AR availability as a state feature of schizophrenia. If replicated, ideally in a larger sample also including dizygotic twin pairs and drug-naïve patients, this finding critically advance...... our understanding of the complex pathophysiology of schizophrenia....

  8. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  9. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    Science.gov (United States)

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system

  10. Looking on the bright side of serotonin transporter gene variation.

    NARCIS (Netherlands)

    Homberg, J.R.; Lesch, K.P.

    2011-01-01

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for

  11. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  12. Tributyltin impaired reproductive success in female zebrafish through disrupting oogenesis, reproductive behaviors and serotonin synthesis.

    Science.gov (United States)

    Xiao, Wei-Yang; Li, Ying-Wen; Chen, Qi-Liang; Liu, Zhi-Hao

    2018-07-01

    Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present

  13. Double isotope method for the determination of catecholamines, serotonin, and other amines in the picomole range as their dansyl derivatives

    International Nuclear Information System (INIS)

    Recasens, M.; Zwiller, J.; Mack, G.; Zanetta, J.P.; Mandel, P.

    1977-01-01

    A method based on thin-layer chromatographic separation of radioactive products is described for the determination and the quantification of dopamine (DA), noradrenaline (NA), adrenaline (A), normetanephrine (NMN), and serotonin (5HT) in small samples of brain tissue. In this method the amines are converted to [ 14 C]dansyl derivatives by reaction with [ 14 C]dansyl chloride [ 14 C]Dans-Cl) and 3 H-labeled amines are used as internal standards to determine variations in yield

  14. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men.

    Science.gov (United States)

    Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E

    2016-06-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.

  15. PET imaging for brain function

    International Nuclear Information System (INIS)

    Fukuda, Hiroshi

    2003-01-01

    Described are the principle of PET and its characteristics, imaging of human brain function, mapping of detailed human cerebral functions and PET imaging of nerve transmission. Following compounds labeled by positron emitters are used for PET imaging of brain functions: for blood flow and oxygen metabolism, 15 O-O 2 gas, water and carbon dioxide; for energy metabolism, 18 F-fluorodeoxyglucose; and for nerve transmission functions in receptor binding, transporter, transmitter synthesis and enzyme, 11 C- or 18 F-dopamine, serotonin and their analogues, and acetylcholine analogues. For brain mapping, examples of cognition tasks, results and their statistics are presented with images for blood flow. Nerve transmissions in schizophrenia and Alzheimer disease are imaged with labeled analogues of dopamine and acetylcholine, respectively. PET is becoming more and more important in the field of psychiatric science particularly in the coming society of increasing aged people. (N.I.)

  16. Selective serotonin reuptake inhibitor (SSRI antidepressants, prolactin and breast cancer

    Directory of Open Access Journals (Sweden)

    Janet eAshbury

    2012-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are a widely prescribed class of anti-depressants. Laboratory and epidemiologic evidence suggests that a prolactin-mediated mechanism secondary to increased serotonin levels at neuronal synapses could lead to a potentially carcinogenic effect of SSRIs. In this population-based case-control study, we evaluated the association between SSRI use and breast cancer risk as a function of their relative degree of inhibition of serotonin reuptake as a proxy for their impact on prolactin levels. Cases were 2,129 women with primary invasive breast cancer diagnosed from 2003-2007, and controls were 21,297 women randomly selected from the population registry. Detailed information for each SSRI prescription dispensed was compiled using the Saskatchewan prescription database. Logistic regression was used to evaluate the impact of use of high and lower inhibitors of serotonin reuptake and duration of use, as well as to assess the effect of individual high inhibitors on the risk of breast cancer. Exclusive users of high or lower inhibitors of serotonin reuptake were not at increased risk for breast cancer compared with nonusers of SSRIs (OR = 1.01, CI = 0.88-1.17 and OR = 0.91, CI = 0.67-1.25 respectively, regardless of their duration of use or menopausal status. While we cannot rule out the possibility of a clinically important risk increase (OR = 1.83, CI = 0.99-3.40 for long-term users of sertraline (≥24 prescriptions, given the small number of exposed cases (n=12, the borderline statistical significance and the wide confidence interval, these results need to be interpreted cautiously. In this large population-based case-control study, we found no conclusive evidence of breast cancer risk associated with the use of SSRIs even after assessing the degree of serotonin reuptake inhibition and duration of use. Our results do not support the serotonin-mediated pathway for the prolactin-breast cancer hypothesis.

