WorldWideScience

Sample records for laboratory instrumentation division

  1. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    Energy Technology Data Exchange (ETDEWEB)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  2. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  3. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  4. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  5. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  6. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. (ed.)

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

  7. Instrumentation and Controls Division Progress report, July 1, 1992--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1995-06-01

    The Instrumentation and Controls (I&C) Division serves a national laboratory, and as such has an expansive domain: science, industry, and national defense. The core mission is to support the scientific apparatus of the Laboratory and all of the systems that protect the safety and health of people and the environment. Progress is reported for the five sections: photonics and measurements systems, electronic systems, signal processing, controls and systems integration, and technical support.

  8. Instrumentation and Controls Division annual progress report for period ending September 1, 1974. Non-LMFBR program

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-09-01

    Research projects are summarized under the following categories: (1) basic electronics development; (2) engineering support for research facilities; (3) pulse counting and analysis; (4) radiation detection and monitoring; (5) instrument development; (6) automatic control and data acquisition; (7) process systems and instrumentation development; (8) reactor instrumentation and controls; (9) fuel reprocessing and shipping; (10) standards laboratory; (11) instrumentation for reactor division experiments and test loops; (12) maintenance and service; (13) ecological science studies; and (14) administration and training. (WHK)

  9. VELA: A Microprocessor-Based Laboratory Instrument.

    Science.gov (United States)

    Lambert, Andrew

    1983-01-01

    Provides a general description of a preprogramed, microprocessor-based laboratory instrument, discussing its use in monitoring: (1) environmental changes; (2) distribution of count rates from a radioactive source, and (3) motion on an air tract. Includes list of the instrument's various capabilities: frequency meter, voltmeter, interval timer, and…

  10. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. 77 FR 4368 - Abbott Laboratories, Diagnostics Division, Including On-Site Leased Workers From Manpower...

    Science.gov (United States)

    2012-01-27

    ... Employment and Training Administration Abbott Laboratories, Diagnostics Division, Including On-Site Leased..., Diagnostics Division, including on-site leased workers from Manpower, Comsys, Apex, Fountain Group, Kelly... location of Abbott Laboratories, Diagnostics Division. The Department has determined that these...

  12. Affordances of Instrumentation in General Chemistry Laboratories

    Science.gov (United States)

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  13. Affordances of Instrumentation in General Chemistry Laboratories

    Science.gov (United States)

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  14. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  15. Determination of Agreement Between Laboratory Instruments.

    Science.gov (United States)

    Gray, Tonya E.; Pratt, Manley C.; Cusick, Patrick K.

    1999-03-01

    The present study was conducted to illustrate the utility of Bland-Altman plots for use by our laboratory staff and other non-statisticians in assessing the agreement between values measured by using two different laboratory instruments. A high degree of agreement reflects acceptable interchangeability of equipment and minimal effect on clinical decision-making. We have summarized literature that suggests that the regression line and correlation coefficient used with regression analysis, although commonly employed, are not appropriate first choices for evaluating agreement. Using the ABL 500 Radiometer and i-STAT Portable Chemistry Analyzer, we evaluated pH, PCO2, and TCO2. Bland-Altman plots were simple to produce, were not mathematics-intensive, and provided an easily interpreted, graphical answer to the question of agreement between instruments. For purposes of clinical decision-making, the ABL and i-STAT machines were found to be in good agreement for the tests evaluated.

  16. Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories

    Science.gov (United States)

    Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.

    2017-01-01

    We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.

  17. Instrumentation and Controls Division biennial progress report, September 1, 1978-September 1, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1981-06-01

    Brief summaries of research work are presented in the following section: overview of the ORNL Instrumentation and Controls Division activities; new developments and methods; reactor instrumentation and controls; measurement and control engineering; electronic engineering; maintenance; studies; services; and development; and division achievements.

  18. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable

  19. Preservation of Laboratory Instruments in Static Storage

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J. L.; Shackelford, M. A.

    1950-02-22

    It is desirable to place laboratory instruments in static storage so that they may be put into operation with only normal servicing. Such instruments may be subject to many forms of deterioration. There may be deterioration of metal parts due to chemical and electrolytic corrosion and the effects of moisture, excessive dryness, and microorganisms, i.e., mildew on organic parts. To preserve such instruments without disassembly or troublesome surface coatings, requires methods that will remove the major cause of deterioration - that is, excessive humidity, by reducing and maintaining the relative humidity of the air surrounding the item at 30 per cent or less. It is also necessary to eliminate or separate hygroscopic materials from the item since they will cause corrosion, by surface adsorption and condensation, even though a dry atmosphere is maintained. The methods and materials used must not only be efficient and economical but also require a minimun of maintenance, Protection against physical damage and temperature extremes is dependent upon the storage site and is not considered in this report.

  20. Instrumentation and Controls Division annual progress report for period ending September 1, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-08-01

    Research progress is described under the following topics: (1) pulse counting and analysis; (2) support for the thermonuclear division ORMAK project; (3) miscellaneous electronics development; (4) detectors of ionizing particles and radiation; (5) radiation monitoring; (6) support for the Oak Ridge Electron Linear Accelerator; (7) automatic control and data acquisition; (8) process instrumentation and control; (9) reactor instrumentation and controls; (10) instrumentation for reactor division experiments and test loops; (11) maintenance and service; and (12) ecological science studies. (WHK)

  1. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    Science.gov (United States)

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  2. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    Science.gov (United States)

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  3. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  4. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. (ed.)

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I C Division staff members.

  5. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  6. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  7. Workgroup for Hydraulic laboratory Testing and Verification of Hydroacoustic Instrumentation

    Science.gov (United States)

    Fulford, Janice M.; Armstrong, Brandy N.; Thibodeaux, Kirk G.

    2015-01-01

    An international workgroup was recently formed for hydraulic laboratory testing and verification of hydroacoustic instrumentation used for water velocity measurements. The activities of the workgroup have included one face to face meeting, conference calls and an inter-laboratory exchange of two acoustic meters among participating laboratories. Good agreement was found among four laboratories at higher tow speeds and poorer agreement at the lowest tow speed.

  8. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Stephen P. [Los Alamos National Laboratory; Keyser, Richard J. [Los Alamos National Laboratory

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  9. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E.E. (ed.)

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

  10. Instrumentation and Controls Division biennial progress report, September 1, 1974--September 1, 1976. Non-LMFBR programs

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-11-01

    Research progress and developments are reported in the areas of basic electronics, instruments, radiation monitoring, pulse counting and analysis, electronic engineering support for research facilities, automatic control and data acquisition, reactor instrumentation and controls, fuel reprocessing and shipping, process systems and instrumentation development, thermometry, instrumentation for reactor division experiments and test loops, environmental science studies, miscellaneous engineering studies, services, and developments, and maintenance. (WHK)

  11. Laboratory Instrumentation: An Exploration of the Impact of Instrumentation on Student Learning

    Science.gov (United States)

    Warner, Don L.; Brown, Eric C.; Shadle, Susan E.

    2016-01-01

    Academic programs generally work to make their laboratory curriculum both as instrumentation rich and up to date as possible. However, little is known about the relationship between the use of instrumentation in the curriculum and student learning. As part of our department's ongoing assessment efforts, a project was designed to probe this…

  12. Instrumentation and Controls Division Progress Report for the Period of July 1, 1994 to December 31, 1997: Publications, Presentations, Activities, and Awards

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1998-04-01

    This report contains a record of publishing and other activities in the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division for the period of July 1, 1994, to December31, 1997. It is a companion volume to Working Together on New Horizons: Instrumentation and Controls Division Progress Report for the Period of July 1, 1994, to December 31, 1997 (OR.NLA4-6530). Working Together on New Horizons contains illustrated summaries of some of the projects under way in I&C Division. Both books can be obtained by contacting C. R. Brittain (brittain@ornl. gov), P.O. Box 2008, Oak Ridge, TN 37831-6005. l&C Division Mission and Vision I&C Division develops and maintains techniques, instruments, and systems that lead to a better understanding of nature and harnessing of natural phenomena for the benefit of humankind. We have dedicated ourselves to accelerating the advancement of science and the transfer of those advancements into products and processes that benefit U.S. industry and enhance the security of our citizens.

  13. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. [ed.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I&C Division staff members.

  14. [Abbot Vision. An interesting laboratory instrument for small hospitals].

    Science.gov (United States)

    Landaas, S; Maehlum, S; Sjøkvist, R

    1991-06-20

    Abbott Vision is a technologically advanced chemistry analyzer developed for decentralized testing. About 30 different tests can be performed using disposable test packs containing wet reagents. The instrument was evaluated in a smaller hospital and (except for potassium) good results were obtained with respect to precision and conformity with results from a referral laboratory. The analyzer is considered to be of special advantage in cases of emergency and when there is no laboratory technician on duty. The cost per analysis is much higher, however, than with conventional techniques.

  15. The proposed Diagnostic Instrumentation and Analysis Laboratory, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The Department of Energy (DOE) proposes to authorize Mississippi State University (MSU) to proceed with the detailed design, construction and equipping of the proposed Diagnostic Instrumentation and Analysis Laboratory (DIAL). DOE grant funds are available to the University for the limited purpose of performing preliminary studies, including analysis necessary to conduct this environmental assessment. The proposed facility would be located in the Mississippi Research and Technology Park, adjacent to the Mississippi Agriculture and Forestry Experiment Station campus in Starkville, Mississippi. Total project cost is estimated at $7,953,600. This proposed laboratory would be designed to conduct research into combustion devices related to waste management and environmental restoration that is of importance to industry and government. The proposed facility`s role would be to develop diagnostic instrumentation capabilities in the area of combustion and related processes.

  16. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  17. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  18. 78 FR 19500 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-04-01

    ...-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center) Clinical Reference Lab..., OR 97232, 503-413-5295/800-950-5295 Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory) Pacific Toxicology...

  19. 76 FR 68201 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-11-03

    ...) 202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center.) Clinical Reference Lab..., Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, (612) 725-2088. National..., (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology...

  20. 76 FR 46309 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-08-02

    ...-202-2783 (Formerly: Forensic Toxicology Laboratory Baptist Medical Center) Clinical Reference Lab... Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725...-3774 (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology...

  1. 76 FR 24501 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-05-02

    ...-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center) Clinical Reference Lab... 97232, 503-413-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory) Pacific Toxicology...

  2. 76 FR 18770 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-04-05

    ...-202-2783 (Formerly: Forensic Toxicology Laboratory Baptist Medical Center). Clinical Reference Lab... 97232, 503-413-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology...

  3. Investigating student learning in upper-division laboratory courses on analog electronics

    Science.gov (United States)

    Stetzer, Mackenzie

    2015-03-01

    There are many important learning goals associated with upper-division laboratory instruction; however, until recently, relatively little work has focused on assessing the impact of these laboratory-based courses on students. As part of an ongoing, in-depth investigation of student learning in upper-division laboratory courses on analog electronics, we have been examining the extent to which students enrolled in these courses develop a robust and functional understanding of both canonical electronics topics (e.g., diode, transistor, and op-amp circuits) and foundational circuits concepts (e.g., Kirchhoff's laws and voltage division). This focus on conceptual understanding is motivated in part by a large body of research revealing significant student difficulties with simple dc circuits at the introductory level and by expectations that students finish electronics courses with a level of understanding suitable for building common, practical circuits in a real-world environment. Recently, we have extended the scope of our investigation to include more laboratory-focused learning goals such as the development of (1) troubleshooting proficiency and (2) circuit chunking and design abilities. In this talk, I will highlight findings from written questions and interview tasks that have been designed to probe student understanding in sufficient depth to identify conceptual and reasoning difficulties. I will also use specific examples to illustrate the ways in which this research may inform instruction in upper-division laboratory courses on analog electronics. This work has been supported in part by the National Science Foundation under Grant Nos. DUE-1323426, DUE-1022449, DUE-0962805, and DUE-0618185.

  4. 77 FR 12862 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-03-02

    ..., a Division of LabOne, Inc.). Maxxam Analytics,* 6740 Campobello Road, Mississauga, ON, Canada L5N 2L8, 905-817-5700, (Formerly: Maxxam Analytics Inc., NOVAMANN (Ontario), Inc.). * The Standards..., Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology Laboratories,...

  5. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  6. 78 FR 72684 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-12-03

    ... Laboratory, 11401 I-30, Little Rock, AR 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory... Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725-2088 National...: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory...

  7. 76 FR 54477 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-09-01

    ... 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center). Clinical...-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1..., Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology Laboratories, 9348...

  8. 77 FR 26022 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-05-02

    ..., AR 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center...-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1..., Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology Laboratories, 9348...

  9. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  10. 78 FR 66034 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-11-04

    ..., AR 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center... Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725-2088 National...: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory...

  11. 77 FR 32653 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-06-01

    ... Laboratory, 11401 I-30, Little Rock, AR 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory... 97232, 503-413-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology...

  12. 76 FR 6147 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-02-03

    ... Laboratory, 11401 I-30, Little Rock, AR 72209-7056. 501-202-2783. (Formerly: Forensic Toxicology Laboratory.... Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN... 77504. 888-747-3774. (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB...

  13. Merging Old and New: An Instrumentation-Based Introductory Analytical Laboratory

    Science.gov (United States)

    Jensen, Mark B.

    2015-01-01

    An instrumentation-based laboratory curriculum combining traditional unknown analyses with student-designed projects has been developed for an introductory analytical chemistry course. In the first half of the course, students develop laboratory skills and instrumental proficiency by rotating through six different instruments performing…

  14. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    Full Text Available Adaptive laboratory evolution (ALE under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40-50 days, Escherichia coli, under growth rate selection pressure, was found to undergo approximately 10(11.2 total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N'-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.

