WorldWideScience

Sample records for laboratory plasma astrophysics

  1. The Wisconsin Plasma Astrophysics Laboratory

    CERN Document Server

    Forest, C B; Brookhart, M; Cooper, C M; Clark, M; Desangles, V; Egedal, J; Endrizzi, D; Miesch, M; Khalzov, I V; Li, H; Milhone, J; Nornberg, M; Olson, J; Peterson, E; Roesler, F; Schekochihin, A; Schmitz, O; Siller, R; Spitkovsky, A; Stemo, A; Wallace, J; Weisberg, D; Zweibel, E

    2015-01-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries which mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of $ T_{e}\\approx5-20$ eV and $n_{e}\\approx10^{11}-5\\times10^{12}$ cm$^{-3}$ provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  2. A plasma deflagration accelerator as a platform for laboratory astrophysics

    Science.gov (United States)

    Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.

    2017-06-01

    The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.

  3. Mini-conference and Related Sessions on Laboratory Plasma Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji

    2004-02-27

    This paper provides a summary of some major physics issues and future perspectives discussed in the Mini-Conference on Laboratory Plasma Astrophysics. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2003 Annual Meeting (October 27-31, 2003). Also included are brief summaries of selected talks on the same topic presented at two invited paper sessions (including a tutorial) and two contributed focus oral sessions, which were organized in coordination with the Mini-Conference by the same organizers.

  4. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  5. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  6. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  7. Energetic particles in laboratory, space and astrophysical plasmas

    Science.gov (United States)

    McClements, K. G.; Turnyanskiy, M. R.

    2017-01-01

    Some recent studies of energetic particles in laboratory, space and astrophysical plasmas are discussed, and a number of common themes identified. Such comparative studies can elucidate the underlying physical processes. For example microwave bursts observed during edge localised modes (ELMs) in the mega amp spherical tokamak (MAST) can be attributed to energetic electrons accelerated by parallel electric fields associated with the ELMs. The very large numbers of electrons known to be accelerated in solar flares must also arise from parallel electric fields, and the demonstration of energetic electron production during ELMs suggests close links at the kinetic level between ELMs and flares. Energetic particle studies in solar flares have focussed largely on electrons rather than ions, since bremsstrahlung from deka-keV electrons provides the best available explanation of flare hard x-ray emission. However ion acceleration (but not electron acceleration) has been observed during merging startup of plasmas in MAST with dimensionless parameters similar to those of the solar corona during flares. Recent measurements in the Earth’s radiation belts demonstrate clearly a direct link between ion cyclotron emission (ICE) and fast particle population inversion, supporting the hypothesis that ICE in tokamaks is driven by fast particle distributions of this type. Shear Alfvén waves in plasmas with beta less than the electron to ion mass ratio have a parallel electric field that, in the solar corona, could accelerate electrons to hard x-ray-emitting energies; an extension of this calculation to plasmas with Alfvén speed arbitrarily close to the speed of light suggests that the mechanism could play a role in the production of cosmic ray electrons.

  8. X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas -- Collisional, photoionization and charge-exchange plasmas

    CERN Document Server

    Liang, G Y; Wang, F L; Wu, Y; Zhong, J Y; Zhao, G

    2014-01-01

    Several laboratory facilities were used to benchmark theoretical spectral models those extensively used by astronomical communities. However there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and investigate the effects from non-thermal electrons, contribution from metastable level-population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e. Comet, Cygnus X-3) are presented. Time evolution of charge stage and level population are also explored for collisional and photoionized plasmas.

  9. Laboratory astrophysical collisionless shock experiments with interpenetrating plasma flows on Omega and NIF

    Science.gov (United States)

    Ross, James; Park, H.-S.; Huntington, C.; Ryutov, D.; Drake, R. P.; Froula, D.; Gregori, G.; Levy, M.; Lamb, D.; Fiuza, F.; Petrasso, R.; Li, C.; Zylastra, A.; Rinderknecht, H.; Sakawa, Y.; Spitkovsky, A.

    2015-11-01

    Shock formation from high-Mach number plasma flows is observed in many astrophysical objects such as supernova remnants and gamma ray bursts. These are collisionless shocks as the ion-ion collision mean free path is much larger than the system size. It is believed that seed magnetic fields can be generated on a cosmologically fast timescale via the Weibel instability when such environments are initially unmagnetized. Here we present laboratory experiments using high-power lasers whose ultimate goal is to investigate the dynamics of collisionless shock formation in two interpenetrating plasma streams. Particle-in-cell numerical simulations have confirmed that the strength and structure of the generated magnetic field are consistent with the Weibel mediated electromagnetic nature and that the inferred magnetization level could be as high as ~ 1%. This paper will review recent experimental results from various laser facilities as well as the simulation results and the theoretical understanding of these observations. Taken together, these results imply that electromagnetic instabilities can be significant in both inertial fusion and astrophysical conditions. We will present results from initial NIF experiments, where we observe the neutrons and x-rays generated from the hot plasmas at the center of weakly collisional, counterstreaming flows. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics

    CERN Document Server

    Cooper, C M; Brookhart, M; Clark, M; Collins, C; Ding, W X; Flanagan, K; Khalzov, I; Li, Y; Milhone, J; Nornberg, M; Nonn, P; Weisberg, D; Whyte, D G; Zweibel, E; Forest, C B

    2013-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-$\\beta$ phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets which create an axisymmetric multicusp that contains $\\sim$14 m$^{3}$ of nearly magnetic field free plasma that is well confined and highly ionized $(>50\\%)$. At present, up to 8 lanthanum hexaboride (LaB$_6$) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating (ECH) power is planned for additional electron heating. The LaB$_6$ cathodes are positioned in the magnetized edge to drive toroidal rotation through ${\\bf J}\\times{\\bf B}$ torques that propagate into the unmagnetized core plasma. Dynamo studies...

  11. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    Science.gov (United States)

    Cooper, C. M.; Wallace, J.; Brookhart, M.; Clark, M.; Collins, C.; Ding, W. X.; Flanagan, K.; Khalzov, I.; Li, Y.; Milhone, J.; Nornberg, M.; Nonn, P.; Weisberg, D.; Whyte, D. G.; Zweibel, E.; Forest, C. B.

    2014-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ˜14 m3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  12. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  13. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  14. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    Science.gov (United States)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  15. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  16. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  17. Laboratory astrophysics using differential rotation of unmagnetized plasma at large magnetic Reynolds number

    Science.gov (United States)

    Weisberg, David

    2016-10-01

    Differentially rotating plasma flow has been measured in the Madison Plasma Dynamo Experiment (MPDX). Spherical cusp-confined plasmas have been stirred both from the plasma boundary using electrostatic stirring in the magnetized edge and in the plasma core using weak global fields and cross-field currents to impose a body-force torque. Laminar velocity profiles conducive to shear-driven MHD instabilities like the dynamo and the MRI are now being generated and controlled with magnetic Reynolds numbers of Rm method for plasma heating, but limits on input heating power have been observed (believed to be caused by the formation of double-layers at anodes). These confinement studies have culminated in large (R = 1.4 m), warm (Te 1), steady-state plasmas. Results of the ambipolar transport model are good fits to measurements of pressure gradients and fluid drifts in the cusp, and offer a predictive tool for future cusp-confined devices. Hydrodynamic modeling is shown to be a good description for measured plasma flows, where ion viscosity proves to be an efficient mechanism for transporting momentum from the magnetized edge into the unmagnetized core. In addition, the body-force stirring technique produces velocity profiles conducive to MRI experiments where dΩ / dr research of flow-driven astrophysical MHD instabilities.

  18. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)

  19. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  20. Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kugland, N. L.; Ross, J. S.; Glenzer, S. H.; Huntington, C.; Martinez, D.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Chang, P.-Y.; Fiksel, G.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14636 (United States); Drake, R. P.; Grosskopf, M.; Kuranz, C. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Gregori, G.; Meinecke, J.; Reville, B. [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Koenig, M.; Pelka, A. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), École Polytechnique-Univ, Paris VI, 91128 Palaiseau (France); and others

    2013-05-15

    Collisionless shocks are often observed in fast-moving astrophysical plasmas, formed by non-classical viscosity that is believed to originate from collective electromagnetic fields driven by kinetic plasma instabilities. However, the development of small-scale plasma processes into large-scale structures, such as a collisionless shock, is not well understood. It is also unknown to what extent collisionless shocks contain macroscopic fields with a long coherence length. For these reasons, it is valuable to explore collisionless shock formation, including the growth and self-organization of fields, in laboratory plasmas. The experimental results presented here show at a glance with proton imaging how macroscopic fields can emerge from a system of supersonic counter-streaming plasmas produced at the OMEGA EP laser. Interpretation of these results, plans for additional measurements, and the difficulty of achieving truly collisionless conditions are discussed. Future experiments at the National Ignition Facility are expected to create fully formed collisionless shocks in plasmas with no pre-imposed magnetic field.

  1. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  2. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.

    Science.gov (United States)

    Rodríguez, R; Espinosa, G; Gil, J M; Stehlé, C; Suzuki-Vidal, F; Rubiano, J G; Martel, P; Mínguez, E

    2015-05-01

    This work is divided into two parts. In the first one, a study of radiative properties (such as monochromatic and the Rosseland and Planck mean opacities, monochromatic emissivities, and radiative power loss) and of the average ionization and charge state distribution of xenon plasmas in a range of plasma conditions of interest in laboratory astrophysics and extreme ultraviolet lithography is performed. We have made a particular emphasis in the analysis of the validity of the assumption of local thermodynamic equilibrium and the influence of the atomic description in the calculation of the radiative properties. Using the results obtained in this study, in the second part of the work we have analyzed a radiative shock that propagated in xenon generated in an experiment carried out at the Prague Asterix Laser System. In particular, we have addressed the effect of plasma self-absorption in the radiative precursor, the influence of the radiation emitted from the shocked shell and the plasma self-emission in the radiative precursor, the cooling time in the cooling layer, and the possibility of thermal instabilities in the postshock region.

  3. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    Science.gov (United States)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  4. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  5. Driving Flows in Laboratory Astrophysical Plasma Jets: The Mochi.LabJet Experiment

    Science.gov (United States)

    Carroll, Evan G.

    Mochi.Labjet is a new experiment at the University of Washington developed to investigate the interaction of shear flows in plasma jets with boundary conditions similar to an accretion disc system. This thesis details the engineering design and first plasmas of the Mochi.Labjet experiment. The experiment required construction of a new three electrode plasma gun with azimuthal symmetric gas injection, two optically-isolated pulsed power supplies for generating and sustaining plasma, and one optically-isolated pulsed power supply for generating a background magnetic field. Optical isolation is achieved with four custom circuits: the TTL-optical transmitter, optical-TTL receiver, optical-relay, and optical-tachometer circuits. First plasmas, during the commissioning phase of the apparatus, show evidence of flared jet structures with significant azimuthal symmetry.

  6. Stark Broadening of in III Lines in Astrophysical and Laboratory Plasma

    CERN Document Server

    Simic, Z; Kovacevic, A B; Sahal-Brechot, S

    2012-01-01

    Besides the need of Stark broadening parameters for a number of problems in physics, and plasma technology, in hot star atmospheres the conditions exist where Stark widths are comparable and even larger than the thermal Doppler widths. Using the semiclassical perturbation method we investigated here the influence of collisions with charged particles for In III spectral lines. We determined a number of Stark broadening parameters important for the investigation of plasmas in the atmospheres of A-type stars and white dwarfs. Also, we have compared the obtained results with existing experimental data. The results will be included in the STARK-B database, the Virtual Atomic and Molecular Data Center and the Serbian Virtual Observatory.

  7. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  8. Space and Astrophysical Plasmas : Space and astrophysical plasmas: Pervasive problems

    Indian Academy of Sciences (India)

    Chanchal Uberoi

    2000-11-01

    The observations and measurements given by Earth orbiting satellites, deep space probes, sub-orbital systems and orbiting astronomical observatories point out that there are important physical processes which are responsible for a wide variety of phenomena in solar-terrestrial, solar-system and astrophysical plasmas. In this review these topics are exemplified both from an observational and a theoretical point of view.

  9. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  10. Elastic, charge transfer, and related transport cross sections for proton impact of atomic hydrogen for astrophysical and laboratory plasma modeling

    Science.gov (United States)

    Schultz, D. R.; Ovchinnikov, S. Yu; Stancil, P. C.; Zaman, T.

    2016-04-01

    Updating and extending previous work (Krstić and Schultz 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3458 and other references) comprehensive calculations were performed for elastic scattering and charge transfer in proton—atomic hydrogen collisions. The results, obtained for 1301 collision energies in the center-of-mass energy range of 10-4-104 eV, are provided for integral and differential cross sections relevant to transport modeling in astrophysical and other plasma environments, and are made available through a website. Use of the data is demonstrated through a Monte Carlo transport simulation of solar wind proton propagation through atomic hydrogen gas representing a simple model of the solar wind interaction with heliospheric neutrals.

  11. Progresses of Laboratory Astrophysics in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gang; ZHANG Jie

    2011-01-01

    The exciting discoveries in astronomy such as the accelerating expansion of the universe, the atmospheric composition of exoplanets, and the abundance trends of various types of stars rely upon advances in laboratory astrophysics. These new discoveries have occurred along with dramatic improvements in measurements by ground- based and space-based instruments of astrophysical processes under extreme physical conditions. Laboratory astrophysics is an exciting and rapidly growing field emerging since the beginning of this century, which covers a wide range of scientific areas such as astrophysics,

  12. Scaling Extreme Astrophysical Phenomena to the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2007-11-01

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  13. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2012-01-01

    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This first part uniquely covers all the basic principles and practical tools required for understanding and work in plasma astrophysics. More than 25% of the text is updated from the first edition, including new figures, equations and entire sections on topics such as magnetic reconnection and the Grad-Shafranov equation. The book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  14. Improving Target Characterization for Laboratory Astrophysics Experiments

    Science.gov (United States)

    Marion, D. C.; Grosskopf, M. J.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Doss, F. W.; Krauland, C. M.; Distefano, C. A.

    2010-11-01

    We have fabricated and characterized targets for laboratory astrophysics since 2003, and have made improvements focusing on characterizing particular target features and their variances. Examples of measurements include machined features, material thickness and uniformity, location and thickness of glue, and mating conditions between adjacent materials. Measurements involve new technology and characterization methods, such as pre-shot radiography. More accurate characterization also leads to improvements in fabrication techniques, and helps integrate new technology into our build process. Quantifying variances more precisely also helps us better evaluate each fabrication method for both accuracy and consistency. We present these characterization methods and their impact on fabrication. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-FG52-09NA29034.

  15. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  16. Preface to Special Topic: High-Energy Density Laboratory Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, Siegfried H.; /SLAC

    2017-04-01

    In the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems. These facilities routinely produce states of matter in the high-energy density physics regime, i.e., pressures above a million atmospheres, 1011 J/m3, and employ a suite of temporally and spatially resolving imaging and scattering measurements that were originally developed to understand the behavior of inertial confinement fusion plasmas. These capabilities bring to the field of astrophysics critical experimental tests of simulations in relevant regimes that are far from the conditions that can otherwise be routinely produced on earth.5 These astrophysical motivated studies are now finding their way into the laboratory plasma community. Further, laboratory astrophysics helped to motivate the development of new precision experimental capabilities; the latest being the world-class Linac Coherent Light Source (LCLS) x-ray laser at the Matter in Extreme Conditions instrument at Stanford that is dedicated to fundamental research.

  17. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  18. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2006-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  19. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  20. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    CERN Document Server

    Baring, M G; Ellison, D C; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    1999-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at b...

  1. Laboratory Spectroscopy for Interpreting Astrophysical Spectra

    Science.gov (United States)

    Brown, Greg

    2011-06-01

    We have been using electron beam ion traps and a variety of spectrometers to isolate and study atomic processes taking place in astrophysical sources and to provide calibrated X-ray line emission and absorption diagnostics for use by the astrophysics community. Studies of electron impact excitation and photoexcitation and ionization cross sections and transition energies have been conducted. Photoexcitation and ionization studies have been completed by employing a transportable electron beam ion trap, provided by the Max-Plank-Institute for Kernphysik, at various advanced light sources including the BESSY-II synchrotron, the FLASH free electron laser, and most recently, the Linac Coherent Light Source free electron laser. Various recent results will be discussed. [4pt] This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  3. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  4. Laboratory astrophysical collisionless shock experiments on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Ryutov, D.; Casey, D.; Drake, R. P.; Fiksel, G.; Froula, D.; Gregori, G.; Kugland, N. L.; Kuranz, C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Zylstra, A. B.

    2016-03-01

    We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

  5. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  6. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  7. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  8. Precision laboratory measurements in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics

    2000-07-01

    After reviewing some of the basic concepts, nomenclatures and parametrizations of astronomy, astrophysics, cosmology, and nuclear physics, we introduce a few central problems in nuclear astrophysics, including the hot-CNO cycle, helium burning and solar neutrinos. We demonstrate that in this new era of precision nuclear astrophysics secondary or radioactive nuclear beams allow for progress. (orig.)

  9. The Local Group as an Astrophysical Laboratory

    Science.gov (United States)

    Livio, Mario; Brown, Thomas M.

    2011-04-01

    1. History of the Local Group S. van den Bergh; 2. Primordial nucleosynthesis G. Steigman; 3. Galactic structure R. F. G. Wyse; 4. The Large Magellanic Cloud: structure and kinematics R. P. van der Marel; 5. The Local Group as an astrophysical laboratory for massive star feedback M. S. Oey; 6. Hot gas in the Local Group and low-redshift intergalactic medium K. R. Sembach; 7. Stages of satellite accretion M. E. Putman; 8. The star formation history in the Andromeda halo T. M. Brown; 9. Bulge populations in the Local Group R. M. Rich; 10. The Local Group as a laboratory for the chemical evolution of galaxies D. R. Garnett; 11. Massive stars in the Local Group: Star formation and stellar evolution P. Massey; 12. Massive young clusters in the Local Group J. Maíz-Apellániz; 13. Magellanic Cloud planetary nebulae as probes of stellar evolution and populations L. Stanghellini; 14. The old globular clusters: or, life among the ruins W. E. Harris; 15. Chemical evolution models of Local Group galaxies M. Tosi.

  10. Measuring Stellar Temperatures: An Astrophysical Laboratory for Undergraduate Students

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.

    2008-01-01

    While astrophysics is a fascinating subject, it hardly lends itself to laboratory experiences accessible to undergraduate students. In this paper, we describe a feasible astrophysical laboratory experience in which the students are guided to take several stellar spectra, using a telescope, a spectrograph and a CCD camera, and perform a full data…

  11. New Discoveries in Stars and Stellar Evolution through Advances in Laboratory Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Stars and Stellar Evolution (SSE) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the Sun as a star, stellar astrophysics, the structure and evolution of single and multiple stars, compact objects, SNe, gamma-ray bursts, solar neutrinos, and extreme physics on stellar scales. Central to the progress in these areas are the corresponding advances in laboratory astrophysics, required to fully realize the SSE scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics that produces the observed astrophysical processes. The 6 areas of laboratory astrophysics, which we have identified as relevant to the CFP panel, are atomic, molecular, solid matter, plasma, nuclear physics, and particle physics. In this white paper, we describe in Section 2 the scientific context and some of the new s...

  12. Scaling extreme astrophysical phenomena to the laboratory - a tutorial

    Science.gov (United States)

    Remington, Bruce A.

    2007-11-01

    The ability to experimentally study scaled aspects of the explosion dynamics of core-collapse supernovae (massive stars that explode from the inside out) or the radiation kinetics of accreting neutron stars or black holes on high energy density (HED) facilities, such as high power lasers and magnetic pinch facilities, is an exciting scientific development over the last two decades. [1,2] Additional areas of research that become accessible on modern HED facilities are studies of fundamental properties of matter in conditions relevant to planetary and stellar interiors, protostellar jet dynamics, and with the added tool of thermonuclear ignition on the National Ignition Facility, excited state (``multi-hit'') nuclear physics, possibly relevant to nucleosynthesis. Techniques and methodologies for studying aspects of the physics of such extreme phenomena of the universe in millimeter scale parcels of plasma in the laboratory will be discussed. [1] ``Experimental astrophysics with high power lasers and Z pinches,'' B.A. Remington, R.P. Drake, D.D. Ryutov, Rev. Mod. Phys. 78, 755 (2006). [2] ``High energy density laboratory astrophysics,'' B.A. Remington, Plasma Phys. Cont. Fusion 47, A191 (2005).

  13. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Parrish C.; Quevedo, Hernan J. [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States); Valanju, Prashant M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Bengtson, Roger D.; Ditmire, Todd [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  14. A Solar System Perspective on Laboratory Astrophysics

    Science.gov (United States)

    Cruikshank, Dale P.

    2002-01-01

    Planetary science deals with a wide variety of natural materials in a wide variety of environments. These materials include metals, minerals, ices, gases, plasmas, and organic chemicals. In addition, the newly defined discipline of astrobiology introduces biological materials to planetary science. The environments range from the interiors of planets with megapascal pressures to planetary magnetospheres, encompassing planetary mantles, surfaces, atmospheres, and ionospheres. The interplanetary environment includes magnetic and electrical fields, plasma, and dust. In order to understand planetary processes over these vast ranges, the properties of materials must be known, and most of the necessary information comes from the laboratory. Observations of the bodies and materials in the Solar System are accomplished over the full range of the electromagnetic spectrum by remote sensing from Earth or spacecraft. Comets exemplify this; molecular and atomic identifications are made from the hard ultraviolet to radio wavelengths, while X-rays are emitted as comets interact with the solar wind. Gamma rays from the surfaces of the Moon and asteroids are diagnostic of the mineral and ice content of those bodies; eventually, gamma rays will also be observed by probes to comets. A number of planetary materials are available in the laboratory for extensive Study: rocks from the Moon, Mars, several asteroids, as well as dust from comets (and perhaps the Kuiper Belt) are closely studied at every level, including atomic (isotopic). Even pre-solar interstellar grains isolated from meteorites are scrutinized for composition and crystalline structure. Beyond the materials themselves, various agents and processes have altered them over the 4.6-Gy age of the Solar System. Solar radiation, solar wind particles, trapped magnetospheric particles, cosmic rays, and micrometeoroid impacts have produced chemical, physical, and morphological changes in the atmospheres and on the surfaces of all

  15. New Discoveries in Galaxies across Cosmic Time through Advances in Laboratory Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Galaxies across Cosmic Time (GCT) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the formation, evolution, and global properties of galaxies and galaxy clusters, as well as active galactic nuclei and QSOs, mergers, star formation rate, gas accretion, and supermassive black holes. Central to the progress in these areas are the corresponding advances in laboratory astrophysics that are required for fully realizing the GCT scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics that produce the observed astrophysical processes. The 5 areas of laboratory astrophysics that we have identified as relevant to the CFP panel are atomic, molecular, solid matter, plasma, nuclear, and particle physics. In this white paper, we describe in Section 2 some of the new scientific opportunities...

  16. New Discoveries in the Galactic Neighborhood through Advances in Laboratory Astrophysics

    CERN Document Server

    WGLA, AAS; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Galactic Neighborhood (GAN) panel is fully aware, the next decade will see major advances in our understanding of this area of research. To quote from their charge, these advances will occur in studies of the galactic neighborhood, including the structure and properties of the Milky Way and nearby galaxies, and their stellar populations and evolution, as well as interstellar media and star clusters. Central to the progress in these areas are the corresponding advances in laboratory astrophysics that are required for fully realizing the GAN scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics and chemistry that produces the observed astrophysical processes. The 5 areas of laboratory astrophysics that we have identified as relevant to the GAN panel are atomic, molecular, solid matter, plasma, and nuclear physics. In this white paper, we describe in Section 2 some of the new scientific opportunities and ...

  17. Studying astrophysical particle acceleration with laser-driven plasmas

    Science.gov (United States)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  18. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    Science.gov (United States)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  19. Laboratory Measurements of Astrophysical Magnetic Fields

    Science.gov (United States)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  20. ASTROPHYSICAL JETS AS HYPERSONIC BUCKSHOT: LABORATORY EXPERIMENTS AND SIMULATIONS

    Directory of Open Access Journals (Sweden)

    A. Frank

    2009-01-01

    Full Text Available Herbig-Haro (HH jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or "pulsed" variations of conditions at the jet source. In this contribution we offer an alternative to "pulsed" models of protostellar jets. Using direct numerical simulations and laboratory experiments we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our simulations explore an idealization of this scenario by injecting small (r ¿jet spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by ¿ 15%. We find the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the inter-clump medium in a variety of ways. We also present new experiments that, for the first time, directly address issues of magnetized astrophysical jets. Our experiments explore the propagation and stability of super-magnetosonic, radiatively cooled, and magnetically dominated bubbles with internal, narrow jets. The results are scalable to astrophysical environments via the similarity of dimensionl ss numbers controlling the dynamics in both settings. These experiments show the jets are subject to kink mode instabilities which quickly fragment the jet into narrow chains of hypersonic knots, providing support for the "clumpy jet" paradigm.

  1. FIRST KODAI-TRIESTE WORKSHOP ON PLASMA ASTROPHYSICS

    CERN Document Server

    Hasan, S. S; Krishan, V; TURBULENCE, DYNAMOS, ACCRETION DISKS, PULSARS AND COLLECTIVE PLASMA PROCESSES

    2008-01-01

    It is well established and appreciated by now that more than 99% of the baryonic matter in the universe is in the plasma state. Most astrophysical systems could be approximated as conducting fluids in a gravitational field. It is the combined effect of these two that gives rise to the mind boggling variety of configurations in the form of filaments, loops , jets and arches. The plasma structures that cannot last for more than a second or less in a laboratory remain intact for astronomical time and spatial scales in an astrophysical setting. The case in point is the well known extragalactic jets whose collimation and stability has remained an enigma inspite of the efforts of many for many long years. The high energy radiation sources such as the active galactic nuclei again summon the coherent plasma radiation processes for their exceptionally large output from regions of relatively small physical sizes. The generation of magnetic field, anomalous transport of angular momentum with decisive bearing on star for...