  17. [The effect of mineral water on serotonin and insulin production (an experimental study)].

    Science.gov (United States)

    Polushina, N D

    1998-01-01

    Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.

  18. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    Science.gov (United States)

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  19. Serotonin and decision making processes.

    NARCIS (Netherlands)

    Homberg, J.R.

    2012-01-01

    Serotonin (5-HT) is an important player in decision making. Serotonergic antidepressant, anxiolytic and antipsychotic drugs are extensively used in the treatment of neuropsychiatric disorders characterized by impaired decision making, and exert both beneficial and harmful effects in patients.

  20. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  1. β-cell serotonin production is associated with female sex, old age, and diabetes-free condition.

    Science.gov (United States)

    Kim, Yeong Gi; Moon, Joon Ho; Kim, Kyuho; Kim, Hyeongseok; Kim, Juok; Jeong, Ji-Seon; Lee, Junguee; Kang, Shinae; Park, Joon Seong; Kim, Hail

    2017-11-25

    Serotonin is known to be present in pancreatic β-cells and to play several physiological roles, including insulin secretion, β-cell proliferation, and paracrine inhibition of α-cells. However, the serotonin production of different cell lines and islets has not been compared based on age, sex, and diabetes related conditions. Here, we directly compared the serotonin concentrations in βTC and MIN6 cell lines, as well as in islets from mice using ultra-performance liquid chromatography tandem mass spectrometry. The average serotonin concentration was 5-10 ng/mg protein in the islets of male and non-pregnant female mice. The serotonin level was higher in females than males at 8 weeks, although there was no difference at 1 year. Furthermore, we observed serotonin by immunofluorescence staining in the pancreatic tissues of mice and human. Serotonin was detected by immunofluorescence staining in a portion of β-cells from islets of old female mice, but not of male or young female mice. A similar pattern was observed in human pancreas as well. In humans, serotonin production in β-cells was associated with a diabetes-free condition. Thus, serotonin production in β-cells was associated with old age, female sex, and diabetes-free condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    Directory of Open Access Journals (Sweden)

    René Klysner

    2014-01-01

    Full Text Available The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.

  3. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    DEFF Research Database (Denmark)

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stre...

  4. Synthesis of [11C]citalopram and brain distribution studies in rats

    International Nuclear Information System (INIS)

    Ram, S.; Krishnan, K.R.R.; Bissette, G.; Knight, D.L.; Coleman, R.E.

    1990-01-01

    The study of serotonin uptake sites in the living human brain by PET with [ 11 C]citalopram may be valuable in investigating the anatomic locus and the therapeutic role of depression and prevention of suicide. For this purpose, the authors have synthesized [ 11 C]citalopram. In vivo biodistribution in rats has been determined

  5. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  6. Serotonin, calcitonin and calcitonin gene-related peptide in acute pancreatitis

    DEFF Research Database (Denmark)

    Wahlstrøm, Kirsten Lykke; Novovic, Srdan; Ersbøll, Annette Kjær

    2017-01-01

    OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients with alco......OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients...... dysfunction. We hypothesize that serotonin plays a pathogenic role in the compromised pancreatic microcirculation, and calcitonin a role as a biomarker of severity in AP....

  7. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Kjekshus, John K; Torp-Pedersen, Christian; Gullestad, Lars

    2009-01-01

    weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0.......3, 3.2, P = 0.020), primarily through reduced end-systolic volume from 165 to 158 mL (P = 0.060). There was a trend for greater increase in LVEF (2.7%, CI -1.1, 6.6, P = 0.15) in a small subset of patients not on chronic beta-blocker therapy. There was no significant effect on neurohormones, quality......AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...