  15. How to test NISP instrument for EUCLID mission in laboratory

    Science.gov (United States)

    Costille, A.; Carle, Michael; Fabron, Christophe; Prieto, Eric; Beaumont, Florent; Jessen, Niels-Christian; Jakobsen, Peter; Sørensen, Anton N.; Andersen, Michael I.; Grupp, Frank; Maciaszek, Thierry; Ealet, Anne; Gillard, William; Clemens, Jean-Claude

    2016-07-01

    The ESA mission Euclid is designed to explore the dark side of the Universe. The NISP (Near Infrared Spectro- Photometer) is one of its two instruments operating in the near-IR spectral region (0.9-2μm), that will be fully integrated and tested at Laboratory d'Astrophysique de Marseille (LAM) under vacuum and thermal conditions. The test campaign will regroup functional tests, performance tests, calibration procedure validation and observations scenario test. One of the main objectives of the test campaign will be the measurement of the focus position of NISP with respect to the EUCLID object plane. To achieve these tests campaign, a global Ground Support Equipment (GSE) called the Verification Ground System (VGS) has to be developed. It will be a complex set of GSE integrated in ERIOS chamber made of: a telescope simulator to simulate the EUCLID telescope and to inject light into NISP, a thermal environment to be used for NISP thermal balance and verification, a sets of mechanical interfaces to align all the parts into ERIOS chamber, the NISP Electrical GSE (EGSE) to control the instrument during the test and a metrology system to measure the positions of the components during the test. We will present the preliminary design and concepts of the VGS and we will show the main difficulties we have to deal with: design of thermal environment at 80K with 4mK stability, the development of a metrology system in vacuum, knowledge of the focus position within 150μm in cold, etc. The main objectives of the NISP test will be explained and how the VGS responds to the test requirement.

  16. Culturally relevant inquiry-based laboratory module implementations in upper-division genetics and cell biology teaching laboratories.

    Science.gov (United States)

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate.

  17. 77 FR 20832 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-04-06

    ..., (Formerly: Forensic Toxicology Laboratory Baptist Medical Center). Clinical Reference Lab, 8433 Quivira Road... Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725...-747-3774 (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology...

  18. 78 FR 54903 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-09-06

    ... Rock, AR 72209-7056, 501-202-2783 (Formerly: Forensic Toxicology Laboratory Baptist Medical Center... Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725-2088... (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology...

  19. 78 FR 14100 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-03-04

    ...--Toxicology Laboratory, 11401 I-30, Little Rock, AR 72209-7056, 501-202-2783 (Formerly: Forensic Toxicology... Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725...-3774 (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology...

  20. 77 FR 54597 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-09-05

    ...-Toxicology Laboratory, 11401 I-30, Little Rock, AR 72209-7056, 501-202-2783 (Formerly: Forensic Toxicology... 97232, 503-413-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology Laboratory). Pacific Toxicology...

  1. 76 FR 11802 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-03-03

    ... 72209-7056, 501-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center); Clinical... Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725-2088..., (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology...

  2. 76 FR 75889 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-12-05

    ..., AR 72209-7056, (501) 202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center..., Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, (612) 725-2088. National..., (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology...

  3. 76 FR 40924 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-07-12

    ...-202-2783 (Formerly: Forensic Toxicology Laboratory Baptist Medical Center). Clinical Reference Lab... Affairs Medical Center, Forensic Toxicology ] Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725...-747-3774 (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology...

  4. 77 FR 69642 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-11-20

    ...-Toxicology Laboratory, 11401 I-30, Little Rock, AR 72209 -7056, 501-202-2783. (Formerly: Forensic Toxicology... 97232, 503-413-5295/800-950-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology- Toxicology Laboratory.) Pacific Toxicology...

  5. 77 FR 126 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-01-03

    ..., AR 72209-7056, (501) 202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center..., Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, (612) 725-2088. National..., (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology-Toxicology...

  6. 77 FR 60449 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-10-03

    ...--Toxicology Laboratory, 11401 I-30, Little Rock, AR 72209-7056, 501-202-2783 (Formerly: Forensic Toxicology... 97232, 503-413-5295/800-950-5295. ] Minneapolis Veterans Affairs Medical Center, Forensic Toxicology... Medical Branch, Clinical Chemistry Division; UTMB Pathology- Toxicology Laboratory). Pacific Toxicology...

  7. 76 FR 61110 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-10-03

    ...-202-2783. (Formerly: Forensic Toxicology Laboratory Baptist Medical Center.) Clinical Reference Lab... Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN 55417, 612-725...-747-3774. (Formerly: University of Texas Medical Branch, Clinical Chemistry Division; UTMB Pathology...

  8. Model-Based Reasoning in the Upper-Division Physics Laboratory: Framework and Initial Results

    CERN Document Server

    Zwickl, Benjamin M; Finkelstein, Noah; Lewandowski, H J

    2014-01-01

    Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). We review and extend existing frameworks on modeling to develop a new framework that more naturally describes model-based reasoning in upper-division physics labs. A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to document examples of model-based reasoning in the laboratory and refine the modeling framework. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of mod...

  9. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  10. Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment

    NARCIS (Netherlands)

    Percy, Andrew J.; Tamura-Wells, Jessica; Albar, Juan Pablo; Aloria, Kerman; Amirkhani, Ardeshir; Araujo, Gabriel D T; Arizmendi, Jesus M.; Blanco, Francisco J.; Canals, Francesc; Cho, Jin Young; Colomé-Calls, Núria; Corrales, Fernando J.; Domont, Gilberto; Espadas, Guadalupe; Fernandez-Puente, Patricia; Gil, Concha; Haynes, Paul A.; Hernáez, Maria Luisa; Kim, Jin Young; Kopylov, Arthur; Marcilla, Miguel; McKay, Mathew J.; Mirzaei, Mehdi; Molloy, Mark P.; Ohlund, Leanne B.; Paik, Young Ki; Paradela, Alberto; Raftery, Mark; Sabidó, Eduard; Sleno, Lekha; Wilffert, Daniel; Wolters, Justina C.; Yoo, Jong Shin; Zgoda, Victor; Parker, Carol E.; Borchers, Christoph H.

    2015-01-01

    The reproducibility of plasma protein quantitation between laboratories and between instrument types was examined in a large-scale international study involving 16 laboratories and 19 LC-MS/MS platforms, using two kits designed to evaluate instrument performance and one kit designed to evaluate the

  11. Instrumentation and Controls Division biennial progress report, September 1, 1976--September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (ed.)

    1978-11-01

    Progress is summarized in the following research and development areas: electronic circuits;instruments; radiation monitoring; process systems and instrumentation; thermometry; instrumentation for engineering experiments and test loops; HTGR fuel recycle development; reactor measurements and analysis; automatic control and data acquisition; electronic engineering support for research facilities; miscellaneous engineering services, studies, and developments; maintenance; and environmental science studies.

  12. Assessing Learning Outcomes in Middle-Division Classical Mechanics: The Colorado Classical Mechanics/Math Methods Instrument

    CERN Document Server

    Caballero, Marcos D; Turnbull, Anna M; Pepper, Rachel E; Pollock, Steven J

    2016-01-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  13. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  14. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1993

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-10-21

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonoradiological monitoring at SSFL.

  15. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Site, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1992-12-03

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear fuel or nuclear reactors. i.e., the U.S. DOE and the California State Department of Health Services (DHS). Radiologic Health Branch (RHB). For that reason. information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  16. Rocketdyne division environmental monitoring annual report, Santa Susana Field Laboratory, De Soto, and Canoga Sites, 1990

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1991-06-20

    This annual report discuses environmental monitoring at three manufacturing and test operations sites operated in the Southern California area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL.), the De Soto site, and the Canoga site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto and Canoga sites are essentially light industry with some laboratory-scale R&D and have little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear and radioactive materials, i.e., the U.S. DOE, the U.S. Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS), Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major realm of interest is radiological, this report also includes some discussion of nonradiological monitoring at SSFL

  17. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1992

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1993-12-14

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  18. The State of Analytical Instruments in Some Environmental Pollution Control Laboratories in Nigeria

    Directory of Open Access Journals (Sweden)

    Dr. (Mrs. Bertha Abdu Danja

    2016-09-01

    Full Text Available The state of the environmental laboratories involved in monitoring environmental pollution control in Nigeria has been studied in this research. The research was undertaken by visiting four analytical laboratories involved in environmental pollution control in Nigeria. The analytical laboratories visited are those of Nigerian National Petroleum Corporation (NNPC Kaduna, Ashaka cement factory, regional laboratory of the Federal Ministry of Water Resources Gombe, and the National Reference laboratory Lagos. In these laboratories results were collected in the laboratories, interviews were carried out and analytical instruments available were documented. It was discovered that, in these laboratories many standard analytical instruments needed for quality environmental pollution control and monitoring are lacking. Comparison of analytical instruments found in these laboratories with those found in literature revealed that many needed analytical instruments are missing. It is the position of this work that the gap between the environmental analytical instruments found in literature and that found in the research laboratories is very large and calls for concern.

  19. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    Science.gov (United States)

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  20. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  1. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  2. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    Science.gov (United States)

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  3. Measurement Instruments and Software Used in Biotribology Research Laboratory

    Directory of Open Access Journals (Sweden)

    Tyurin Andrei

    2015-07-01

    Full Text Available Precision measurements of friction processes have a key role in a variety of industrial processes. The emergence of fine electronic circuit techniques greatly expands capabilities of control. There are some difficulties for their full implementation today, especially when it regards the accuracy and frequency of measurements. The motion-measuring method in real-time system is considered in this article, paying special attention to increased accuracy. This method is based on rapid analog digital converter (ADC, transmission program and digital signal processor (DSP algorithms. Description of laboratory devices is included: Tribal-T and universal friction machine (MTU-01 designed for “Pin on disc” tests. Great emphasis is placed on the usability of accelerometers. The present study examined the collected data via laboratory system for data acquisition and control, and processing it in the laboratory of Biotribology. Laboratory supervisory control and data acquisition (SCADA algorithms is described below. Task of regulation is not considered. This paper describes only methods of automatic control theory to analyze the frictional quality.

  4. About the Western Ecology Division (WED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Western Ecology Division (WED) conducts innovative research on watershed ecological epidemiology and the development of tools to achieve sustainable and resilient watersheds for application by stakeholders.

  5. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    Science.gov (United States)

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  6. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  7. Lurking in the Lab: Analysis of Data from Molecular Biology Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jen Ferguson

    2012-01-01

    Full Text Available OBJECTIVE: This project examined primary research data files found on instruments in a molecular biology teaching laboratory. Experimental data files were analyzed in order to learn more about the types of data generated by these instruments (e.g. file formats, and to evaluate current laboratory data management practices.SETTING: This project examined experimental data files from instruments in a teaching laboratory at Brandeis University.METHODOLOGY: Experimental data files and associated metadata on instrument hard drives were captured and analyzed using Xplorer2 software. Formats were categorized as proprietary or open, and characteristics such as file naming conventions were noted. Discussions with the faculty member and lab staff guided the project scope and informed the findings.RESULTS: Files in both proprietary and open formats were found on the instrument hard drives. 62% of the experimental data files were in proprietary formats. Image files in various formats accounted for the most prevalent types of data found. Instrument users varied widely in their approaches to data management tasks such as file naming conventions.CONCLUSIONS: This study found inconsistent approaches to managing data on laboratory instruments. Prevalence of proprietary file formats is a concern with this type of data. Students express frustration in working with these data, and files in these proprietary formats could pose curation and preservation challenges in the future. Teaching labs afford an opportunity for librarians interested in learning more about primary research data and data management practices.

  8. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  9. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  10. Update of Earthquake Strong-Motion Instrumentation at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robert C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-01

    Following the January 1980 earthquake that was felt at Lawrence Livermore National Laboratory (LLNL), a network of strong-motion accelerographs was installed at LLNL. Prior to the 1980 earthquake, there were no accelerographs installed. The ground motion from the 1980 earthquake was estimated from USGS instruments around the Laboratory to be between 0.2 – 0.3 g horizontal peak ground acceleration. These instruments were located at the Veterans Hospital, 5 miles southwest of LLNL, and in San Ramon, about 12 miles west of LLNL. In 2011, the Department of Energy (DOE) requested to know the status of our seismic instruments. We conducted a survey of our instrumentation systems and responded to DOE in a letter. During this survey, it was found that the recorders in Buildings 111 and 332 were not operational. The instruments on Nova had been removed, and only three of the 10 NIF instruments installed in 2005 were operational (two were damaged and five had been removed from operation at the request of the program). After the survey, it was clear that the site seismic instrumentation had degraded substantially and would benefit from an overhaul and more attention to ongoing maintenance. LLNL management decided to update the LLNL seismic instrumentation system. The updated system is documented in this report.

  11. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities.