  2. The Impact of Recent Advances in Laboratory Astrophysics on our Understanding of the Cosmos

    CERN Document Server

    Savin, D W; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibe, E G

    2011-01-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena - the radiation and particle spectra we observe - have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  3. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    Science.gov (United States)

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  4. Astrophysical Weibel instability in counterstreaming laser-produced plasmas

    Science.gov (United States)

    Fox, William; Fiksel, Gennady; Bhattacharjee, Amitava; Change, Po-Yu; Germaschewski, Kai; Hu, Suxing; Nilson, Philip

    2014-06-01

    Astrophysical shock waves play diverse roles, including energizing cosmic rays in the blast waves of astrophysical explosions, and generating primordial magnetic fields during the formation of galaxies and clusters. These shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to provide the requisite interaction mechanism for shock formation in weakly-magnetized shocks by generating turbulent electric and magnetic fields in the shock front. This work presents the first laboratory identification of this Weibel instability between counterstreaming supersonic plasma flows and confirms its basic features, a significant step towards understanding these shocks. In the experiments, conducted on the OMEGA EP laser facility at the University of Rochester, a pair of plasmas plumes are generated by irradiating of a pair of opposing parallel plastic (CH) targets. The ion-ion interaction between the two plumes is collisionless, so as the plumes interpenetrate, supersonic, counterstreaming ion flow conditions are obtained. Electromagnetic fields formed in the interaction of the two plumes were probed with an ultrafast laser-driven proton beam, and we observed the growth of a highly striated, transverse instability with extended filaments parallel to the flows. The instability is identified as an ion-driven Weibel instability through agreement with analytic theory and particle-in-cell simulations, paving the way for further detailed laboratory study of this instability and its consequences for particle energization and shock formation.[1] W. Fox, G. Fiksel, A. Bhattacharjee, P. Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Filamentation instability of counterstreaming laser-driven plasmas,” Phys. Rev. Lett. 111, 225002 (2013).

  5. Laboratory astrophysics and microanalysis with NTD-germanium-based X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E.; Schnopper, H.; Bandler, S.; Murray, S.; Madden, N.; Landis, D.; Beeman, J.; Haller, E.; Barbera, M.; Tucker, G.; Gillaspy, J.; Takacs, E.; Porto, J

    2000-04-07

    With the ability to create cosmic plasma conditions in the laboratory it is possible to investigate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources with X-ray optics and a high-resolution X-ray microcalorimeter. The same instrumentation can be coupled to scanning electron microscopes or X-ray fluorescence probes to analyze the elemental and chemical composition of electronic, biological, geological and particulate materials. We describe how our microcalorimeter and X-ray optics provide significantly improved capabilities for laboratory astrophysics and microanalysis.

  6. High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics

    Science.gov (United States)

    Fujioka, S.; Zhang, Z.; Yamamoto, N.; Ohira, S.; Fujii, Y.; Ishihara, K.; Johzaki, T.; Sunahara, A.; Arikawa, Y.; Shigemori, K.; Hironaka, Y.; Sakawa, Y.; Nakata, Y.; Kawanaka, J.; Nagatomo, H.; Shiraga, H.; Miyanaga, N.; Norimatsu, T.; Nishimura, H.; Azechi, H.

    2012-12-01

    The world's largest peta watt (PW) laser LFEX, which delivers energy up to 2 kJ in a 1.5 ps pulse, has been constructed beside the GEKKO XII laser at the Institute of Laser Engineering, Osaka University. The GEKKO-LFEX laser facility enables the creation of materials having high-energy-density which do not exist naturally on the Earth and have an energy density comparable to that of stars. High-energy-density plasma is a source of safe, secure, environmentally sustainable fusion energy. Direct-drive fast-ignition laser fusion has been intensively studied at this facility under the auspices of the Fast Ignition Realization Experiment (FIREX) project. In this paper, we describe improvement of the LFEX laser and investigations of advanced target design to increase the energy coupling efficiency of the fast-ignition scheme. The pedestal of the LFEX pulse, which produces a long preformed plasma and results in the generation of electrons too energetic to heat the fuel core, was reduced by introducing an amplified optical parametric fluorescence quencher and saturable absorbers in the front-end system of the LFEX laser. Since fast electrons are scattered and stopped by the strong electric field of highly ionized high-Z (i.e. gold) ions, a low-Z cone was studied for reducing the energy loss of fast electrons in the cone tip region. A diamond-like carbon cone was fabricated for the fast-ignition experiment. An external magnetic field, which is demonstrated to be generated by a laser-driven capacitor-coil target, will be applied to the compression of the fuel capsule to form a strong magnetic field to guide the fast electrons to the fuel core. In addition, the facility offers a powerful means to test and validate astronomical models and computations in the laboratory. As well as demonstrating the ability to recreate extreme astronomical conditions by the facilities, our theoretical description of the laboratory experiment was compared with the generally accepted explanation

  7. New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    CERN Document Server

    WGLA, AAS; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas are the corresponding advances in laboratory astro- physics which are required for fully realizing the PSF scientific opportunities in the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics and chemistry which produce the observed spectra and describe the astrophysical processes. We discuss four areas of laboratory astrophysics relevant to the PSF panel: atomic, molecular, solid matter, and plasma physics. Section 2 describes some of the new opportunitie...

  8. Transition regions in solar system and astrophysical plasmas

    Science.gov (United States)

    Eastman, Timothy E.

    1990-01-01

    A brief review is presented of basic particle and field characteristics of plasmas observed within the solar system, especially near transition regions, and their parameter ranges are compared with those inferred for stellar winds and the interstellar medium. Parameter ranges for solar system and astrophysical plasmas are found to have considerable overlap. In addition, astrophysics provides unique, global perspectives of large-scale systems, whereas solar-system space physics provides for direct quantitative testing of physical processes. Astrophysics and solar-system space physics studies thus have complementary and synergistic roles.

  9. Cosmic ray transport in astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- & Astrophysik, Ruhr-Universität, Bochum (Germany)

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  10. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  11. The astrophysics of the intracluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, Alfonso [Univ. ‘Tor Vergata’, Via Ricerca Scientifica 1, 00133 Roma (Italy); INAF, Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monteporzio (Italy); Lapi, Andrea, E-mail: lapi@roma2.infn.it [Univ. ‘Tor Vergata’, Via Ricerca Scientifica 1, 00133 Roma (Italy); SISSA, Via Bonomea 265, 34136 Trieste (Italy)

    2013-12-20

    Since 1971 observations in X rays of several thousands of galaxy clusters have uncovered huge amounts of hot baryons filling up the deep gravitational potential wells provided by dark matter (DM) halos with masses of some 10{sup 15}M{sub ⊙} and sizes of millions of light-years. At temperatures T∼10{sup 8}K and with average densities of n∼1 particle per liter, such baryons add up to some 10{sup 14}M{sub ⊙}. With the neutralizing electrons, they constitute the best proton–electron plasma in the Universe (whence the apt name Intra Cluster Plasma, ICP), one where the thermal energy per particle overwhelms the electron–proton Coulomb interaction by extralarge factors of order 10{sup 12}. The ICP shines in X rays by thermal bremsstrahlung radiation, with powers up to several 10{sup 45}erg s{sup −1} equivalent to some 10{sup 11} solar luminosities. The first observations were soon confirmed in X rays by the detection of high excitation emission lines, and in the radio band by studies of streamlined radiogalaxies moving through the ICP. Later on they were nailed down by the first measurements in microwaves of the Sunyaev–Zel’dovich effect, i.e., the inverse Compton upscattering of cold cosmic background photons at T{sub cmb}≈2.73K off the hot ICP electrons at k{sub B}T∼5keV. A key physical feature of the ICP is constituted by its good local thermal equilibrium, and by its overall hydrostatic condition in the DM wells, modulated by entropy. The latter is set up in the cluster center by the initial halo collapse, and is progressively added at the outgrowing cluster boundary by standing shocks in the supersonic flow of intergalactic gas into the DM potential wells. Such physical conditions are amenable to detailed modeling. We review here these entropy-based models and discuss their outcomes and predictions concerning the ICP observables in X rays and in microwaves, as well as the underlying DM parameters. These quantitative outcomes highlight the tight

  12. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  13. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plas...

  14. Doppler tomography in fusion plasmas and astrophysics

    NARCIS (Netherlands)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S.K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.; ASDEX Upgrade team,

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined pl

  15. IAU Colloquium on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas, 102nd, Beaulieu-sur-Mer, France, Sept. 9-11, 1987, Proceedings

    Science.gov (United States)

    Bely-Dubau, F.; Faucher, P.

    1988-03-01

    The present conference discusses the solar physics results of Spacelab 2, spectroscopic methods for electron density determination, microcalorimeters for X-ray spectroscopy, spectral observations of the XUV astronomical background radiation, XUV lasers, spectroscopic diagnoses of tokamaks, nonthermal X-ray spectra from a tokamak, and space- and time-resolved plasma diagnostics in laser-produced plasmas. Also discussed are the application in atomic physics of coupled differential equations, the interpretation of unresolved hyperfine and/or Zeeman structures in stellar spectra, atomic physics for hot plasmas, IUE satellite-based UV astronomy contributions, plasma shifts of ion lines, and the use of Ti, Si, C, Be, and LiF in soft X-ray optics.

  16. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    Science.gov (United States)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  17. Creating White Dwarf Photospheres in the Laboratory: Strategy for Astrophysics Applications

    CERN Document Server

    Falcon, Ross E; Bailey, J E; Ellis, J L; Carlson, A L; Gomez, T A; Montgomery, M H; Winget, D E; Chen, E Y; Gomez, M R; Nash, T J; Pille, T M

    2012-01-01

    Astrophysics experiments by Falcon et al. to create white dwarf photospheres in the laboratory are currently underway. The experimental platform measures Balmer line profiles of a radiation-driven, pure hydrogen plasma in emission and in absorption for conditions at T_e ~ 1 eV, n_e ~ 10^17 cm^-3. These will be used to compare and test line broadening theories used in white dwarf atmosphere models. The flexibility of the platform allows us to expand the direction of our experiments using other compositions. We discuss future prospects such as exploring helium plasmas and carbon/oxygen plasmas relevant to the photospheres of DBs and hot DQs, respectively.

  18. Progress of Jinping Underground laboratory for Nuclear Astrophysics experiment JUNA

    Science.gov (United States)

    Liu, Weiping

    2015-08-01

    Direct measurement of the cross sections for the key nuclear reactions in hydrostatic stellar evolution within Gamow window, which makes use of low background at deep underground laboratory, is crucial to solve key scientific questions in nuclear astrophysics. JUNA project aims at direct measurement of (α,γ), (α,n) reactions in hydrostatic helium burning and (p, γ), (p, α) reactions in hydrostatic hydrogen burning based on Jinping deep underground laboratory in China. The progress of experimental techniques, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be presented.

  19. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  20. Laboratory Astrophysics Needs of the Herschel Space Observatory

    Science.gov (United States)

    Pearson, J. C.

    2002-11-01

    The science teams of the Herschel Space Observatory have identified a number of areas for laboratory study required for proper interpretation of Herschel observational data. The most critical is the collection and compilation of laboratory data on spectral line frequencies, transition probabilities and energy levels for the known astrophysical atomic and molecular species in 670 to 57 micron wavelength range of Herschel. The second most critical need is the compilation of collisional excitation cross sections for the species known to dominate the energy balance in the ISM and the temperature dependent chemical reaction rates. On the theoretical front chemical and radiative transfer models need to be prepared in advance to assess calibration and identify instrument anomalies. In the next few years there will be a need to incorporate spectroscopists and theoretical chemists into teams of astronomers so that the spectroscopic surveys planned can be properly calibrated and rapidly interpreted once the data becomes available. The science teams have also noted that the enormous prospects for molecular discovery will be greatly handicapped by the nearly complete lack of spectroscopic data for anything not already well known in the ISM. As a minimum, molecular species predicted to exist by chemical models should be subjected to detailed laboratory study to ensure conclusive detections. This has the greatest impact on any astrobiology program that might be proposed for Herschel. Without a significant amount of laboratory work in the very near future Herschel will not be prepared for many planned observations, much less addressing the open questions in molecular astrophysics.

  1. Studies of high energy density physics and laboratory astrophysics driven by intense lasers

    Science.gov (United States)

    Zhang, J.

    2016-10-01

    Laser plasmas are capable of creating unique physical conditions with extreme high energy density, which are not only closely relevant to inertial fusion energy studies, but also to laboratory simulation of some astrophysical processes. In this paper, we highlight some recent progress made by our research teams. The first part is about directional hot electron beam generation and transport for fast ignition of inertial confinement fusion, as well as a new scheme of fast ignition by use of a strong external DC magnetic field. The second part concerns laboratory modeling of some astrophysical phenomena, including 1) studies of the topological structure of magnetic reconnection/annihilation that relates closely to geomagnetic substorms, loop-top X-ray source and mass ejection in solar flares, and 2) magnetic field generation and evolution in collisionless shock formation.

  2. Plasma simulator for rotating astrophysical objects

    Directory of Open Access Journals (Sweden)

    K. E. Nakamura

    2000-01-01

    Full Text Available Estamos desarrollando un simulador de plasmas astrof sicos con rotaci on, que consiste de m odulos manejados por un c odigo tridimensional magnetohidrodin amico. Los m odulos que hemos dise~nado incluyen difusi on magn etica, conducci on t ermica, enfriamiento radiativo y autogravedad. Estamos desarrollando m odulos para hacer la visualizaci on. El c odigo est a paralelizado y optimizado para computadoras vectorizadas y paralelas.

  3. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    Energy Technology Data Exchange (ETDEWEB)

    Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E; Liedahl, D A; Fournier, K B; Jonauskas, V; Kisielius, R; Ramsbottom, C; Springer, P T; Keenan, K P; Rose, S J; Goldstein, W H

    2005-04-29

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  4. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  5. The Need for Plasma Astrophysics in Understanding Life Cycles of Active Galaxies

    CERN Document Server

    Li, H; Bellan, P; Colgate, S; Forest, C; Fowler, K; Goodman, J; Intrator, T; Kronberg, P; Lyutikov, M; Zweibel, E

    2009-01-01

    In this White Paper, we emphasize the need for and the important role of plasma astrophysics in the studies of formation, evolution of, and feedback by Active Galaxies. We make three specific recommendations: 1) We need to significantly increase the resolution of VLA, perhaps by building an EVLA-II at a modest cost. This will provide the angular resolution to study jets at kpc scales, where, for example, detailed Faraday rotation diagnosis can be done at 1GHz transverse to jets; 2) We need to build coordinated programs among NSF, NASA, and DOE to support laboratory plasma experiments (including liquid metal) that are designed to study key astrophysical processes, such as magneto-rotational instability (origin of angular momentum transport), dynamo (origin of magnetic fields), jet launching and stability. Experiments allowing access to relativistic plasma regime (perhaps by intense lasers and magnetic fields) will be very helpful for understanding the stability and dissipation physics of jets from Supermassive...

  6. The Astrophysics of the Intracluster Plasma

    CERN Document Server

    Cavaliere, A

    2013-01-01

    [Abridged] Since 1971 observations in X rays of thousands galaxy clusters have uncovered huge amounts of hot baryons filling up the deep gravitational potential wells provided by dark matter (DM) halos with sizes of millions light-years and masses of some 10^15 M_sun. At temperatures T~10^8 K and with average densities of n~1 particle per liter, such baryons add up to some 10^14 M_sun. With the neutralizing electrons, they constitute the best proton-electron plasma in the Universe (Intra Cluster Plasma, ICP). A key physical feature of the ICP is constituted by its good local Thermal equilibrium, and by its overall hydrostatic condition in the DM wells, modulated by entropy. The latter is set up in the cluster center by the initial halo collapse, and is progressively added at the outgrowing cluster boundary by standing shocks in the supersonic flow of intergalactic gas into the DM wells. We review these entropy-based models and discuss their outcomes and predictions concerning the ICP observables in X rays and...

  7. Magnetohydrodynamic waves in fusion and astrophysical plasmas.

    Science.gov (United States)

    Goedbloed, J. P.

    Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.

  8. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  9. Beryllium Drive Disc Characterization for Laboratory Astrophysics Experiments

    Science.gov (United States)

    Ditmar, J. R.; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.

    2009-11-01

    Laboratory Astrophysics scales large-scale phenomena, such as core-collapse supernovae shocks, down to the sub-millimeter scale for investigation in a laboratory setting. In some experiments, targets are constructed with a 20μm thick beryllium disc attached to a polyimide tube. A shockwave is created by irradiating the Be disc with ˜ 4kJ of energy from the Omega Laser. The Be material is rolled into a 20μm sheet and then machined to a 2.5mm diameter. Characterizing the roughness and knowing if there are any major features on the initial surface could affect interpretations of data taken during experiments. Structure in the Beryllium discs could become an important parameter in future high-fidelity computer simulations. Surfaces were characterized with a Scanning Electron Microscope and an Atomic Force Microscope.

  10. Roles and Needs of Laboratory Astrophysics in NASA's Space and Earth Science Mission

    CERN Document Server

    Cowan, John; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The mission enabling impact of laboratory astrophysics ranges from the scientific conception stage for airborne and space-based observatories, all the way through to the scientific return of these missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA. These efforts are necessary for the success of astronomical research being funded by NASA. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have ...

  11. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    Science.gov (United States)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  12. Protostellar jets the best laboratories for investigating astrophysical jets

    CERN Document Server

    De Gouveia dal Pino, E M

    1995-01-01

    Highly collimated supersonic jets are observed to emerge from a wide variety of astrophysical objects, ranging from Active Nuclei of Galaxies (AGN's) to Young Stellar Objects (YSOs) within our own Galaxy. Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. Thanks to the proximity and relatively small timescales, which permit direct observations of evolutionary changes, YSO jets are, perhaps, the best laboratories for cosmic jet investigation. In this lecture, the formation, structure, and evolution of the YSO jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models to AGN jets are also addressed.

  13. The Alpha Dynamo Effects in Laboratory Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Stewart C. Prager

    2001-10-16

    A concise review of observations of the alpha dynamo effect in laboratory plasmas is given. Unlike many astrophysical systems, the laboratory pinch plasmas are driven magnetically. When the system is overdriven, the resultant instabilities cause magnetic and flow fields to fluctuate, and their correlation induces electromotive forces along the mean magnetic field. This alpha-effect drives mean parallel electric current, which, in turn, modifies the initial background mean magnetic structure towards the stable regime. This drive-and-relax cycle, or the so-called self-organization process, happens in magnetized plasmas in a timescale much shorter than resistive diffusion time, thus it is a fast and unquenched dynamo process. The observed alpha-effect redistributes magnetic helicity (a measure of twistedness and knottedness of magnetic field lines) but conserves its total value. It can be shown that fast and unquenched dynamos are natural consequences of a driven system where fluctuations are statistically either not stationary in time or not homogeneous in space, or both. Implications to astrophysical phenomena will be discussed.

  14. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    Science.gov (United States)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  15. Theory of magnetic reconnection in solar and astrophysical plasmas.

    Science.gov (United States)

    Pontin, David I

    2012-07-13

    Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.

  16. Broadening Undergraduate Research Skills With A New Astrophysics Laboratory Class

    Science.gov (United States)

    Smecker-Hane, Tammy A.; Barth, A. J.

    2009-05-01

    To broaden the research skills of undergraduate students at the University of California, Irvine, we created a new required laboratory class called Observational Astrophysics, designed to be taken by junior and senior physics majors specializing in astrophysics. Students spend the first two weeks learning the basics of observational astronomy (coordinate systems, telescopes, CCDs, etc.) and completing homework assignments. Students spend the next eight weeks performing three lab experiments that involve: 1) CCD imaging of Jupiter with an 8-inch Meade telescope, doing astrometry of the their four brightest moons, and fitting the moons' distance versus time to derive the moons' orbital period, semimajor axis and inclination and Jupiter's mass, 2) CCD imaging of star cluster with a 24-inch telescope, doing profile-fitting photometry with DAOPHOT and doing main-sequence fitting of their observed color-magnitude diagram with stellar evolutionary models to derive the cluster's distance, reddening, and age, and 3) reducing longslit spectra of an x-ray binary previously taken with the Keck 10-meter telescope, deriving the radial velocity curve from cross-correlating the spectra with stellar templates, and deriving a lower limit on the mass of the black hole. In this paper, we discuss the course, report on the student reactions, and summarize some of the important things we learned in creating the class. Students enjoy the class. Although they find it difficult, they highly value the experience because they realize they are learning crucial research skills that will greatly help them when go on to do summer research, attend graduate school or work to industry. We are open to sharing our lab manual and data with others who wish to augment their university's curriculum.

  17. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Fatima [Univ. of New Hampshire, Durham, NH (United States)

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport, we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.

  18. Observation of astrophysical Weibel instability in counterstreaming laser-produced plasmas

    Science.gov (United States)

    Fox, W.; Fiksel, G.; Bhattacharjee, A.; Germaschewski, K.; Chang, P.-Y.; Hu, S. X.; Nilson, P. M.

    2013-10-01

    Astrophysical shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to be one of such collective mechanism. Here we present laboratory tests of this process through observations of the Weibel instability generated between two counterstreaming, supersonic plasma flows, generated on the OMEGA EP laser facility by irradiating of a pair of opposing parallel CH targets by UV laser pulses (0.351 μm, 1.8 kJ, 2 ns). The Weibel-generated electromagnetic fields were probed with an ultrafast proton beam, generated with a high-intensity laser pulse (1.053 μm, 800 J, 10 ps) focused to >1018 W/cm2 onto a thin Cu disk. Growth of a striated, transverse instability is observed at the midplane as the two plasmas interpenetrate, which is identified as the Weibel instability through agreement with analytic theory and particle-in-cell simulations. These laboratory observations directly demonstrate the existence of this astrophysical process, and pave the way for further detailed laboratory study of this instability and its consequences for particle energization and shock formation. This work was supported by DOE grant DE-SC0007168.

  19. Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers

    Science.gov (United States)

    Park, Hye-Sook; Ryutov, D. D.; Ross, J. S.; Kugland, N. L.; Glenzer, S. H.; Plechaty, C.; Pollaine, S. M.; Remington, B. A.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Takabe, H.; Froula, D. H.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Pelka, A.; Liang, E.; Woolsey, N.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.

    2012-03-01

    Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are "collisionless", since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ˜1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide "head-on". Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm-3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.

  20. The molecular universe: from astronomy to laboratory astrophysics and back

    Science.gov (United States)

    van Dishoeck, Ewine

    2015-08-01

    Molecules are found in a wide range of astronomical environments, fromour Solar System to distant starburst galaxies at the highest redshifts. Thanks to the opening up of the infrared and (sub)millimeter wavelength regime, culminating with Herschel and ALMA, more than 180 different species have now been found throughout the various stages of stellar birth and death: diffuse and dense interstellar clouds, protostars and disks, the envelopes of evolved stars and planetary nebulae, and exo-planetary atmospheres. Molecules and solid-state features are now also routinely detected in the interstellar medium of external galaxies, near and far.There are many motivations for studying this molecular universe. From the chemical perspective, interstellar space provides a unique laboratory to study basic molecular processes under very different conditions from those normally found in a laboratory on Earth. For astronomers, molecules are unique probes of the many environments where they are found, providing information on density, temperature, dynamics, ionization fractions and magnetic fields. Molecules also play an important role in the cooling of clouds allowing them to collapse, including the formation of the very first stars and galaxies. Finally, the molecular composition is sensitive to the history of the material, and ultimately provides critical information on our origins.This talk will summarize a number of recent observational highlights and provide examples of cases where the availability of new laboratory data proved crucial in the analysis. This includes basic data such as spectroscopy and collisional rate coefficients, but also an improved understanding of photoprocesses in the gaseous and solid state. Much of the chemistry in star- and planet-forming regions is now thought to be driven by gas-grain chemistry rather than pure gas-phase chemistry, and a few examples of the close link between models and laboratory experiments will be given. In spite of lingering

  1. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    Indian Academy of Sciences (India)

    A. A. Mihajlov; V. A. Srećković; N. M. Sakan

    2015-12-01

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 cm$^{-3}$ to 2 · 1019 cm$^{−3}$ and temperatures from 5 · 103 K to 3 · 104 K in the wavelength region 100 nm < < 3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  2. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    Science.gov (United States)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  3. Recent progress in astrophysical plasma turbulence from solar wind observations

    CERN Document Server

    Chen, C H K

    2016-01-01

    This paper summarises some of the recent progress that has been made in understanding astrophysical plasma turbulence in the solar wind, from in situ spacecraft observations. At large scales, where the turbulence is predominantly Alfvenic, measurements of critical balance, residual energy, and 3D structure are discussed, along with comparison to recent models of strong Alfvenic turbulence. At these scales, a few percent of the energy is also in compressive fluctuations, and their nature, anisotropy, and relation to the Alfvenic component is described. In the small scale kinetic range, below the ion gyroscale, the turbulence becomes predominantly kinetic Alfven in nature, and measurements of the spectra, anisotropy, and intermittency of this turbulence are discussed with respect to recent cascade models. One of the major remaining questions is how the turbulent energy is dissipated, and some recent work on this question, in addition to future space missions which will help to answer it, are briefly discussed.

  4. Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves

    Indian Academy of Sciences (India)

    R P Patel; Abhay Kumar Singh; R P Singh

    2000-11-01

    The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.

  5. From dripline to dripline: Nuclear astrophysics in the laboratory

    CERN Document Server

    Meisel, Zach

    2016-01-01

    For the better part of a century the field of nuclear astrophysics has aimed to answer fundamental questions about nature, such as the origin of the elements and the behavior of high-density, low-temperature matter. Sustained and concerted efforts in nuclear experiment have been key to achieving progress in these areas and will continue to be so. Here I will briefly review recent accomplishments and open questions in experimental nuclear astrophysics.

  6. Nuclear problems in astrophysical q-plasmas and environments

    CERN Document Server

    Coraddu, M; Quarati, P; Scarfone, A M

    2009-01-01

    Experimental measurements in terrestrial laboratory, space and astrophysical observations of variation and fluctuation of nuclear decay constants, measurements of large enhancements in fusion reaction rate of deuterons implanted in metals and electron capture by nuclei in solar core indicate that these processes depend on the environment where take place and possibly also on the fluctuation of some extensive parameters and eventually on stellar energy production. Electron screening is the first important environment effect. We need to develop a treatment beyond the Debye-Huckel screening approach, commonly adopted within global thermodynamic equilibrium. Advances in the description of these processes can be obtained by means of q-thermostatistics and/or superstatistics for metastable states. This implies to handle without ambiguities the case q<1.

  7. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  8. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    CERN Document Server

    Suzuki-Vidal, F; Ciardi, A; Pickworth, L A; Rodriguez, R; Gil, J M; Espinosa, G; Hartigan, P; Swadling, G F; Skidmore, J; Hall, G N; Bennett, M; Bland, S N; Burdiak, G; de Grouchy, P; Music, J; Suttle, L; Hansen, E; Frank, A

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with...