  8. Effect of serotonin infusions on the mean plasma concentrations of ...

    African Journals Online (AJOL)

    SERVER

    hhazali@hotmail.com, tabeshyarnoor@yahoo.com. neurotransmitters. It has been shown that neurons secreting serotonin may be co-locolized with neurons secreting GHRH and TRH (Bujatti et al., 1976; Bulsa et al., 1998; Savard et al., 1986; Savard et al., 1983). This indicate that serotonin as a neurotransmitter may control.

  9. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  10. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  11. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  12. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  13. Capture and retention of tritiated serotonin by the chick notochord

    International Nuclear Information System (INIS)

    Gerard, Anne; Gerard, Hubert; Dollander, Alexis

    1978-01-01

    The 3 day old chick notochord capacity to fix tritiated serotonin is maximal in its axis and in cephalic region. Observations permitting to find, the intracellular serotonin binding sites, contribute to an explanation of the capture mechanism and suggest a special direct role of the notochord on the monoaminergic neuron cytodifferentiation [fr

  14. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  15. Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid

    International Nuclear Information System (INIS)

    Delaage, M.A.; Puizillout, J.J.

    1981-01-01

    Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid were developed. High titer antibodies, having a well-defined high specificity, have been raised by coupling the side-chain of both molecules to human serum albumin. Serotonin is first converted into N-hemisuccinate, and then treated like 5-HIAA, namely, conjugated with HSA for the immunogen. Synthesis of 125 I iodinated analogues was performed by coupling 5-HIAA or N-succinyl serotonin to glycyltyrosine, without any contact between both molecules and the oxidizing reagents. Chemical conversions of biological samples (by succinylation for 5-HT and amidation for 5-HIAA) were carried out. This critical step makes the antigen molecules resemble the immunogen more closely, thus allowing an appreciable gain in specificity and sensitivity. These assays allow the rapid determination of 5-HT and 5-HIAA in small amounts of tissue, blood, cerebral spinal fluid or perfusate without any purification, with a sensitivity threshold of 50 pg

  16. Reduced efficacy of fluoxetine following MDMA ("Ecstasy")-induced serotonin loss in rats.

    Science.gov (United States)

    Durkin, Sarah; Prendergast, Alison; Harkin, Andrew

    2008-12-12

    Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance

  17. [3H]Serotonin release: an improved method to measure mast cell degranulation

    International Nuclear Information System (INIS)

    Mazingue, C.; Dessaint, J.-P.; Capron, A.

    1978-01-01

    A method based on the release of tritium-labelled serotonin by activated mast cells in rodents is described. Mast cells incorporate labelled serotonin selectively and released the label after activation by non-specific stimulators (compound 48/80, polymyxin B sulphate, ATP, bovine chymotrypsin and L-α-lysophosphatidylcholine) or anaphylactic antibody and the corresponding antigen. These two types of activation were investigated in comparison with the toluidine blue microscopic rat mast cell degranulation test, and a methodological study of the release of [ 3 H] serotonin is described. The measurement of labelled serotonin release provides a simple and quick assay of mast cell degranulation compared to the time required for the classical rat mast cell degranulation technique and achieves a greater sensitivity. (Auth.)

  18. Brain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementation

    Directory of Open Access Journals (Sweden)