  12. Investigations using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C.

    2012-12-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Mössbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fe-phyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 °C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 °C) and

  13. DISCREPANCY BETWEEN TRAINING, COMPETITION AND LABORATORY MEASURES OF MAXIMUM HEART RATE IN NCAA DIVISION 2 DISTANCE RUNNERS

    Directory of Open Access Journals (Sweden)

    Alvah C. Stahlnecker IV

    2008-12-01

    Full Text Available A percentage of either measured or predicted maximum heart rate is commonly used to prescribe and measure exercise intensity. However, maximum heart rate in athletes may be greater during competition or training than during laboratory exercise testing. Thus, the aim of the present investigation was to determine if endurance-trained runners train and compete at or above laboratory measures of 'maximum' heart rate. Maximum heart rates were measured utilising a treadmill graded exercise test (GXT in a laboratory setting using 10 female and 10 male National Collegiate Athletic Association (NCAA division 2 cross-country and distance event track athletes. Maximum training and competition heart rates were measured during a high-intensity interval training day (TR HR and during competition (COMP HR at an NCAA meet. TR HR (207 ± 5.0 b·min-1; means ± SEM and COMP HR (206 ± 4 b·min-1 were significantly (p < 0.05 higher than maximum heart rates obtained during the GXT (194 ± 2 b·min-1. The heart rate at the ventilatory threshold measured in the laboratory occurred at 83.3 ± 2.5% of the heart rate at VO2 max with no differences between the men and women. However, the heart rate at the ventilatory threshold measured in the laboratory was only 77% of the maximal COMP HR or TR HR. In order to optimize training-induced adaptation, training intensity for NCAA division 2 distance event runners should not be based on laboratory assessment of maximum heart rate, but instead on maximum heart rate obtained either during training or during competition

  14. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    Science.gov (United States)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  15. Pulmonary embolism in the elderly: a review on clinical, instrumental and laboratory presentation

    Directory of Open Access Journals (Sweden)

    Luca Masotti

    2008-06-01

    Full Text Available Luca Masotti1,8, Patrick Ray2, Marc Righini3, Gregoire Le Gal4, Fabio Antonelli5, Giancarlo Landini1, Roberto Cappelli6, Domenico Prisco7, Paola Rottoli81Internal Medicine, Cecina Hospital, Cecina, Italy; 2Department of Emergency Medicine, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie-Paris 6, Paris, France; 3Division of Angiology and Hemostasis, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland; 4Department of Internal Medicine and Chest Diseases, Brest University Hospital, Brest, France; 5Clinical Chemistry, Cecina Hospital, Cecina, Italy; 6Department of Internal, Cardiovascular and Geriatric Medicine, University of Siena, Siena, Italy; 7Department of Critical Care Medicine, Thrombosis Centre, Careggi Hospital, Florence, Italy; 8Departiment of Clinical Medicine and Immunological Sciences, Division of Respiratory Diseases, University of Siena, Siena, ItalyObjective: Diagnosis of pulmonary embolism (PE remains difficult and is often missed in the elderly due to nonspecific and atypical presentation. Diagnostic algorithms able to rule out PE and validated in young adult patients may have reduced applicability in elderly patients, which increases the number of diagnostic tools use and costs. The aim of the present study was to analyze the reported clinical presentation of PE in patients aged 65 and more.Materials and Methods: Prospective and retrospective English language studies dealing with the clinical, instrumental and laboratory aspects of PE in patients more than 65 and published after January 1987 and indexed in MEDLINE using keywords as pulmonary embolism, elderly, old, venous thromboembolism (VTE in the title, abstract or text, were reviewed.Results: Dyspnea (range 59%–91.5%, tachypnea (46%–74%, tachycardia (29%–76%, and chest pain (26%–57% represented the most common clinical symptoms and signs. Bed rest was the most frequent risk factor for VTE (15%–67%; deep vein

  16. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  17. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    Science.gov (United States)

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  18. The Arithmetical Machine Zero + 1 in Mathematics Laboratory: Instrumental Genesis and Semiotic Mediation

    Science.gov (United States)

    Maschietto, Michela

    2015-01-01

    This paper presents the analysis of two teaching experiments carried out in the context of the mathematics laboratory in a primary school (grades 3 and 4) with the use of the pascaline Zero + 1, an arithmetical machine. The teaching experiments are analysed by coordinating two theoretical frameworks, i.e. the instrumental approach and the Theory…

  19. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    Science.gov (United States)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; Achilles, C. N.; Downs, R. T.; Farmer, J. D.; Crisp, J. A.; Morookian, J. M.; Des Marais, D. J.; Grotzinger, J. P.; Sarrazin, P.; Yen, A. S.

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  20. Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment

    Directory of Open Access Journals (Sweden)

    Andrew J. Percy

    2015-09-01

    Full Text Available The reproducibility of plasma protein quantitation between laboratories and between instrument types was examined in a large-scale international study involving 16 laboratories and 19 LC–MS/MS platforms, using two kits designed to evaluate instrument performance and one kit designed to evaluate the entire bottom-up workflow. There was little effect of instrument type on the quality of the results, demonstrating the robustness of LC/MRM-MS with isotopically labeled standards. Technician skill was a factor, as errors in sample preparation and sub-optimal LC–MS performance were evident. This highlights the importance of proper training and routine quality control before quantitation is done on patient samples.

  1. High Speed Photography, Videography, And Photonic Instrumentation Development At The Air Force Armament Laboratory

    Science.gov (United States)

    Snyder, Donald R.; Powell, Rodney M.

    1989-02-01

    The Instrumentation Technology Branch of the Air Force Armament Laboratory is currently involved in the development of several high speed photographic, videographic, and photonic instrumentation systems to support the testing and analysis of developmental weapons and test items under dynamic conditions. These projects include development of a large format (14 inch by 17 inch) laser illuminated Cranz-Schardin shadowgraph system for materials research, development of a solid state imager based shadowgraph system for aeroballistic studies, experiments with gated imagers for a variety of test applications, and experiments with high speed video imagers and illuminators for airborne and range tracking instrumentation. An additional issue discussed is the development of a timing and annotation standard for video imaging instrumentation systems operating at higher than NTSC standard rates.

  2. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  3. Development of an Instrument for Assessing Senior High School Students' Preferred and Perceived Laboratory Classroom Environment

    Science.gov (United States)

    Hsiao, Chien-Hua; Wu, Ying-Tien; Lin, Chung-Yen; Wong, Terrence William; Fu, Hsieh-Hai; Yeh, Ting-Kuang; Chang, Chung-Yen

    2014-01-01

    This study aimed to develop an instrument, named the inquiry-based laboratory classroom environment instrument (ILEI), for assessing senior high-school science students' preferred and perceived laboratory environment. A total of 262 second-year students, from a senior-high school in Taiwan, were recruited for this study. Four stages were…

  4. Argonne National Laboratory Physics Division annual report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  5. Inter-laboratory project q calibration of SANS instruments using silver behenate

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Abarrul; Gunawan; Edy Giri, Putra [Indonesia National Nuclear Energy Agency (BATAN) (Indonesia); Suzuki, Jun-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Knott, Robert [Australian Nuclear Science and Technology Organisation (ANSTO) (Australia)

    2000-10-01

    The inter-laboratory project for q-calibration of SANS (small angle neutron scattering) using silver behenate was carried out among Indonesia National Nuclear Energy Agency (BATAN), Japan Atomic Energy Research Institute (JAERI) and Australian Nuclear Science and Technology Organization (ANSTO). The standard sample of silver behenate, [CH{sub 3}(CH{sub 2}){sub 20}COOAg](AgBE), has been assessed as an international standard for the calibration of both x-ray and neutron scattering instruments. The results indicate excellent agreement for q calibration obtained among the three laboratories, BATAN, JAERI and ANSTO. (Y. Kazumata)

  6. Sensory and instrumental evaluation of physical characteristics of laboratory -made chocolate

    Directory of Open Access Journals (Sweden)

    Jovanović Olga Lj.

    2002-01-01

    Full Text Available Sensory evaluation of chocolate, as a complex multicompound system, is one of the ways to define and control its physico-chemical characteristics, i.e. quality. Chocolate quality depends on structure and ingredients percentage that influence its appearance, taste and behaviour in the production processes and storage. The aim of this work was to compare certain quality factors of laboratory-made chocolate with added emulsifier-blooming inhibitor, determinated by sensory and instrumental analyses. Sensory evaluation of chocolate samples was made according to ISO 6685:1985 method (total score system. This ISO standard method was supplemented with QDA method for determination of mouth feel. The results of colour sensory evaluation showed good agreement with whiteness obtained on a MOM Colour 100 instrument by Hunter system evaluation. This showed that the sensory analysis, in comparison with instrumental determination of some quality factors, is an objective method.

  7. Use of the virtual instrumentation laboratory for the assessment of human factors in surgery and anesthesia.

    Science.gov (United States)

    Berguer, R; Loeb, R G; Smith, W D

    1997-01-01

    There is a growing consensus that human factors issues for anesthesiologists, surgeons, and other operating room personnel require serious attention. We have established a program of collaboration between the University of California Davis Medical Center Departments of Anesthesiology and Surgery and the California State University Sacramento Biomedical Engineering Program to address ergonomic problems in anesthesiology and surgery using a Virtual Instrumentation Laboratory. A 17-workstation Virtual Instrument Laboratory using LabVIEW software on Power Macintosh platforms permits rapid prototyping of medical monitor displays as well as rapid development of data acquisition and processing circuits for physiologic data collection. The Virtual Instrument Lab has been used for three Master's thesis projects and a BME course titled Human Factors in the Design of Medical and Assistive Technology. Course projects have included: 1) The design of novel physiologic data displays for potential use in anesthesia workstations, and 2) The measurement of surface electromyographic signals and heart rate variability to investigate the physical and mental workload of performing laparoscopic surgery. The Virtual Instrument Lab allows BME students to investigate relatively complex human factors issues in anesthesiology and surgery in a short time span.

  8. Rocketdyne division, environmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J. D. [Rockwell International, Canoga Park, CA (United States)

    1990-05-01

    Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. During the evolution of these operations, small test and demonstration reactors and critical assemblies were operated, reactor fuel elements were fabricated and used reactor fuel elements were disassembled and declad. These projects have been completed and terminated over the past 30 years. Most of this work was performed at the Santa Susana Field Laboratories (SSFL) and is described in detail in Reference 18. No work with nuclear materials has been conducted since 1987, and the only ongoing work during 1989 was the cleanup of the Rockwell International Hot Laboratory (RIHL) and continuing decontamination of the remaining nuclear facilities. In October 1989, the NRC Special Nuclear Materials License was amended to permit only a minor amount of nuclear material for research purposes. Since then, the license has been further amended to permit only decommissioning operations. These operations have been conducted under State and Federal licenses and under contract to DOE and its predecessors at three main locations. identified as the Santa Susana Field Laboratories (SSFL). De Soto (DS), and Canoga (CA).

  9. Incorporating learning goals about modeling into an upper-division physics laboratory experiment

    Science.gov (United States)

    Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.

    2014-09-01

    Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.

  10. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payré, Valérie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A.; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick; Gasnault, Olivier; Maurice, Sylvestre

    2017-03-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  11. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  12. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is

  13. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is to provide a platform for the researchers,academicians,

  14. Micronaire measurements on seedcotton and cotton fiber, in and outside of laboratory using micro nir-infrared instruments

    Science.gov (United States)

    Micronaire is a key quality parameter in cotton fiber. NIR-spectroscopy has the ability to measure micronaire in and out of the laboratory. New very small micronaire instruments have recently been introduced. A program was established to measure micronaire in and outside the laboratory on seed cotto...

  15. So These Numbers Really Mean Something? A Role Playing Scenario-Based Approach to the Undergraduate Instrumental Analysis Laboratory

    Science.gov (United States)

    Grannas, Amanda M.; Lagalante, Anthony F.

    2010-01-01

    A new curricular approach in our undergraduate second-year instrumental analysis laboratory was implemented. Students work collaboratively on scenarios in diverse fields including pharmaceuticals, forensics, gemology, art conservation, and environmental chemistry. Each laboratory section (approximately 12 students) is divided into three groups…

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  17. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  18. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  20. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; Yen, Albert; Bish, David; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Farmer, Jack; Grotzinger, John; Stolper, Edward; Ming, Douglas; Morris, Richard; Rampe, Elizabeth; Treiman, Allan; Sarrazin, Philippe

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  1. Laboratory tests of a modified {sup 3}He detector for use with startup instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, T.; Tonner, P.; Keller, N. [Atomic Eerngy of Canada Limited, Chalk River, ON (Canada)] [and others

    1997-07-01

    Boron trifluoride (BF{sub 3}) detectors are currently used in all CANDU stations as startup instrumentation (SUI) detectors for monitoring neutron flux during extended outages and startups. Experience at some CANDU stations has shown that some models of BF{sub 3} detectors degrade quickly, even in moderate neutron and gamma fields. Degradation and life expectancy tests for five models of BF{sub 3} detectors from different manufacturers were performed at Chalk River Laboratories (CRL) to investigate the problem. The test results reveal that most BF{sub 3} detectors have low neutron and gamma durability, and some exhibit an undesirable time-dependent degradation followed by recovery. As a result of this finding, other detector options including a modified helium ({sup 3}He) detector described herein were investigated. Modified {sup 3}He detectors were procured from an established supplier and were found to perform without degradation in neutron and gamma fields. (author)

  2. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  3. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Řež

    Science.gov (United States)

    Litvinenko, E. I.; Ryukhtin, V.; Bogdzel, A. A.; Churakov, A. V.; Farkas, G.; Hervoches, Ch.; Lukas, P.; Pilch, J.; Saroun, J.; Strunz, P.; Zhuravlev, V. V.

    2017-01-01

    Three neutron instruments at the Neutron Physics Laboratory (NPL) in Řež near Prague - small-angle scattering (SANS) MAUD, strain scanner SPN-100 and strain diffractometer TKSN-400 - have been modernized recently with new 2D position-sensitive detectors (PSDs) from JINR, Dubna. Here we report on the progress made in relation to the possibilities of the diffractometers due to the improved performance of the detectors. The first part of the paper is dedicated to a detailed description of the hardware and software of the PSDs, as well as its integration with the in-house experimental control software. Then practical examples of neutron scattering experiments for each of the upgraded facilities are presented.

  4. Understanding Authentic Assessment in a Secondary Agricultural Mechanics Laboratory: An Instrumental Case Study

    Directory of Open Access Journals (Sweden)

    J. Joey Blackburn

    2013-06-01

    Full Text Available The instrumental case study reported here adds to the literature on authentic assessment by illuminating how one secondary agricultural education instructor employed authentic assessment in the agricultural mechanics laboratory. The study was underpinned by the constructivist notion of authentic learning and assessment, or allowing students to perform what they can do. Multiple sources of data regarding assessment practices were collected from an exemplary secondary agricultural mechanics instructor who demonstrated model authentic assessment behavior by (1 setting high and fair expectations for students, (2 establishing a progressive hierarchy of skills for students to master, (3 providing continuous feedback so that students had knowledge of their progress, and (4 being committed deeply to students’ success. The four themes resonated with previous literature and provided the foundation for a pragmatic model of authentic assessment in the secondary agricultural mechanics laboratory. Future research should focus on refining the model of authentic assessment in agricultural mechanics for a larger audience, as case studies are limited in their ability to generalize. Additionally, research should be conducted to determine how authentic assessment impacts student performance on Oklahoma Agricultural Power and Technology competency examinations.

  5. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  6. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal,Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial

  7. Report: Results of Technical Network Vulnerability Assessment: EPA’s National Health & Environment Effects Research Laboratory, Western Ecology Division

    Science.gov (United States)

    Report #11-P-0429, August 3, 2011. Vulnerability testing of EPA’s NHEERL Western Ecology Division network conducted in March 2011 identified Internet Protocol addresses with numerous high-risk and medium-risk vulnerabilities.

  8. About the Mid-Continent Ecology Division (MED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Mid-Continent Ecology Division (MED) conducts innovative research and predictive modeling to document and forecast the effects of pollutants on the integrity of watersheds and freshwater ecosystems.