  9. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  10. Characterizing the nature of the dusty plasma in the pulsed discharge nozzle (PDN) environment of NASA-Ames' interstellar simulation chamber through laboratory simulations and experimental data. Astrophysical implications

    Science.gov (United States)

    Remy, Jérôme; Biennier, Ludovic; Salama, Farid

    Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the discrete spectral features seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the distribution is thought to be responsible for the continuum emission plateau seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. Although dust with all its components plays an important role in the evolution of interstellar chemistry, little is know on its formation and destruction processes. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (i.e., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Laboratory studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold - 100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment). These studies use a pulsed discharge nozzle (PDN) source coupled to a cavity ringdown spectrometer (CRDS) for high sensitivity detection. We will describe the approach that was followed in order to provide a representation of the nature of the plasma generated in the experiments. (J. Remy, L. Biennier and F. Salama, Plasma Sources Science and Technology, submitted). We will also discuss the results derived from the experimental and theoretical study of the electron density and temperature of the dusty plasma providing an insight into the nature of the dusty plasma processes. This information is used to derive information on the nature (size) of interstellar dust particles and IS dust growth and destruction

  11. Study of nonlinear waves in astrophysical quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2015-10-01

    The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)

  12. Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Widmer, Fabien

    2016-07-19

    Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.

  13. Astrophysical Weibel instability in counter-streaming laser-produced plasmas

    Science.gov (United States)

    Fox, W.

    2014-10-01

    Astrophysical shock waves play diverse roles, including energizing cosmic rays in the blast waves of astrophysical explosions, and generating primordial magnetic fields during the formation of galaxies and clusters. These shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to provide the requisite interaction mechanism for shock formation in weakly-magnetized shocks by generating turbulent electric and magnetic fields in the shock front. This work presents the first laboratory identification of this Weibel instability between counterstreaming supersonic plasma flows and confirms its basic features, a significant step towards understanding these shocks. In the experiments, conducted on the OMEGA EP laser facility at the University of Rochester, a pair of plasmas plumes are generated by irradiating of a pair of opposing parallel plastic (CH) targets. The ion-ion interaction between the two plumes is collisionless, so as the plumes interpenetrate, supersonic, counterstreaming ion flow conditions are obtained. Electromagnetic fields formed in the interaction of the two plumes were probed with an ultrafast laser-driven proton beam, and we observed the growth of a highly striated, transverse instability with extended filaments parallel to the flows. The instability is identified as an ion-driven Weibel instability through agreement with analytic theory and fully kinetic particle-in-cell simulations of colliding ablation flows, which include a collision operator. The experimental proton-radiography results are compared with synthetic ray-tracing through 3-D simulations.

  14. New Discoveries in Cosmology and Fundamental Physics through Advances in Laboratory Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the C...

  15. Laboratory Astrophysics Studies with the COSmIC Facility: Interstellar and Planetary Applications.

    Science.gov (United States)

    Salama, Farid; Contreras, Cesar S.; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2015-08-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory astrophysics results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [3] and planetary atmospheres [4]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References:[1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Cesar Contreras and Farid Salama, The

  16. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    Science.gov (United States)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The

  17. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics

    Science.gov (United States)

    Casner, A.; Caillaud, T.; Darbon, S.; Duval, A.; Thfouin, I.; Jadaud, J. P.; LeBreton, J. P.; Reverdin, C.; Rosse, B.; Rosch, R.; Blanchot, N.; Villette, B.; Wrobel, R.; Miquel, J. L.

    2015-12-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and Laser Megajoule (LMJ) in the near future opens a new era in the field of High Energy Density Laboratory Astrophysics. The LMJ, keystone of the French Simulation Program, is under construction at CEA/CESTA and will deliver 1.5 MJ with 176 beamlines. The first physics experiments on LMJ will be performed at the end of 2014 with 2 quadruplets (8 beams). The operational capabilities (number of beams and plasma diagnostics) will increase gradually during the following years. We describe the current status of the LMJ facility and the first set of diagnostics to be used during the commissioning phase and the first experiments. The PETAL project (PETawatt Aquitaine Laser), part of the CEA opening policy, consists in the addition of one short-pulse (500 fs to 10 ps) ultra-high-power, high-energy beam (a few kJ compressed energy) to the LMJ facility. PETAL is focalized into the LMJ target chamber and could be used alone or in combination with LMJ beams. In the later case, PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. PETAL, which is devoted to the academic research, will also extend the LMJ diagnostic capabilities. Specific diagnostics adapted to PETAL capacities are being fabricated in order to characterize particles and radiation yields that can be created by PETAL. A first set of diagnostics will measure the particles (protons/ions/electrons) spectrum (0.1-200 MeV range) and will also provide point projection proton-radiography capability. LMJ/PETAL, like previously the LIL laser [X. Julien et al., Proc. SPIE 7916 (2011) 791610], will be open to the academic community. Laboratory astrophysics experiments have already been performed on the LIL facility, as for example radiative shock experiments and planetary interiors equation of state measurements.

  18. Thin current sheets caused by plasma flow gradients in space and astrophysical plasma

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2010-08-01

    Full Text Available Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation. We concentrate here on incompressible plasma flows and 2-D equilibria, which allow us to find analytic solutions of the stationary magnetohydrodynamics equations (SMHD. First we solve the magnetohydrostatic (MHS equations with the help of a Grad-Shafranov equation and then we transform these static equilibria into a stationary state with plasma flow. We are in particular interested to study SMHD-equilibria with strong plasma flow gradients perpendicular to separatrices. We find that induced thin current sheets occur naturally in such situations. The strength of the induced currents depend on the Alfvén Mach number and its gradient, and on the magnetic field.

  19. INTEGRAL: the INTERnational Gamma-Ray Astrophysical Laboratory

    Science.gov (United States)

    Ubertini, P.; INTEGRAL Team

    2000-10-01

    Integral is the next ESA high energy mission planned with contribution from RSA (Russia) and NASA (USA). The observatory will be placed in orbit in April 2002 with a Proton launcher and the astrophysical payload will comprise two mail instruments, IBIS and SPI, and two monitors covering the X-Ray (Jem-X) and optical (OMC) wavelenghts. The two main instrument will provide wide spectral response (20 keV to 10 MeV), fine Gamma-Ray imaging capability (angular resolution ~ 12 arcmin, new source location up to 30 arcsec) and high resolution spectroscopy (2 keV FWHM at ~ 1MeV) and high resolution timing ( ~ 100 ms). The INTEGRAL observatory will serve the scientific community at large providing a unique combination of high energy imaging and spectroscopy over the energy range form X to Gamma Rays, with optical monitoring.

  20. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  1. Laboratory tests of low density astrophysical nuclear equations of state.

    Science.gov (United States)

    Qin, L; Hagel, K; Wada, R; Natowitz, J B; Shlomo, S; Bonasera, A; Röpke, G; Typel, S; Chen, Z; Huang, M; Wang, J; Zheng, H; Kowalski, S; Barbui, M; Rodrigues, M R D; Schmidt, K; Fabris, D; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Rizzi, V; Viesti, G; Cinausero, M; Prete, G; Keutgen, T; El Masri, Y; Majka, Z; Ma, Y G

    2012-04-27

    Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

  2. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-02-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.

  3. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    Science.gov (United States)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  4. Laboratory study of methyl isocyanate ices under astrophysical conditions

    Science.gov (United States)

    Maté, B.; Molpeceres, G.; Timón, V.; Tanarro, I.; Escribano, R.; Guillemin, J. C.; Cernicharo, J.; Herrero, V. J.

    2017-10-01

    Methyl isocyanate has been recently detected in comet 67P/Churyumov-Gerasimenko (67P/CG) and in the interstellar medium. New physicochemical studies on this species are now necessary as tools for subsequent studies in astrophysics. In this work, infrared spectra of solid CH3NCO have been obtained at temperatures of relevance for astronomical environments. The spectra are dominated by a strong, characteristic multiplet feature at 2350-2250 cm-1, which can be attributed to the asymmetric stretching of the NCO group. A phase transition from amorphous to crystalline methyl isocyanate is observed at ˜90 K. The band strengths for the absorptions of CH3NCO in ice at 20 K have been measured. Deuterated methyl isocyanate is used to help with the spectral assignment. No X-ray structure has been reported for crystalline CH3NCO. Here we advance a tentative theoretical structure, based on density functional theory (DFT) calculations, derived taking the crystal of isocyanic acid as a starting point. A harmonic theoretical spectrum is then calculated for the proposed structure and compared with the experimental data. A mixed ice of H2O and CH3NCO was formed by simultaneous deposition of water and methyl isocyanate at 20 K. The absence of new spectral features indicates that methyl isocyanate and water do not react appreciably at 20 K, but form a stable mixture. The high CH3NCO/H2O ratio reported for comet 67P/CG, and the characteristic structure of the 2350-2250 cm-1 band, makes it a very good candidate for future astronomical searches.

  5. Magnetized laboratory plasma jets: Experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  6. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    Science.gov (United States)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  7. Astrophysical black holes as natural laboratories for fundamental physics and strong-field gravity

    CERN Document Server

    Berti, Emanuele

    2013-01-01

    Astrophysical tests of general relativity belong to two categories: 1) "internal", i.e. consistency tests within the theory (for example, tests that astrophysical black holes are indeed described by the Kerr solution and its perturbations), or 2) "external", i.e. tests of the many proposed extensions of the theory. I review some ways in which astrophysical black holes can be used as natural laboratories for both "internal" and "external" tests of general relativity. The examples provided here (ringdown tests of the black hole "no-hair" theorem, bosonic superradiant instabilities in rotating black holes and gravitational-wave tests of massive scalar-tensor theories) are shamelessly biased towards recent research by myself and my collaborators. Hopefully this colloquial introduction aimed mainly at astrophysicists will convince skeptics (if there are any) that space-based detectors will be crucial to study fundamental physics through gravitational-wave observations.

  8. Neutron Stars: Laboratories for Fundamental Physics Under Extreme Astrophysical Conditions

    Science.gov (United States)

    Bandyopadhyay, Debades

    2017-09-01

    We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory experiments. It is observed that equations of state involving strangeness degrees of freedom such as hyperons and Bose-Einstein condensates are compatible with 2{M}_{solar} neutron stars. The role of hyperons is explored on the evolution and stability of the protoneutron star in the context of SN1987A. Moment of inertia, mass and radius which are direct probes of neutron star interior are computed and their observational consequences are discussed. We continue our study on the dense matter under strong magnetic fields and its application to magnetoelastic oscillations of neutron stars.

  9. Laboratory Nuclear Astrophysics, viewing the universe from underground.

    Science.gov (United States)

    Ellsworth, John E.; Jones, Steven E.; Rees, Lawrence B.; Christensen, Clark G.

    2007-05-01

    Our sun emits 380 yottawatt, yet the nuclear reactant energies producing that power are very low (˜1 keV). Replication of such reactions in the laboratory produces rates that are nearly impossible to detect. Unlike the historical efforts to understand stellar processes by extrapolating down from higher energy beam experiments, we report efforts to study reactions using low energy reactants. To do so requires specialized equipment and environments. Research to study muon catalysis[1] began at BYU in 1982 in collaboration with INEL and LANL. This led to the 1986 BYU hypothesis that `metals can catalyze d-d fusion' and a theory for heat production in planets[2]. Experiments followed[3-5]. Since the mid 1990s a body of data for the screening potentials of metals has grown out of accelerator experiments[6-10]. [1]Nature 1986 321:p327. [2]J. Phys. G:12:213-221. [3]Nature 338:737-740. [4]SE Jones, Four Corners Fall Meeting, APS, (2004). [5]CMNS 2005, London:World Scientific, p509&p525. [6]Z. Phys. A351:107. [7]JETP Letters, 68:823. [8]Europhys. Lett. 54:449. [9]Eur. Phys. J, A19:283. [10]J. Phys. Soc. Japan, 73:608. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.E4.5

  10. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  11. Towards laboratory produced relativistic electron-positron pair plasmas

    Science.gov (United States)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10 16 cm -3 and 10 13 cm -3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 10 18 cm -3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  12. Towards laboratory produced relativistic electron–positron pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  13. Scaling of magneto-quantum-radiative hydrodynamic equations: from laser-produced plasmas to astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J. E.; Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Reville, B., E-mail: j.e.cross@physics.ox.ac.uk [Centre for Plasma Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2014-11-01

    We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

  14. Scaling of Magneto-quantum-radiative Hydrodynamic Equations: From Laser-produced Plasmas to Astrophysics

    Science.gov (United States)

    Cross, J. E.; Reville, B.; Gregori, G.

    2014-11-01

    We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

  15. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    Science.gov (United States)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  16. The 3D MHD code GOEMHD3 for large-Reynolds-number astrophysical plasmas

    CERN Document Server

    Skála, J; Büchner, J; Rampp, M

    2014-01-01

    The numerical simulation of turbulence and flows in almost ideal, large-Reynolds-number astrophysical plasmas motivates the implementation of almost conservative MHD computer codes. They should efficiently calculate, use highly parallelized schemes scaling well with large numbers of CPU cores, allows to obtain a high grid resolution over large simulation domains and which can easily be adapted to new computer architectures as well as to new initial and boundary conditions, allow modular extensions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal, large-Reynolds-number astrophysical plasma flows, well resolved and on huge grids covering large domains. Its abilities are validated by major tests of ideal and weakly dissipative plasma phenomena. The high resolution ($2048^3$ grid points) simulation of a large part of the solar corona above an observed active region proved the excellent parallel scalability of the code using more than 30.000 processor cores...

  17. Cathodoluminescence microscopy and spectroscopy of micro- and nanodiamonds: an implication for laboratory astrophysics.

    Science.gov (United States)

    Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul

    2012-12-01

    Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.

  18. Space and Astrophysical Plasmas : High energy universe – Satellite missions

    Indian Academy of Sciences (India)

    Vinod Krishan

    2000-11-01

    A variety of satellite missions to observe the high energy universe are currently operating and some more with more versatility and capability are on the anvil. In this paper, after giving a brief introduction to the constituents of the high energy universe and the related plasma physical problems, general as well as specific features of the current and future x-ray and gamma-ray satellite missions are described.

  19. Scaling of Magneto-Quantum-Radiative Hydrodynamic Equations: From Laser-produced Plasmas to Astrophysics

    CERN Document Server

    Cross, Joseph E

    2014-01-01

    The relevant equations of magneto-quantum-radiative hydrodynamics are introduced and then written in a dimensionless form in order to extract a set of dimensionless parameters that describe scale-dependent ratios of all the characteristic hydrodynamic variables. Under the conditions where such dimensionless number are all large, the equations reduce to the usual ideal magnetohydrodynamics and thus they are scale invariant. We discuss this property with regards to the similarity between astrophysical observations and laboratory experiments. These similarity properties have been successfully exploited in a variety of laboratory experiments where radiative processes can be neglected. On the other hand, when radiation is important, laboratory experiments are much more difficult to scale to the corresponding astrophysical objects. As an example, a recent experiment related to break out shocks in supernova explosions is discussed.

  20. Cold Fronts: Probes of Plasma Astrophysics in Galaxy Clusters

    CERN Document Server

    ZuHone, John

    2016-01-01

    The most massive baryonic component of galaxy clusters is the "intracluster medium" (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of "cold fronts". These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discov...

  1. Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.

    Science.gov (United States)

    Sincell, Mark William

    1994-01-01

    The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations

  2. Astrophysics of magnetically collimated jets generated from laser-produced plasmas

    CERN Document Server

    Ciardi, A; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2012-01-01

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magneto-hydrodynamic simulations. We show that for laser intensities I ~ 10^12 - 10^14 W/cm^2, a magnetic field in excess of ~ 0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which re-collimates the flow into a super magneto-sonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar torus-like envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds. (abridged version)

  3. Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma

    Indian Academy of Sciences (India)

    KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR

    2016-05-01

    We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.

  4. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  5. Through The Looking Glass: New Laboratory Spectra Of Glassy Silicates For The Comparison To Astrophysical Environments

    Science.gov (United States)

    Speck, Angela; Whittington, A.; Hofmeister, A.

    2011-05-01

    Many astrophysical environments exhibit a spectral feature at around 10 microns, which has long been attributed to amorphous silicates, but whose precise nature remains a mystery. Furthermore, the astronomically observed feature varies from location to location, and even within a given object both spatially and temporally. There have been many laboratory studies of potential cosmic dust analogs attempting to determine the exact nature of this dust, but most of those studies have failed to produce laboratory spectra that precisely match the observed astronomical spectra. We present new high-resolution spectra of a selection of silicate glasses whose compositions cover those expected to form in cosmic environments. These include synthetic endmember glasses of major mineral groups such as melilites (akermanite, gehlenite), pyroxenes (enstatite), olivines (forsterite) and silica; glasses produced by remelting natural mineral samples that contain iron and other elements; and a synthetic "cosmic” silicate glass with solar relative abundances of Mg, Si, Ca, Na and Al. Across the compositional range of 12 samples the 10 micron feature changes in peak position by more than a micron, as well as in shape. We discuss the effects of both compositional and structural factors on spectral features in these glassy silicates and we compare our new laboratory glass spectra with synthetic amorphous silicate spectra currently used in most models of dusty astrophysical environments. The synthetic spectra do not match either peak position or shape of any of our glass samples.

  6. Bodies in flowing plasmas - Laboratory studies

    Science.gov (United States)

    Stone, N. H.; Samir, U.

    1981-01-01

    A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.

  7. Laboratory Molecular Astrophysics as an Invaluable Tool in understanding Astronomical Observations.

    Science.gov (United States)

    Fraser, Helen Jane

    2015-08-01

    We are entering the decade of molecular astrochemistry: spectroscopic data pertaining to the interactions between baryonic matter and electromagnetic radiation are now at the forefront of astronomical observations. Elucidating such data is reliant on inputs from laboratory experiments, modeling, and theoretical chemistry / physics, a field that is intended to be a key focus for the proposed new commission in Laboratory Astrophysics.Here, we propose a “tour de force” review of some recent successes since the last GA in molecular astrophysics, particularly those that have been directly facilitated by laboratory data in Astrochemistry. It is vital to highlight to the astronomers that the absence of laboratory data from the literature would otherwise have precluded advances in our astronomical understanding, e.g:the detection of gas-phase water deep in pre-stellar cores,the detection of water and other molecular species in gravitationally lensed galaxies at z~6“Jumps” in the appearance or disappearance of molecules, including the very recent detection of the first branched organic molecule in the ISM, iso-propyl-cyanide,disentangling dense spectroscopic features in the sub-mm as measured by ALMA, Herschel and SOFIA, the so-called “weeds” and “flowers”,the first ''image'' of a CO snow-line in a protoplanetary disk.Looking forward, the advent of high spatial and spectral resolution telescopes, particularly ALMA, SKA E-ELT and JWST, will continue to drive forward the needs and interests of laboratory astrochemistry in the coming decade. We will look forward to five key areas where advances are expected, and both observational and laboratory techniques are evolving:-(a) understanding star forming regions at very high spatial and spectral senstivity and resolution(b) extragalactic astrochemistry(c) (exo-)planetary atmospheres, surfaces and Solar System sample return - linkinginterstellar and planetary chemistry(d) astrobiology - linking simple molecular

  8. Inertial-Range Kinetic Turbulence in Pressure-Anisotropic Astrophysical Plasmas

    CERN Document Server

    Kunz, M W; Chen, C H K; Abel, I G; Cowley, S C

    2015-01-01

    A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the...

  9. Astrophysical aspects of neutrino dynamics in ultra-degenerate quark gluon plasma

    CERN Document Server

    Adhya, Souvik Priyam

    2016-01-01

    The cardinal focus of the present review is to explore the role of neutrinos originating from the ultra-dense core of neutron stars composed of quark gluon plasma in the astrophysical scenario. The collective excitations of the quarks involving the neutrinos through the different kinematical processes have been studied. The cooling of the neutron stars as well as pulsar kicks due to asymmetric neutrino emission have been discussed in detail. Results involving calculation of relevant physical quantities like neutrino mean free path and emissivity have been presented in the framework of non-Fermi liquid behavior as applicable to ultra-degenerate plasma.

  10. The proceedings of the 1st international workshop on laboratory astrophysics experiments with large lasers

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Goldstein, W.H. [eds.

    1996-08-09

    The world has stood witness to the development of a number of highly sophisticated and flexible, high power laser facilities (energies up to 50 kJ and powers up to 50 TW), driven largely by the world-wide effort in inertial confinement fusion (ICF). The charter of diagnosing implosions with detailed, quantitative measurements has driven the ICF laser facilities to be exceedingly versatile and well equipped with diagnostics. Interestingly, there is considerable overlap in the physics of ICF and astrophysics. Both typically involve compressible radiative hydrodynamics, radiation transport, complex opacities, and equations of state of dense matter. Surprisingly, however, there has been little communication between these two communities to date. With the recent declassification of ICF in the USA, and the approval to commence with construction of the next generation ``superlasers``, the 2 MJ National Ignition Facility in the US, and its equivalent, the LMJ laser in France, the situation is ripe for change. . Given the physics similarities that exist between ICF and astrophysics, one strongly suspects that there should exist regions of overlap where supporting research on the large lasers could be beneficial to the astrophysics community. As a catalyst for discussions to this end, Lawrence Livermore National Laboratory sponsored this workshop. Approximately 100 scientists attended from around the world, representing eight countries: the USA, Canada, UK, France, Germany, Russia, Japan, and Israel. A total of 30 technical papers were presented. The two day workshop was divided into four sessions, focusing on nonlinear hydrodynamics, radiative hydrodynamics, radiation transport, and atomic physics-opacities. Copies of the presentations are contained in these proceedings.

  11. Thermonuclear breakup reactions of light nuclei. I - Processes and effects. [in astrophysic plasmas

    Science.gov (United States)

    Guessoum, Nidhal; Gould, Robert J.

    1989-01-01

    Temperature and density conditions are considered for the occurrence of breakup reactions of light nuclei in astrophysical plasmas. The proton-induced endothermic process is shown to be the principal mechanism for nuclear breakdown in a plasma. The phenomenon occurs at a temperature of about 1 MeV, which is a fraction of the typical binding energy per nucleon in nuclei. The temperature for breakup of He-4 is about twice as large, because of the higher binding energy. Depending on the temperature attained in the plasma, the initial concentration of elements heavier than hydrogen can be depleted. However, if it attains a temperature of about 1 MeV, breaking up the metals (C, N, O, Ne, Mg) but not He-4, an increase in the He-4 abundance by as much as 10 percent can result, since these elements essentially break down to alpha particles.

  12. Laboratory oscillator strengths of Sc I in the near-infrared region for astrophysical applications

    CERN Document Server

    Pehlivan, A; Hartman, H

    2015-01-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims. This paper investigates the spectrum of neutral scandium, Sc i, from laboratory measurements and improves the atomic data of Sc i lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc i lines connecting the levels with 4p and 4s configurations. Methods. We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f - values). Intensity-calibrated spectra with high spectral resolution were recorded with Fouri...

  13. IR Laboratory Astrophysics at Forty: Some Highlights and a Look to the Future

    Science.gov (United States)

    Allamandola, Louis John

    2016-06-01

    Space was thought to be chemically barren until about forty years ago. Astrochemistry was in its infancy, the composition of interstellar dust was largely guessed at, the presence of mixed molecular ices in dense molecular clouds was not taken seriously, and the notion of large, gas phase, carbon-rich molecules (PAHs) abundant and widespread throughout the interstellar medium (ISM) was inconceivable. The rapid development of infrared astronomy between 1970 and 1985, especially observations made by the Kuiper Airborne Observatory (KAO) and the Infrared Astronomical Satellite IRAS), which made it possible to measure mid-infrared spectra between 2.5 to 14 µm, changed all that. Since then observations made from ground-based, airborne and orbiting IR telescopes, together with radio and submm observations, have revealed that we live in a Universe that is not a hydrogen-dominated, physicist's paradise, but in a molecular Universe with complex molecules directly interwoven into its fabric. Today we recognize that molecules are an abundant and important component of astronomical objects at all stages of their evolution and that they play important roles in many processes that contribute to the structure and evolution of galaxies. Furthermore, many of these organic molecules are thought to be delivered to habitable planets such as Earth, and their composition may be related to the origin of life. Laboratory astrophysics has been key to making this great progress; progress which has only been made possible thanks to the close collaboration of laboratory experimentalists with astronomers and theoreticians. These collaborations are essential to meet the growing interdisciplinary challenges posed by astrophysics. This talk will touch on some of the milestones that have been reached in IR astrospectroscopy over the past four decades, focusing on the experimental work that revealed the widespread presence of interstellar PAHs and the composition of interstellar/precometary ices

  14. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  15. A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas.

    Science.gov (United States)

    Rosenberg, M J; Li, C K; Fox, W; Igumenshchev, I; Séguin, F H; Town, R P J; Frenje, J A; Stoeckl, C; Glebov, V; Petrasso, R D

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely directed field lines collide. In most natural circumstances, the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. In addition, the regime of strongly driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed the experiments to probe reconnection in asymmetric, strongly driven, laser-generated plasmas. Here we show that, in this strongly driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. In addition, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  16. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  17. Generation of neutral and high-density electron–positron pair plasmas in the laboratory

    Science.gov (United States)

    Sarri, G.; Poder, K.; Cole, J. M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Dzelzainis, T.; Doria, D.; Gizzi, L. A.; Grittani, G.; Kar, S.; Keitel, C. H.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Shukla, N.; Silva, L. O.; Symes, D.; Thomas, A. G. R.; Vargas, M.; Vieira, J.; Zepf, M.

    2015-01-01

    Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. PMID:25903920

  18. Self-Consistent Fokker-Planck Treatment Of Particle Distributions in Astrophysical Plasmas

    CERN Document Server

    Nayakshin, S; Nayakshin, Sergei; Melia, Fulvio

    1997-01-01

    High-energy, multi-component plasmas in which pair creation and annihilation, lepton-lepton scattering, lepton-proton scattering, and Comptonization all contribute to establishing the particle and photon distributions, are present in a broad range of compact astrophysical objects. Earlier work has included much of the microphysics needed to account for electron-photon and electron-proton interactions, but little has been done to handle the redistribution of the particles as a result of their Coulomb interaction with themselves in an arbitrary case. Our goal here is to use a Fokker-Planck approach in order to develop a fully self-consistent theory for the interaction of arbitrarily distributed particles and radiation to arrive at an accurate representation of the high-energy plasma in these sources. We conduct several tests representative of two dominant segments of parameter space and discuss physical implications of the non-Maxwellian distribution function. Approximate analytical forms for the electron distr...