    Kilduff Liam P

    2008-09-01

    Full Text Available Abstract Background The present experiment examined the responses of peripheral modulators and indices of brain serotonin (5-HT and dopamine (DA function and their association with perception of effort during prolonged exercise in the heat after creatine (Cr supplementation. Methods Twenty one endurance-trained males performed, in a double-blind fashion, two constant-load exercise tests to exhaustion at 63 ± 5% V˙ MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafeOvayLbaiaaaaa@2D11@O2 max in the heat (ambient temperature: 30.3 ± 0.5 °C, relative humidity: 70 ± 2% before and after 7 days of Cr (20 g·d-1 Cr + 140 g·d-1 glucose polymer or placebo (Plc (160 g·d-1 glucose polymer supplementation. Results 3-way interaction has shown that Cr supplementation reduced rectal temperature, heart rate, ratings of perceived leg fatigue (P P P P > 0.05; Cr group, n = 11: 47.0 ± 4.7 min vs. 49.7 ± 7.5 min, P > 0.05. However, after dividing the participants into "responders" and "non-responders" to Cr, based on their intramuscular Cr uptake, performance was higher in the "responders" relative to "non-responders" group (51.7 ± 7.4 min vs.47.3 ± 4.9 min, p Conclusion although Cr influenced key modulators of brain 5-HT and DA function and reduced various thermophysiological parameters which all may have contributed to the reduced effort perception during exercise in the heat, performance was improved only in the "responders" to Cr supplementation. The present results may also suggest the demanding of the pre-experimental identification of the participants into "responders" and "non-responders" to Cr supplementation before performing the main experimentation. Otherwise, the possibility of the type II error may be enhanced.

  19. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  20. In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2014-01-01

    awakening response (CAR). Here, we tested (1) if such a correlation persists in a human model of chronic serotonin depletion, namely in 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') users, and (2) if CAR differed between MDMA users (N = 18) and non-using healthy volunteers (N = 32). Participants...... underwent SERT brain imaging with [11C]DASB-PET, and performed home-sampling of CAR, defined as the area under curve with respect to cortisol increase from awakening level. When adjusting for age and group, CAR was positively coupled to prefrontal SERT binding (p = 0.006) and MDMA users showed significantly...... higher CAR than the control group (p = 0.0003). In conclusion, our data confirm the recently described positive association between prefrontal SERT binding and CAR, this time in a human model of serotonin deficiency. Also, we find that CAR was higher in MDMA users relative to non-users. We suggest...

  1. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecutive...... experiments. The first experiment evaluated vasomotor response (IR-Th) and scratching behavior (number of bouts) induced by intradermal serotonin (10 μl, 2%). Isotonic saline (control: 10 μl, 0.9%) and Methysergide (antagonist: 10 μl, 0.047 mg/ml) were used. The second experiment evaluated the dose......-response effect of intradermal serotonin (1%, 2% and 4%) on local temperature. The third experiment evaluated the anesthetized rats to test the local vasomotor responses in absent of scratching. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A dose...

  2. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014...

  3. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  4. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. © 2014 by the Society for Experimental Biology and Medicine.

  5. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  7. Genetics Home Reference: monoamine oxidase A deficiency

    Science.gov (United States)

    ... Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, Shih JC, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995 Jun 23;268(5218):1763-6. Citation on ...

  8. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  9. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  10. Platelet 3H-serotonin releasing immune complexes induced by pseudomonas aeruginosa in cystic fibrosis

    International Nuclear Information System (INIS)

    Permin, H.; Stahl Skov, P.; Norn, S.; Hoeiby, N.; Schioetz, P.O.

    1982-01-01

    In vitro formation of immune complexes was studied by 3 H-serotonin release from human platelets by P. aeruginosa antigens in the presence of serum from 22 cyctic fibrosis patients, chronically infected with mucoid P. aeruginosa (CF+P) and with a pronounced antibody response against these bacteria, and in 24 patients without P. aeruginosa (CF-P). All CF+P patients responded with 3 H-serotonin release (16-34%), whereas CF-P patients released less than 15%. In the group of CF+P patients the number of P. aeruginosa precipitins was correlated to the serotonin titer. Time courses indicated that 3 H-serotonin release was maximal between 2 and 5 min, and that no further release was observed up to 20 min. There was a gradual increase in 3 H-serotonin release with higher platelet concentrations. The response was not changed by complement inactivation, and fractionation of serum demonstrated that the serotonin release was dependent on the presence of the immunoglobulin fraction. These experiments support the suggestion of a type III reaction being involved in the lung damage in CF+P patients and also suggest a possible involvement of serotonin in the inflammatory reaction during chronic P. aeruginosa lung infection. (author)

  11. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  12. Irradiation induced changes in endogenous regional distribution of catecholamines in rat brain and possible control through combined radioprotective treatments

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Elsayed, M.E.; Roushdy, H.M.; Maklaad, Y.A.