  9. Cost and results accounting as an instrument for controlling divisions of energy supply companies; Kosten- und Leistungsrechnung als Instrument des Controlling in Unternehmen der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-23

    Under the competitive market regime, corporate success of the electric utilities is increasingly determined by the efficiency of cost management and controlling functions. The various cost accounting systems available produce a variety of information of different relevance for the decision-making process in controlling departments. The authors of the article present a comparative analysis of the cost and results accounting systems in terms of their suitability and efficiency for controlling purposes. (orig./CB) [German] Im wettbewerblichen Ordnungsrahmen spielen fuer den unternehmerischen Erfolg der EVU die Leistungsfaehigkeit von Kostenmanagement sowie Controlling eine wesentliche, an Bedeutung gewinnende Rolle. Dabei stellen die verschiedenen, in der betrieblichen Praxis verwendeten Kostenrechnungssysteme in unterschiedlichem Ausmass entscheidungsorientierte Informationen zur aktiven Unterstuetzung von Controlling-Aufgaben bereit. Ausgehend von den sich aus Sicht des Controlling ergebenden Anforderungen an die Kosten- und Leistungsrechnung stellen die Verfasser die einzelnen Kostenrechnungssysteme dar und untersuchen diese hinsichtlich ihrer jeweiligen Verwendbarkeit als Controlling-Instrument. (orig.)

  10. Detailed characterizations of the new Mines Douai comparative reactivity method instrument via laboratory experiments and modeling

    Science.gov (United States)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-08-01

    of corrections (2) and (3). In addition, these simulations reproduce their dependences on the pyrrole-to-OH ratio and on bimolecular reaction rate constants of gases reacting with OH. The good agreement found between laboratory experiments and model simulations gives us confidence in the proposed parameterizations. However, it is worth noting that the numerical values given in this study are suitable for the Mines Douai instrument and may not be appropriate for other CRM instruments. It is recommended that each group characterize its own instrument following the recommendations given in this study. An assessment of performances for the Mines Douai instrument, including a propagation of errors from the different corrections, indicates a limit of detection of 3.0 s-1 and total uncertainties of 17-25 % for OH reactivity values higher than 15 s-1 and NOx mixing ratios lower than 30 ppbv.

  11. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    Science.gov (United States)

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  12. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    Science.gov (United States)

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  13. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    Science.gov (United States)

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  14. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    Science.gov (United States)

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  15. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  16. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  17. 78 FR 7795 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-02-04

    ... Executive Order 12564 and section 503 of Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace... Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630 Laboratory...: Centinela Hospital Airport Toxicology Laboratory) Pathology Associates Medical Laboratories, 110 West Cliff...

  18. 78 FR 46996 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-08-02

    ... 503 of Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace Drug Testing Programs'', as... Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630 Laboratory...: Centinela Hospital Airport Toxicology Laboratory) Pathology Associates Medical Laboratories, 110 West Cliff...

  19. 78 FR 39757 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-07-02

    ... 503 of Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace Drug Testing Programs'', as... Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630 Laboratory...: Centinela Hospital Airport Toxicology Laboratory) Pathology Associates Medical Laboratories, 110 West Cliff...

  20. Report style guide for subcontractors of the Efficiency and Renewables Research Section, Energy Division, Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stone, T.A.; Bennett, M.N.

    1992-09-01

    This document has been paraphrased from the ORNL Document Preparation Guide (DPG). It is intended for use by Efficiency and Renewables Research Section, Energy Division, ORNL subcontractor reports so that review and editing effort can be minimized. Topics covered are typing instructions, document format, usage, abbreviations and acronyms, and standard editing marks.

  1. Report style guide for subcontractors of the Efficiency and Renewables Research Section, Energy Division, Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stone, T.A.; Bennett, M.N.

    1992-09-01

    This document has been paraphrased from the ORNL Document Preparation Guide (DPG). It is intended for use by Efficiency and Renewables Research Section, Energy Division, ORNL subcontractor reports so that review and editing effort can be minimized. Topics covered are typing instructions, document format, usage, abbreviations and acronyms, and standard editing marks.

  2. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  3. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  4. THE IMPORTANCE OF INSTRUMENT MAKERS FOR THE DEVELOPMENT OF EXPERIMENTAL PSYCHOLOGY: THE CASE OF ALFRED BINET AT THE SORBONNE LABORATORY.

    Science.gov (United States)

    Nicolas, Serge

    2016-07-01

    The importance of instrument firms in the development of psychology, and science in general, should not be underestimated since it would not have been possible for various leading psychologists at the turn of the twentieth century to conduct certain experiments without the assistance of instrument makers, as is often the case today. To illustrate the historical perspective introduced here, the example of Alfred Binet is taken, as he is an interesting case of a psychologist working in close collaboration with various French instrument designers of the time. The objective of this article is twofold: (1) to show the considerable activity carried out by early psychologists to finalize new laboratory instruments in order to develop their research projects; (2) to reassess the work of a major figure in French psychology through his activity as a designer of precision instruments. The development of these new instruments would certainly have been difficult without the presence in Paris of numerous precision instrument manufacturers such as Charles Verdin, Otto Lund, Henri Collin, and Lucien Korsten, on whom Binet successively called in order to develop his projects in the field of experimental psychology.

  5. Between the Workshop and the Laboratory: Lavoisier's Network of Instrument Makers.

    Science.gov (United States)

    Beretta, Marco

    2014-01-01

    Throughout his career, Lavoisier paid particular attention to the apparatuses he intended to use in his experimental pursuits. Lavoisier engaged many instrument makers in Paris, the French provinces, and abroad, and he made several efforts, more or less successful, to design a new environment for chemical experimentation. In addition to working with famous instrument makers such as Fortin, Mégnié, and Ramsden, Lavoisier had his instruments made by more than seventy other different makers. In this essay, I outline their contributions and make a preliminary attempt to establish their role in the design of Lavoisier's instruments and in the changes that occurred in chemical experimentation.

  6. 77 FR 71605 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-12-03

    ...-202-2783. (Formerly: Forensic Toxicology Laboratory Baptist Medical Center.) Clinical Reference Lab...-5295. Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive..., Pasadena, TX 77504, 888-747-3774. (Formerly: University of Texas Medical Branch, Clinical Chemistry...

  7. 78 FR 25461 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-05-01

    ... Executive Order 12564 and section 503 of Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace... Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630 Laboratory..., 800-328-6942. (Formerly: Centinela Hospital Airport Toxicology Laboratory.) Pathology Associates...

  8. 78 FR 59946 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-09-30

    ... Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace Drug Testing Programs,'' as amended... Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630. Laboratory Corporation of...: Centinela Hospital Airport Toxicology Laboratory). Pathology Associates Medical Laboratories, 110 West Cliff...

  9. 78 FR 314 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-01-03

    ... initially developed in accordance with Executive Order 12564 and section 503 of Public Law 100-71. The... Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630 Laboratory Corporation of America Holdings, 7207...: Centinela Hospital Airport Toxicology Laboratory) Pathology Associates Medical Laboratories, 110 West Cliff...

  10. 2016 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  11. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  12. Environmental Research Division technical progress report: January 1986--October 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  13. Arduino-based laboratory instruments for an undergraduate laser cooling experiment

    Science.gov (United States)

    Ireland, Timothy; Tiber, Gage; Brooke, Robert W. A.; Gillis, Julie M.; Zaccagnini, Christopher A.; Corcovilos, Theodore A.

    2015-05-01

    Arduino is an inexpensive open-source microcontroller platform designed for quick development turn-around and easy interfacing, making it ideal for novice programmers and instrument designers. Based on Atmel ATMEGA microcontroller chips, the Arduino boards are programmed with standard C/C++ code and contain sufficient inputs and outputs (both digital and analog) for basic data acquisition and device control. Here we present home-built Arduino-based instruments commonly used in laser-cooling experiments, such as a wavelength meter and temperature controller. We describe the design and performance of these instruments.

  14. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  15. Identification of Process Hazards and Accident Scenarios for Site 300 B-Division Firing Areas, Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, H; Johnson, G

    2001-05-04

    This report describes a hazard and accident analysis conducted for Site 300 operations to support update of the ''Site 300 B-Division Firing Areas Safety Analysis Report'' (SAR) [LLNL 1997]. A significant change since the previous SAR is the construction and the new Contained Firing Facility (CFF). Therefore, this hazard and accident analysis focused on the hazards associated with bunker operations to ensure that the hazards at CFF are properly characterized in the updated SAR. Hazard tables were created to cover both the CFF and the existing bunkers with ''open air'' firing tables.

  16. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL INSPECTION SERVICE FORENSIC & TECHNICAL SERVICES DIVISION - NATIONAL FORENSIC LABORATORY, DULLES, VIRGINIA

    Science.gov (United States)

    The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...

  17. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  18. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL INSPECTION SERVICE FORENSIC & TECHNICAL SERVICES DIVISION - NATIONAL FORENSIC LABORATORY, DULLES, VIRGINIA

    Science.gov (United States)

    The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...

  19. 78 FR 33429 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-06-04

    ... Executive Order 12564 and section 503 of Public Law 100-71. The ``Mandatory Guidelines for Federal Workplace... Gamma-Dynacare Laboratory Partnership, 245 Pall Mall Street, London, ONT, Canada N6A 1P4, 519-679-1630..., 800-328-6942, (Formerly: Centinela Hospital Airport Toxicology Laboratory). Pathology Associates...

  20. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  1. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  2. Situational Awareness and Logistics Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Situational Awareness and Logistics Division researches, develops, implements, and analyzes advanced systems to protect, enhance, and ensure resilienceof the...

  3. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  4. Security and Emergency Management Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Security and Emergency Management Division identifies vulnerabilities, risks, and opportunities to improve the security of transportation systems, critical...

  5. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  6. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  7. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  8. TMI-2 instrument nozzle examinations at Argonne National Laboratory, February 1991--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Neimark, L.A.; Shearer, T.L.; Purohit, A.; Hins, A.G.

    1994-06-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor in March 1979 resulted in the relocation of approximately 19,000 kg of molten core material to the lower head of the reactor vessel. This material caused extensive damage to the instrument guide tubes and nozzles and was suspected of having caused significant metallurgical changes in the condition of the lower head itself. These changes and their effect on the margin-to-failure of the lower head became the focal point of an investigation co-sponsored by the United States Nuclear Regulatory Commission (NRC) and the Organization for Economic Co-operation and Development (OECD). The TMI-2 Vessel Investigation Project (VIP) was formed to determine the metallurgical state of the vessel at the lower head and to assess the margin-to-failure of the vessel under the conditions existing during the accident. This report was prepared under the auspices of the OECD/NEA Three Mile Island Vessel Investigation Project. Under the auspices of the VIP, specimens of the reactor vessel were removed in February 1990 by MPR Associates, Inc. In addition to these specimens, fourteen instrument nozzle segments and two segments of instrument guide tubes were retrieved for metallurgical evaluation. The purpose of this evaluation was to provide additional information on the thermal conditions on the lower head that would influence the margin-to-failure, and to provide insight into the progression of the accident scenario, specifically the movement of the molten fuel across the lower head.

  9. 77 FR 39501 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-07-03

    ... HUMAN SERVICES Substance Abuse and Mental Health Services Administration Current List of Laboratories... Testing for Federal Agencies AGENCY: Substance Abuse and Mental Health Services Administration, HHS... thereafter. This notice is also available on the Internet at http://www.workplace.samhsa.gov and http://www...

  10. 75 FR 67749 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2010-11-03

    ... HUMAN SERVICES Substance Abuse and Mental Health Services Administration Current List of Laboratories... Testing for Federal Agencies AGENCY: Substance Abuse and Mental Health Services Administration, HHS... thereafter. This notice is also available on the Internet at http://www.workplace.samhsa.gov and http://www...

  11. 77 FR 5037 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-02-01

    ... HUMAN SERVICES Substance Abuse and Mental Health Services Administration Current List of Laboratories... Testing for Federal Agencies AGENCY: Substance Abuse and Mental Health Services Administration, HHS... thereafter. This notice is also available on the Internet at http://www.workplace.samhsa.gov and http://www...

  12. 76 FR 31969 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-06-02

    ... HUMAN SERVICES Substance Abuse and Mental Health Services Administration Current List of Laboratories... Testing for Federal Agencies AGENCY: Substance Abuse and Mental Health Services Administration, HHS... thereafter. This notice is also available on the Internet at http://www.workplace.samhsa.gov and http://www...

  13. 76 FR 161 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-01-03

    ....) Maxxam Analytics,\\*\\ 6740 Campobello Road, Mississauga, ON, Canada L5N 2L8.905-817-5700. (Formerly: Maxxam Analytics Inc., NOVAMANN (Ontario), Inc.) * The Standards Council of Canada (SCC) voted to end its.... Toxicology & Drug Monitoring Laboratory, University of Missouri Hospital & Clinics, 301 Business Loop 70...

  14. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    Science.gov (United States)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  15. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    Science.gov (United States)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  16. Measurements on High-Silica Features using the Dynamic Albedo of Neutrons Instrument on the Mars Science Laboratory Curiosity Rover

    Science.gov (United States)

    Hardgrove, C. J.; Gabriel, T. S. J.

    2016-12-01

    The Mars Science Laboratory (MSL) Curiosity rover has traversed over several plateaus of the Stimson formation, composed of mafic aeolian sandstones which overlie the Murray formation. These dark sedimentary rocks exhibit lighter colored fluid-alteration halo-forming features. Throughout the Naukluft Plateau region, these halo features are exposed at the surface, extend laterally for tens of meters and are about 1 meter wide. The halos were investigated extensively by Curiosity's geochemical instruments (APXS, Chemin, Chemcam and SAM). With respect to the host Stimson rocks, these fracture halos were found to be significantly enriched in silica and low in iron, among other geochemical variations. Hydrogen, chlorine, and iron have significant neutron microscopic scattering and absorption cross sections. Significant changes in the local abundances of these elements will change the timing and magnitude of the thermal and epithermal neutron count rates observed by the Dynamic Albedo of Neutrons (DAN) instrument. On Sols 1316 to 1329 we performed dedicated measurements on these features with Curiosity by orienting the rover such that DAN was directly over the fracture halos. These fracture halos were also investigated by Curiosity's other geochemical instruments, and co-located DAN measurements were acquired to help constrain abundances of these elements at decimeter-scale depths. Using the bulk geochemistry for both the altered and unaltered Stimson formation, we model a variety of hydrogen contents and burial depths for the altered and unaltered Stimson formation within the approximately 3 meter diameter DAN instrument field of view. Measurements of chemical abundances from both the Alpha Particle X-ray Spectrometer and the Sample Analysis at Mars instrument suite on targets "Lubango" and "Okoruso" provide necessary constraints on these models. Using simulations of neutron scattering we then outline the abundances of hydrogen, chlorine, and iron at depth at the

  17. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  18. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  19. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    Science.gov (United States)

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  20. Investigative cases and student outcomes in an upper-division cell and molecular biology laboratory course at a minority-serving institution.