  19. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Science.gov (United States)

    Klimachkov, D. A.; Petrosyan, A. S.

    2017-01-01

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  20. Convoluted ν-Signals on 114Cd Isotope from Astrophysical and Laboratory Neutrino Sources

    Directory of Open Access Journals (Sweden)

    Vaitsa Tsakstara

    2015-01-01

    Full Text Available At first, we evaluate scattering cross sections of low, and intermediate-energy neutrinos scattered off the 114 Cd isotope, the most abundant Cd isotope present also in the COBRA detector (CdTe and CdZnTe materials which aims to search for double beta decay events and neutrino observations at Gran Sasso laboratory (LNGS. The coherent ν-nucleus channel addressed here is the dominant reaction channel of the neutral current ν-nucleus scattering. Our ν-nucleus cross sections (calculated with a refinement of the quasiparticle random-phase approximation, QRPA refer to the gs→gs transitions for ν-energies εν≤100 MeV. Subsequently, simulated ν-signals on 114 Cd isotope are derived. Towards this purpose, the required folded cross section comes out of simulation techniques by employing several low, and intermediate-energy neutrino distributions of the astrophysical ν-sources, like the solar, supernova, and Earth neutrinos, as well as the laboratory neutrinos, the reactor neutrinos, the pion-muon stopped neutrinos, and the β-beam neutrinos.

  1. The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    Science.gov (United States)

    Glover Tim W.; Squire, Jared P.; Longmier, Benjamin; Cassady, Leonard; Ilin, Andrew; Carter, Mark; Olsen, Chris S.; McCaskill, Greg; Diaz, Franklin Chang; Girimaji, Sharath; hide

    2010-01-01

    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators.

  2. He-like ions as practical astrophysical plasma diagnostics: From stellar coronae to active galactic nuclei

    CERN Document Server

    Porquet, Delphine; Grosso, Nicolas; 10.1007/s11214-010-9731-2

    2011-01-01

    We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from CV to Si XIII) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like ...

  3. Infrared complex refractive index of astrophysical ices exposed to cosmic rays simulated in the laboratory

    CERN Document Server

    Rocha, W R M; de Barros, A L F; Andrade, D P P; Rothard, H; Boduch, P

    2016-01-01

    In dense and cold regions of the interstellar medium (ISM), molecules may be adsorbed onto dust grains to form the ice mantles. Once formed, they can be processed by ionizing radiation coming from stellar or interstellar medium leading to formation of several new molecules in the ice. Among the different kind of ionizing radiation, cosmic rays play an important role in the solid-phase chemistry because of the large amount of energy deposited in the ices. The physicochemical changes induced by the energetic processing of astrophysical ices are recorded in a intrinsic parameter of the matter called complex refractive index (CRI). In this paper, we present for the first time a catalogue containing 39 complex refractive indices (n, k) in the infrared from 2.0 - 16.6 micrometer for 13 different water-containing ices processed in laboratory by cosmic ray analogs. The calculation was done by using the NKABS (acronym of determination of N and K from ABSorbance data) code, which employs the Lambert-Beer and Kramers-Kr...

  4. Research Progress of Nuclear Astrophysics Physics:Progress of Jinping Underground Laboratory for Nuclear Astrophysics Experiment JUNA

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei-ping; LI; Zhi-hong; HE; Jian-jun; TANG; Xiao-dong; LIAN; Gang; GUO; Bing; AN; Zhu; CHEN; Qing-hao; CHEN; Xiong-jun; CHEN; Yang-ping; CHEN; Zhi-jun; CUI; Bao-qun; DU; Xian-chao; FU; Chang-bo; GAN; Lin; HAN; Zhi-yu; HE; Guo-zhu; A.Heger; HOU; Su-qing; HUANG; Han-xiong; HUANG; Ning; JIA; Bao-lu; JIANG; Li-yang; S.Kubono; LI; Jian-min; LI; Kuo-ang; LI; Tao; LI; Xin-yue; LI; Yun-ju; M.Lugaro; LUO; Xiao-bing; MA; Shao-bo; MEI; Dong-ming; QIAN; Yong-zhong; QIN; Jiu-chang; REN; Jie; SU; Jun; SUN; Liang-ting; TAN; Wan-peng; I.Tanihata; WANG; Peng; WANG; You-bao; WU; Qi; XU; Shi-wei; YAN; Sheng-quan; YANG; Li-tao; YU; Xiang-qing; YUE; Qian; ZENG; Sheng; ZHANG; Huan-yu; ZHANG; Hui; ZHANG; Li-yong; ZHANG; Ning-tao; ZHANG; Qi-wei; ZHANG; Tao; ZHANG; Xiao-peng; ZHANG; Xue-zhen; ZHANG; Zi-min; ZHAO; Wei; ZHAO; Zhuo; ZHOU; Chao; ZHOU; Yong

    2015-01-01

    1 Progress of this program This program is supported by the China Jinping Underground Laboratory(CJPL)and the direct measurement of stellar key reactions of(α,γ),(α,n),(p,γ)and(p,α)will be precisely carried out at the merit of current project by utilizing high stability and intensity accelerator,high efficiency detector and the shielding of extremely low background.Four

  5. General relativistic radiative transfer in hot astrophysical plasmas a characteristic approach

    CERN Document Server

    Zane, S; Nobili, L; Erna, M; Zane, Silvia; Turolla, Roberto; Nobili, Luciano; Erna, Myris

    1996-01-01

    In this paper we present a characteristic method for solving the transfer equation in differentially moving media in a curved spacetime. The method is completely general, but its capabilities are exploited at best in presence of symmetries, when the existence of conserved quantities allows to derive analytical expressions for the photon trajectories in phase space. In spherically--symmetric, stationary configurations the solution of the transfer problem is reduced to the integration of a single ordinary differential equation along the bi--parametric family of characteristic rays. Accurate expressions for the radiative processes relevant to continuum transfer in a hot astrophysical plasma have been used in evaluating the source term, including relativistic e--p, e--e bremsstrahlung and Compton scattering. A numerical code for the solution of the transfer problem in moving media in a Schwarzschild spacetime has been developed and tested. Some applications, concerning ``hot'' and ``cold'' accretion onto non--rot...

  6. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    CERN Document Server

    Gu, Liyi; Raassen, A J J

    2016-01-01

    Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...

  7. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  8. Magnetoacoustic solitons and shocks in dense astrophysical plasmas with relativistic degenerate electrons

    Science.gov (United States)

    Irfan, M.; Ali, S.; Mirza, Arshad M.

    2016-02-01

    Two-fluid quantum magnetohydrodynamic (QMHD) equations are employed to investigate linear and nonlinear properties of the magnetosonic waves in a semi-relativistic dense plasma accounting for degenerate relativistic electrons. In the linear analysis, a plane wave solution is used to derive the dispersion relation of magnetosonic waves, which is significantly modified due to relativistic degenerate electrons. However, for a nonlinear investigation of solitary and shock waves, we employ the reductive perturbation technique for the derivation of Korteweg-de Vries (KdV) and Korteweg-de Vries Burger (KdVB) equations, admitting nonlinear wave solutions. Numerically, it is shown that the wave frequency decreases to attain a lowest possible value at a certain critical number density Nc(0), and then increases beyond Nc(0) as the plasma number density increases. Moreover, the relativistic electrons and associated pressure degeneracy lead to a reduction in the spatial extents of the magnetosonic waves and a strengthening of the shock amplitude. The results might be important for understanding the linear and nonlinear magnetosonic excitations in dense astrophysical plasmas, such as in white dwarfs, magnetars and neutron stars, etc., where relativistic degenerate electrons are present.

  9. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    Science.gov (United States)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  10. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  11. Infrared complex refractive index of astrophysical ices exposed to cosmic rays simulated in the laboratory

    Science.gov (United States)

    Rocha, W. R. M.; Pilling, S.; de Barros, A. L. F.; Andrade, D. P. P.; Rothard, H.; Boduch, P.

    2017-01-01

    In the dense and cold regions of the interstellar medium, molecules can be adsorbed on to dust grains to form ice mantles. Once formed, these can be processed by ionizing radiation coming from the stellar or interstellar medium, leading to the formation of several new molecules in the ice. Among the different types of ionizing radiation, cosmic rays play an important role in solid-phase chemistry because of the large amount of energy deposited in the ices. The physicochemical changes induced by the energetic processing of astrophysical ices are recorded in a intrinsic parameter of the matter called the complex refractive index. In this paper, for the first time, we present a catalogue containing 39 complex refractive indices (n, k) in the infrared from 5000 to 600 cm-1 (2.0-16.6 μm) for 13 different water-containing ices processed in the laboratory by cosmic ray analogues. The calculation was performed using the NKABS - an acronym of the determination of N and K from absorbance data - code,which employs the Lambert-Beer and Kramers-Kronig equations to calculate the values of n and k. The results are also available at the following web site: http://www1.univap.br/gaa/nkabs-database/data.htm. As a test case, H2O:NH3:CO2:CH4 ice was employed in a radiative transfer simulation of a protoplanetary disc to show that these data are indispensable to reproduce the spectrum of ices containing young stellar objects.

  12. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    Science.gov (United States)

    Casner, A.; Martinez, D.; Smalyuk, V.; Masse, L.; Kane, J. O.; Villette, B.; Fariaut, J.; Oudot, G.; Liberatore, S.; Mancini, R. C.; Remington, B. A.; Heeter, R. F.

    2015-12-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. We report on the first results acquired on NIF with the ablative Rayleigh-Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored to accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6-10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.

  13. Space as an open plasma laboratory

    Science.gov (United States)

    Papadopoulos, Konstantinos

    2011-10-01

    Ionospheric heaters supplemented by ground and space based diagnostic instruments have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The recently completed HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), far exceeds the capabilities of previous ionospheric heaters and allows for new frontier research in plasma physics, geophysics and radio science. The transmitter radiates 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. The beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between.36-4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform in linear and circular polarization. We present a number of HAARP experiments that used space as an open plasma laboratory. The experiments cover the areas of (i) Artificial ULF/ELF/VLF generation and injection in the magnetosphere (ii) Studies of wave-particle interactions in the magnetosphere (iii) Langmuir turbulence, parametric instabilities, electron acceleration and optical emissions (iv) Artificial ionization. Ionospheric heaters supplemented by ground and space based diagnostic instruments have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The recently completed HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), far exceeds the capabilities of previous ionospheric heaters and allows for new frontier research in plasma physics, geophysics and radio science. The transmitter radiates 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. The beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP

  14. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    Science.gov (United States)

    Koepke, Mark

    2008-07-01

    special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in

  15. Model-independent determination of the astrophysical S-factor in laser-induced fusion plasmas

    CERN Document Server

    Lattuada, D; Bonasera, A; Bang, W; Quevedo, H J; Warren, M; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2016-01-01

    In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions ...

  16. Time-Dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-Dependent Escape

    CERN Document Server

    Becker, P A; Le, T

    2006-01-01

    Stochastic acceleration of charged particles due to interactions with magnetohydrodynamic (MHD) plasma waves is the dominant process leading to the formation of the high-energy electron and ion distributions in a variety of astrophysical systems. Collisions with the waves influence both the energization and the spatial transport of the particles, and therefore it is important to treat these two aspects of the problem in a self-consistent manner. We solve the representative Fokker-Planck equation to obtain a new, closed-form solution for the time-dependent Green's function describing the acceleration and escape of relativistic ions interacting with Alfven or fast-mode waves characterized by momentum diffusion coefficient $D(p)\\propto p^q$ and mean particle escape timescale $t_esc(p) \\propto p^{q-2}$, where $p$ is the particle momentum and $q$ is the power-law index of the MHD wave spectrum. In particular, we obtain solutions for the momentum distribution of the ions in the plasma and also for the momentum dist...

  17. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    Science.gov (United States)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  18. Laboratory Simulation of Frozen Methanol Under X-ray Radiation Field: Relevancies to Astrophysical Ices

    Science.gov (United States)

    Andrade, Diana; Rocco, Maria Luiza M.; Boechat-Roberty, Heloisa Maria

    The origin of complex organic molecules detected in comets, meteorites, star-forming regions and other environments are currently subject of discussion. Depending on the environment, it is dominated by X-rays, UV photons as well as by charged particles, electrons and ions with high or low energies. Every particle will promote a different fragmentation in the molecule and different phenomena in the ice, favoring the formation of an ion species rather than another. To predict the chemical evolution and to quantify the complex organics incorporated into grains or desorbed to the gas phase, it is necessary to establish the main formation route, which can be tested in the laboratories. In this way, the study of the effects of different ionization agents on the ices becomes crucial. Methanol (CH3 OH), the simplest organic alcohol, is an important precursor of more complex prebiotic species and is found abundantly in icy mantles on interstellar and protostellar dust grains. This molecule has been detected through infrared spectroscopy in some astrophysics environments as W33A and RAFGL 7009. Additionally, methanol has been found in comets, as Hale-Bopp, and other solar system bodies, such as the centaur 5145 Pholus. All of these astronomical environments are subjected to some form of ionizing agents such as cosmic rays, electrons and photons (e.g. stellar radiation field). In this work, synchrotron radiation from the Brazilian Synchrotron Light Laboratory at the O 1s-edge was employed to perform desorption experiments on the frozen methanol. The desorp-tion rates (desorbed ion per incident photon) of the most intense ions desorbed from methanol due soft X-ray bombardment are estimated. The desorption rates are critical parameters for modeling the chemistry of interstellar clouds. Moreover, a comparison among our results and literature using different ionization agents and different phases (photons at 292 eV and elec-trons at 70 eV in gaseous phase and heavy ions around 65

  19. Relativistic Shear Flow between Electron–Ion and Electron–Positron Plasmas and Astrophysical Applications

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Böttcher, Markus

    2017-10-01

    We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.

  20. Laboratory experiments investigating magnetic field production via the Weibel instability in interpenetrating plasma flows

    Science.gov (United States)

    Huntington, Channing; Fiuza, Frederico; Ross, James Steven; Zylstra, Alex; Pollock, Brad; Drake, R. Paul; Froula, Dustin; Gregori, Gianluca; Kugland, Nathan; Kuranz, Carolyn; Levy, Matthew; Li, Chikang; Meinecke, Jena; Petrasso, Richard; Remington, Bruce; Ryutov, Dmitri; Sakawa, Youichi; Spitkovsky, Anatoly; Takabe, Hideke; Turnbull, David; Park, Hye-Sook

    2015-08-01

    Astrophysical collisionless shocks are often associated with the presence of strong magnetic fields in a plasma flow. The magnetic fields required for shock formation may either be initially present, for example in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the intense magnetic fields are greater than those seeded by the GRB progenitor or produced by misaligned density and temperature gradients in the plasma flow (the Biermann-battery effect). The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Imaging Charged Dust in Laboratory Plasmas

    Science.gov (United States)

    Goree, John

    2010-05-01

    Laboratory experiments with dust grains are described in this talk, which will include numerous images and videos from the experiments. In all the experiments, grains are immersed in plasma, and they are electrically charged. In the first experiment, grains are synthesized under conditions that simulate the outflow of carbon stars. These grains are grown in the gas phase with a carbon vapor. They grow by homogeneous nucleation, accretion, and coagulation. After growth, they are collected and imaged by scanning electron microscopy. These images reveal the grain morphology. In the second experiment, the structure and dynamics of the liquid or solid-phase centers of a star is simulated in the laboratory using charged grains (precision micron-size spheres) as proxies for protons. These grains are imaged by video microscopy, revealing how they self-organize, arranging themselves spatially in a crystalline-like lattice due to mutual Coulomb repulsion. Video microscopy allows tracking the motion of the microspheres and calculating their velocities. This measurement allows the experimenter to detect waves corresponding to random thermal motion, and from the properties of these waves one can measure the grain's charge. In the third experiment, sound waves in a cloud of charged dust are observed using high-speed video cameras. The compression and rarefaction of the dust-grain number density are easily observed in the video. Work supported by NSF and NASA.

  2. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Science.gov (United States)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  3. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  4. Experimental plasma astrophysics using a T{sup 3} (Table-top Terawatt) laser

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, T.

    1996-11-01

    Lasers that can deliver immense power of Terawatt (10{sup 12}W) and can still compactly sit on a Table-Top (T{sup 3} lasers) emerged in the 1990s. The advent of these lasers allows us to access to regimes of astronomical physical conditions that once thought impossible to realize in a terrestrial laboratory. We touch on examples that include superhigh pressure materials that may resemble the interior of giant planets and white dwarfs and of relativistic temperature plasmas that may exist in the early cosmological epoch and in the neighborhood of the blackhole event horizon.

  5. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  6. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  7. Universal main magnetic focus ion source: A new tool for laboratory research of astrophysics and Tokamak microplasma

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-01-01

    A novel room-temperature ion source for the production of atomic ions in electron beam within wide ranges of electron energy and current density is developed. The device can operate both as conventional Electron Beam Ion Source/Trap (EBIS/T) and novel Main Magnetic Focus Ion Source. The ion source is suitable for generation of the low-, medium- and high-density microplasma in steady state, which can be employed for investigation of a wide range of physical problems in ordinary university laboratory, in particular, for microplasma simulations relevant to astrophysics and ITER reactor. For the electron beam characterized by the incident energy Ee = 10 keV, the current density je ∼ 20 kA/cm2 and the number density ne ∼ 2 × 1013 cm‑3 were achieved experimentally. For Ee ∼ 60 keV, the value of electron number density ne ∼ 1014 cm‑3 is feasible. The efficiency of the novel ion source for laboratory astrophysics significantly exceeds that of other existing warm and superconducting EBITs.

  8. Universal main magnetic focus ion source: A new tool for laboratory research of astrophysics and Tokamak microplasma

    CERN Document Server

    Ovsyannikov, V P; Levin, A A

    2016-01-01

    A novel room-temperature ion source for the production of atomic ions in electron beam within wide ranges of electron energy and current density is developed. The device can operate both as conventional Electron Beam Ion Source/Trap (EBIS/T) and novel Main Magnetic Focus Ion Source. The ion source is suitable for generation of the low-, medium- and high-density microplasma in steady state, which can be employed for investigation of a wide range of physical problems in ordinary university laboratory, in particular, for microplasma simulations relevant to astrophysics and ITER reactor. For the electron beam characterized by the incident energy $E_e = 10$ keV, the current density $j_e \\sim 20$ kA/cm$^2$ and the number density $n_e \\sim 2 \\times 10^{13}$ cm$^{-3}$ were achieved experimentally. For $E_e \\sim 60$ keV, the value of electron number density $n_e \\sim 10^{14}$ cm$^{-3}$ is feasible. The efficiency of the novel ion source for laboratory astrophysics significantly exceeds that of other existing warm and ...

  9. On forms of the Coulomb approximation as a useful source of atomic data for the spectroscopy of astrophysical and fusion plasmas

    Science.gov (United States)

    Hey, J. D.

    2017-03-01

    The Coulomb approximation (CA) has long been regarded as a useful tool for rapid estimates of line strengths, absorption oscillator strengths, and spontaneous transition probabilities of the lighter multi-electron atoms and ions, in situations where large quantities of atomic data are required for the analysis of spectroscopic measurements from a variety of plasma sources, in particular interesting stellar objects (e.g. white dwarf stars) and magnetically confined fusion plasmas. This applies especially in cases where the plasma is spatially inhomogeneous, and produces several ionisation stages of the same impurity element, emitting copious radiation in bound–bound transitions from cascade processes following charge-exchange recombination. While more advanced theoretical methods are routinely used by the specialist, the CA provides a very convenient method of checking atomic data chosen by the experimentalist from extensive compilations through the internet, or by the use of machine codes provided by others. The origins, advantages and shortcomings of the method are described and discussed, as well as convenient modifications thereof, which may readily be implemented for these purposes. Particular attention is paid to the choice of electron coupling of states in which the optical electron has a large orbital angular momentum ({\\ell }≥slant 3). The text is illustrated by numerous examples of application to spectra of practical interest from astrophysical and laboratory plasmas.

  10. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  11. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    Science.gov (United States)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  12. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Bruxelles (Belgium); Takahashi, K. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  13. Nuclear astrophysics

    Science.gov (United States)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  14. PIC Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    CERN Document Server

    Riquelme, Mario; Verscharen, Daniel

    2014-01-01

    We use particle-in-cell (PIC) simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with the perpendicular pressure larger than the parallel pressure, and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular p...

  15. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2013-10-01

    sensitive surfaces. In this paper, the consumed power for plasma generation (plasma power) has been estimated from voltage-current waveform analysis in... consumed power for plasma generation is calculated by integrating the product of the discharge voltage and current over one cycle; according to the...Faculty Symposium: Course Design for the Millennial Student, Texas A&M University – Corpus Christi, 2011. (Showcased by the Center for Faculty

  16. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    research associates. The PI and the research team have published over 10 journal articles and over 50 conference proceedings and over 50 symposiums...reflections. Optical interference filters with center wavelength at 5322 or 632.82 nm are used in front of the ICCD to suppress the plasma self- luminescence ...wavelength at 532 ± 2 nm was used in front of the ICCD to suppress the plasma jet self- luminescence . The shadow of the laser induced plasma falls onto

  17. Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    Science.gov (United States)

    Rinehart, Stephen A.

    2010-01-01

    Over forty years ago, observations in the new field of infrared astronomy showed a broad spectral feature at 10 microns; the feature was quickly associated with the presence of silicate-rich dust. Since that time, improvements in infrared astronomy have led to the discovery of a plethora of additional spectral features attributable to dust. By combining these observations with spectroscopic data acquired in the laboratory, astronomers have a diagnostic tool that can be used to explore underlying astronomical phenomena. As the laboratory data improves, so does our ability to interpret the astronomical observations. Here, we discuss some recent progress in laboratory spectroscopy and attempt to identify future research directions.

  18. Statistical gamma-ray emission of gold and its astrophysical implications

    Directory of Open Access Journals (Sweden)

    Giacoppo F.

    2014-03-01

    Full Text Available The properties of the excited states of gold isotopes were investigated at the Oslo Cyclotron Laboratory. This study is important for the understanding of neutron capture rates in astrophysical plasmas relevant for heavy element nucleosynthesys.

  19. Measurements of transition probabilities for spin-changing lines of atomic ions used in diagnostics of astrophysical plasmas

    Science.gov (United States)

    Smith, P. L.; Johnson, B. C.; Kwong, H. S.; Parkinson, W. H.; Knight, R. D.

    1984-01-01

    The intensities of ultraviolet, spin-changing, 'intersystem' lines of low-Z atomic ions are frequently used in determinations of electron densities and temperatures in astrophysical plasmas as well as in measurements of element abundances in the interstellar gas. The transition probabilities (A-values) of these lines, which are about five orders of magnitude weaker than allowed lines, have not been measured heretofore and various calculations produce A-values for these lines that differ by as much as 50 percent A radio-frequency ion trap has been used for the first measurements of transition probabilities for intersystem lines seen in astronomical spectra. The measurement procedure is discussed and results for Si III, O III, N II, and C III are reviewed and compared to calculated values. Discrepancies exist; these indicate that some of the calculated A-values may be less reliable than has been beleived and that revisions to the electron densities determined for some astrophysical plasmas may be required.

  20. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2014-10-01

    Gadri, J. R. Roth , T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, Z. Y. Chen, and U. P. S...Edinburgh, Scotland : 39th IEEE International Conference on Plasma Science (ICOPS), 2012). 20. Magesh Thiyagarajan, Xavier Gonzales$, Heather...Anderson# and Megan Norfolk. Non-thermal Plasma Induction of Pre-Programmed Cell Death in Monocytic Leukemia Cells. (Edinburgh, Scotland : 39th IEEE

  1. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  2. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  3. LABORATORY CHARACTERIZATION AND ASTROPHYSICAL DETECTION OF VIBRATIONALLY EXCITED STATES OF ETHYL CYANIDE

    Energy Technology Data Exchange (ETDEWEB)

    Daly, A. M.; Bermudez, C.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Area de Quimica-Fisica, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada del CSIC, Universidad de Valladolid, E-47005 Valladolid (Spain); Lopez, A.; Tercero, B.; Cernicharo, J. [Department of Astrophysics, CAB, INTA-CSIC, Crta Torrejon, E-28850 Torrejon de Ardoz, Madrid (Spain); Pearson, J. C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Padadena, CA 91109 (United States); Marcelino, N., E-mail: adammichael.daly@uva.es, E-mail: cbermu@qf.uva.es, E-mail: jlalonso@qf.uva.es, E-mail: lopezja@cab.inta-csic.es, E-mail: terceromb@cab.inta-csic.es, E-mail: jcernicharo@cab.inta-csic.es, E-mail: John.C.Pearson@jpl.nasa.gov, E-mail: nmarceli@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2013-05-01

    Ethyl cyanide, CH{sub 3}CH{sub 2}CN, is an important interstellar molecule with a very dense rotational-vibrational spectrum. On the basis of new laboratory data in the range of 17-605 GHz and ab initio calculations, two new vibrational states, {nu}{sub 12} and {nu}{sub 20}, have been detected in molecular clouds of Orion. Laboratory data consist of Stark spectroscopy (17-110 GHz) and frequency-modulated spectrometers (GEM laboratory in Valladolid: 17-170, 270-360 GHz; Toyama: 26-200 GHz; Emory: 200-240 GHz; Ohio State: 258-368 GHz; and JPL: 270-318, 395-605 GHz). More than 700 distinct lines of each species were measured in J up to 71 and in K{sub a} up to 25. The states were fitted with Watson's S-reduction Hamiltonian. The two new states have been identified in the interstellar medium toward the Orion Nebula (Orion KL). The ground state, the isotopologues of CH{sub 3}CH{sub 2}CN, and the vibrationally excited states have been fitted to obtain column densities and to derive vibrational temperatures. All together, ethyl cyanide is responsible for more than 2000 lines in the observed frequency range of 80-280 GHz.

  4. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Nie, Y. [Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany); Mete, O.; Hanahoe, K. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Dover, M.; Wigram, M.; Wright, J.; Zhang, J. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Smith, J. [Tech-X UK Corporation, Daresbury Innovation Centre, Warrington (United Kingdom); Pacey, T.; Li, Y. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Wei, Y.; Welsch, C. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); University of Liverpool, Liverpool (United Kingdom)

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10–50 cm long plasma cell.

  5. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2012-10-01

    34Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review," Biomacromolecules, vol. 10, pp. 2351...high aspect ratio for biomedical applications with complex 3D surface geometries, capillaries and microstructure dental cavities.15-18 Atmospheric

  6. Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina; B T Tsurutani; J K Arballo; C Galvan

    2000-11-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufficient precipitated energy flux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.