    1994-01-01

    The present study has been conducted aiming to evaluate the protective role of imidazole serotonin or their combination, on the radiation induced changes in the endogenous catecholamine contents in various areas of rat's brain : cortex, striatum, cerebellum, pons and medulla and thalamus and hypothalamus. Whole body gamma-irradiation (6 Gy) resulted in significant progressive decreases of catecholamine (epinephrine, norepinephrine and dopamine) contents, as investigated one and seven days post exposure. Administration of imidazole or serotonin showed to control radiation induced changes in catecholamine contents. Higher protection with lower potential risk of toxicity could be achieved by administration of lower doses of combined agents. The data suggest that, the endogenous concentration of catecholamines in the brain may play an important role in diagnosing the radiation hazard and evaluating the protective capacity of pharmacologic radioprotective. 2 figs

  13. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  14. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Directory of Open Access Journals (Sweden)

    S. Comai

    2010-01-01

    Full Text Available Tryptophan (Trp is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05 lower in the anorexic (11.64 ± 0.53 μg/ml, mean ± S.E. than in the control (12.98 ± 0.37 μg/ml groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed. This study shows that women affected by various forms of amenorrhea present an altered metabolism of tryptophan via serotonin and, in particular, markedly high differences are observed between the two subgroups of anorexic patients.

  15. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Directory of Open Access Journals (Sweden)

    S. Comai

    2010-06-01

    Full Text Available Tryptophan (Trp is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05 lower in the anorexic (11.64 ± 0.53 µg/ml, mean ± S.E. than in the control (12.98 ± 0.37 µg/ml groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed. This study shows that women affected by various forms of amenorrhea present an altered metabolism of tryptophan via serotonin and, in particular, markedly high differences are observed between the two subgroups of anorexic patients.

  16. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  17. Synthesis and pharmacological characterization of a new PET ligand for the serotonin transporter: [{sup 11}C]5-bromo-2-[2-(dimethylaminomethylphenylsulfanyl)]phenylamine ([{sup 11}C]DAPA)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yiyun E-mail: hh285@columbia.edu; Hwang, D.-R.; Zhu Zhihong; Bae, S.-A.; Guo Ningning; Sudo, Yasuhiko; Kegeles, Lawrence S.; Laruelle, Marc

    2002-10-01

    A new PET radioligand for the serotonin transporter (SERT), [{sup 11}C]-5-bromo-2-[2-(dimethylaminomethylphenylsulfanyl)]phenylamine ([{sup 11}C]DAPA (10), was synthesized and evaluated in vivo in rats and baboons. [{sup 11}C]DAPA (10) was prepared from its monomethylamino precursor 8 by reaction with high specific activity [{sup 11}C]methyl iodide. Radiochemical yield was 24{+-}5% based on [{sup 11}C]methyl iodide at end of bombardment (EOB, n=10) and specific activity was 1553{+-}939 Ci/mmol at end of synthesis (EOS, n=10). Binding assays indicated that [{sup 11}C]DAPA displays high affinity (Ki 1.49{+-}0.28 nM for hSERT) and good selectivity for the SERT in vitro. Biodistribution studies in rats indicated that [{sup 11}C]DAPA enters into the brain readily and localizes in brain regions known to contain high concentrations of SERT, such as the thalamus, hypothalamus, frontal cortex and striatum. Moreover, such binding in SERT-rich regions of the brain are blocked by pretreatment with either the selective serotonin reuptake inhibitor (SSRI) citalopram and by the cold compound itself, demonstrating that [{sup 11}C]DAPA binding in the rat brain is saturable and specific to SERT. Imaging experiments in baboons indicated that [{sup 11}C]DAPA binding is consistent with the known distribution of SERT in the baboon brain, with highest levels of radioactivity detected in the midbrain and thalamus, intermediate levels in the hippocampus and striatum, and lower levels in the cortical regions. Pretreatment of the baboon with citalopram 10 min before radioactivity injection blocked the binding of [{sup 11}C]DAPA in all brain regions that contain SERT. Kinetic analysis revealed that, in all brain regions examined, [{sup 11}C]DAPA specific to nonspecific distribution volume ratios (V{sub 3}'') are higher than [{sup 11}C](+)-McN 5652 and similar to [{sup 11}C]DASB. In summary, [{sup 11}C]DAPA appears to be a promising radioligand suitable for the visualization of SERT