    Science.gov (United States)

    Knight, Jonathan D; Fulop, Rebecca M; Márquez-Magaña, Leticia; Tanner, Kimberly D

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings.

  1. New instruments for soil physics class: Improving the laboratory and field seminars

    Science.gov (United States)

    Klipa, Vladimir; Jankovec, Jakub; Snehota, Michal

    2014-05-01

    Teaching soil science and soil physics is an important part of the curriculum of many programs with focus on technical and natural sciences. Courses of soil science and namely soil physics have a long tradition at the faculty of Civil Engineering of the Czech Technical University in Prague. Students receive the theoretical foundations about soil classification, soil physics, soil chemistry and soil hydraulic characteristics in the course. In practical seminars students perform measurements of physical, hydraulic and chemical characteristics of soils, thus a comprehensive survey of soil is done in the given site. So far, students had the opportunity to use old, manually operated instrumentation. The project aims to improve the attractiveness of soil physics course and to extend the practical skills of students by introducing new tasks and by involving modern automated equipment. New instruments were purchased with the support of the Ministry of Education, Youth and Sports of the Czech Republic under the project FRVS No. 1162/2013 G1. Specifically, two tensiometers T8 with multi-functional handheld read-out unit (UMS, GmbH) and manual Mini Disk Infiltrometer (Decagon Devices, Inc.) were purchased and incorporated into the course. In addition, newly designed MultiDisk the automated mini disk Infiltrometer (CTU in Prague) and combined temperature and soil moisture TDT sensor TMS 2 (TOMST®, s.r.o.), were made freely available for soil physics classes and included into the courses. Online tutorials and instructional videos were developed. Detailed multimedia teaching materials were introduced so that students are able to work more independently. Students will practice operating the digital tensiometer T8 with integrated temperature sensor and manual Mini Disk Infiltrometer (diameter disk: 4.4 cm, suction range: 0.5 to 7.0 cm of suction) and MultiDisk the automated mini disk Infiltrometer (see Klipa et al., EGU2014-7230) and combined temperature and soil moisture TDT

  2. INSTRUMENTAL TEXTURE MEASUREMENT OF MEAT IN A LABORATORY RESEARCH AND ON A PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Dominika Guzek

    2013-09-01

    Full Text Available Components of meat texture are especially important features for consumers. The systems with guaranteed repeatable quality must be associated with online, reliable and quick measurements of chosen, critical for consumers, quality features. In case of the texture features, the most important is tenderness. In laboratory conditions it is measured using shear test. However, it is a time-consuming and destructive method without possibility of measurement automation. Hence, in case of online measurements, there is a necessity to use other methods. The most promising methods are near-infrared spectroscopy and computer image analysis, enabling measurement of a lot of features, inter alia texture features.

  3. Towards laboratory x-ray nanotomography: instrumental improvements on a SEM-based system

    Science.gov (United States)

    Gomes Perini, L. A.; Bleuet, P.; Buijsse, B.; Kwakman, L. F. Tz.; Parker, W.

    2016-10-01

    We aim at resolving deca-nanometer features in microelectronic samples using a laboratory SEM-based X-ray tomography microscope. Such a system produces X-rays through the interaction between a focused SEM electron beam and a metallic target. The effective source size of the X-ray beam can be adjusted by varying the target material and geometry. For instance, the use of tungsten nanowires (few hundred nanometers of length) combined with a high electron beam current leads to an increased X-ray flux generated in a reduced volume, necessary for detecting interface details of the analyzed object. It improves resolution and signal-to-noise ratio (SNR), but is also sensitive to electron beam-target instabilities during the scan. To improve robustness, a FFT-based image correlation is integrated in the process through a closed-loop control scheme. It allows stabilizing the electron beam on the target and to preserve the X-ray flux intensity and alignment. Also, a state of the art high-resolution scientific-CMOS (sCMOS) X-ray detector was installed, allowing to reduce noise and to increase quantum efficiency. Results show that such numerical and equipment improvements lead to significant gains in spatial resolution, SNR and scanning time of the SEM-based tomography. It paves the way to routine, high resolution, 3D X-ray imaging in the laboratory.

  4. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    Energy Technology Data Exchange (ETDEWEB)

    Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  5. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  6. RadBall{sup TM} Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, Eduardo B; Foley, Trevor Q; Jannik, G Timothy; Harpring, Larry J; Gordon, John R; Blessing, Ronald; Coleman, J Rusty; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J, E-mail: Eduardo.Farfan@srnl.doe.go

    2010-11-01

    The UK's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{sup TM}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall{sup TM} technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  7. The use of instrumented mobile laboratories to determine gaseous pollutant impacts

    Energy Technology Data Exchange (ETDEWEB)

    Cunnigham, J.E.

    1983-06-01

    Mobile sampling laboratories have been used by the Texas Air Control Board (TACB) to detect and measure the gaseous pollutant impacts from point sources. Mobile sampling enables one to locate zones of relatively high levels of air contaminants and take measurements for any desirable time period. Two types of measurements can be made. The first type is the determination of plume cross-section concentration profile. These measurements are taken while driving the van at a constant speed on a road perpendicular to the direction of plume transport. The second type of measurement is a stationary sample made by monitoring the pollutant concentrations for some time period with the van located at one point. A plume cross-section measurement is made to locate the local point of maximum concentration where stationary sampling may be done most efficaciously.

  8. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  9. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  10. Project of an integrated calibration laboratory of instruments at IPEN; Projeto de um laboratorio integrado de calibracao de instrumentos no IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo Adolfo San Jose

    2009-07-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  11. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  12. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  13. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  14. COMPARATIVE CLINICAL, LABORATORY, AND INSTRUMENTAL EVALUATION OF INTERSTITIAL LUNG CHANGES IN RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    D. V. Bestaev

    2014-01-01

    Full Text Available Interstitial lung disease (ILD is a common extra-articular manifestation of rheumatoid arthritis (RA. Objective: to study the associations of the data of high-resolution computed tomography (HRCT and the esti- mate of diffusing lung capacity (DLC with clinical and laboratory parameters in RA patients with and without ILD. Subjects and methods. 79 RA patients fulfilling the 1987 American College of Rheumatology criteria (61 women and 18 men admitted to the Nasonova Research Institute of Rheumatology were included. Results. HRCT revealed signs of ILD in 58 (73% cases. The patients with ILD were divided into three groups: 1 18 (31% patients with ground glass opacities; 2 34 (58.6% patients with fibrosis; 3 6 (10.4% patients with the honeycomb lung. Twenty-one (27% patients with ILD were included in Group 4. In the ILD patients with ground glass opacities, the levels of anti-cyclic citrullinated peptide (ACCP antibodies and rheumatoid factor (RF were much above those in the patients without ILD (240 [166; 410.5], 480 [140; 850.5] and 73 [31; 101], 330,5 [118.5; 604.8], respectively. In the patients with ILD, the concentration of C-reactive protein (CRP (46 [35; 91] was higher than that in those without ILD (24 [18; 31]; p < 0.05. In the ILD patients with ground glass opacities, DLC was considerably below that in those with ILD – 59.2±11.2 and 79.8±12.1% of the normal value, respectively (p < 0.001. Conclusion. The associations found between ACCP antibodies and DLC, DAS28 and DLC may suggest that ACCP antibodies are implicated in the pathogenesis of ILD and the lung is involved in the immunoinflammatory process. The high percent of smokers detected in our investigation confirms the considerable role of smoking in the pathogene- sis of RA-associated ILD. In the RA patients with ILD, ground glass opacities must be an indicator of the activity of an immunopathological process in the lung.

  15. The CheMin Mineralogy Instrument on Mars Science Laboratory: Analysis of Clays and Sulfates at Gale Crater

    Science.gov (United States)

    Blake, D. F.; CheMin Science Team

    2011-12-01

    A principal goal of the Mars Science Laboratory (MSL) Curiosity rover is to identify and characterize present or past habitable environments on Mars. Mineralogy is important in this regard because minerals are thermodynamic phases, stable under specific (and known) conditions of temperature, pressure and composition. By determining the mineralogical composition of a rock or soil, one can often deduce the conditions under which it formed or its subsequent diagenetic or metamorphic history. The CheMin instrument on MSL will return accurate mineral determinations and quantitative mineralogical information from scooped soil samples and drilled rock powders collected at Gale crater during Curiosity's 1-Mars-year nominal mission. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin will have a Minimum Detection Limit (MDL) of 4X MDL (12%). The resolution of the diffraction patterns is 0.3° 2θ. This performance is sufficient to allow for the detection and quantification of virtually all minerals. Orbital imagery and analysis of reflectance spectra from Gale Crater reveal a wealth of mineralogical and morphological features suggestive of ancient habitable environments and water. CheMin is quite capable of discriminating and quantifying the clay and sulfate mineralogies expected within the landing ellipse and in the strata of the central mound, the primary target at Gale. Both polyhydrated and monohydrated (kieserite) sulfate minerals are distributed in mappable strata at Gale. Virtually all hydrated and nonhydrated sulfates are uniquely identifiable and quantifiable with CheMin. Breadboard and commercial equivalents of the CheMin instrument have already been used extensively in evaporite field localities ranging from Death Valley to Antarctica and Spitsbergen; at all these sites the identification and characterization of sulfate, carbonate, and halide mineralogy has been comparable to that of laboratory

  16. Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals.

    Science.gov (United States)

    Mejia, Jorge; Miranda, Ana Claudia Camargo; Durante, Ana Claudia Ranucci; Oliveira, Larissa Rolim de; Barboza, Marycel Rosa Felisa Figols de; Rosell, Katerin Taboada; Jardim, Daniele Pereira; Campos, Alexandre Holthausen; Reis, Marilia Alves Dos; Catanoso, Marcela Forli; Galvis-Alonso, Orfa Yineth; Cabral, Francisco Romero

    2016-01-01

    To present the result of upgrading a clinical gamma-camera to be used to obtain in vivo tomographic images of small animal organs, and its application to register cardiac, renal and neurological images. An updated version of the miniSPECT upgrading device was built, which is composed of mechanical, electronic and software subsystems. The device was attached to a Discovery VH (General Electric Healthcare) gamma-camera, which was retired from the clinical service and installed at the Centro de Imagem Pré-Clínica of the Hospital Israelita Albert Einstein. The combined system was characterized, determining operational parameters, such as spatial resolution, magnification, maximum acceptable target size, number of projections, and acquisition and reconstruction times. Images were obtained with 0.5mm spatial resolution, with acquisition and reconstruction times between 30 and 45 minutes, using iterative reconstruction with 10 to 20 iterations and 4 projection subsets. The system was validated acquiring in vivo tomographic images of the heart, kidneys and brain of normal animals (mice and adult rats), using the radiopharmaceuticals technetium-labeled hexakis-2-methoxy-isobutyl isonitrile (99mTc-Sestamibi), technetium-labeled dimercaptosuccinic acid (99mTc-DMSA) and technetium-labeled hexamethyl propyleneamine oxime (99mTc-HMPAO). This kind of application, which consists in the adaptation for an alternative objective of already existing instrumentation, resulted in a low-cost infrastructure option, allowing to carry out large scale in vivo studies with enhanced quality in several areas, such as neurology, nephrology, cardiology, among others. Apresentar o resultado da adaptação de uma gama câmara clínica para uso dedicado na obtenção de imagens tomográficas in vivo de órgãos de pequenos animais de experimentação, e de sua aplicação na obtenção de imagens cardíacas, renais e neurológicas. Foi construída uma versão atualizada do dispositivo de adapta

  17. Using Instrumental Neutron Activation Analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Dieter [Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)], E-mail: dieter.mader@univie.ac.at; Koeberl, Christian [Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)], E-mail: christian.koeberl@univie.ac.at

    2009-12-15

    The Instrumental Neutron Activation Analysis Gamma Spectroscopy Laboratory at the Department of Lithospheric Research, University of Vienna, has been upgraded in the year 2006. This paper describes the sample preparation, new instrumentation and data evaluation for hundreds of rock samples of two terrestrial impact structures. The measurement and data evaluation are done by using Genie{sup TM} 2000 and a custom-made batch software for the used analysis sequences.

  18. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  19. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  20. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  1. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  2. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  3. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    Science.gov (United States)

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  4. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  5. Instrumentation and Controls Division Progress Report for the Period July 1, 1994, to December 31, 1997: Working Together on New Horizons

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1998-04-01

    The ORNL I&C Division was created to support DOE-funded research. We have since broadened our mission to include other sponsors as the need for our services has grown. This report summarizes some of the work we have been conducting on behalf of DOE, other federal agencies, and the private sector during the past three and a half years. Because we take on nearly 750 individual projects every year, much of our work cannot be reported in detail. We hope that these summaries are of interest and demonstrate that our work, rooted in DOE scientific and technological programs, can also benefit the nation, its industry, and its citizens in direct and tangible ways.

  6. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP; Concepcao do Laboratorio de Calibracao de Instrumentos de Medicao de Radiacao Ionizante (LACIMRI) do CTMSP, Sao Paulo, SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raimundo Dias da; Kibrit, Eduardo, E-mail: raimundo@ctmsp.mar.mil.b, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2009-07-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  7. Laboratory and outside the laboratory measurements of ginned and ot ginned cotton for fiber micronaire and maturity by portable Near Infrared (NIR) Instruments

    Science.gov (United States)

    Micronaire is a key cotton quality assessment property, impacting downstream fiber processing and dye consistency. A component of micronaire is fiber maturity (degree of secondary wall development). Historically, micronaire and maturity are measured in a laboratory under tight environmental condit...