  7. Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos

    CERN Document Server

    Machado, P A N; Nunokawa, H; Funchal, R Zukanovich

    2012-01-01

    The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world longest mountain range, opens the possibility to build the first deep underground labo- ratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as \\sim 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and galactic supernova neutrinos assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones in the Northern Hemisphere neutrino facilities through some adv...

  8. Using Space as a Nonlinear Plasma Laboratory

    Science.gov (United States)

    Papadopoulos, Konstantinos

    2008-11-01

    Ionospheric heaters have been an important tool of plasma physics investigations. The extent that non-linear plasma phenomena can be triggered and observed depends critically on the heater power, its Effective Radiative Power (ERP) and its scanning capability. Increasing these parameters allows us to reach thresholds associated with effects that were not previously observed. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP) was completed in June 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power (a factor of almost 4 higher than any previous heater) in the 2.8-10.0 MHz range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in ERP between 1-5 GW. The antenna can point to any direction in a cone 30 degrees from the vertical, with reposition time of 15 microseconds resulting in superluminal scanning speeds. The transmitter can synthesize essentially any waveform and transmit any polarization. These capabilities far exceed those of any previous heater and allow for new frontier research in non-linear plasma physics. The presentation will focus first on the relationship of the new capabilities of the facility with thresholds of physical processes that had not been achieved previously. It will then present new spectacular results that have been achieved during the last year. They include whistler injection and amplification, injection of shear and magnetosonic waves in the magnetosphere, Langmuir turbulence, upper hybrid waves and thermal instabilities, electron acceleration, optical emissions and formation of artificial ducts for whistler propagation. The presentation will also discuss future experiments made possible for the first time by the new transmitter capabilities, large bandwidth and high ERP.

  9. Fine-structure electron-impact excitation of Ne+ and Ne2+ for low temperature astrophysical plasmas

    CERN Document Server

    Wang, Qianxia; Li, Y; Pindzola, M S; Cumbee, R; Stancil, P; McLaughlin, B; Ballance, C P

    2016-01-01

    Collision strengths for electron-impact of fine-structure level excitation within the ground term of Ne+ and Ne2+ are calculated using the Breit-Pauli, Intermediate Coupling Frame Transformation, and DARC R-matrix methods. Maxwellian-averaged effective collision strengths and excitation rate coefficient qij are presented for each. The application of the current calculations is to very low temperature astrophysical plasmas, thus we examine the sensitivity of the effective collision strengths down to 10 K. The use of the various theoretical methods allows us to place estimated uncertainties on the recommended effective collision strengths. We also investigate the sensitivity of the collision strengths to the resonance positions and underlying atomic structure. Good agreement is found with previous R-matrix calculations at higher temperature.

  10. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    Science.gov (United States)

    Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.

  11. Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    Science.gov (United States)

    Akerib, Daniel S.; Carroll, Sean M.; Kaminokowski, Marc; Ritz, Steven; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problems in astrophysics and cosmology, ripe for major advances, the resolution of which will likely require new physics.

  12. Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    CERN Document Server

    López, A; Kisiel, Z; Daly, A M; Bermúdez, C; Calcutt, H; Marcelino, N; Viti, S; Drouin, B J; Medvedev, I R; Neese, C F; Pszczółkowski, L; Alonso, J L; Cernicharo, J

    2014-01-01

    New laboratory data of CH$_2$CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH$_2$CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH$_2$CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH$_2$CHCN in the ground state is (3.0$\\pm$0.9)x10$^{15}$ cm$^{-2}$. We report on the first interstellar ...

  13. The Galactic Center: A Laboratory for Fundamental Astrophysics and Galactic Nuclei

    CERN Document Server

    Ghez, A; Lü, J; Weinberg, N; Matthews, K; Alexander, T; Armitage, P; Becklin, E; Brown, W; Campbell, R; Do, T; Eckart, A; Genzel, R; Gould, A; Hansen, B; Ho, L; Lo, F; Loeb, A; Melia, F; Merritt, D; Milosavljevic, M; Perets, H; Rasio, F; Reid, M; Salim, S; Schödel, R; Yelda, S

    2009-01-01

    As the closest example of a galactic nucleus, the Galactic center presents an exquisite laboratory for learning about supermassive black holes (SMBH) and their environs. Detailed studies of stellar dynamics deep in the potential well of a galaxy, with exisiting and future large ground-based telescopes, offer several exciting directions in the coming decade. First, it will be possible to obtain precision measurements of the Galaxy's central potential, providing both a unique test of General Relativity (GR) and a detection of the extended dark matter distribution that is predicted to exist around the SMBH. Tests of gravity have not previously been possible on the mass scale of a SMBH. Similarly, only upper limits on the extended matter distribution on small scales currently exist; detection of dark matter on these scales is an important test of Lambda-CDM and the detection of stellar remnants would reveal a population that may dominate the stellar dynamics on the smallest scales. Second, our detailed view of th...

  14. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  15. Excitation of Chirping Whistler Waves in a Laboratory Plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.

    2015-12-01

    Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.

  16. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    Science.gov (United States)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler

  17. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.

    Science.gov (United States)

    Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P

    2015-05-13

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.

  18. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence IV: Laboratory Experiment

    CERN Document Server

    Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W

    2013-01-01

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.

  19. The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers. Code description, verification, and computational performance

    Science.gov (United States)

    Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.

    2015-08-01

    Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very

  20. Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks

    Science.gov (United States)

    Ross, J. S.; Glenzer, S. H.; Amendt, P.; Berger, R.; Divol, L.; Kugland, N. L.; Landen, O. L.; Plechaty, C.; Remington, B.; Ryutov, D.; Rozmus, W.; Froula, D. H.; Fiksel, G.; Sorce, C.; Kuramitsu, Y.; Morita, T.; Sakawa, Y.; Takabe, H.; Drake, R. P.; Grosskopf, M.; Kuranz, C.; Gregori, G.; Meinecke, J.; Murphy, C. D.; Koenig, M.; Pelka, A.; Ravasio, A.; Vinci, T.; Liang, E.; Presura, R.; Spitkovsky, A.; Miniati, F.; Park, H.-S.

    2012-05-01

    A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ~ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ~ 110 eV, an ion temperature of ~ 30 eV, and a density of ~ 1018 cm-3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi~0.16 mm, the interaction length, lint, of ~ 8 mm, and the Coulomb mean free path, λmfp~27mm. With c/ωpi<

  1. Scaled Laboratory Collisionless Shock Experiments in the Large Plasma Device

    Science.gov (United States)

    Clark, S. E.; Schaeffer, D.; Everson, E.; Bondarenko, A.; Winske, D.; Constantin, C.; Niemann, C.

    2013-12-01

    Collisionless shocks in space plasmas have been investigated since the fifties and are typically studied via in-situ satellite observations, which are limited due to the large structure of collisionless shocks in space environments relative to the satellite observation platform. Scaled, repeatable experiments in the Large Plasma Device (LAPD) at UCLA provide a test bed for studying collisionless shocks in the laboratory, where questions of ion and electron heating and acceleration can be addressed and examined in detail. The experiments are performed by ablating a graphite or plastic target using the Raptor kilojoule-class laser facility at UCLA. The laser provides an on-target energy in the range of 100-500 J that drives a super-Alfvénic (MA > 1) debris plasma across a background magnetic field (200-800 G) into the ambient, magnetized LAPD plasma. Typical plasma parameters in the LAPD consist of a H+ or He+ ambient plasma with a core column (diameter > 20 cm ) density ni ~ 1013 cm-3 and electron temperature Te ~ 10 eV embedded in a larger plasma discharge (diameter ~ 80 cm) of density ni ~ 1012 cm-3 and Te ~ 5 eV. The ambient ion temperature is Ti ~ 1 eV. Experimental results from the latest collisionless shock campaign will be presented and compared with two dimensional hybrid simulations of the experiment. Fielded diagnostics include Thomson scattering, ion spectroscopy, magnetic flux probes, Langmuir probes, and microwave reflectometry.

  2. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  3. On the role of ion-scale whistler waves in space and astrophysical plasma turbulence

    Science.gov (United States)

    Comişel, Horia; Nariyuki, Yasuhiro; Narita, Yasuhito; Motschmann, Uwe

    2016-11-01

    Competition of linear mode waves is studied numerically to understand the energy cascade mechanism in plasma turbulence on ion-kinetic scales. Hybrid plasma simulations are performed in a text">3-D simulation box by pumping large-scale Alfvén waves on the fluid scale. The result is compared with that from our earlier text">2-D simulations. We find that the whistler mode is persistently present both in the text">2-D and text">3-D simulations irrespective of the initial setup, e.g., the amplitude of the initial pumping waves, while all the other modes are excited and damped such that the energy is efficiently transported to thermal energy over non-whistler mode. The simulation results suggest that the whistler mode could transfer the fluctuation energy smoothly from the fluid scale down to the electron-kinetic scale, and justifies the notion of whistler turbulence.

  4. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    Science.gov (United States)

    Wise, John

    In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this

  5. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    Science.gov (United States)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  6. On the Stark broadening of Cr VI spectral lines in astrophysical plasma

    Science.gov (United States)

    Dimitrijević, M. S.; Simić, Z.; Sahal-Bréchot, S.

    2017-02-01

    Stark broadening parameters for Cr VI lines have been calculated using semiclassical perturbation method for conditions of interest for stellar plasma. Here are presented, as an example of obtained results, Stark broadening parameters for electron- and proton-impact broadening for Cr VI 4s 2S-4p 2P° λ = 1430 Å and Cr VI 4p 2P°-5s 2S λ = 611.8 Å multiplets. The obtained results are used to demonstrate the importance of Stark broadening of Cr VI in DO white dwarf atmospheres. Also the obtained results will enter in STARK-B database which is included in Virtual Atomic and Molecula Data Center - VAMDC.

  7. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  8. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  9. Currents between tethered electrodes in a magnetized laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  10. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    Science.gov (United States)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  11. Excitation of Chirping Whistler Waves in a Laboratory Plasma.

    Science.gov (United States)

    Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W

    2015-06-19

    Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.

  12. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  13. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    Science.gov (United States)

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  14. Laboratory measurements of the resistivity of warm dense plasmas

    Science.gov (United States)

    Booth, Nicola; Robinson, Alex; Hakel, Peter; Gregori, Ginaluca; Rajeev, Pattathil; Woolsey, Nigel

    2015-11-01

    In this talk we will present a method for studying material resistivity in warm dense plasmas in the laboratory in which we interrogate the microphysics of the low energy electron distributions associated with an anisotropic return current. Through experimental measurements of the polarization of the Ly- α doublet emission (2s1 / 2-2p1 / 2,3/2 transitions) of sulphur, we determine the resistivity of a sulphur-doped plastic target heated to warm dense conditions by an ultra-intense laser at relativistic intensities, I ~ 5 ×1020 Wcm-2. We describe a method of exploiting classical x-ray scattering to separately measure both the π- and σ- polarizations of Ly-α1 spectral emission in a single shot. These measurements make it possible to explore fundamental material properties such as resistivity in warm and hot dense plasmas through matching plasma physics modelling to atomic physics calculations of the experimentally measured large, positive, polarisation.

  15. Turbulence in laboratory and natural plasmas: Connecting the dots

    Science.gov (United States)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  16. Angular function for the Compton scattering in mildly and ultra relativistic astrophysical plasmas

    CERN Document Server

    Sazonov, S Y; Sazonov, Sergei Y.; Sunyaev, Rashid A.

    1999-01-01

    Compton scattering of low-frequency radiation by an isotropic distribution of(i) mildly and (ii) ultra relativistic electrons is considered. It is shownthat the ensemble-averaged differential cross-section in this case isnoticeably different from the Rayleigh phase function. The scattering by anensemble of ultra-relativistic electrons obeys the law p=1-cos(alpha), wherealpha is the scattering angle; hence photons are preferentially scatteredbackwards. This contrasts the forward scattering behaviour in the Klein-Nishinaregime. Analytical formulae describing first-order Klein-Nishina andfinite-electron-energy corrections to the simple relation above are given forvarious energy distributions of electrons: monoenergetic,relativistic-Maxwellian, and power-law. A similar formula is also given for themildly relativistic (with respect to the photon energy and electrontemperature) corrections to the Rayleigh angular function. One ofmanifestations of the phenomenon under consideration is that hot plasma is morereflecti...

  17. Some Recent Progress in the Field of High Energy Density Laboratory Astrophysics%高能量密度实验室天体物理近年来的一些进展

    Institute of Scientific and Technical Information of China (English)

    韩波; 王菲鹿; 赵刚

    2013-01-01

    Laboratory astrophysics is one of the youngest branches of astrophysics. Its name was coined about 30 years ago. It is successful because the physical laws we discover on Earth should work everywhere. We use laboratory experiments to expand our understanding of physical processes and then apply these results to the processes throughout the Universe. High energy density laboratory astrophysics (HEDLA) allows a depth study and comparison of the measurements produced by laboratory Z-pinches and lasers. In this paper, we review the recent progress in several fields of HEDLA, such as the supernova explosion, stellar jets, photoionized plasmas, stellar opacity and equation of state (EOS) and solar magnetic reconnection. In some cases laboratory experiments can reproduce similar physics. For example, the charged plasmas can be created in the laboratory to study the interactions among photons, electrons and ions that occur in the stars, the solar corona and the X-ray binaries. In other cases, we need some scales to study the processes behind the astrophysical phenomena by the experiments. For example, the evolution of a laboratory plasma jet, with typical spatial scales of a few mm and characteristic timescales of hundreds of ns, can be a scaled version of large-scale jets from young stars (typically thousands of astronomical units in length and evolving in timescales of many years). In order for this scaling to be valid, both the laboratory and astrophysical jets must have similar dimensionless parameters such as the Mach number, Reynolds number, and Peclet number. HEDLA is being paced by large experiments such as NIF, LMJ, and Shenguang lasers. New experimental techniques, improved simulations codes, and experimental diagnostics provide the ground-based testing which benefits our understanding of the Universe. The most powerful laser project is the National Ignition Facility (NIF), in which 196 laser beams deliver nearly 2 megajoules to a millimeter sized target

  18. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  19. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  20. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  1. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  2. A laboratory search for plasma erosion by Alfven waves

    Science.gov (United States)

    Vincena, S.; Gekelman, W.; Pribyl, P.

    2007-12-01

    Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).

  3. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  4. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  5. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  6. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Science.gov (United States)

    Nishio, K.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Ide, T.; Kuwada, M.; Koga, M.; Kato, T.; Norimatsu, T.; Gregory, C.; Woolsey, N.; Murphy, C.; Gregori, G.; Schaar, K.; Diziere, A.; Koenig, M.; Pelka, A.; Wang, S.; Dong, Q.; Li, Y.; Takabe, H.

    2013-11-01

    The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2˜0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ˜150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  7. Frontiers for Laboratory Research of Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hantao [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  8. Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters

    CERN Document Server

    Barbui, M; Bonasera, A; Hagel, K; Schmidt, K; Natowitz, J B; Burch, R; Giuliani, G; Barbarino, M; Zheng, H; Dyer, G; Quevedo, H J; Gaul, E; Bernstein, A C; Donovan, M; Kimura, S; Mazzocco, M; Consoli, F; De Angelis, R; Andreoli, P; Ditmire, T

    2013-01-01

    The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas jet target in order to allow the measurement of the cross-section for the 3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parameterizations found in the literature.

  9. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  10. Fe XVII Emission from Hot, Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; von Goeler, S; Hill, K W

    2004-12-03

    The ratios of the Fe XVII 3s {yields} 2p transitions to that of the dominant 3d {yields} 2p transition measured in high-temperature tokamak plasmas are compared to solar and astrophysical observations. Good agreement is found, indicating that the collisional line formation processes active in opacity-free, low-density, high-temperature laboratory plasmas are a good description of those found in astrophysical plasmas.

  11. From laboratory plasma experiments to space plasma experiments with `CubeSat' nano-satellites

    Science.gov (United States)

    Charles, Christine

    2016-09-01

    `CubeSat' nano-satellites provide low-cost access to space. SP3 laboratory's involvement in the European Union `QB50' `CubeSat' project [www.qb50.eu] which will launch into space 50 `CubeSats' from 27 Countries to study the ionosphere and the lower thermosphere will be presented. The Chi Kung laboratory plasma experiment and the Helicon Double Layer Thruster prototype can be tailored to investigate expanding magnetized plasma physics relevant to space physics (solar corona, Earth's aurora, adiabatic expansion and polytropic studies). Chi Kung is also used as a plasma wind tunnel for ground-based calibration of the University College London QB50 Ion Neutral Mass Spectrometer. Space qualification of the three Australian QB50 `CubeSats' (June 2016) is carried out in the WOMBAT XL space simulation chamber. The QB50 satellites have attitude control but altitude control is not a requirement. SP3 is developing end-to-end miniaturised radiofrequency plasma propulsion systems (such as the Pocket Rocket and the MiniHel thrusters with power and propellant sub-systems) for future `CubeSat' missions.

  12. Generation of a neutral, high-density electron-positron plasma in the laboratory

    CERN Document Server

    Sarri, G; Cole, J; Schumaker, W; Di Piazza, A; Reville, B; Doria, D; Dromey, B; Gizzi, L; Green, A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kushel, S; Mangles, S; Najmudin, Z; Thomas, A G R; Vargas, M; Zepf, M

    2013-01-01

    We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($\\gamma_{e/p} \\approx 15$), small divergence ($\\theta_{e/p} \\approx 10 - 20$ mrad), and high density ($n_{e/p}\\simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.

  13. Experimental astrophysics with high power lasers and Z pinches

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  14. Recognition of compact astrophysical objects

    Science.gov (United States)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  15. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  16. Study of astrophysical collisionless shocks at NIF

    Science.gov (United States)

    Park, Hye-Sook; Higginson, D. P.; Huntington, C. M.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H.; Ross, J. S.; Ryutov, D. D.; Swadling, G. F.; Wilks, S. C.; Sakawa, Y.; Spitkovsky, A.; Petrasso, R.; Li, C. K.; Zylstra, A. B.; Lamb, D.; Tzeferacos, P.; Gregori, G.; Meinecke, J.; Manuel, M.; Froula, D.; Fiuza, F.

    2016-10-01

    High Mach number astrophysical plasmas can create collisionless shocks via plasma instabilities and turbulence that are responsible for magnetic field generations and cosmic ray acceleration. Recently, many laboratory experiments were successful to observe the Weibel instabilities and self-generated magnetic fields using high-power lasers that generated interpenetrating plasma flows. In order to create a fully formed shock, a series of NIF experiments have begun. The characteristics of flow interaction have been diagnosed by the neutrons and protons generated via beam-beam deuteron interactions, the x-ray emission from the hot plasmas and proton probe generated by imploding DHe3 capsules. This paper will present the latest results from the NIF collisionless shock experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. High Energy Astrophysics Program (HEAP)

    Science.gov (United States)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  18. Storage-ring ionization and recombination experiments with multiply charged ions relevant to astrophysical and fusion plasmas

    CERN Document Server

    Schippers, Stefan

    2011-01-01

    Past and ongoing research activities at the Heidelberg heavy-ion storage-ring TSR are reviewed which aim at providing accurate absolute rate coefficients and cross sections of atomic collision processes for applications in astrophysics and magnetically confined fusion. In particular, dielectronic recombination and electron impact ionization of iron ions are discussed as well as dielectronic recombination of tungsten ions.

  19. Nuclear astrophysics

    CERN Document Server

    Arnould, M

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experime...

  20. Neutrino Astrophysics

    CERN Document Server

    Volpe, Cristina

    2016-01-01

    We summarize the progress in neutrino astrophysics and emphasize open issues in our understanding of neutrino flavor conversion in media. We discuss solar neutrinos, core-collapse supernova neutrinos and conclude with ultra-high energy neutrinos.

  1. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  2. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  3. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  4. Laboratory Studies for Planetary Sciences. A Planetary Decadal Survey White Paper Prepared by the American Astronomical Society (AAS) Working Group on Laboratory Astrophysics (WGLA)

    CERN Document Server

    Gudipati, The AAS WGLA: Murthy; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Mumma, Michael; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey.

  5. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  6. Complex and Dusty Plasmas From Laboratory to Space

    CERN Document Server

    Fortov, Vladimir E

    2009-01-01

    Dusty or complex plasmas are plasmas containing solid or liquid charged particles referred to as dust. Naturally occurring in space, on earth dust plays a key role in plasma applications associated with etching technologies in microelectronics. International in scope, this volume covers theoretical and application research.

  7. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  8. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  9. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  10. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  11. Sparse representation of signals: from astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV

    Science.gov (United States)

    Testa, D.; Carfantan, H.; Albergante, M.; Blanchard, P.; Bourguignon, S.; Fasoli, A.; Goodyear, A.; Klein, A.; Lister, J. B.; Panis, T.; Contributors, JET

    2016-12-01

    Efficient, real-time and automated data analysis is one of the key elements for achieving scientific success in complex engineering and physical systems, two examples of which include the JET and ITER tokamaks. One problem which is common to these fields is the determination of the pulsation modes from an irregularly sampled time series. To this end, there are a wealth of signal processing techniques that are being applied to post-pulse and real-time data analysis in such complex systems. Here, we wish to present a review of the applications of a method based on the sparse representation of signals, using examples of the synergies that can be exploited when combining ideas and methods from very different fields, such as astronomy, astrophysics and thermonuclear fusion plasmas. Examples of this work in astronomy and astrophysics are the analysis of pulsation modes in various classes of stars and the orbit determination software of the Pioneer spacecraft. Two examples of this work in thermonuclear fusion plasmas include the detection of magneto-hydrodynamic instabilities, which is now performed routinely in JET in real-time on a sub-millisecond time scale, and the studies leading to the optimization of the magnetic diagnostic system in ITER and TCV. These questions have been solved by formulating them as inverse problems, despite the fact that these applicative frameworks are extremely different from the classical use of sparse representations, from both the theoretical and computational point of view. The requirements, prospects and ideas for the signal processing and real-time data analysis applications of this method to the routine operation of ITER will also be discussed. Finally, a very recent development has been the attempt to apply this method to the deconvolution of the measurement of electric potential performed during a ground-based survey of a proto-Villanovian necropolis in central Italy.

  12. Recent results in nuclear astrophysics

    CERN Document Server

    Coc, Alain; Kiener, Juergen

    2016-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics,...

  13. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  14. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  15. Particle astrophysics

    CERN Document Server

    Krauss, Lawrence M

    1997-01-01

    Astrophysics and cosmology provide fundamental testing grounds for many ideas in elementary particle physics, and include potential probes which are well beyond the range of current or even planned accelerators. In this series of 3 lectures, I will give and overview of existing constraints, and a discussion of the potential for the future. I will attempt whenever possible to demonstrate the connection between accelerator-based physics and astrophysicas/cosmology. The format of the kectures will be to examine observables from astrophysics, and explore how these can be used to constrain particle physics. Tentatively, lecture 1 will focus on the age and mass density of the universe and galaxy. Lecture 2 will focus on stars, stellar evolution, and the abundance of light elements. Lecture 3 will focus on various cosmic diffuse backgrounds, including possibly matter, photons, neutrinos and gravitational waves.

  16. On the nature of the magnetic Rayleigh-Taylor instability in astrophysical plasma: the case of uniform magnetic field strength

    Science.gov (United States)

    Hillier, Andrew S.

    2016-10-01

    The magnetic Rayleigh-Taylor instability has been shown to play a key role in many astrophysical systems. The equation for the growth rate of this instability in the incompressible limit, and the most-unstable mode that can be derived from it, are often used to estimate the strength of the magnetic field that is associated with the observed dynamics. However, there are some issues with the interpretations given. Here, we show that the class of most unstable modes ku for a given θ, the class of modes often used to estimate the strength of the magnetic field from observations, for the system leads to the instability growing as σ2 = 1/2Agku, a growth rate which is independent of the strength of the magnetic field and which highlights that small scales are preferred by the system, but not does not give the fastest growing mode for that given k. We also highlight that outside of the interchange (k ṡ B = 0) and undular (k parallel to B) modes, all the other modes have a perturbation pair of the same wavenumber and growth rate that when excited in the linear regime can result in an interference pattern that gives field aligned filamentary structure often seen in 3D simulations. The analysis was extended to a sheared magnetic field, where it was found that it was possible to extend the results for a non-sheared field to this case. We suggest that without magnetic shear it is too simplistic to be used to infer magnetic field strengths in astrophysical systems.

  17. Generation of neutral and high-density electron-positron pair plasmas in the laboratory

    National Research Council Canada - National Science Library

    Sarri, G; Poder, K; Cole, J M; Schumaker, W; Di Piazza, A; Reville, B; Dzelzainis, T; Doria, D; Gizzi, L A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Shukla, N; Silva, L O; Symes, D; Thomas, A G R; Vargas, M; Vieira, J; Zepf, M

    2015-01-01

    .... Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory...

  18. Geospace Plasma Dynamics Laboratory Annual Task Report (FY11)

    Science.gov (United States)

    2012-03-01

    and the other stability properties of the ion-cyclotron instability in various non - Maxwellian plasmas . For this purpose, analysis of the kinetic... Plasma Dynamics.” The goal of this research effort is to develop a detailed knowledge of the space environment by analyzing satellite data and...Furthermore, satellite-measured particle velocity distributions in the magnetosphere are often better modeled by non - Maxwellian distributions, such as

  19. On the nature of the magnetic Rayleigh-Taylor instability in Astrophysical Plasma: The case of uniform magnetic field strength

    CERN Document Server

    Hillier, Andrew

    2016-01-01

    The magnetic Rayleigh-Taylor instability has been shown to play a key role in many astrophysical systems. The equation for the growth rate of this instability in the incompressible limit, and the most-unstable mode that can be derived from it, are often used to estimate the strength of the magnetic field that is associated with the observed dynamics. However, there are some issues with the interpretations given. Here we show that the class of most unstable modes $k_u$ for a given $\\theta$, the class of modes often used to estimate the strength of the magnetic field from observations, for the system leads to the instability growing as $\\sigma^2=1/2 A g k_u$, a growth rate which is independent of the strength of the magnetic field and which highlights that small scales are preferred by the system, but not does not give the fastest growing mode for that given $k$. We also highlight that outside of the interchange ($\\mathbf{k}\\cdot\\mathbf{B}=0$) and undular ($\\mathbf{k}$ parallel to $\\mathbf{B}$) modes, all the o...