  18. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Anna G Wessels

    Full Text Available In addition to its role as an essential protein component, leucine (Leu displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH. To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2 and four-fold (L4 higher Leu contents than the recommended amount (control. We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05, liver (1.8-fold, P < 0.05 and cardiac muscle (1.7-fold, P < 0.05, whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.

  19. Localization of 3H-serotonin in the adrenal medullary cells of newborn rats

    International Nuclear Information System (INIS)

    Sudar, F.; Csaba, G.

    1979-01-01

    Newborn rats received 25 μCi 3 H-5-hydroxytryptophan (5-HTP); 30, 60 min or 5 hours later the adrenal glands were removed. Electronmicroscopic autoradiography was carried out after fixation and embedding. As in the cells 5-HTP is formed into serotonin, the distribution of radioactivity actually represents the distribution of serotonin. Activity was found on the cellular, nuclear and catecholamine granule-membranes, and in the nucleus. The activity increased as a function of time at all the above mentioned sites, and in line with this more and more empty catecholamine-granules appeared. Data indicate the existence of intracellular serotonin-receptors and the role of serotonin in the release of catecholamines. (L.E.)

  20. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  1. An HPLC tracing of the enhancer regulation in selected discrete brain areas of food-deprived rats.

    Science.gov (United States)

    Miklya, I; Knoll, B; Knoll, J

    2003-05-09

    The recent discovery of the enhancer regulation in the mammalian brain brought a different perspective to the brain-organized realization of goal-oriented behavior, which is the quintessence of plastic behavioral descriptions such as drive or motivation. According to this new approach, 'drive' means that special endogenous enhancer substances enhance the impulse-propagation-mediated release of transmitters in a proper population of enhancer-sensitive neurons, and keep these neurons in the state of enhanced excitability until the goal is reached. However, to reach any goal needs the participation of the catecholaminergic machinery, the engine of the brain. We developed a method to detect the specific enhancer effect of synthetic enhancer substances [(-)-deprenyl, (-)-PPAP, (-)-BPAP] by measuring the release of transmitters from freshly isolated selected discrete brain areas (striatum, substantia nigra, tuberculum olfactorium, locus coeruleus, raphe) by the aid of HPLC with electrochemical detection. To test the validity of the working hypothesis that in any form of goal-seeking behavior the catecholaminergic and serotonergic neurons work on a higher activity level, we compared the amount of norepinephrine, dopamine, and serotonin released from selected discrete brain areas isolated from the brain of sated and food-deprived rats. Rats were deprived of food for 48 and 72 hours, respectively, and the state of excitability of their catecholaminergic and serotonergic neurons in comparison to that of sated rats was measured. We tested the orienting-searching reflex activity of the rats in a special open field, isolated thereafter selected discrete brain areas and measured the release of norepinephrine, dopamine, and serotonin from the proper tissue samples into the organ bath. The orienting-searching reflex activity of the rats increased proportionally to the time elapsed from the last feed and the amount of dopamine released from the striatum, substantia nigra and

  2. Serotonin selectively influences moral judgment and behavior through effects on harm aversion.

    Science.gov (United States)