  8. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R. (ed.); Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

  9. Application of Laboratory Instruments in Psychology Teaching and Thinking%实验仪器在心理学教学中的应用与思考

    Institute of Scientific and Technical Information of China (English)

    魏璊

    2014-01-01

    心理学因实验而成为一门科学,实验仪器在心理学教学中具有不可替代的地位。实验仪器在心理学与信息技术科学发展的带动下,取得了长足的发展,但目前一般本科院校心理学专业教学在实验仪器使用方面却存在诸多困境。文章从概述心理学实验教学仪器入手,分析了不同类型仪器的利弊,指出仪器使用在心理学实验教学中的困境,从这些方面展开对仪器在实验教学中使用的思考与探索,以期优化心理学实验教学,促进心理学实验教学改革。%Psychology becomes a science due to experiment;laboratory equipment has an irreplaceable role in the teaching of psychology. Experimental apparatus driven by psychology and scientific development of information technology has made great progress, but there are many difficulties for general psychology professional in the use of laboratory instruments. The article outlines the experimental psychology teaching instrument analyzes the pros and cons of different types of instruments, pointed instrument used in the psychological experiment teaching dilemma, from thinking and explore these aspects of the instrument used in the experimental teaching in order to optimize psychology experimental teaching, promoting psycholog-ical experiment teaching reform.

  10. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  11. A Proposal: Modification for Instruments and Tools Used in the Science Laboratory Setting for Students with Disabilities

    Science.gov (United States)

    Kogan, Denis

    2015-01-01

    The purpose of this action research proposal is to create a Modification of Instruments and Tools in Science (MITS) program to address the need for providing Students With Disabilities (SWDs) appropriate access to scientific tools and techniques of scientific inquiry. This proposal contains a review of literature on SWDs, differentiating…

  12. Wheels and Suspension on Mars Science Laboratory Rover

    Science.gov (United States)

    2008-01-01

    This image from August 2008 shows NASA's Mars Science Laboratory rover in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment. The six wheels are half a meter (20 inches) in diameter. The deck is 1.1 meter (3.6 feet) above the ground. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  13. Fighting Divisions

    Science.gov (United States)

    1945-12-01

    when it hit the beaches of Morotai to open the drive that later led to the liberation of the Philippines, its Doughboys were alternately whistling...the Dixie Division sailed from Maffin Bay for the reconquest of Morotai , and on the 15th of the month hit the beaches of this Dutch island, less than...quickly secured a beachhead and by noon of D-day had seized Pitoe Airdrome. Morotai gave our forces control of the Halma- hera Sea and cut off 20,000

  14. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  15. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  16. Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory

    Science.gov (United States)

    Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.

    2016-01-01

    Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…

  17. Characterization of Gas Chromatographic Liquid Phases Using McReynolds Constants. An Experiment for Instrumental Analysis Laboratory.

    Science.gov (United States)

    Erskine, Steven R.; And Others

    1986-01-01

    Describes a laboratory experiment that is designed to aid in the understanding of the fundamental process involved in gas chromatographic separations. Introduces the Kovats retention index system for use by chemistry students to establish criteria for the optimal selection of gas chromatographic stationary phases. (TW)

  18. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Conrad, Pamela G.; Mahaffy, Paul R.

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  19. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Ming, D.; Steele, A.; Sutter, B.; Szopa, C.; Wray, J. J.; Conrad, P.; Mahaffy, P. R.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  20. A survey of geographical information systems applications for the Earth Science and Applications Division, Space Sciences Laboratory, Marshall Space Flight Center

    Science.gov (United States)

    Rickman, D.; Butler, K. A.; Laymon, C. A.

    1994-01-01

    The purpose of this document is to introduce Geographical Information System (GIS) terminology and summarize interviews conducted with scientists in the Earth Science and Applications Division (ESAD). There is a growing need in ESAD for GIS technology. With many different data sources available to the scientists comes the need to be able to process and view these data in an efficient manner. Since most of these data are stored in vastly different formats, specialized software and hardware are needed. Several ESAD scientists have been using a GIS, specifically the Man-computer Interactive Data Access System (MCIDAS). MCIDAS can solve many of the research problems that arise, but there are areas of research that need more powerful tools; one such example is the multispectral image analysis which is described in this document. Given the strong need for GIS in ESAD, we recommend that a requirements analysis and implementation plan be developed using this document as a basis for further investigation.

  1. Radiological and Environmental Research Division annual report. Fundamental molecular physics and chemistry, June 1975--September 1976. [Summaries of research activities at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    A summary of research activities in the fundamental molecular physics and chemistry section at Argonne National Laboratory from July 1975 to September 1976 is presented. Of the 40 articles and abstracts given, 24 have been presented at conferences or have been published and will be separately abstracted. Abstracts of the remaining 16 items appear in this issue of ERA. (JFP)

  2. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    Science.gov (United States)

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  3. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    Science.gov (United States)

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  4. Virtual instrumentation of a laboratory synchronous generator with LabVIEW; Instrumentacion virtual de un generador sincrono de laboratorio con LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Uribe Fernandez, Uriel

    2003-07-01

    On this work measurement algorithms for variables from a synchronous generator are developed and implemented, in open architecture by means of virtual instrument in real time with the Laboratory Virtual Instrument Engineering Workbench (LabBIEW) that it is a development atmosphere based on the graphic programming. The main program menu of the virtual instrumentation has three options of measurement: The first option is a program that carries out the three phase measurement of: tension RMS, current RMS, magnitude, phase angle, power factor, apparent, active and reactive power and the graphic of these signals. The second option is a program that carries out the measurement of load angle from the synchronous generator. This measurement is made through the Fast Fourier Transformed (FFT), obtaining the voltage terminal, magnitude and phase angle with respect to the rotor position reference. This measurement varies from synchronous generator, operation conditions. The speed angle measurement is obtained from the load angle changes. These measurements are presented in graphic form in the time, with a virtual instrument type needle and in digital form. The range of load angle is +/- 180 degrees. The third option is a program that carries out the measurement of the load angle against active power (curve d-W), from the synchronous machine. [Spanish] En este trabajo se desarrollan e implementan algoritmos de medicion para variables de un generador sincrono, en arquitectura abierta, por medio de la instrumentacion virtual en tiempo real con el uso del Laboratory Virtual Instrument Engineering Workbench (LabVIEW) que es un ambiente de desarrollo basado en la programacion grafica. El programa principal menu de la instrumentacion virtual tiene tres opciones de medicion: La primera opcion es un programa que realiza la medicion trifasica de tension RMS, corriente RMS, magnitud, angulo de fase, factor de potencia, potencia aparente, activa y reactiva, y la graficacion de estas

  5. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  6. Participation of the IPEN/CNEN/SP Environmental Diagnostic Division on programs of laboratory intercomparisons in environmental samples; Participacao da Divisao de Diagnostico Ambiental do IPEN/CNEN/SP em programas de intercomparacao laboratoriais em amostras ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Cotrim, Marycel Barboza; Sato, Ivone Mulako; Salvador, Vera Lucia R.; Dantas, Elizabeth Sonoda Keiko; Cantagallo, Maria Ines; Lemes, Marcos Jose L.; Scapin, Marcos Antonio; Sisti, Cristina; Silveira, Elias Santana; Furusawa, Helio Akira; Pires, Maria Aparecida Faustino [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mecotrim@ipen.br, e-mail: imsato@ipen.br, e-mail: vsalvado@ipen.br, e-mail: esdantas@ipen.br, e-mail: cantagal@ipen.br, e-mail: mjllemes@ipen.br, e-mail: helioaf@ipen.br, e-mail: mapires@ipen.br

    2003-07-01

    The present work presents the participation of the Environmental Diagnostic Division Laboratories (MQA) at the intercomparison national and international laboratories, (PI/SABESP - Interlaboratory Sao Paulo, Brazil, Program; Program for Interlaboratorial Analytic Quality Control of Metals in Water (CBM/COMETRO); Programa para La Calidad de las Mediciones Quimicas (PCQM/INTI) - Argentine, and the Commission d'Etablissement des Methodes d'Analyse, France (CETAMA/CEA). Those essay providers have using statistical tests such as the t-Student, Zscore and Cochran and Grubbs for the data evaluations. The obtained results are presented involving the analytical such as atomic absorption spectrometry: flame, graphite oven and hydride generation (AAS), emission spectrometry with induced plasma (ICP-OES), X-ray fluorescence WD-XRFS), ion chromatography and voltametry (VRA). The elements such as B, Al, K, Mg, Ca, Cr, Fe, Co, Cu, Zn and Pb, and the anions such as Cl-, NO{sub 3}{sup -}, SO{sub 4}{sup 2-} and F{sup -}, were determined at trace level (mgL{sup -1}), and the elements such as Cr, As, Cd, Pb e Hg, at the trace level ({mu}gL{sup -1}) in water matrices. The evaluation of analytical results, in the period 1997 to 2002, demonstrate a continuous improvement evidencing the importance of Laboratories participation at those type of exercises.

  7. General Motors Corporation and Pacific Northwest Laboratory Staff Exchange: Instrumentation for rapid measurement of automotive exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J.W.; Sharpe, S.W. [Pacific Northwest Lab., Richland, WA (United States); Sloane, T.M. [General Motors Corp., Warren, MI (United States)

    1995-07-01

    Information in this report on the staff exchange of Pacific Northwest Laboratory (PNL) staff with the AIGER Consortium (General Motors, Ford, Chrysler, Navistar, the environmental protection Agency, and the California Air Resources Board) includes the purpose and objectives, a summary of activities, significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefits from that work, and two appendices. Appendix A is a brief description of the fast gas chromatography and infrared spectroscopy chemometric technologies and their application to the rapid characterization of automobile exhaust emissions. Appendix B is a list of key contacts and the schedule of activities pertaining to the staff exchange.

  8. Biology Division progress report, October 1, 1991--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  9. Environmental Transport Division: 1979 report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  10. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  11. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R. C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, H. E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, C.; Sautter, V.; Séran, H.; Simmonds, J. J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M. J.; Vaniman, D.

    2012-09-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  12. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, C.; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  13. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  14. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  15. PERSONNEL DIVISION BECOMES HUMAN RESOURCES DIVISION

    CERN Document Server

    Division des ressources humaines

    2000-01-01

    In the years to come, CERN faces big challenges in the planning and use of human resources. At this moment, Personnel (PE) Division is being reorganised to prepare for new tasks and priorities. In order to accentuate the purposes of the operation, the name of the division has been changed into Human Resources (HR) Division, with effect from 1st January 2000. Human Resources DivisionTel.73222

  16. About DCP | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) is the primary unit of the National Cancer Institute devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  17. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  18. Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Science.gov (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Hardgrove, C.; Stack, K. M.; Sanin, A. B.; Lisov, D.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Starr, R.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2016-05-01

    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the "Smooth Hummocky" unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5-2.5 wt % and 0.6-2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments.

  19. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  20. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    Science.gov (United States)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  1. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  2. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  3. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis; Estudio de la evolucion del mercurio en un sistema acuatico de laboratorio multiespecifico utilizando analisis por activacion neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Analisis por Activacion Nautronica; Pechen de d`Angelo, Ana; Ferrari, Ana; Venturino, Andres [Universidad Nacional del Comahue, Neuquen (Argentina). Facultad de Ingenieria

    1999-11-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 {mu}m sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress ({gamma}-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author) 23 refs., 4 tabs.

  4. Assembly of a laboratory for calibration in brachytherapy. Comparison of responses with different instrumentation; Montaje de un laboratorio para calibraciones en braquiterapia. Comparacion de respuestas con diferente instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Pirchio, R.; Saravi, M. [CNEA, Pbro. J. Gonzalez y Aragon No. 16 (B1802AYA) Ezeiza, Buenos Aires (Argentina)]. e-mail: pirchio@cae.cnea.gov.ar

    2006-07-01

    A common practice in quality control programs for dosimetry in brachytherapy is the source calibration. The AAPM (American Association of Physicists in Medicine) in the Task Group No. 40 (TG-40) it recommends that each institution that offers a brachytherapy service verifies the intensity of each source provided by the maker with secondary traceability. For such a reason it is necessary to have laboratories able to make calibrations of sources, traceable electrometer-chambers to primary or credited laboratories. The Regional Center of Reference of Dosimetry of the CNEA (National Commission of Atomic Energy) it is in the stage of finalization of the assembly of a Laboratory for source calibration and use equipment in brachytherapy. For it has two ionization chambers well type and two electrometers gauged by the Accredited Dosimetry Calibration Laboratory of the University of Wisconsin. Also account with a wide variety of supports and with a tube of {sup 137}Cs pattern 3M model 6500/6D6C. The procedures for the calibration of sources and equipment were elaborated starting from the TECDOC-1274. On the other hand, its were carried out measurements with different instrumentation for the comparison of responses and at the same time to implement the calibration procedures. For it, its were used chambers and electrometers of the institution, of hospitals and of the national company 'Solydes'. In the measurements its were used seeds of {sup 125}I taken place in Argentina and the tube of {sup 137}Cs pattern mentioned previously. In first place it was proceeded to the determination of the center of the region of the plateau in the axial response for the seeds of Iodine-125 and the tube of Cesium-137 pattern using different chambers. Later on its were carried out measurements of accumulated loads during a certain interval of time in this position. The calibration factors of each chamber were determined, N{sub Sk} ({mu}Gy m{sup 2} h{sup -1} A{sup -1}), as the quotient

  5. Physics Division progress report, January 1, 1984-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.E. (comp.)

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  6. Fleet Aviation Maintenance Organic Support (FAMOS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Fleet Aviation Maintenance Organic Support (FAMOS) Laboratory at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides rapid engineering...

  7. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  8. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  9. NCL Instrumentation - Nanotechnology Characterization Laboratory

    Science.gov (United States)

    The activities within the NCL represent a formal scientific interaction of three Federal agencies: National Cancer Institute and U.S. Food and Drug Administration (FDA) of the Department of Health and Human Services, and National Institute of Standards and Technology (NIST) of the Department of Commerce.

  10. CRADA with Beckman Instruments and Pacific Northwest National Laboratory (PNL-013): Development and commercialization of the Unsaturated Flow Apparatus (UFA) using characterization of aridisols

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.; Conca, J.