  20. Astrophysical formulae

    CERN Document Server

    Lang, Kenneth R

    1978-01-01

    This volume is a reference source of fundamental formulae in physics and astrophysics. In contrast to most of the usual compendia it carefully explains the physical assumptions entering the formulae. All the important results of physical theories are covered: electrodynamics, hydrodynamics, general relativity, atomic and nuclear physics, and so on. Over 2100 formulae are included, and the original papers for the formulae are cited together with papers on modern applications in a bibliography of over 1900 entries. For this new edition, a chapter on space, time, matter and cosmology has been included and the other chapters have been carefully revised.

  1. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  2. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Strieder, Frank; Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2015-10-01

    The work of the LUNA Collaboration at the Laboratori Nationali del Gran Sasso demonstrated the research potential of an underground accelerator for the field of nuclear astrophysics. Several key reactions could be studied at LUNA, some directly at the Gamow peak for solar hydrogen burning. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. The installation of the accelerator in the recently rehabilitated underground cavity at SURF started in Summer 2015 and first beam should be delivered by the end of the year. This project will primarily focus on the neutron sources for the s-process, e.g. 13C(α , n) 16O and 22Ne(α , n) 25Mg , and lead to unprecedented measurements compared to previous studies. A detailed overview of the science goals of CASPAR will be presented.

  3. LUNA: Nuclear astrophysics underground

    Energy Technology Data Exchange (ETDEWEB)

    Best, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  4. Laboratory study of avalanches in a magnetized plasma

    Science.gov (United States)

    van Compernolle, Bart

    2015-11-01

    Results of a basic heat transport experiment [] involving an off-axis heat source are presented. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. A ring-shaped electron beam source injects low energy electrons (below ionization energy) along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the machine walls. It is demonstrated that this heating configuration provides an ideal environment to study avalanche phenomena under controlled conditions. The avalanches are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and azimuthal dynamics. After each collapse the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are only observed for a limited combination of heating powers and magnetic fields. At higher heating powers the system transitions from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. The pressure profile then transitions to a near steady-state in which anomalous transport balances the external pressure source. Performed at the Basic Plasma Science Facility at UCLA, supported jointly by DOE and NSF.

  5. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  6. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laborat

    NARCIS (Netherlands)

    Mrs. Ulleberg, T.; Robben, J.H.|info:eu-repo/dai/nl/266740790; Nordahl, K.; Mr. Ulleberg, T.; Heiene, R.

    2011-01-01

    Abstract BACKGROUND: There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in

  7. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laborat

    NARCIS (Netherlands)

    Mrs. Ulleberg, T.; Robben, J.H.; Nordahl, K.; Mr. Ulleberg, T.; Heiene, R.

    2011-01-01

    Abstract BACKGROUND: There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasm

  8. LUNA: Nuclear Astrophysics Deep Underground

    CERN Document Server

    Broggini, Carlo; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The main results obtained by LUNA in the last twenty years are reviewed, and their influence on the comprehension of the properties of the neutrino, of the Sun and of the Universe itself are discussed. Future directions of underground nuclear astrophysics towards the study of helium and carbon burning and of stellar neutron sources in stars are pointed out.

  9. Transient evolution of solitary electron holes in low pressure laboratory plasma

    CERN Document Server

    Choudhary, Mangilal; Mukherjee, Subroto

    2015-01-01

    Solitary electrons holes (SEHs) are localized electrostatic positive potential structures in collisionless plasmas. These are vortex-like structures in the electron phase space. Its existence is cause of distortion of the electron distribution in the resonant region. These are explained theoretically first time by Schamel et.al [Phys. Scr. 20, 336 (1979) and Phys. Plasmas 19, 020501 (2012)]. Propagating solitary electron holes can also be formed in a laboratory plasma when a fast rising high positive voltage pulse is applied to a metallic electrode [Kar et. al., Phys. Plasmas 17, 102113 (2010)] immersed in a low pressure plasma. The temporal evolution of these structures can be studied by measuring the transient electron distribution function (EDF). In the present work, transient EDF is measured after formation of a solitary electron hole in nearly uniform, unmagnetized, and collisionless plasma for applied pulse width and, where and are applied pulse width and inverse of ion plasma frequency respectively. Fo...

  10. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  11. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  12. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  13. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    CERN Document Server

    Hsu, S C

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue alpha_gun imposed by the coaxial gun.

  14. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  15. Three step double layers in the laboratory. [plasma physics

    Science.gov (United States)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  16. Laboratory Evidence for Stochastic Plasma-Wave Growth

    Science.gov (United States)

    Austin, D. R.; Hole, M. J.; Robinson, P. A.; Cairns, Iver H.; Dallaqua, R.

    2007-11-01

    The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for stochastic growth of an extended structure.

  17. Cause of sudden magnetic reconnection in a laboratory plasma.

    Science.gov (United States)

    Choi, S; Craig, D; Ebrahimi, F; Prager, S C

    2006-04-14

    The cause for sudden reconnection in reversed field pinch plasmas is determined experimentally for two cases: large reconnection events (the sawtooth crash) and small reconnection events during improved confinement. We measure the term in the MHD equations which represents the driving (or damping) of edge tearing modes due to the axisymmetric magnetic field. The term is negative for large reconnection events (the modes are stable, implying that reconnection may be driven by nonlinear coupling to other modes) and positive for small reconnection events (modes are unstable, reconnection is spontaneous).

  18. Gravitational radiation of a vibrating physical string as a model for the gravitational emission of an astrophysical plasma

    CERN Document Server

    Lewis, R A

    2014-01-01

    The vibrating string is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized (in a classical sense) energy-momentum tensor. The renormalization is necessary to take into account the effect of external constraints, which affect the emission considerably. Vibrating media offer in general a testing ground for reconciling conflicts between General Relativity and other branches of physics; however, constraints are absent in sources like the Weber bar, for which the standard covariant formalism for elastic bodies can also be applied. Our solution method is based on the linearized Einstein equations, but relaxes other usual assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and source without internal interference. The string solution is then adapted to give the radiation field of a transversal Alfven wave in a rarefied plasma, where the tension is produced by an external static magnetic fie...

  19. Princeton Plasma Physics Laboratory - 1995 Highlights. Fiscal Year 1995, 1 October 1994--30 September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The purpose of this Highlights Report is to present a brief overview of the Laboratory`s significant research accomplishments during the fiscal year 1995. The activities covered in this report include advances on the large projects, such as the discovery of the Enhanced Reversed Shear mode on the TFTR and the engineering design developments in the International Thermonuclear Experimental Reactor project, as well as the significant progress made in plasma theory, small-scale experiments, technology transfer, graduate education, and the Laboratory`s outreach program in science education.

  20. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  1. Long-lived laboratory plasmas sustained by a free-space microwave beam

    Science.gov (United States)

    Reid, Remington

    2015-11-01

    The Air Force Research Laboratory is developing a laboratory experiment to study the free-space interaction of microwave beams with low temperature, low density plasmas. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 Ghz radiation. The pressure windows are approximately 1m in diameter, allowing for minimal interaction between the beam and the chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. Plasmas generated by the beam have been observed to be stable for more than 10s. A series of optical and microwave diagnostics are being developed to measure the plasma properties, and to quantify the interaction of the plasma and the background neutral gas.

  2. Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott [Univ. of Colorado, Boulder, CO (United States)

    2010-07-31

    “Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.

  3. Astrophysics on the Lab Bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  4. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    OpenAIRE

    Fu, Wen; Liang, Edison P.; Fatenejad, Milad; Lamb, Donald Q.; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations,...

  5. Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma.

    Science.gov (United States)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E

    2013-05-24

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high-pressure downstream region.

  6. Trends in Nuclear Astrophysics

    OpenAIRE

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  7. A Polytropic Model for Space and Laboratory Plasmas Described by Bi-Maxwellian Electron Distributions

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-09-01

    Non-local electron energy probability functions (EEPFs) are shown to have an important effect on the thermodynamic behavior of plasmas in the context of solar wind and laboratory plasmas. A conservation relation is held for electron enthalpy and plasma potential during the electron transport. For an adiabatic system governed by non-local electron dynamics, the correlation between electron temperature and density can be approximated by a polytropic relation, with different indexes demonstrated using three cases of bi-Maxwellian EEPFs. This scenario differs from a local thermodynamic equilibrium having a single polytropic index of 5/3 for adiabaticity.

  8. Radiative Magnetic Reconnection in Astrophysics

    CERN Document Server

    Uzdensky, Dmitri A

    2015-01-01

    I review a new rapidly growing area of high-energy plasma astrophysics --- radiative magnetic reconnection, i.e., a reconnection regime where radiation reaction influences reconnection dynamics, energetics, and nonthermal particle acceleration. This influence be may be manifested via a number of astrophysically important radiative effects, such as radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. Self-consistent inclusion of these effects in magnetic reconnection theory and modeling calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical condition...

  9. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  10. Hybrid-structure atomic models for HED laboratory plasma diagnostics and simulations

    Science.gov (United States)

    Hansen, Stephanie

    2010-03-01

    While theoretical atomic physics calculations are well developed for isolated atoms and have been thoroughly benchmarked against low-density laboratory sources such as electron beam ion traps and tokamak plasmas, the high energy density (HED) regime offers significant challenges for atomic physics and spectroscopic modeling. High plasma densities lead to collective effects such as continuum lowering, line broadening, and significant populations in multiply excited atomic states. These effects change the plasma equation of state and the character of emission and absorption spectra and must be accounted for in order to accurately simulate radiative transfer in and apply spectroscopic diagnostics to HED plasmas. Modeling complex mid- and high-Z ions in the HED regime is a particular challenge because exponential growth in accessible configuration space overwhelms the reduction of the Rydberg levels through continuum lowering. This talk will discuss one approach to generating a tractable spectroscopic-quality atomic kinetics model and describe its application to HED laboratory plasmas produced on Sandia's Z facility. [4pt] Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. 强激光天体物理学研究%INTENSE LASER ASTROPHYSICS (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    夏江帆; 张杰

    2001-01-01

    用激光等离子体相互作用对天体物理过程进行模拟研究已成为当前世界物理和天文学家深感兴趣的重要前沿领域.文章比较了强激光作用下产生的等离子体与天体物理条件下的等离子体之间在内部物理过程的相似性,论述了由前者模拟后者的物理依据,即相似性原则和定标规律.在此基础上,回顾和评述了当前已经在高离化态光谱学、类天体等离子体状态方程和辐射不透明度以及流体动力学不稳定性等方面开展的强激光天体物理学的研究,这些研究对于理解超新星、白矮星、中子星以及巨行星、褐矮星等领域的天体物理过程起到了极大的作用,并正在成为联系天体物理理论模拟和观测的中间桥梁.%The use of a state-of-the-art laser facility makes it possible toproduce materials in the laboratory similar to those in astrophysical systems. The introduction of the astrophysics-related ideas in laser-plasma interaction experiments is vital to the understanding of astrophysical phenomena. We compare the plasmas produced by intense lasers and those produced under astrophysical conditions, pointing out their inherent similarity, which provides the physical grounds for modeling astrophysical plasma by laser plasmas, i.e., the similarity principle and scaling laws. Then we review the most recent research in intense laser astrophysics, including highly ionized ion spectroscopy, the equations of state and radiation opacity of astrophysical plasmas, and hydrodynamic instabilities. These studies have greatly improved our understanding of the astrophysical processes in supernovae, white dwarfs, neutron stars, giant planets and brown dwarfs, thus allowing the creation of experimental test beds where observations and models can be quantitatively compared with laboratory data.

  12. Laboratory modeling of pulsed regimes of cyclotron instability in an ECR heated mirror-confined plasma

    Science.gov (United States)

    Mansfeld, Dmitry; Viktorov, Mikhail; Golubev, Sergey; Vodopyanov, Alexander

    Despite more than half a century history, the studies of the interaction between electromagnetic waves and particles in magnetoactive plasma under electron cyclotron resonance (ECR) conditions still remain topical. One of the most interesting ECR manifestations is the generation of bursts of electromagnetic radiation that are related to the explosive growth of cyclotron instabilities of the magnetoactive plasma confined in magnetic traps of various kinds and that are accompanied by particle precipitations from the trap. Such phenomena are observed in a wide range of plasma parameters under various conditions: in the magnetospheres of the Earth and planets, in solar coronal loops, and in laboratory magnetic traps. We demonstrate the use of a laboratory setup based on a magnetic mirror trap with plasma sustained by a gyrotron radiation under ECR conditions for investigation of the cyclotron instabilities similar to the ones which take place in space plasmas. Three stages of pulsed ECR discharge offer the opportunity to study wave-particles interactions for essentially different plasma parameters: the initial stage, when the density of hot (relativistic) electrons (Nh) exceeds the density of cold electrons (Nc), the developed discharge (NhZ- or X- mode), propagating across the external magnetic field. The detailed investigation of spectral and temporal characteristics of non-stationary bursts of electromagnetic emission is presented. The interrelationship between the observed time-frequency spectrograms of electromagnetic emission with similar effects occurring in the inner magnetosphere is discussed in report.

  13. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma.

    Science.gov (United States)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M; Myers, Clayton E

    2014-09-10

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first time in a well-defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step towards resolving one of the most important problems in plasma physics.

  14. Electromagnetic-wave excitation in a large laboratory beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1981-01-01

    The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability

  15. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  16. Permutation Entropy and Statistical Complexity Analysis of Turbulence in Laboratory Plasmas and the Solar Wind

    CERN Document Server

    Weck, Peter J; Brown, Michael R; Wicks, Robert T

    2014-01-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD) and fully-developed turbulent magnetic fluctuations of the solar wind taken from the WIND spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge fluctuations. The CH ...

  17. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    Science.gov (United States)

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  18. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  19. Rounding Up the Astrophysical Weeds

    Science.gov (United States)

    McMillan, James P.

    2016-09-01

    New instruments used for astronomy such as ALMA, Herschel, and SOFIA have greatly increased the quality of available astrophysical data. These improved data contain spectral lines and features which are not accounted for in the quantum mechanical (QM) catalogs. A class of molecules has been identified as being particularly problematic, the so-called "weeds". These molecules have numerous transitions, of non-trivial intensity, which are difficult to model due to highly perturbed low lying vibrational states. The inability to properly describe the complete contribution of these weeds to the astrophysical data has led directly to the misidentification of other target molecules. Ohio State's Microwave Laboratory has developed an alternative approach to this problem. Rather than relying on complex QM calculations, we have developed a temperature dependent approach to laboratory based terahertz spectroscopy. We have developed a set of simple packages, in addition to traditional line list catalogs, that enable astronomers to successfully remove the weed signals from their data. This dissertation will detail my laboratory work and analysis of three keys weeds: methanol, methyl formate and methyl cyanide. Also, discussed will be the analytical technique I used to apply these laboratory results to astrophysical data.

  20. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    Science.gov (United States)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  1. Optical coherence in astrophysics

    CERN Document Server

    Moret-Bailly, Jacques

    2013-01-01

    Many physicists and most astrophysicists assume that the photon is a small particle which, in a very low pressure gas can only interact with a single molecule. Thus, the interaction of light with this gas is incoherent. W. E.Lamb Jr, W. P. Schleich, M. O. Scully and C. H. Townes (Reviews of Modern Physics 71, S263, 1999) have criticized this view: In accordance with quantum electrodynamics the photon is a pseudo-particle resulting from the quantization of a deterministic exchange of energy between identical molecules and a normal mode of electromagnetic field. Following Lamb et al., we study models in which some variables have an unusual value for a spectroscopist: extremely low pressure hydrogen, but huge light paths, extremely hot sources. However, the magnitudes of the spectral radiances and column densities can be similar in astrophysics and in a laboratory using lasers. Thus, several coherent effects must be taken into account: superradiance, multiphoton interactions, impulsive stimulated Raman scatterin...

  2. Relativistic Magnetic Reconnection in the Laboratory

    CERN Document Server

    Raymond, A; McKelvey, A; Zulick, C; Alexander, N; Batson, T; Bhattacharjee, A; Campbell, P; Chen, H; Chvykov, V; Del Rio, E; Fitzsimmons, P; Fox, W; Hou, B; Maksimchuk, A; Mileham, C; Nees, J; Nilson, P M; Stoeckl, C; Thomas, A G R; Wei, M S; Yanovsky, V; Willingale, L; Krushelnick, K

    2016-01-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. In many astrophysical plasmas magnetic reconnection plays a key role in the release of large amounts of energy \\cite{hoshino1}, although making direct measurements is challenging in the case of high-energy astrophysical systems such as pulsar wind emissions \\cite{lyubarsky1}, gamma-ray bursts \\cite{thompson1}, and jets from active galactic nuclei \\cite{liu1}. Therefore, laboratory studies of magnetic reconnection provide an important platform for testing theories and characterising different regimes. Here we present experimental measurements as well as numerical modeling of relativistic magnetic reconnection driven by short-pulse, high-intensity lasers that produce relativistic plasma along with extremely strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron ene...

  3. On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas

    Science.gov (United States)

    Cazzola, E.; Curreli, D.; Markidis, S.; Lapenta, G.

    2016-11-01

    This work presents an analysis of the ion outflow from magnetic reconnection throughout fully kinetic simulations with typical laboratory plasma values. A symmetric initial configuration for the density and magnetic field is considered across the current sheet. After analyzing the behavior of a set of nine simulations with a reduced mass ratio and with a permuted value of three initial electron temperatures and magnetic field intensity, the best ion acceleration scenario is further studied with a realistic mass ratio in terms of the ion dynamics and energy budget. Interestingly, a series of shock wave structures are observed in the outflow, resembling the shock discontinuities found in recent magnetohydrodynamic simulations. An analysis of the ion outflow at several distances from the reconnection point is presented, in light of possible laboratory applications. The analysis suggests that magnetic reconnection could be used as a tool for plasma acceleration, with applications ranging from electric propulsion to production of ion thermal beams.

  4. On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas

    CERN Document Server

    Cazzola, Emanuele; Markidis, Stefano; Lapenta, Giovanni

    2016-01-01

    This work presents an analysis of the ion outflow from magnetic reconnection throughout fully kinetic simulations with typical laboratory plasmas values. A symmetric initial configuration for the density and magnetic field is considered across the current sheet. After analyzing the behavior of a set of nine simulations with a reduced mass ratio and with a permuted value of three initial electron temperature and magnetic field intensity, the best ion acceleration scenario is further studied with a realistic mass ratio in terms of the ion dynamics and energy budget. Interestingly, a series of shock waves structures are observed in the outflow, resembling the shock discontinuities found in recent magnetohydrodynamic (MHD) simulations. An analysis of the ion outflow at several distances from the reconnection point is presented, in light of possible laboratory applications. The analysis suggests that magnetic reconnection could be used as a tool for plasma acceleration, with applications ranging from electric prop...

  5. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  6. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley, Editor

    2004-12-22

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  7. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  8. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  9. Critical points in the 16-moment approximation. [plasma flow in laboratory and space plasmas study

    Science.gov (United States)

    Yasseen, F.; Retterer, J. M.

    1991-01-01

    The singular points in steady state, field-aligned plasma transport models based on velocity moment theory are examined. In particular, two separate singular points in the equations obtained from the 16-moment approximation are identified. These equations are presented in a form that makes the singularities apparent, and they are solved in a simple illustrative case. The singular points, one occurring at the sonic point and the other at a critical value of the parallel heat flux, give rise to different outflow regimes, characterized generically by different asymptotic behavior. The existence of the different outflow regimes separated by the heat flux critical point has been only hinted at in previous discussions of numerical simulation of the polar wind.

  10. Underground nuclear astrophysics: Why and how

    Energy Technology Data Exchange (ETDEWEB)

    Best, A.; Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (AQ) (Italy); Caciolli, A. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Padova (Italy); Fueloep, Zs.; Gyuerky, Gy. [Institute for Nuclear Research (MTA Atomki), Debrecen (Hungary); Napolitani, E. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Rigato, V. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Roca, V. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); INFN, Napoli (Italy); Szuecs, T. [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden (Germany)

    2016-04-15

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given. (orig.)

  11. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  12. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  13. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  14. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  15. High-efficiency fast scintillators for "optical" soft x-ray arrays for laboratory plasma diagnostics.

    Science.gov (United States)

    Delgado-Aparicio, L F; Stutman, D; Tritz, K; Vero, R; Finkenthal, M; Suliman, G; Kaita, R; Majeski, R; Stratton, B; Roquemore, L; Tarrio, C

    2007-08-20

    Scintillator-based "optical" soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic face-plates (FOPs) as substrates, and a thin aluminum foil (150 nm) to reflect the visible light emitted by the scintillator back to the optical detector. Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics. Its luminescence decay time of the order of approximately 1-10 micros is thus suitable for the 10 micros time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built, and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  16. Lecture notes: Astrophysical fluid dynamics

    CERN Document Server

    Ogilvie, Gordon I

    2016-01-01

    These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes, and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is 'frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, includin...

  17. Persistence of magnetic field driven by relativistic electrons in a plasma

    CERN Document Server

    Flacco, A; Lifschitz, A; Sylla, F; Kahaly, S; Veltcheva, M; Silva, L O; Malka, V

    2015-01-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma le...

  18. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  19. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  20. Relativistic Cyclotron Instability in Anisotropic Plasmas

    Science.gov (United States)

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  1. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Science.gov (United States)

    Rácz, R.; Biri, S.; Pálinkás, J.; Mascali, D.; Castro, G.; Caliri, C.; Romano, F. P.; Gammino, S.

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  2. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  3. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  4. Underground nuclear astrophysics studies with CASPAR

    Directory of Open Access Journals (Sweden)

    Robertson Daniel

    2016-01-01

    Full Text Available The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n16O and 22Ne(α,n25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  5. Underground nuclear astrophysics studies with CASPAR

    Science.gov (United States)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  6. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  7. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  8. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and

  9. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  10. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  11. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  12. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    Science.gov (United States)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  13. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    Science.gov (United States)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  14. Astrophysics with Presolar Stardust

    Science.gov (United States)

    Clayton, Donald D.; Nittler, Larry R.

    2004-09-01

    Meteorites and interplanetary dust particles contain presolar stardust grains: solid samples of stars that can be studied in the laboratory. The stellar origin of the grains is indicated by enormous isotopic ratio variations compared with Solar System materials, explainable only by nuclear reactions occurring in stars. Known presolar phases include diamond, SiC, graphite, Si3N4, Al2O3, MgAl2O4, CaAl12O19, TiO2, Mg(Cr,Al)2O4, and most recently, silicates. Subgrains of refractory carbides (e.g., TiC), and Fe-Ni metal have also been observed within individual presolar graphite grains. We review the astrophysical implications of these grains for the sciences of nucleosynthesis, stellar evolution, grain condensation, and the chemical and dynamic evolution of the Galaxy. Unique scientific information derives primarily from the high precision (in some cases <1%) of the measured isotopic ratios of large numbers of elements in single stardust grains. Stardust science is just now reaching maturity and will play an increasingly important role in nucleosynthesis applications.

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  16. Effect of a common reference plasma on the inter-laboratory variation of the measurement of total and free protein S: a collaborative study of the Dutch Working Group on Haemostasis Laboratory Diagnosis.

    NARCIS (Netherlands)

    Meijer, P.; Verbruggen, H.W.; Weerd, B. de; Dool, E.J. den; Oerle, R. van

    2002-01-01

    The comparability of test results for protein S between laboratories is hampered by a high inter-laboratory variability. The effect of the use and type of common reference plasma on the inter-laboratory variability of the total and free protein S measurement was evaluated. The results of 10 plasma

  17. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. DeLooper; A. DeMeo; P. Lucas; A. Post-Zwicker; C. Phillips; C. Ritter; J. Morgan; P. Wieser; A. Percival; E. Starkman; G. Czechowicz

    2000-11-07

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.

  18. Further investigations of plasma armature performance in the Culham Laboratory HTF rail launcher

    Science.gov (United States)

    Herring, N.; Spikings, C. R.; Oxley, C. M.; Beacham, J. R.; Putley, D.

    1993-01-01

    This paper presents the results from an experimental investigation of plasma armature behavior in the Culham Laboratory HTF rail launcher. The object of this work was to gain further insight into the conditions which lead to the formation of secondary plasma arcs in the rail launcher. The railgun was operated with a 1 cm square bore formed from glass reinforced epoxy insulators and either stainless steel or copper rails. A 1 MJ, 8 kV capacitor bank was used as the power supply; this was arranged in five 200 kJ modules. The modules were sequentially fired, to produce a current waveform approximating to a linear ramp in the railgun. B-dot probes were used to measure the behavior of the plasma armatures in the launcher. A number of calibration checks were performed to assess the quality of the B-dot probe measurements, with regard to both spatial resolution and rail current measurement. Experimental results were obtained with projectile muzzle velocities ranging from 1.5 km/s to 3.0 km/s, two free arc shots also occurred during the test series. The results show that the launcher performed much better with copper rails than with stainless steel rails. The results also show that the glass epoxy insulators performed much better than the acetyl copolymer material previously used in HTF.

  19. Investigation of forbidden transitions in argon ions. [in laboratory plasma for solar corona simulation

    Science.gov (United States)

    Jalufka, N. W.

    1976-01-01

    An attempt has been made to observe the visible forbidden argon coronal lines at 553.6 nm (Ar X), 691.7 nm (Ar XI), 847.6 nm (Ar XIII), and 441.2 nm (Ar XIV) in a deuterium-argon plasma produced in a large theta pinch. The electron temperature (250 eV) and the electron density (5 by 10 to the 16th power per cu cm) were measured by Thomson scattering of ruby laser radiation. This temperature is adequate to produce ionization stages up to Ar XIV, as was verified by photographic observation of Ar XIV lines. No line corresponding to the coronal lines was observed from the high-temperature plasma, but lines with wavelengths very nearly identical to those of two of the forbidden transitions were observed; these lines were due to allowed transitions of Ar II in a cooler portion of the plasma. Calculation of rate coefficients in the Coulomb-Born approximation shows that for laboratory experiments, electron collisions are much more important than radiative decay in depopulating the upper state of the forbidden lines.

  20. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  1. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  2. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A. [eds.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.

  3. Fusion. A voyage through the plasma universe

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsson, H. [Chalmers University of Technology, Goeteborg (Sweden)

    2000-07-01

    This book adopts a novel approach to fusion plasmas, covering fusion both in the laboratory and in the cosmos. It discusses the evolution of the field from early plasma research to the gigantic scientific efforts of today, covering basic fusion plasma science and laboratory fusion experiments as well as geocosmophysical and astrophysical projects. The description is interspersed with passages which suggest relationships between science and art or poetry. The author also relates meetings which he has had with famous scientists like Niels Bohr, Hannes Alfven, Piotr Kapitza, Subrahmanyan Chandrasekhar, Lyman Spitzer and others.