    Crockett, Molly J; Clark, Luke; Hauser, Marc D; Robbins, Trevor W

    2010-10-05

    Aversive emotional reactions to real or imagined social harms infuse moral judgment and motivate prosocial behavior. Here, we show that the neurotransmitter serotonin directly alters both moral judgment and behavior through increasing subjects' aversion to personally harming others. We enhanced serotonin in healthy volunteers with citalopram (a selective serotonin reuptake inhibitor) and contrasted its effects with both a pharmacological control treatment and a placebo on tests of moral judgment and behavior. We measured the drugs' effects on moral judgment in a set of moral 'dilemmas' pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person). Enhancing serotonin made subjects more likely to judge harmful actions as forbidden, but only in cases where harms were emotionally salient. This harm-avoidant bias after citalopram was also evident in behavior during the ultimatum game, in which subjects decide to accept or reject fair or unfair monetary offers from another player. Rejecting unfair offers enforces a fairness norm but also harms the other player financially. Enhancing serotonin made subjects less likely to reject unfair offers. Furthermore, the prosocial effects of citalopram varied as a function of trait empathy. Individuals high in trait empathy showed stronger effects of citalopram on moral judgment and behavior than individuals low in trait empathy. Together, these findings provide unique evidence that serotonin could promote prosocial behavior by enhancing harm aversion, a prosocial sentiment that directly affects both moral judgment and moral behavior.

  3. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  4. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  5. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    OpenAIRE

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25 % of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD, we observed a correlation between a quantitative measure of lower GI symptoms and whole blood serotonin levels. No significant association was seen...

  6. Multiple serotonin receptors: regional distribution and effect of raphe lesions

    International Nuclear Information System (INIS)

    Blackshear, M.A.; Sanders-Bush, E.; Steranka, L.R.

    1981-01-01

    These studies confirm and extend the recent work suggesting that [ 3 H]lysergic acid diethylamide (LSD) labels two distinct binding sites in rat brain resembling serotonin (5HT) receptors. Although Scatchard analyses of [ 3 H]LSD binding to membranes prepared from cortex/hippocampus were linear, the heterogeneity of the [ 3 H]LSD binding sites was clearly demonstrated in displacement studies. The displacement curves for both 5HT and spiperone were bisigmoidal with the concentration required to saturate the high affinity components nearly 3 orders of magnitude lower than the concentrations necessary to saturate the low affinity components. Additivity studies suggested that the sites with high affinity for 5HT and spiperone are different, independent sites. These sites are referred to as 5HT 1 and 5HT 2 respectively. Regional analyses showed, that in the frontal cortex, the density of the 5HT 2 site was slightly greater than the 5HT 1 site whereas the 5HT 1 site was predominant in all other brain areas, including the spinal cord. The pharmacological properties of the two sites have features in common with 5HT receptors; however, electrolytic lesions of the midbrain raphe nuclei did not change the densities or binding constants of the two apparent 5HT receptor subtypes, even though the number of high affinity 5HT uptake sites was markedly reduced. (Auth.)

  7. Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2016-01-01

    Full Text Available This paper reviews the role played by glycogen breakdown (glycogenolysis and glycogen re-synthesis in memory processing in two different chick brain regions, (1 the hippocampus and (2 the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM. Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training and glycogen breakdown and re-synthesis are involved. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis at three specific times during the first 60 min after learning (around 2.5, 30 and 55 min. The chicks learn to discriminate in a single trial between beads of two colours and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i] in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo. Neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.

  8. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  9. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  10. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D.; den Heeten, Gerard J.; van den Brink, Wim

    2008-01-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity

  11. Sustained effects of ecstasy on the human brain : a prospective neuroimaging study in novel users

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Silvia D.; den Heeten, Gerard J.; van den Brink, Wim

    2008-01-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity

  12. Sustained effects of ecstasy on the human brain : a prospective neuroimaging study in novel users

    NARCIS (Netherlands)

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Silvia D.; den Heeten, Gerard J.; van den Brink, Wim

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity

  13. The microbiome-gut-brain axis in health and disease

    OpenAIRE

    Dinan, Timothy G.; Cryan, John F.

    2017-01-01

    Gut microbes are capable of producing most neurotransmitters found in the human brain. While these neurotransmitters primarily act locally in the gut, modulating the enteric nervous system, evidence is now accumulating to support the view that gut microbes through multiple mechanisms can influence central neurochemistry and behavior. This has been described as a fundamental paradigm shift in neuroscience. Bifidobacteria for example can produce and increase plasma levels of the serotonin precu...