    1996-10-01

    The objective of this Cooperative Research and Development Agreement (CRADA) was to develop and commercialize a technology conceived by scientists at Pacific Northwest National Laboratory (PNNL) and manufactured by Beckman Instruments, Inc. (Beckman), and to apply this technology to the characterization of and soils. The technology is the Unsaturated Flow Apparatus (UFA). The UFA provides a highly efficient method of direct, rapid measurement of hydraulic conductivity and other flow properties according to Darcy-Buckingham principles because the operator controls both the fluid driving force, using an ultracentrifuge, and the flow into the sample while it is spinning, with a rotating seal assembly. The concept of using centrifugation to significantly decrease the time needed, from years or months to days, for study of subsurface transport, particularly under unsaturated conditions, was conceived by James Conca, Ph.D., and Judith Wright, Ph.D., in 1986. The prototype UFA was developed in 1988 because there was a need to rapidly and accurately determine transport parameters in soils, sediments, and rocks for the Grout Waste Disposal Program. Transport parameters are critical to modeling outcomes for site-specific solutions to environmental remediation and waste disposal problems.

  11. Development of Network Virtual Instrument Laboratory System Based on Labview%基于Labview的网络化虚拟仪器实验系统开发

    Institute of Scientific and Technical Information of China (English)

    蔡锷; 孙林

    2015-01-01

    To satisfy the reformation requirement of experiment teaching in colleges of engineering, in this paper, a Laboratory System combining the virtual instrument technology with network technology is developed. The PXI platform devices of NI Company are applied in this system. Based on C/S framework, the system software is designed, and the communication be-tween server and client is carried on by the Datasocket technology. Educational practice of the system shows that the devices have the reliable performance, and the software function is flexible.%针对目前高等工科院校实验教学改革的需求,本文结合虚拟仪器技术和网络技术,构建了一种基于Labview的网络化虚拟实验室系统.系统硬件采用NI公司PXI总线平台设备,软件采用客户端/服务器(C/S)架构,服务器和客户端之间采用Datasocket技术进行通信.系统的教学实践表明,硬件设备性能可靠,软件系统功能灵活.

  12. Chemical Sciences Division: Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  13. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    Science.gov (United States)

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  14. Earth Sciences Division, collected abstracts, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-03-30

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  15. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  16. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  17. Earth Sciences Division collected abstracts: 1979

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  18. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1953-1970: Description of individual studies, data files, codes, and summaries of significant findings

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, D.; Fox, C.; Wright, B.J.; Carnes, B.A.

    1994-05-01

    Between 1953 and 1970, studies on the long-term effects of external x-ray and {gamma} irradiation on inbred and hybrid mouse stocks were carried out at the Biological and Medical Research Division, Argonne National Laboratory. The results of these studies, plus the mating, litter, and pre-experimental stock records, were routinely coded on IBM cards for statistical analysis and record maintenance. Also retained were the survival data from studies performed in the period 1943-1953 at the National Cancer Institute, National Institutes of Health, Bethesda, Maryland. The card-image data files have been corrected where necessary and refiled on hard disks for long-term storage and ease of accessibility. In this report, the individual studies and data files are described, and pertinent factors regarding caging, husbandry, radiation procedures, choice of animals, and other logistical details are summarized. Some of the findings are also presented. Descriptions of the different mouse stocks and hybrids are included in an appendix; more than three dozen stocks were involved in these studies. Two other appendices detail the data files in their original card-image format and the numerical codes used to describe the animal`s exit from an experiment and, for some studies, any associated pathologic findings. Tabular summaries of sample sizes, dose levels, and other variables are also given to assist investigators in their selection of data for analysis. The archive is open to any investigator with legitimate interests and a willingness to collaborate and acknowledge the source of the data and to recognize appropriate conditions or caveats.

  19. Biology Division progress report, October 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  20. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts...... study alternative and richer models, such as externalities in cake cutting, simultaneous cake cutting, and envy-free cake cutting. The second part of the thesis tackles the fair allocation of multiple goods, divisible and indivisible. In the realm of divisible goods, we investigate the well known...

  1. GRAAL - Griggs-type Apparatus equipped with Acoustics in the Laboratory: a new instrument to explore the rheology of rocks at high pressure

    Science.gov (United States)

    Schubnel, A.; Champallier, R.; Precigout, J.; Pinquier, Y.; Ferrand, T. P.; Incel, S.; Hilairet, N.; Labrousse, L.; Renner, J.; Green, H. W., II; Stunitz, H.; Jolivet, L.

    2015-12-01

    Two new generation solid-medium Griggs-type apparatus have been set up at the Laboratoire de Géologie of ENS PARIS, and the Institut des Sciences de la Terre d'Orléans (ISTO). These new set-ups allow to perform controlled rock deformation experiments on large volume samples, up to 5 GPa and 1300°C. Careful pressure - stress calibration will be performed (using D-DIA and/or Paterson-type experiments as standards), strain-stress-pressure will be measured using modern techniques and state of the art salt assemblies. Focusing on rheology, the pressure vessel at ISTO has been designed in a goal of deforming large sample diameter (8 mm) at confining pressure of up to 3 GPa. Thanks to this large sample size, this new vessel will allow to explore the microstructures related to the deformation processes occurring at pressures of the deep lithosphere and in subduction zones. In this new apparatus, we moreover included a room below the pressure vessel in order to develop a basal load cell as close as possible to the sample. This new design, in progress, aims at significantly improving the accuracy of stress measurements in the Griggs-type apparatus. The ultimate goal is to set up a new technique able to routinely quantify the rheology of natural rocks between 0.5 and 5 GPa. Although fundamental to document the rheology of the lithosphere, such a technique is still missing in rock mechanics. Focusing on the evolution of physical and mechanical properties during mineral phase transformations, the vessel at ENS is equipped with continuous acoustic emission (AE) multi-sensor monitoring in order to "listen" to the sample during deformation. Indeed, these continuous recordings enable to detect regular AE like signals during dynamic crack propagation, as well as non-impulsive signals, which might be instrumental to identify laboratory analogs to non-volcanic tremor and low frequency earthquake signals. P and S elastic wave velocities will also be measured contemporaneously during

  2. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil; Calculo das blindagens do projeto de um laboratorio integrado de calibracao de instrumentos no IPEN - Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E., E-mail: gustavaobarros@gmail.co, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  3. 医疗器械生产企业微生物实验室设计与监管实例%Design of Microorganism Laboratories in Medical Instrument Enterprises and Examples of Supervision

    Institute of Scientific and Technical Information of China (English)

    焦彦超

    2013-01-01

    In this article, the requirements of design and regulations about microorganism laboratories for medical instrument quality control were discussed. According the examples of supervision, the problems existed were analyzed so as to design legal and useful microorganism laboratory.%本文探讨了用于医疗器械产品检验的微生物试验室的法规要求和设计要求,并对监管中存在的问题进行分析,以设计合法又实用的微生物实验室。

  4. Flight Dynamics Laboratory overview

    Science.gov (United States)

    Sandford, Thaddeus

    1986-01-01

    The Flight Dynamics Laboratory (FDL) is one of four Air Force Wright Aeronautical Laboratories (AFWAL) and part of the Aeronautical Systems Division located at Wright-Patterson AFB, Ohio. The FDL is responsible for the planning and execution of research and development programs in the areas of structures and dynamics, flight controls, vehicle equipment/subsystems, and aeromechanics. Some of the areas being researched in the four FDL divisions are as follows: large space structures (LSS) materials and controls; advanced cockpit designs; bird-strike-tolerant windshields; and hypersonic interceptor system studies. Two of the FDL divisions are actively involved in programs that deal directly with LSS control/structures interaction: the Flight Controls Division and the Structures and Dynamics Division.

  5. [Division of regulatory cellular systems (Lvov)].

    Science.gov (United States)

    Kusen', S I

    1995-01-01

    Two departments of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine were founded in 1969 in Lviv. These were: the Department of Biochemistry of Cell Differentiation headed by Professor S. I. Kusen and Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds headed by Professor G. M. Shavlovsky. The Lviv Division of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine with Professor S. I. Kusen as its chief, was founded in 1974 on the basis of these departments and the Laboratory of Modelling of Regulatory Cellular Systems headed by Professor M. P. Derkach. The above mentioned laboratory which was not the structural unit obtained the status of Structural Laboratory of Cellular Biophysics in 1982 and was headed by O. A. Goida, Candidate of biological sciences. From 1983 the Laboratory of Correcting Therapy of Malignant Tumors and Hemoblastoses at the Institute of Molecular Biology and Genetics, Academy of Sciences of Ukraine (Chief--S. V. Ivasivka, Candidate of medical sciences) was included in the structure of the Division. That Laboratory was soon transformed into the Department of Carbohydrate Metabolism Regulation headed by Professor I. D. Holovatsky. In 1988 this Department was renamed into the Department of Glycoprotein Biochemistry and headed by M. D. Lutsik, Doctor of biological sciences. In 1982 one more Laboratory of Biochemical Genetics was founded at the Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds, in 1988 it was transformed into the Department of Biochemical Genetics (Chief--Professor A. A. Sibirny). In 1989 the Laboratory of Anion Transport was taken from A. V. Palladin Institute of Biochemistry, Academy of Sciences of Ukraine to Lviv Division of this Institute. This laboratory was headed by Professor M. M. Veliky. One more reorganization in the Division structure took place in 1994. The Department of

  6. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  7. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  8. Arithmetic of Division Fields

    CERN Document Server

    Brumer, Armand

    2011-01-01

    We study the arithmetic of division fields of semistable abelian varieties A over the rationals. The Galois group of the 2-division field of A is analyzed when the conductor is odd and squarefree. The irreducible semistable mod 2 representations of small conductor are determined under GRH. These results are used in "Paramodular abelian varieties of odd conductor," arXiv:1004.4699.

  9. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  10. Analytical Chemistry Laboratory progress report for FY 1984

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  11. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  12. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments. DESCRIPTION: The multisensor core logger measures...

  13. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  14. Asymmetric cell divisions: a view from plant development.

    Science.gov (United States)

    Abrash, Emily B; Bergmann, Dominique C

    2009-06-01

    All complex multicellular organisms must solve the problem of generating diverse and appropriately patterned cell types. Asymmetric division, in which a single mother cell gives rise to daughters with distinct identities, is instrumental in the generation of cellular diversity and higher-level patterns. In animal systems, there exists considerable evidence for conserved mechanisms of polarization and asymmetric division. Here, we consider asymmetric cell divisions in plants, highlighting the unique aspects of plant cell biology and organismal development that constrain the process, but also emphasizing conceptual and mechanistic similarities with animal asymmetric divisions.

  15. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program Capabilities DET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  16. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  17. 药品实验室分析仪器验证规范的探讨%Discussion on specification for analytical instrument qualification in phar-maceutical laboratory

    Institute of Scientific and Technical Information of China (English)

    王剑; 张怡; 丁艺钊

    2014-01-01

    Analytical instrument qualification is the focus of quality management in the pharmaceutical laboratory, is key part of the good manufacturing practice (GMP) standard for pharmaceutical industry, but also the difficulty in the actual implementation process for domestic and foreign pharmaceutical industries. Based on international guides and standards, the aim of this paper is to discuss analytical instruments qualification and management for pharmaceutical laboratory. The required instrument qualification is a whole cyclical process which is composed by the activities of the different stages. Instrument manufactures, suppliers and users of the three parties should participate in this whole qual-ification process. This paper is to describe the activities of instrument qualification in three stages, from the instrument manufacturer and supplier selection to instrument installation, performance testing and approval of the instrument use, including instrument periodic verification, calibration, maintenance and daily check. This paper is to discuss the imple-mentation points of the qualification activities and records requirements at each stage. This paper approaches reference for Chinese pharmaceutical laboratory on qualification of analytical instruments, to promote laboratory quality manage-ment standards and in line with international standards.%分析仪器验证是药品实验室质量管理的重点,是符合制药业良好操作规范的关键部分,也是国内外制药行业在实施过程中的难点。本文结合国际上相关规范和标准,对药品实验室分析仪器验证要求和过程进行探讨。仪器验证是一个整体、周期性的过程,是由不同阶段的活动组成,需要仪器制造商、供应商和使用者三方共同参与。文章将仪器验证分为三个阶段进行阐述,从仪器和制造商、供应商的选择到仪器的安装、测试和批准使用,包括仪器的定期核查、校准和维护,分别

  18. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.

  19. Design of visual management system of laboratory instruments and equipment based on WLAN%基于WLAN的实验室设备可视化管理系统设计

    Institute of Scientific and Technical Information of China (English)

    王永华; 杨健

    2011-01-01

    目前高校拥有的实验室仪器设备数量种类众多,日常管理中需要管理人员投入大量的时间与精力.由于管理不善,设备丢失、账物不符等情况时常发生.提出了基于无线局域网定位技术和地理信息系统的实验室设备可视化管理系统,可实现对全校范围内的实验室仪器设备的可视化实时监控、定位及追踪,可以系统、高效地管理学校繁多的仪器设备,提高管理人员的效率.%At present, our university has a lot of specific laboratory instruments and equipment that need to be managed. This work is time consuming. Due to mismanagement, the instruments and equipment are often lost, or their existing numbers are not in agreement with those in the account book. A visual management system of laboratory instruments and equipment is proposed based on WLAN localization technology and GIS.This system can monitor, localize and trace all instruments and equipment in the whole university in real time,furthermore, effectively manage a lot of instruments and equipment and enhance the management efficiency significantly.

  20. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  1. High energy physics division semiannual report of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. (eds.) (Argonne National Lab., IL (United States))

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  2. THE WESTERN ECOLOGY DIVISION STUDENT INTERN PROGRAM VIDEO

    Science.gov (United States)

    The Western Ecology Division of the National Health & Environmental Effects Research Laboratory has produced a 15 minute video documenting the internship program at the Division. The video highlights various CWEST student interns reporting on their experiences at an end-of-the-s...

  3. Identification of Gas Components in Lighter by Gas Chromatography: An Experiment for the Undergraduate Instrumental Analysis Laboratory Which Can Be Used With Distance Learning Applications

    Directory of Open Access Journals (Sweden)

    Inci MORGIL

    2006-10-01

    Full Text Available In the applications of instrumental analysis lessons, advanced instruments with the needed experiments are needed. During the lessons it is a fact that the more experiments are performed, the more learning will be. For this reason, experiments that do not last long and should be performed with more simple instruments and that increase students’ attention with current events should be developed. It is thought that there is only propane gas in lighters used in daily life. However, in fact, in certain ratios, there are also other gases having similar structure besides propane gas. For these reasons, the identification of gas components in lighter has been thought. To enlighten this situation a simple experiment design has been planned.