  4. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  5. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    Science.gov (United States)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  6. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  7. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  8. Cumulative effect of Weibel-type instabilities in counterstreaming plasmas with non-Maxwellian anisotropies

    CERN Document Server

    Lázár, M; Shukla, P K

    2008-01-01

    Counterstreaming plasma structures are widely present in laboratory experiments and astrophysical systems, and they are investigated either to prevent unstable modes arising in beam-plasma experiments or to prove the existence of large scale magnetic fields in astrophysical objects. Filamentation instability arises in a counterstreaming plasma and is responsible for the magnetization of the plasma. Filamentationally unstable mode is described by assuming that each of the counterstreaming plasmas has an isotropic Lorentzian (kappa) distribution. In this case, the filamentation instability growth rate can reach a maximum value markedly larger than that for a a plasma with a Maxwellian distribution function. This behaviour is opposite to what was observed for the Weibel instability growth rate in a bi-kappa plasma, which is always smaller than that obtained for a bi-Maxwellian plasma. The approach is further generalized for a counterstreaming plasma with a bi-kappa temperature anisotropy. In this case, the filam...

  9. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  10. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  11. Development of radially movable multichannel Reynolds stress probe system for a cylindrical laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Yoshihiko; Yamada, Takuma; Takase, Yuichi [GSFS, University of Tokyo, Kashiwa, Chiba 816-8561 (Japan); Inagaki, Shigeru; Kamakaki, Kunihiro; Yagi, Masatoshi; Fujisawa, Akihide; Itoh, Sanae-I. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Arakawa, Hiroyuki; Kawai, Yoshinobu [IGSES, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [IE, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-03-15

    A new radially movable multichannel azimuthal probe system has been developed for measuring azimuthal and radial profiles of electrostatic Reynolds stress (RS) per mass density of microscale fluctuations for a cylindrical laboratory plasma. The system is composed of 16 probe units arranged azimuthally. Each probe unit has six electrodes to simultaneously measure azimuthal and radial electric fields for obtaining RS. The advantage of the system is that each probe unit is radially movable to measure azimuthal RS profiles at arbitrary radial locations as well as two-dimensional structures of fluctuations. The first result from temporal observation of fluctuation azimuthal profile presents that a low-frequency fluctuation (1-2 kHz) synchronizes oscillating Reynolds stress. In addition, radial scanning of the probe system simultaneously demonstrates two-dimensional patterns of mode structure and nonlinear forces with frequency f= 1.5 kHz and azimuthal mode number m= 1.

  12. Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma

    CERN Document Server

    Dorfman, S

    2016-01-01

    A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.

  13. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  14. Stereo pairs in Astrophysics

    CERN Document Server

    Vogt, Frédéric

    2011-01-01

    Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they prov...

  15. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, VL

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  16. High energy astrophysical neutrinos

    OpenAIRE

    Athar, H.

    2002-01-01

    High energy neutrinos with energy typically greater than tens of thousands of GeV may originate from several astrophysical sources. The sources may include, for instance, our galaxy, the active centers of nearby galaxies, as well as possibly the distant sites of gamma ray bursts. I briefly review some aspects of production and propagation as well as prospects for observations of these high energy astrophysical neutrinos.

  17. Acceleration in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  18. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.R.; Finley, V.L.

    1991-12-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  19. Collisionless Magnetic Reconnection as an Ion Acceleration Mechanism of Low- β Laboratory Plasmas

    Science.gov (United States)

    Cazzola, Emanuele; Curreli, Davide; Lapenta, Giovanni

    2016-10-01

    In this work we present the results from a series of fully-kinetic simulations of magnetic reconnection under typical laboratory plasma conditions. The highly-efficient energy conversion obtained from this process is of great interest for applications such as future electric propulsion systems and ion beam accelerators. We analysed initial configurations in low-beta conditions with reduced mass ratio of mi = 512me at magnetic fields between 200G and 5000G and electron temperatures between 0.5 and 10eV. The initial ion density and temperature are kept uniform and equal to 1019 m-3 and 0.0215eV (room temperature) respectively. The analysis has shown that the reconnection process under these conditions can accelerate ions up to velocities as high as a significant fraction of the inflow Alfven speed. The configuration showing the best scenario is further studied with a realistic mass ratio in terms of energetics and outflow ion momentum, with the latter featured by the traditionally used specific impulse. Finally, a more detailed analysis of the reconnection outflow has revealed the formation of different interesting set of shock structures, also recently seen from MHD simulations of relativistic plasmas and certainly subject of future more careful attention. The present work has been possible thanks to the Illinois-KULeuven Faculty/PhD Candidate Exchange Program. Computational resources provided by the PRACE Tier-0 machines.

  20. Nuclear Fusion in Laser-Driven Counter-Streaming Collisionless Plasmas

    CERN Document Server

    Zhang, Xiaopeng; Yuan, Dawei; Fu, Changbo; Bao, Jie; Chen, Liming; He, Jianjun; Hou, Long; Li, Liang; Li, Yanfei; Li, Yutong; Liao, Guoqiang; Rhee, Yongjoo; Sun, Yang; Xu, Skiwei; Zhao, Gang; Zhu, Baojun; Zhu, Jianqiang; Zhang, Zhe; Zhang, Jie

    2016-01-01

    Nuclear fusion reactions are the most important processes in nature to power stars and produce new elements, and lie at the center of the understanding of nucleosynthesis in the universe. It is critically important to study the reactions in full plasma environments that are close to true astrophysical conditions. By using laser-driven counter-streaming collisionless plasmas, we studied the fusion D$+$D$\\rightarrow n +^3$He in a Gamow-like window around 27 keV. The results show that astrophysical nuclear reaction yield can be modulated significantly by the self-generated electromagnetic fields and the collective motion of the plasma. This plasma-version mini-collider may provide a novel tool for studies of astrophysics-interested nuclear reactions in plasma with tunable energies in earth-based laboratories.

  1. Magnetic Reconnection in Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2011-01-01

    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical application...

  2. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2001 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada (fusao), do Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2002-07-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic.

  3. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs.

  4. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring

  5. Astrophysics experiments with radioactive beams at ATLAS

    Directory of Open Access Journals (Sweden)

    B. B. Back

    2014-02-01

    Full Text Available Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  6. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  7. Spectroscopic studies of the parameters of plasma jets during their propagation in the background plasma on the PF-3 facility

    Science.gov (United States)

    Dan’ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.

    2017-04-01

    This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.

  8. Measuring the radiative properties of astrophysical matter using the Z X-ray source

    Science.gov (United States)

    Bailey, James; ZAPP Team

    2017-06-01

    The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

  9. Stereo pairs in Astrophysics

    Science.gov (United States)

    Vogt, Frédéric; Wagner, Alexander Y.

    2012-01-01

    Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they provide the reader with a realistic view of multi-dimensional data, be it of observational or theoretical nature. In recognition of the ongoing 3D expansion in the commercial sector, we advocate an increased use of stereo pairs in Astrophysics publications and presentations as a first step towards new interactive and multi-dimensional publication methods.

  10. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results

    Science.gov (United States)

    Muoio, A.; Altana, C.; Frassetto, M.; Lanzalone, G.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.

    2017-03-01

    The studies discussed in this work are related to a scientific program that aims to reproduce astrophysical-plasmas in laboratory in order to better understand the nuclear processes involved in the stellar burning. An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ni, Fe and Co nanowires on laser energy absorption in the ns time domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Nanowires structures are tuned to increase the light absorption in the visible and infrared range due possibly to plasmonic excitation driven by the incoming photons. Different diagnostics techniques permit to monitor the plasma and to determine its reproducibility. Targets were then irradiated by Nd:YAG 2J, 6 ns infrared laser (λ = 1064 nm) at different pumping energies. Some preliminary results will be illustrated.

  11. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  12. Neutrinos as astrophysical probes

    CERN Document Server

    Cavanna, F; Palamara, O; Vissani, F; Cavanna, Flavio; Costantini, Maria Laura; Palamara, Ornella; Vissani, Francesco

    2003-01-01

    The aim of these notes is to provide a brief review of the topic of neutrino astronomy and in particular of neutrinos from core collapse supernovae. They are addressed to a curious reader, beginning to work in a multidisciplinary area that involves experimental neutrino physics, astrophysics, nuclear physics and particle physics phenomenology. After an introduction to the methods and goals of neutrinos astronomy, we focus on core collapse supernovae, as (one of) the most promising astrophysical source of neutrinos. The first part is organized almost as a tale, the last part is a bit more technical. We discuss the impact of flavor oscillations on the supernova neutrino signal (=the change of perspective due to recent achievements) and consider one specific example of signal in detail. This shows that effects of oscillations are important, but astrophysical uncertainties should be thought as an essential systematics for a correct interpretation of future experimental data. Three appendices corroborate the text ...

  13. Augmented Reality in Astrophysics

    CERN Document Server

    Vogt, Frédéric P A

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss p...

  14. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  15. Astrophysics Source Code Library

    CERN Document Server

    Allen, Alice; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Teuben, Peter J

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  16. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  17. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  18. Nuclear structure and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Grawe, H [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Langanke, K [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); MartInez-Pinedo, G [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2007-09-15

    The nuclear structure in regions of the Segre chart which are of astrophysical importance is reviewed. The main emphasis is put on those nuclei that are relevant for stellar nucleosynthesis in fusion processes, and in slow neutron capture, both located close to stability, rapid neutron capture close to the neutron dripline and rapid proton capture near the proton dripline. The basic features of modern nuclear structure, their importance and future potential for astrophysics and their level of predictibility are critically discussed. Recent experimental and theoretical results for shell evolution far off the stability line and consequences for weak interaction processes, proton and neutron capture are reviewed.

  19. The rapid plasma reagin test cannot replace the venereal disease research laboratory test for neurosyphilis diagnosis.

    Science.gov (United States)

    Marra, Christina M; Tantalo, Lauren C; Maxwell, Clare L; Ho, Emily L; Sahi, Sharon K; Jones, Trudy

    2012-06-01

    The cerebrospinal fluid (CSF) Venereal Disease Research Laboratory (VDRL) test is a mainstay for neurosyphilis diagnosis, but it lacks diagnostic sensitivity and is logistically complicated. The rapid plasma reagin (RPR) test is easier to perform, but its appropriateness for use on CSF is controversial. RPR reactivity was determined for CSF from 149 individuals with syphilis using 2 methods. The CSF-RPR was performed according to the method for serum. The CSF-RPR-V was performed using the method recommended for the CSF-VDRL. Laboratory-defined neurosyphilis included reactive CSF-fluorescent treponemal antibody absorption test and CSF white blood cells >20/uL. Symptomatic neurosyphilis was defined as vision loss or hearing loss. CSF-VDRL was reactive in 45 (30.2%) patients. Of these, 29 (64.4%) were CSF-RPR reactive and 37 (82.2%) were CSF-RPR-V reactive. There were no instances where the CSF-VDRL was nonreactive but the CSF-RPR or CSF-RPR-V was reactive. Among the 28 samples that were reactive in all 3 tests, CSF-VDRL titers (median [IQR], 1:4 [1:4-1:16]) were significantly higher than CSF-RPR (1:2 [1:1-1:4], P = 0.0002) and CSF-RPR-V titers (1:4 [1:2-1:8], P = 0.01). The CSF RPR and the CSF-RPR-V tests had lower sensitivities than the CSF-VDRL: 56.4% and 59.0% versus 71.8% for laboratory-diagnosed neurosyphilis and 51.5% and 57.6% versus 66.7% for symptomatic neurosyphilis. Compared with the CSF-VDRL, the CSF-RPR has a high false-negative rate, thus not improving upon this known limitation of the CSF-VDRL for neurosyphilis diagnosis. Adapting the RPR procedure to mimic the CSF-VDRL decreased, but did not eliminate, the number of false negatives and did not avoid all the logistical complications of the CSF-VDRL.

  20. Measurements of Cyclotron Features and Pulse Periods in the High-mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kühnel, Matthias; Fürst, Felix; Wilms, Jörn

    2013-11-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 ± 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ~22 and ~49 keV for 4U 1538-522 and at ~18 and ~36 keV for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  1. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  2. Generation of laser plasma bunches with a high efficiency of energy concentration for laboratory simulation of collisionless shock waves in magnetised cosmic plasma

    Science.gov (United States)

    Zakharov, Yu P.; Ponomarenko, A. G.; Tishchenko, V. N.; Antonov, V. M.; Melekhov, A. V.; Posukh, V. G.; Prokopov, P. A.; Terekhin, V. A.

    2016-05-01

    We present the results of first experiments on the formation of collisionless shock waves (CSWs) in background plasma by injecting laser plasma bunches transverse to the magnetic field (as a piston) with a maximum energy up to 100 J per unit of solid angle and with a high enough degree of ion magnetisation. With this aim in view, on a unique KI-1 facility at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP), a plastic (polyethylene) target irradiated by a CO2 laser in the most energy-efficient regime (near the plasma formation threshold) and a highly ionised hydrogen plasma with a high concentration in a large volume (not less than 1 m3) have been employed. As a result of model experiments performed on the basis of a model of collisionless interaction of plasma flows, developed at the VNIIEF and being adequate to the problem under consideration, not only an intensive, background-induced, deceleration of a super-Alfven laser plasma flow, but also the formation in that flow of a strong perturbation having the properties of a subcritical CSW and propagating transverse to the magnetic field, have been first registered in the laboratory conditions.

  3. Advancing Underground Nuclear Astrophysics with CASPAR

    Science.gov (United States)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wells, Doug; Wiescher, Michael

    2015-04-01

    The advancement of experimental nuclear astrophysics techniques and the requirement of astrophysical network models for further nuclear data over greater energy ranges, has led to the requirement for the better understanding of nuclear reactions in stellar burning regimes. For those reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, the energy range of astrophysical interest is always problematic to probe. As reaction measurements approach the burning window of interest, the rapid drop off in cross-section hampers laboratory investigation. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13 C(α,n)16 O and 22 Ne(α,n)25 Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, SD. With thanks to funding provided by South Dakota Science and Technology Authority and the NSF under Grant Number PHY-1419765.

  4. Solar eclipses as an astrophysical laboratory.

    Science.gov (United States)

    Pasachoff, Jay M

    2009-06-11

    Observations of the Sun during total eclipses have led to major discoveries, such as the existence of helium (from its spectrum), the high temperature of the corona (though the reason for the high temperature remains controversial), and the role of magnetic fields in injecting energy into-and trapping ionized gases within-stellar atmospheres. A new generation of ground-based eclipse observations reaches spatial, temporal and spectral-resolution domains that are inaccessible from space and therefore complement satellite studies.

  5. The Homunculus: a Unique Astrophysical Laboratory

    Science.gov (United States)

    Gull, T. R.; Nielsen, K. E.

    η Car is surrounded by bipolar shells, the Homunculus and the internal Little Homunculus, that are observed in both emission and absorption. Thin disks, located between the bipolar lobes, include the very bright Weigelt blobs and the neutral emission structure called the Strontium filament. All are affected by changes in UV and X-Ray flux of the binary system. For example, the normally ionized Little Homunculus recombines during the few month long spectroscopic minimum and then reionizes. Spectral data, obtained with Hubble Space Telescope Space Telescope Imaging Spectrograph (HST/STIS) and with Very Large Telescope UltraViolet Echelle Spectrograph (VLT/UVES), provide a wealth of information on spectroscopic properties of neutral and singly-ionized metals and on chemistry of nitrogen rich, carbon, oxygen poor, dense, warm gas. This information is important to understand gamma ray bursters (GRB) that reveal red-shifted near-UV metallic absorptions from pre-GRB stellar ejecta.

  6. Colour-Charged Quark Matter in Astrophysics?

    Institute of Scientific and Technical Information of China (English)

    QIU Cong-Xin; XU Ren-Xin

    2006-01-01

    Colour confinement is only a supposition, which has not yet been proven in QCD. Here we propose that macroscopic quark-gluon plasma in astrophysics could hardly maintain colourless because of causality. It is expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early Universe could be unavoidable if their colourless correspondents do exist.

  7. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  8. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  9. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  10. Underground Nuclear Astrophysics - from LUNA to CASPAR

    Science.gov (United States)

    Strieder, Frank; Caspar Collaboration

    2015-04-01

    It is in the nature of astrophysics that many of the processes and objects are physically inaccessible. Thus, it is important that those aspects that can be studied in the laboratory are well understood. Nuclear reactions are such quantities that can be partly measured in the laboratory. These reactions influence the nucleosynthesis of the elements in the Big Bang as well as in all objects formed thereafter, and control the associated energy generation and evolution of stars. Since 20 years LUNA (Laboratory for Underground Nuclear Astrophysics) has been measuring cross sections relevant for hydrogen burning in the Gran Sasso Laboratory and demonstrated the research potential of an underground accelerator facility. Unfortunately, the number of reactions is limited by the energy range accessible with the 400 kV LUNA accelerator. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. This project will primarily focus on the neutron sources for the so-called s-process, e.g. 13 C(α , n) 16 O and 22 Ne(α , n) 25 Mg , and lead to unprecedented measurements compared to previous studies.

  11. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2003 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada - fusao. Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2004-07-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic.

  12. Activities report of the National Space Research Institute Plasma Laboratory for the period 1988/1989; Relatorio de atividades do Laboratorio Associado de Plasma do INPE no bienio 88/89

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    1990-11-01

    This report describes the activities performed in the period 1988/1989 by the National Space Research Institute (INPE/SCT) Plasma Laboratory (LAP). The report presents the main results in the following research lines: plasma physics, plasma technology, and controlled thermonuclear fusion. (author). 49 figs., 3 tabs.

  13. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  14. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-05-15

    While the most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluid physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We have also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. Assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.

  15. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  16. Astrophysical terms in Armenian

    Science.gov (United States)

    Yeghikian, A. G.

    2015-07-01

    There are quite a few astrophysical textbooks (to say nothing about monographs) in Armenian, which are, however out of date and miss all the modern terms concerning space sciences. Many terms have been earlier adopted from English and, especially, from Russian. On the other hand, teachers and lecturers in Armenia need scientific terms in Armenian adequately reproducing either their means when translating from other languages or (why not) creating new ones. In short, a permanently updated astrophysical glossary is needed to serve as explanation of such terms. I am not going here to present the ready-made glossary (which should be a task for a joint efforts of many professionals) but instead just would like to describe some ambiguous examples with comments where possible coming from my long-year teaching, lecturing and professional experience. A probable connection between "iron" in Armenian as concerned to its origin is also discussed.

  17. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  18. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  19. Nuclear astrophysics at DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Hager, U. [Colorado School of Mines, Golden, Colorado (United States)

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  20. Integrated astrophysical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T. A.; Eastman, R. G.; Dubois, P.; Eltgroth, P. G.; Gentile, N.; Jedamzik, K.; Wilson, J. R.

    1997-06-03

    In this project, we have developed prototype techniques for defining and extending a variety of astrophysical modeling capabilities, including those involving multidimensional hydrodynamics, complex transport, and flexibly-coupled equation-of state and nuclear reaction networks. As expected, this project is having both near-term payoffs in understanding complex astrophysical phenomena, as well as significant spin-offs in terms of people and ideas to related ASCI code efforts. Most of our work in the first part of this project was focused on the modularization, extension, and initial integration of 4 previously separate and incommensurate codes: the stellar evolution/explosion code KEPLER; the non-LTE spectral line transport code, EDDINGTON, used for modeling supernovae spectra; the 3-D smooth particle hydro code, PIP; and the discontinuous-finite-element, 3D hydro module from the lCF3D code.

  1. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); John Adams Institute for Accelerator Science, Department of Physics, University of Oxford (United Kingdom); Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom)

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  2. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma

    Institute of Scientific and Technical Information of China (English)

    Q. Haque; H. Saleem

    2004-01-01

    @@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.

  3. Reactivity of microhemagglutination, fluorescent treponemal antibody absorption, Venereal Disease Research Laboratory, and rapid plasma reagin tests in primary syphilis.

    Science.gov (United States)

    Huber, T W; Storms, S; Young, P; Phillips, L E; Rogers, T E; Moore, D G; Williams, R P

    1983-03-01

    Seroreactivity of sera from 109 patients with first-infection primary syphilis was 98.2% in the fluorescent treponemal antibody absorption test, 92.7% in the rapid plasma reagin 18-mm circle card test, 72.5% in the microhemagglutination test (MHA-TP), and 72.5% in the Venereal Disease Research Laboratory test. Seroreactivity of sera from 18 patients with primary syphilis with documented previous infection(s) was 100% in the fluorescent treponemal antibody absorption test, the rapid plasma reagin 18-mm circle card test, and the MHA-TP test and 88.9% in the Venereal Disease Research Laboratory test. The MHA-TP test failed to confirm reactivity in 13 of 79 sera which were reactive in the Venereal Disease Research Laboratory test and in 24 of 101 sera which were reactive in the rapid plasma reagin 18-mm circle card test. Testing another production lot of MHA-TP reagents resulted in even poorer correlation. The reactivity of the MHA-TP test in primary syphilis appeared to vary with the sensitivity of the production lot of reagents.

  4. Astrophysics and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Carraminana, Alberto [Instituto Nacional de AstrofIsica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico)

    2005-01-01

    These are the lecture notes of an astroparticle course constructed from the local astrophysical environment out to the cosmological domain. The subjects reviewed are stellar physics, focusing on the standard solar model and the case of solar neutrinos; the Galactic interstellar medium and the origin of its cosmic rays; the more energetic extragalactic high energy cosmic rays, supernovae and neutrinos in the nearby universe; finally, a short digression is made into astroparticles at cosmological scales, regarding the nature of dark matter.

  5. Cosmology and astrophysics 1992

    CERN Document Server

    Krauss, L M

    1992-01-01

    I review recent developments in cosmology and astrophysics relevant to particle physics, focussing on the following questions: What's new in 1992? What have we learned since the last ICHEP meeting in 1990? and What are the prospects for the future? AMong the topics explicitly discussed are: COBE, Large Scale Structure, and Dark Matter; Bib Bang Nucleosynthesis; the Solar Neutrino Problem; and High Energy Gamma Ray PHysics.

  6. Integrating Out Astrophysical Uncertainties

    CERN Document Server

    Fox, Patrick J; Weiner, Neal

    2010-01-01

    Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\\em integral} quantities, such as $g(v_{min})=\\int_{v_{min}} dv\\, f(v)/v $ and $\\int_{v_{thresh}} dv\\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\\, \\rm electrons/keV}$. For DAMA t...

  7. PREFACE: Nuclear Physics in Astrophysics III

    Science.gov (United States)

    Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.

    2008-01-01

    astrophysical modelling, and new theoretical approaches in nuclear physics are spurned by a wealth of new experimental data. It has been recognized by all participants that a joint effort by these disciplines is required in order to further our understanding of stars in all the phases of their lifespan and of the creation of energy and the chemical elements. The conference took place in the city of Dresden, in the geographical heart of Europe. Dresden is a traditional centre of culture and the fine arts, and its recently reconstructed Frauenkirche (Church of Our Lady) symbolizes the desire of Europeans to leave war and division behind them and revive their traditionally lively cultural and scientific exchange. Scientists from all parts of Europe attended NPA3, as well as participants from North America, Japan and the Near East. Especially encouraging was the great echo among young scientists whose devotion promises a bright future to the field. Fresh, dedicated and interdisciplinary efforts are indeed needed to solve some of the astrophysical puzzles presented at NPA3. New satellite observatories, unprecedented computing power, and new experimental facilities such as underground accelerator laboratories and radioactive ion beam facilities will contribute to these efforts. We look forward to hearing about these and other developments in the fourth conference of the Nuclear Physics in Astrophysics series (NPA4) which is to be held in Gran Sasso, Italy in 2009. The financial support of the hosting institution Forschungszentrum Dresden-Rossendorf, of the Free State of Saxony and of the European Physical Society has been essential in ensuring the success of the conference. We thank the Publisher and the staff of it Journal of Physics G: Nuclear and Particle Physics for the fruitful collaboration in preparing this issue. The conference website is located at http://www.fzd.de/npa3 Cover image of Dresden by C. Preußel, Forschungszentrum Dresden-Rossendorf Conference photograph

  8. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  9. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    Science.gov (United States)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and

  10. Cold molecular plasmas in the universe and in the laboratory; Plasmas frios moleculares en el Universo y en el laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro, I.

    2010-07-01

    According to the energy of its particles, plasmas are the fourth state of aggregation of matter after solids, liquids and gases. To change from one to another, it must provide energy and increasing temperature. Increasing temperature significantly in a gas, its atoms or molecules acquire enough energy to ionize to collide, so that at 20,000 K have a lot of gas ionization high. However, atoms and molecules can also by electron impact ionization, absorption photons, chemical or nuclear reactions, or other processes. (Author) 17 refs.

  11. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.

    Science.gov (United States)

    Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10(3)-10(4) e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  12. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

    Science.gov (United States)

    Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  13. General relativity and relativistic astrophysics

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

  14. Rydberg atoms in astrophysics

    CERN Document Server

    Gnedin, Yu N; Ignjatovic, Lj M; Sakan, N M; Sreckovic, V A; Zakharov, M Yu; Bezuglov, N N; Klycharev, A N; 10.1016/j.newar.2009.07.003

    2012-01-01

    Elementary processes in astrophysical phenomena traditionally attract researchers attention. At first this can be attributed to a group of hemi-ionization processes in Rydberg atom collisions with ground state parent atoms. This processes might be studied as a prototype of the elementary process of the radiation energy transformation into electrical one. The studies of nonlinear mechanics have shown that so called regime of dynamic chaos should be considered as typical, rather than exceptional situation in Rydberg atoms collision. From comparison of theory with experimental results it follows that a such kind of stochastic dynamic processes, occurred during the single collision, may be observed.

  15. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  16. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  17. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  18. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan

    2017-08-01

    Transient Astrophysics Probe (TAP), selected by NASA for a funded Concept Study, is a wide-field high-energy transient mission proposed for flight starting in the late 2020s. TAP’s main science goals, called out as Frontier Discovery areas in the 2010 Decadal Survey, are time-domain astrophysics and counterparts of gravitational wave (GW) detections. The mission instruments include unique imaging soft X-ray optics that allow ~500 deg2 FoV in each of four separate modules; a high sensitivity, 1 deg2 FoV soft X-ray telescope based on single crystal silicon optics; a passively cooled, 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of ~8 small NaI gamma-ray detectors. TAP will observe many events per year of X-ray transients related to compact objects, including tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, and high redshift Gamma-Ray Bursts. Perhaps most exciting is TAP’s capability to observe X-ray and IR counterparts of GWs involving stellar mass black holes detected by LIGO/Virgo, and possibly X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays.