  14. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  15. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  16. Testosterone levels in healthy men correlate negatively with serotonin 4 receptor binding

    DEFF Research Database (Denmark)

    Perfalk, Erik; Cunha-Bang, Sofi da; Holst, Klaus K

    2017-01-01

    The serotonergic system integrates sex steroid information and plays a central role in mood and stress regulation, cognition, appetite and sleep. This interplay may be critical for likelihood of developing depressive episodes, at least in a subgroup of sensitive individuals. The serotonin 4...... positron emission tomography in a group of 41 healthy men. We estimated global 5-HT4R binding using a latent variable model framework, which models shared correlation between 5-HT4R across multiple brain regions (hippocampus, amygdala, posterior and anterior cingulate, thalamus, pallidostriatum...... and neocortex). We tested whether testosterone and estradiol predict global 5-HT4R, adjusting for age. We found that testosterone, but not estradiol, correlated negatively with global 5-HT4R levels (p=0.02) suggesting that men with high levels of testosterone have higher cerebral serotonergic tonus. Our...

  17. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice.

    Science.gov (United States)

    Kesby, James P; Markou, Athina; Semenova, Svetlana

    2016-10-01

    Depression and psychostimulant abuse are common comorbidities among humans with immunodeficiency virus (HIV) disease. The HIV regulatory protein TAT is one of multiple HIV-related proteins associated with HIV-induced neurotoxicity. TAT-induced dysfunction of dopamine and serotonin systems in corticolimbic brain areas may result in impaired reward function, thus, contributing to depressive symptoms and psychostimulant abuse. Transgenic mice with doxycycline-induced TAT protein expression in the brain (TAT+, TAT- control) show neuropathology resembling brain abnormalities in HIV+ humans. We evaluated brain reward function in response to TAT expression, nicotine and methamphetamine administration in TAT+ and TAT- mice using the intracranial self-stimulation procedure. We evaluated the brain dopamine and serotonin systems with high-performance liquid chromatography. The effects of TAT expression on delay-dependent working memory in TAT+ and TAT- mice using the operant delayed nonmatch-to-position task were also assessed. During doxycycline administration, reward thresholds were elevated by 20% in TAT+ mice compared with TAT- mice. After the termination of doxycycline treatment, thresholds of TAT+ mice remained significantly higher than those of TAT- mice and this was associated with changes in mesolimbic serotonin and dopamine levels. TAT+ mice showed a greater methamphetamine-induced threshold lowering compared with TAT- mice. TAT expression did not alter delay-dependent working memory. These results indicate that TAT expression in mice leads to reward deficits, a core symptom of depression, and a greater sensitivity to methamphetamine-induced reward enhancement. Our findings suggest that the TAT protein may contribute to increased depressive-like symptoms and continued methamphetamine use in HIV-positive individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Role of Serotonin Transporter Changes in Depressive Responses to Sex-Steroid Hormone Manipulation

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Pinborg, Anja; Holst, Klaus Kähler

    2015-01-01

    .6 ± 2.2) and at follow-up (16.2 ± 2.6 days after intervention start). RESULTS: Sex hormone manipulation with GnRHa significantly triggered subclinical depressive symptoms within-group (p = .003) and relative to placebo (p = .02), which were positively associated with net decreases in estradiol levels (p......BACKGROUND: An adverse response to acute and pronounced changes in sex-hormone levels during, for example, the perimenopausal or postpartum period appears to heighten risk for major depression in women. The underlying risk mechanisms remain elusive but may include transiently compromised...... serotonergic brain signaling. Here, we modeled a biphasic ovarian sex hormone fluctuation using a gonadotropin-releasing hormone agonist (GnRHa) and evaluated if emergence of depressive symptoms was associated with change in cerebral serotonin transporter (SERT) binding following intervention. METHODS...

  19. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas

    2012-01-01

    rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives....

  20. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    Science.gov (United States)

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…