  19. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    Science.gov (United States)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  20. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak.

  1. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  2. Astronomy and Astrophysics in the Philosophy of Science

    CERN Document Server

    Anderl, Sibylle

    2015-01-01

    This article looks at philosophical aspects and questions that modern astrophysical research gives rise to. Other than cosmology, astrophysics particularly deals with understanding phenomena and processes operating at "intermediate" cosmic scales, which has rarely aroused philosophical interest so far. Being confronted with the attribution of antirealism by Ian Hacking because of its observational nature, astrophysics is equipped with a characteristic methodology that can cope with the missing possibility of direct interaction with most objects of research. In its attempt to understand the causal history of singular phenomena it resembles the historical sciences, while the search for general causal relations with respect to classes of processes or objects can rely on the "cosmic laboratory": the multitude of different phenomena and environments, naturally provided by the universe. Furthermore, the epistemology of astrophysics is strongly based on the use of models and simulations and a complex treatment of la...

  3. ACCESS: Enabling an Improved Flux Scale for Astrophysics

    CERN Document Server

    Kaiser, Mary Elizabeth; McCandliss, Stephan R; Sahnow, David J; Barkhouser, Robert H; Van Dixon, W; Feldman, Paul D; Moos, H Warren; Orndorff, Joseph; Pelton, Russell; Riess, Adam G; Rauscher, Bernard J; Kimble, Randy A; Benford, Dominic J; Gardner, Jonathan P; Hill, Robert J; Woodgate, Bruce E; Bohlin, Ralph C; Deustua, Susana E; Kurucz, Robert; Lampton, Michael; Perlmutter, Saul; Wright, Edward L

    2010-01-01

    Improvements in the precision of the astrophysical flux scale are needed to answer fundamental scientific questions ranging from cosmology to stellar physics. The unexpected discovery that the expansion of the universe is accelerating was based upon the measurement of astrophysical standard candles that appeared fainter than expected. To characterize the underlying physical mechanism of the "Dark Energy" responsible for this phenomenon requires an improvement in the visible-NIR flux calibration of astrophysical sources to 1% precision. These improvements will also enable large surveys of white dwarf stars, e.g. GAIA, to advance stellar astrophysics by testing and providing constraints for the mass-radius relationship of these stars. ACCESS (Absolute Color Calibration Experiment for Standard Stars) is a rocket-borne payload that will enable the transfer of absolute laboratory detector standards from NIST to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of R = 5...

  4. Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.S.

    1997-12-01

    The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

  5. Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

    Directory of Open Access Journals (Sweden)

    Marciniak Łukasz

    2016-12-01

    Full Text Available This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN. The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe, neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

  6. On the Observation of Jitter Radiation in Solid-Density Laser-Plasma Laboratory Experiments

    CERN Document Server

    Keenan, Brett D

    2015-01-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e. "sub-Larmor scales". Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence, known as jitter radiation, has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, jitter radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  7. Assessment of apixaban plasma levels by laboratory tests: suitability of three anti-Xa assays. A multicentre French GEHT study.

    Science.gov (United States)

    Gouin-Thibault, Isabelle; Flaujac, Claire; Delavenne, Xavier; Quenet, Sara; Horellou, Marie-Hélenè; Laporte, Silvy; Siguret, V; Lecompte, T

    2014-02-01

    While laboratory monitoring is not required in patients treated with apixaban, a direct factor-Xa inhibitor, assessment of its concentration is useful in some critical situations. However, few data are available on its effect on coagulation tests and on the suitability of anti-Xa assays for its quantification. It was the objective of this study to identify laboratory tests suitable for apixaban concentration assessment. Coagulation tests - PT and aPTT- and anti-Xa assays were performed in apixaban-spiked plasma samples. To evaluate the sensitivity of PT and aPTT to apixaban, we conducted a first monocenter part, with a wide range of concentrations (50-1,000 ng/ml), a large panel of reagents (20 reagents), and two coagulometers (STAR®, Stago and ACL TOP®, IL), and a second multicenter part involving 13 laboratories using either a common PT reagent (RecombiPlastin2G®) or the local PT and aPTT reagents. In the multicentre part, five blinded apixaban-spiked plasma samples (0/100/200/400/800 ng/ml - checked by HPLC-MS/MS) were used; apixaban concentrations were measured with three anti-Xa assays, apixaban calibrators and controls (Stago). PT and aPTT tests using a large panel of reagents displayed a low sensitivity to a wide range of apixaban concentrations. The concentrations to double PT ranged from 400 to >1,000 ng/ml with the 10 reagents. With the three anti-Xa assays, inter-laboratory precision and accuracy were below 11% and 12%, respectively. In conclusion, whereas PT and aPTT tests were not sensitive enough to detect apixaban, the three anti-Xa assays tested using lyophilised apixaban calibrators and controls allowed to reliably quantify a wide range of apixaban concentrations.

  8. Learning Astrophysics through Mobile Gaming

    Science.gov (United States)

    Massimino, P.; Costa, A.; Becciani, U.; Krokos, M.; Bandieramonte, M.; Petta, C.; Pistagna, C.; Riggi, S.; Sciacca, E.; Vitello, F.

    2013-10-01

    SpaceMission is a mobile application (iOS) offering hands-on experience of astrophysical concepts using scientific simulations. The application is based on VisIVO which is a suite of software tools for visual discovery through 3D views generated from astrophysical datasets.

  9. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  10. Numerical relativity beyond astrophysics

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  11. Theoretical Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  12. Astrophysics Faces the Millennium

    Science.gov (United States)

    Trimble, Virginia

    2001-03-01

    The Medieval synthesis of Aristotelian philosophy and church doctrine, due largely to Thomas Aquinas, insisted that the universe outside the earth's atmosphere must be immutable, single-centered, fully inventoried, immaculate or perfect, including perfectly spherical, and much else that sounds strange to modern ears. The beginnings of modern astronomy can be largely described as the overthrow of these various concepts by a combination of new technologies and new ways of thinking, and many current questions in astrophysics can be directly tied to developments of those same concepts. Indeed they probably all can be, but not over time, ending with questions like: Do other stars have spots? What does it mean when quasar jets look like they are moving faster than the speed of light? Is there anything special about our star, our galaxy, our planet, or our universe? How did these all form, and what is their long-term fate?

  13. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  14. NASA's Astrophysics Data Archives

    Science.gov (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  15. Radiation processes in astrophysics

    CERN Document Server

    Tucker, Wallace H

    1975-01-01

    The purpose of this book is twofold: to provide a brief, simple introduction to the theory of radiation and its application in astrophysics and to serve as a reference manual for researchers. The first part of the book consists of a discussion of the basic formulas and concepts that underlie the classical and quantum descriptions of radiation processes. The rest of the book is concerned with applications. The spirit of the discussion is to present simple derivations that will provide some insight into the basic physics involved and then to state the exact results in a form useful for applications. The reader is referred to the original literature and to reviews for rigorous derivations.The wide range of topics covered is illustrated by the following table of contents: Basic Formulas for Classical Radiation Processes; Basic Formulas for Quantum Radiation Processes; Cyclotron and Synchrotron Radiation; Electron Scattering; Bremsstrahlung and Collision Losses; Radiative Recombination; The Photoelectric Effect; a...

  16. Numerical relativity beyond astrophysics.

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  17. Numerical Relativity Beyond Astrophysics

    CERN Document Server

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  18. Experiments in Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Boratav, M

    2004-07-01

    During the last decade, the field of what is currently called particle astrophysics (that I prefer to the shaky neologism astroparticle physics) has experienced a surprising growth. It is interesting to understand why the cosmic rays, the poor man's accelerator not no long ago, are becoming the object of scrutiny for a continuously growing community of theoreticians and experimentalists. In this article, we made an arbitrary choice of a small number of experiments to illustrate today's state of the art and the future perspectives in this domain. Our choice is based on three facts: the objects detected in each experiment are different, all the selected experiments are in their starting phase and all are spectacular for various reasons. Our aim is to convince the reader of the enormous discovery potential of these ongoing projects and share with him the excitement experienced by those involved in them. (Author) 37 refs.

  19. Astrophysical Jets and Outflows

    CERN Document Server

    De Gouveia dal Pino, E M

    2004-01-01

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical si...

  20. Theoretical Astrophysics at Fermilab

    Science.gov (United States)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  1. The Gaussian radial basis function method for plasma kinetic theory

    Science.gov (United States)

    Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.

    2015-10-01

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.

  2. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  3. Non-Gaussian properties of global momentum and particle fluxes in a cylindrical laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Yoshihiko; Yamada, Takuma [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561 (Japan); Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, Sanae-I.; Inagaki, Shigeru; Fujisawa, Akihide; Yagi, Masatoshi [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Arakawa, Hiroyuki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Kasuya, Naohiro; Itoh, Kimitaka [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Kamataki, Kunihiro [Center for Research and Advancement in Higher Education, Kyushu University, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588 (Japan); Oldenbuerger, Stella [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Takase, Yuichi [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561 (Japan); Diamond, Patrick H. [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2011-07-15

    Non-Gaussian statistical properties of the azimuthally averaged momentum and particle fluxes driven by turbulence have been simultaneously observed in inhomogeneous magnetized plasmas for the first time. We identified the stretched Gaussian distribution of the both fluxes and the transition from the point-wise distribution to averaged ones was confirmed. The change of the particle flux precedes that of the momentum flux, demonstrating that the momentum flux is induced by the relaxation of density gradient.

  4. Reduced MHD and Astrophysical Fluid Dynamics

    Science.gov (United States)

    Arter, Wayne

    2011-08-01

    Recent work has shown a relationship between between the equations of Reduced Magnetohydrodynamics (RMHD), used to model magnetic fusion laboratory experiments, and incompressible magnetoconvection (IMC), employed in the simulation of astrophysical fluid dynamics (AFD), which means that the two systems are mathematically equivalent in certain geometries. Limitations on the modelling of RMHD, which were found over twenty years ago, are reviewed for an AFD audience, together with hitherto unpublished material on the role of finite-time singularities in the discrete equations used to model fluid dynamical systems. Possible implications for turbulence modelling are mentioned.

  5. Collaborative Astrophysical Research in Aire

    Science.gov (United States)

    Zhou, Jianfeng

    The AIRE (Astrophysical Integrated Research Environment) consists of three main parts: a Data Archive Center (DAC) which collects and manages public astrophysical data; a web-based Data Processing Center (DPC) which enables astrophysicists to process the data in a central server at any place and anytime; and a Collaborative Astrophysical Research Project System (CARPS) with which astrophysicists in different fields can pursue a collaborative reserch efficiently. Two research examples QPO study of RXTE data and wavelet analysis of large amount of galaxies are shown here.

  6. Astrophysical components from Planck maps

    CERN Document Server

    Burigana, Carlo; Paoletti, Daniela; Mandolesi, Nazzareno; Natoli, Paolo

    2016-01-01

    The Planck Collaboration has recently released maps of the microwave sky in both temperature and polarization. Diffuse astrophysical components (including Galactic emissions, cosmic far infrared (IR) background, y-maps of the thermal Sunyaev-Zeldovich (SZ) effect) and catalogs of many thousands of Galactic and extragalactic radio and far-IR sources, and galaxy clusters detected through the SZ effect are the main astrophysical products of the mission. A concise overview of these results and of astrophysical studies based on Planck data is presented.

  7. Direct detection of resonant electron pitch angle scattering by whistler waves in a laboratory plasma.

    Science.gov (United States)

    Van Compernolle, B; Bortnik, J; Pribyl, P; Gekelman, W; Nakamoto, M; Tao, X; Thorne, R M

    2014-04-11

    Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.

  8. A laser application to nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX (United States); Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A. [Cyclotron Institute, Texas A and M University, 3366 TAMU, College Station, TX, U.S.A. and INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Kimura, S. [Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Mazzocco, M. [Dipartimento di Fisica e Astronomia Università degli Studi di Padova and INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Consoli, F.; De Angelis, R.; Andreoli, P. [Associazione Euratom-ENEA Sulla Fusione, Via Enrico Fermi 45, CP 65-00044 Frascati, Rome (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX, 78712 (United States)

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  9. Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the

  10. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-06-01

    In Titan’s atmosphere, a complex organic chemistry occurs between its main constituents, N2 and CH4, and leads to the production of larger molecules and solid aerosols.Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed on the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s atmospheric chemistry at Titan-like temperature (200K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to monitor the first and intermediate steps of the chemistry as well as specific chemical pathways when adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan[1].We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of

  11. Byurakan Astrophysical Observatory

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  12. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  13. Astrophysical jets and outflows

    Science.gov (United States)

    de Gouveia Dal Pino, Elisabete M.

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems are either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models particularly to YSOs and AGN jets are addressed.

  14. Visualizing multiwavelength astrophysical data.

    Science.gov (United States)

    Li, Hongwei; Fu, Chi-Wing; Hanson, Andrew J

    2008-01-01

    With recent advances in the measurement technology for allsky astrophysical imaging, our view of the sky is no longer limited to the tiny visible spectral range over the 2D Celestial sphere. We now can access a third dimension corresponding to a broad electromagnetic spectrum with a wide range of allsky surveys; these surveys span frequency bands including long wavelength radio, microwaves, very short X-rays, and gamma rays. These advances motivate us to study and examine multiwavelength visualization techniques to maximize our capabilities to visualize and exploit these informative image data sets. In this work, we begin with the processing of the data themselves, uniformizing the representations and units of raw data obtained from varied detector sources. Then we apply tools to map, convert, color-code, and format the multiwavelength data in forms useful for applications. We explore different visual representations for displaying the data, including such methods as textured image stacks, the horseshoe representation, and GPU-based volume visualization. A family of visual tools and analysis methods is introduced to explore the data, including interactive data mapping on the graphics processing unit (GPU), the mini-map explorer, and GPU-based interactive feature analysis.

  15. Debye-scale solitary structures measured in a beam-plasma laboratory experiment

    Directory of Open Access Journals (Sweden)

    B. Lefebvre

    2011-01-01

    Full Text Available Solitary electrostatic pulses have been observed in numerous places of the magnetosphere such as the vicinity of reconnection current sheets, shocks or auroral current systems, and are often thought to be generated by energetic electron beams. We present results of a series of experiments conducted at the UCLA large plasma device (LAPD where a suprathermal electron beam was injected parallel to a static magnetic field. Micro-probes with tips smaller than a Debye length enabled the detection of solitary pulses with positive electric potential and half-widths 4–25 Debye lengths (λDe, over a set of experiments with various beam energies, plasma densities and magnetic field strengths. The shape, scales and amplitudes of the structures are similar to those observed in space, and consistent with electron holes. The dependance of these properties on the experimental parameters is shown. The velocities of the solitary structures (1–3 background electron thermal velocities are found to be much lower than the beam velocities, suggesting an excitation mechanism driven by parallel currents associated to the electron beam.

  16. Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples

    Science.gov (United States)

    Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio

    2007-12-01

    We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.

  17. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  18. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  19. The Fermilab Particle Astrophysics Center

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  20. Magnetized strongly coupled plasmas and how to realize them in a dusty plasma setup

    CERN Document Server

    Bonitz, M; Ott, T; Löwen, H

    2013-01-01

    Strongly coupled plasmas in which the interaction energy exceeds the kinetic energy play an important role in many astrophysical and laboratory systems including compact stars, laser plasmas and dusty plasmas. They exhibit many unusual collective properties, such as liquid or crystalline behaviour, peculiar oscillation spectra and transport properties. Recently, strongly coupled plasmas were studied in the presence of a strong magnetic field by computer simulations, and strong modifications of their transport properties and oscillation spectra were observed. While strong magnetization is common in stellar systems it is practically impossible to achieve in complex plasmas due to the large mass of the dust particles. Here we discuss a recently demonstrated approach to achieve very strong "magnetization" by a rotation of the neutral gas, and we present new results for macroscopic two-dimensional systems.

  1. Diffusive shock acceleration at laser driven shocks: studying cosmic-ray accelerators in the laboratory

    CERN Document Server

    Reville, B; Gregori, G

    2012-01-01

    The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays.

  2. Some aspects of neutrino astrophysics

    CERN Document Server

    Athar, H

    2002-01-01

    Selected topics in neutrino astrophysics are reviewed. These include the production of low energy neutrino flux from cores of collapsing stars and the expected high energy neutrino flux from some other astrophysical sites such as the galactic plane as well as the center of some distant galaxies. The expected changes in these neutrino fluxes because of neutrino oscillations during their propagation to us are described. Observational signatures for these neutrino fluxes with and without neutrino oscillations are discussed.

  3. Neutrinos in Astrophysics and Cosmology

    CERN Document Server

    Balantekin, A B

    2016-01-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  4. Princeton Plasma Physics Laboratory annual report, October 1, 1993-- September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Tokamak Fusion Test Reactor (TFTR) project is well into the experimental phase of its deuterium-tritium (D-T) program, with the objective to derive the maximum amount of experimental data on the behavior of tokamak plasmas containing a significant population of energetic alpha particles. Since the initial D-T experiments in December 1993, the operational performance of the TFTR, as well as the required tritium-handling and machine maintenance procedures in an activated environment, have improved markedly, so that D-T operation has now become essentially routine, while fully conforming with all of the safety and environmental requirements. During the D-T phase, the machine and auxiliary-systems parameters have also been increased, most notably the toroidal field (to 5.6 T) and the neutral-beam power (to 40 MW). The radio-frequency power in the ion-cyclotron-range of frequencies (ICRF) has been increased to 11 MW.

  5. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  6. Final Report: Laboratory Studies of Spontaneous Reconnection and Intermittent Plasma Objects

    Energy Technology Data Exchange (ETDEWEB)

    Egedal-Pedersen, Jan [Massachusetts Institute of Technology; Porkolab, Miklos [Massachusetts Institute of Technology

    2011-05-31

    The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF) at the MIT Plasma Science and Fusion Center and the MIT Physics Department. The NSF/DOE award No. 0613734, supported two graduate students (now Drs. W. Fox and N. Katz) and material expenses. The grant enabled these students to operate the VTF basic plasma physics experiment on magnetic reconnection. The first configuration was characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail. The second configuration was developed to be relevant to specifically to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection. In the Report we review the general motivation of this work and provide an overview of our experimental and theoretical results enabled by the support through the awards.

  7. Astrophysical neutrinos and atmospheric leptons

    Directory of Open Access Journals (Sweden)

    Gaisser T.K.

    2017-01-01

    Full Text Available IceCube measurements of the neutrino flux from TeV to PeV show the signal of astrophysical neutrinos standing out at high energy well above the steeply falling foreground of atmospheric neutrinos. The astrophysical signal appears both in measurements of neutrino-induced muons and in the starting event sample, which responds preferentially to electron and tau neutrinos, but which also includes muon neutrinos. Searches for point sources of astrophysical neutrinos have, however, not yet identified a single source or class of sources for the astrophysical component. Some constraints on astrophysical sources implied by the current observations will be described in this talk. Uncertainties in the fluxes of atmospheric leptons resulting from an incomplete knowledge of the primary cosmic-ray spectrum and from a limited understanding of meson production, including charm will also be reviewed. The ultimate goal is to improve the understanding of the astrophysical spectrum in the transition to lower energy where atmospheric neutrinos dominate. The main aspects of this presentation will be included in the author's Review Talk at the end of the Symposium.

  8. Turbulent dynamo in a collisionless plasma.

    Science.gov (United States)

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco

    2016-04-12

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  9. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  10. Equipment, preliminary research and research opportunities at the High Power Laser Laboratory at Institute of Plasma Physics and Laser Microfusion

    Science.gov (United States)

    Rosinski, M.; Zaras-Szydlowska, A.; Parys, P.; Gasior, P.; Ryc, L.; Badziak, J.

    2014-11-01

    The aim of this paper is to describe the newly-opened High Power Laser Laboratory (HPLL) at the Institute of Plasma Physics and Laser Microfusion (IPPLM) and presents its research possibilities in terms of the laser source and the available diagnostics. The interactions of the ultra-short laser pulses of femto to pico second duration and energies of up to 1 J with solid-state targets leads to very distinguish phenomena which can be used for investigation of exotic states of matter and to apply them for numerous technological purposes. in this goal the application of sophisticated and especially designed diagnostic systems is also needed. As the effects of interactions include the broad range of processes as acceleration of fast ions and electrons, x-rays generation and solid material modification in terms of its mechanical, physical and optical properties the research needs to use both online plasma diagnostics and the methods of post-mortem material research characterization methods. The paper presents a brief description of the laser system, the interaction vacuum chambers and the available diagnostics as well as the scientific investigation trends which can be picked up at the HPLL at the IPPLM.

  11. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Laboratory Data for X-Ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Brown, G.V.; Chen, H.; Gu, M.F.; Kahn, S.M.; Lepson, J.K.; Savin, D.W.; Utter, S.B.

    2000-03-02

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in it's ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, XMM, ASCA and EUVE.

  13. VALD - an atomic and molecular database for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Heiter, U; Barklem, P; Kochukhov, O; Piskunov, N [Department of Astronomy and Space Physics, Uppsala University (Sweden); Fossati, L; Obbrugger, M; Stuetz, Ch; Weiss, W W [Institute of Astronomy, University of Vienna (Austria); Kildiyarova, R [Institute of Spectroscopy, Russian Academy of Sciences, Moscow region, Troitsk (Russian Federation); Kupka, F [Max-Planck-Institute for Astrophysics, Garching (Germany); Plez, B [Universite Montpellier II, GRAAL, CNRS - UMR 5024 (France); Ryabchikova, T [Institute of Astronomy, Russian Academy of Sciences, Moscow (Russian Federation); Stempels, H C [School of Physics and Astronomy, University of St Andrews, Scotland (United Kingdom)], E-mail: ulrike@astro.uu.se

    2008-10-15

    The VALD database of atomic and molecular data aims to ensure a robust and consistent analysis of astrophysical spectra. We offer a convenient e-mail and web-based user interface to a vast collection of spectral line parameters for all chemical elements and in the future also for molecules. An international team is working on the following tasks: collecting line parameters from relevant theoretical and experimental publications, computing line parameters, evaluating the data quality by comparison of similar data from different sources and by comparison with astrophysical observations, and incorporating the data into VALD. A unique feature of VALD is its capability to provide the most comprehensive spectral line lists for specific astrophysical plasma conditions defined by the user.

  14. The HelCat dual-source plasma device.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  15. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Natalie [Friedrich Alexander Univ., Erlangen (Germany)

    2017-03-15

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines – the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs.

  16. Particle heating and acceleration during collisionless reconnection in a laboratory plasma

    Science.gov (United States)

    Yoo, Jongsoo

    2013-10-01

    Particle heating and acceleration during magnetic reconnection is studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). For ion heating and acceleration, the role of the in-plane (Hall) electric field is emphasized. An in-plane electrostatic potential profile is established by electron acceleration near the X-point. The potential profile shows a well structure along the direction normal to the reconnection current sheet that becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. The Hall electric field ballistically accelerates ions near the separatrices toward the outflow direction. After ions are accelerated, they are heated as they travel into the high-pressure downstream region due to an effect called re-magnetization. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the electron diffusion region. Classical Ohmic dissipation based on the perpendicular Spitzer resistivity is too small to compensate for the energy loss by parallel heat conduction, indicating the presence of anomalous electron heating. Finally, a total energy inventory is calculated based on analysis of the Poynting, enthalpy, flow energy, and heat flux in the measured diffusion layer. More than half of the incoming magnetic energy is converted to particle energy during reconnection. The author thanks contributions from M. Yamada, H. Ji, J. Jara-Almonte, and C. E. Myers. This work is supported by DOE and NSF.

  17. Optical Tagging of Ion Beams Accelerated by Double Layers in Laboratory Plasma

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Thompson, Derek; Scime, Earl

    2016-10-01

    Experiments in helicon sources that investigate plasma expansion into weakly magnetized, low density regions reveal the production of supersonic ion beams attributed to acceleration by spatially localized double layer structures. Current efforts are aimed at mapping the ion velocity flow field utilizing 2D spatially scanning laser induced fluorescence (LIF) probes that yield metastable ion velocity distribution functions (IVDF) for velocities along and perpendicular to the flow. Observation of metastable ion beams by LIF renders plausible a Lagrangian approach to studying the field-ion interaction via optical tagging. We propose a tagging scheme in which metastable state ion populations are modulated by optical pumping upstream of the double layer and the synchronous detection of LIF at the ion beam velocity is recorded downstream. Besides the unambiguous identification of the source of beam ions, this method can provide detailed dynamical information through time of flight analysis. Preliminary results will be presented. Please include this poster in session that includes poster authored by Evan Aguirre et al.

  18. Studies of HED Plasmas with Self-Generated Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Mikhail [Univ. of Kansas, Lawrence, KS (United States)

    2016-02-08

    High-amplitude sub-Larmor-scale electromagnetic turbulence is ubiquitous in high-energy density environments, such as laboratory plasmas produced by high-intensity lasers, e.g., NIF, Omega-EP, Trident, and others, and in astrophysical and space plasmas, e.g., at high-Mach-number collisionless shocks in weakly magnetized plasmas upstream regions of quasi-parallel shocks, sites of magnetic reconnection and others. Studies of plasmas and turbulence in these environments are important for fusion energy sciences and the inertial confinement concept, in particular, as well as to numerous astrophysical systems such as gamma-ray bursts, supernovae blast waves, jets of quasars and active galactic nuclei, shocks in the interplanetary medium, solar flares and many more. Such turbulence can be of various origin and thus have rather different properties, from being purely magnetic (Weibel) turbulence to various types of electromagnetic turbulence (for example, whistler wave turbulence or turbulence produced by filamentation or Weibel-type streaming instability), to purely electrostatic Langmuir turbulence. In this project we use analytical and numerical tools to study the transport, radiative, and magneto-optical properties of plasmas with sub-Larmor-scale turbulence. We discovered the connection of transport/diffusion properties to certain spectral benchmark features of (jitter) radiation produced by the plasma and radiation propagation through it. All regimes, from the relativistic to non-relativistic, were thoroughly investigated and predictions were made for laboratory plasmas and astrophysical plasmas. Thus, all the tasks outlined in the proposal were fully and successfully accomplished.

  19. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  20. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    Science.gov (United States)

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.