  4. Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study.

    Science.gov (United States)

    Martin, Jean-Charles; Maillot, Matthieu; Mazerolles, Gérard; Verdu, Alexandre; Lyan, Bernard; Migné, Carole; Defoort, Catherine; Canlet, Cecile; Junot, Christophe; Guillou, Claude; Manach, Claudine; Jabob, Daniel; Bouveresse, Delphine Jouan-Rimbaud; Paris, Estelle; Pujos-Guillot, Estelle; Jourdan, Fabien; Giacomoni, Franck; Courant, Frédérique; Favé, Gaëlle; Le Gall, Gwenaëlle; Chassaigne, Hubert; Tabet, Jean-Claude; Martin, Jean-Francois; Antignac, Jean-Philippe; Shintu, Laetitia; Defernez, Marianne; Philo, Mark; Alexandre-Gouaubau, Marie-Cécile; Amiot-Carlin, Marie-Josephe; Bossis, Mathilde; Triba, Mohamed N; Stojilkovic, Natali; Banzet, Nathalie; Molinié, Roland; Bott, Romain; Goulitquer, Sophie; Caldarelli, Stefano; Rutledge, Douglas N

    The metabo-ring initiative brought together five nuclear magnetic resonance instruments (NMR) and 11 different mass spectrometers with the objective of assessing the reliability of untargeted metabolomics approaches in obtaining comparable metabolomics profiles. This was estimated by measuring the proportion of common spectral information extracted from the different LCMS and NMR platforms. Biological samples obtained from 2 different conditions were analysed by the partners using their own in-house protocols. Test #1 examined urine samples from adult volunteers either spiked or not spiked with 32 metabolite standards. Test #2 involved a low biological contrast situation comparing the plasma of rats fed a diet either supplemented or not with vitamin D. The spectral information from each instrument was assembled into separate statistical blocks. Correlations between blocks (e.g., instruments) were examined (RV coefficients) along with the structure of the common spectral information (common components and specific weights analysis). In addition, in Test #1, an outlier individual was blindly introduced, and its identification by the various platforms was evaluated. Despite large differences in the number of spectral features produced after post-processing and the heterogeneity of the analytical conditions and the data treatment, the spectral information both within (NMR and LCMS) and across methods (NMR vs. LCMS) was highly convergent (from 64 to 91 % on average). No effect of the LCMS instrumentation (TOF, QTOF, LTQ-Orbitrap) was noted. The outlier individual was best detected and characterised by LCMS instruments. In conclusion, untargeted metabolomics analyses report consistent information within and across instruments of various technologies, even without prior standardisation.

  5. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  6. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  7. 浅谈实验室测量仪器设备的期间核查%A Study on Intermediate Checks of the Laboratory Measurement Instruments and Equipment

    Institute of Scientific and Technical Information of China (English)

    谷尚莉; 杨静

    2012-01-01

    文章作者结合工作实际介绍了实验室测量仪器设备期间核查的相关内容。文中简述了仪器设备期间核查的概念、必要性,阐述了期间核查与仪器设备检定/校准的区别,较为详细的列举了期间核查的方法、实例。可作为实验室仪器设备期间核查的参考。%Based on the personal experience,the paper generally presented the intermediate checks of the laboratory measurement instruments and equipment.It briefs the definition and importance of the intermediate checks of the instruments and equipment,demonstrates differences between the intermediate checks and verification/calibration and lists the intermediate-check methods followed with the examples.The paper could be witnessed as a reference to the intermediate checks of the laboratory instruments and equipment.

  8. On Geometric Infinite Divisibility

    OpenAIRE

    Sandhya, E.; Pillai, R. N.

    2014-01-01

    The notion of geometric version of an infinitely divisible law is introduced. Concepts parallel to attraction and partial attraction are developed and studied in the setup of geometric summing of random variables.

  9. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  10. Avaliação da esterilização a vapor do instrumental laparoscópico montado: abordagem laboratorial

    OpenAIRE

    Tamara Carolina de Camargo

    2013-01-01

    Esta pesquisa avaliou a segurança microbiológica da esterilização a vapor do instrumental laparoscópico reutilizável montado. Foram selecionados dois tipos de instrumental laparoscópico reutilizável: trocarte e pinça de dissecção de 5mm. Considerando a eficácia da limpeza como pré-requisito essencial para o processo de esterilização, a PRIMEIRA ETAPA da pesquisa, avaliou 66 instrumentos laparoscópicos, sendo 33 pinças e 33trocartes, submetidos a diferentes métodos de limpeza, avaliando como d...

  11. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  12. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    Science.gov (United States)

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  13. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  14. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  15. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  16. Report of the work of the Biological and Medical Research, Radiological Physics, and Health Services Divisions for the quarterly period ending September 30, 1953.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1953-10-01

    The monthly progress report from the Argonne National Laboratory includes material from one-third of the Laboratory. The three divisions into which the work has been divided are: (l) Reactor Engineering, Physics, Instrument Research and Development, and Electronics, (2) Biological and Medical Research, Radiological Physics, and Health Services, and (3) Chemistry and Chemical Engineering, Metallurgy, and Remote Control Engineering. The present monthly progress report covers the work in Biological and Medical Research, Radiological Physics, and Health Services for the quarterly period ending September 30, 1953.

  17. Virtual Laboratories

    CERN Document Server

    Hut, P

    2006-01-01

    At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simul...

  18. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  19. Research on University Laboratory Large Instruments and Equipments Procurement Process%高校实验室大型仪器设备采购过程探讨

    Institute of Scientific and Technical Information of China (English)

    潘莉

    2012-01-01

    Advanced experimental facilities are important materials basis to ensure the laboratory building.This paper investigated university research equipment procurement process,in order to strengthen the management of equipment procurement process,to regulate the management of university equipment procurement procedures,to avoid the waste of research and education funds to ensure the university laboratory building work carried out smoothly.%先进的实验设施是实验室建设的重要物资保证基础。文中通过对高校仪器设备采购过程进行研究,加强仪器设备采购过程的管理,以期规范高校仪器设备采购管理程序,避免科研教育资金浪费,保证高校实验室建设工作的顺利进行。

  20. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx); Laboratorio de Calibracao de Instrumentode Medicao de Radiacao Gama (LabCal) do IDQBRN do CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S., E-mail: aneurideamorim@gmail.com [Centro Tecnologico do Exercito (DQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Quimica, Biologica, Radiologica e Nuclear

    2016-07-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  1. Sperner's lemma and fair division

    OpenAIRE

    DAKSKOBLER, LARISA

    2016-01-01

    Fair division is an active research area in Mathematics, Economics, Computer Science, etc. There are many different kinds of fair division problems. These are often named after everyday situations: fair resource allocation, fair cake-cutting, fair chore division, room assignment – rent division, and more. Although many exact and approximative methods for finding fair solutions already exist, the area of fair division still expands and tries to find better solutions for everyday problems. The...

  2. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  3. Division algebras and supersymmetry

    CERN Document Server

    Baez, John C

    2009-01-01

    Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.

  4. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  5. The History of Metals and Ceramics Division

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  6. Keyboard Emulation For Computerized Instrumentation

    Science.gov (United States)

    Wiegand, P. M.; Crouch, S. R.

    1989-01-01

    Keyboard emulator has interface at same level as manual keyboard entry. Since communication and control take place at high intelligence level in instrument, all instrument circuitry fully utilized. Little knowledge of instrument circuitry necessary, since only task interface performs is key closure. All existing logic and error checking still performed by instrument, minimizing workload of laboratory microcomputer. Timing constraints for interface operation minimal at keyboard entry level.

  7. Exploration and research on utilization rate of special education laboratory (Training Room) instruments and equipment%特殊教育实验(训)室仪器设备利用率的探索和研究

    Institute of Scientific and Technical Information of China (English)

    何燕春

    2013-01-01

    充分发挥仪器设备的投资效益、提高设备利用率,从而减少资源闲置和浪费,是高校实验(训)室需要着重解决的问题。分析了特殊教育实验(训)室仪器设备利用率低的原因,总结与分析其存在的问题,并提出提高特殊教育实验(训)室仪器设备利用率的策略和具体措施。%With the increased support by the government for the special education , the colleges of special education imposed more emphasis on the laboratory instruments and equipment .However ,the key is to how to maximum the usefulness of the instruments and equipment by using the instruments and equipment efficiently and decreasing the waste of the resources ,which should meet the need of the colleges’ development . In this study ,the problem about the current low utilization rate in most special colleges will be presented and the corresponding analyses will be conducted .Finally ,the useful and valid measures for solving these existed problems will be given .

  8. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  9. Laboratory of Brain and Cognition (LBC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Brain and Cognition (LBC) is a branch of the Division of Intramural Research Programs ( DIRP) at the National Institute of Mental Health ( NIMH)....

  10. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  11. | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    processes, including linear fractional processes, mixed moving averages, and supOU processes, as particular cases. The proof of the main theorem relies on series representations of jumps of cadlag infinitely divisible processes given in Basse-O'Connor and Rosinski [2013, Ann. Probab. 41(6)] combined...

  13. Encrypted integer division

    NARCIS (Netherlands)

    Veugen, P.J.M.

    2010-01-01

    When processing signals in the encrypted domain, homomorphic encryption can be used to enable linear operations on encrypted data. Integer division of encrypted data however requires an additional protocol with the server and will be relatively expensive. We present new solutions for dividing encryp

  14. The Problem with Division

    Science.gov (United States)

    Pope, Sue

    2012-01-01

    Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…

  15. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  16. Information Technology Division Technical Paper Abstracts 1995,

    Science.gov (United States)

    2007-11-02

    Information Technology Division (ITD), one of the largest research and development collectives at the Naval Research Laboratory. The abstracts are organized into sections that represent the six branches with ITD: the Navy Center for Applied Research in Artificial Intelligence, Communications Systems, the Center for High Assurance Computer Systems, Transmission Technology, Advanced Information Technology , and the Center for Computational Science. Within each section, a list of branch papers published in 1993 and 1994 has also been included; abstracts

  17. Solid State Division Progress Report for Period Ending September 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J.F.

    2001-02-26

    This report covers research progress in the Solid State Division from April 1, 1997, through September 30, 1999. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities. Over the past two years, a number of important infrastructure improvements that will provide significant new research opportunities and unique capabilities for the division in neutron scattering and synchrotron x-ray research, electron microscopy, nanostructure fabrication, and theory have been pursued. A major upgrade of neutron scattering capabilities at the High Flux Isotope Reactor (HFIR), including a high-performance cold source, new beam lines and guides, and new and upgraded instrumentation, is under way. These upgrades, together with the proposed Spallation Neutron Source at ORNL, will provide the nation with unsurpassed capabilities worldwide in neutron scattering. The division is also involved in the development of two synchrotron beam lines at the Advanced Photon Source at Argonne National Laboratory, an upgrade of the Z-contrast scanning transmission electron microscope to sub-angstrom resolution, development of a unique laser molecular beam epitaxy laboratory, and acquisition of a 11-Gflop parallel computer. Theoretical progress has included new insights into thin-film and surface phenomena, highly correlated systems, many body effects, quantum dots, and simulation of laser ablation. Neutron scattering has seen continued growth in the scientific user program along with progress on a broad research front including superconductivity, magnetism, polymers and complex fluids

  18. The dissection profile and mechanism of tissue-selective dissection of the piezo actuator-driven pulsed water jet as a surgical instrument: laboratory investigation using Swine liver.

    Science.gov (United States)

    Yamada, Masato; Nakano, Toru; Sato, Chiaki; Nakagawa, Atsuhiro; Fujishima, Fumiyoshi; Kawagishi, Naoki; Nakanishi, Chikashi; Sakurai, Tadashi; Miyata, Go; Tominaga, Teiji; Ohuchi, Noriaki

    2014-01-01

    The water jet technique dissects tissue while sparing cord-like structures such as blood vessels. The mechanism of such tissue-selective dissection has been unknown. The novel piezo actuator-driven pulsed water jet (ADPJ) system can achieve dissection with remarkably reduced water consumption compared to the conventional water jet; however, the system's characteristics and dissection capabilities on any organ have not been clarified. The purposes of this study were to characterize the physical properties of the novel ADPJ system, evaluate the dissection ability in swine organs, and reveal the mechanism of tissue-selective dissection. The pulsed water jet system comprised a pump chamber driven by a piezo actuator, a stainless steel tube, and a nozzle. The peak pressure of the pulsed water jet was measured through a sensing hole using a pressure sensor. The pulsed water jet technique was applied on swine liver in order to dissect tissue on a moving table using one-way linear ejection at a constant speed. The dissection depth was measured with light microscopy and evaluated histologically. The physical properties of swine liver were evaluated by breaking strength tests using tabletop universal testing instruments. The liver parenchyma was also cut with three currently available surgical devices to compare the histological findings. The peak pressure of the pulsed water jet positively correlated with the input voltage (R(2) = 0.9982, p dissection depth. The dissection depth negatively correlated with the breaking strength of the liver parenchyma (R(2) = 0.6694, p dissected, preserving the hepatic veins and Glisson's sheaths in contrast to what is commonly observed with electrocautery or ultrasonic instruments. The dissection depth of liver tissue is well controlled by input voltage and is influenced by the moving velocity and the physical properties of the organ. We showed that the device can be used to assure liver resection with tissue selectivity due to tissue

  19. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  20. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  1. Podcast: The Electronic Crimes Division

    Science.gov (United States)

    Sept 26, 2016. Chris Lukas, the Special Agent in Charge of the Electronic Crimes Division within the OIG's Office of Investigations talks about computer forensics, cybercrime in the EPA and his division's role in criminal investigations.

  2. 75 FR 16178 - Antitrust Division

    Science.gov (United States)

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Joint... Director of Operations, Antitrust Division. BILLING CODE 4410-11-M...

  3. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  4. Biorepositories- | Division of Cancer Prevention

    Science.gov (United States)

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  5. Division Quilts: A Measurement Model

    Science.gov (United States)

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  6. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: cobas integra, chiron blood gas analyzer 840, Sysmex SE-9000 and BCT.

    Science.gov (United States)

    Wolthuis, A; Peek, D; Scholten, R; Moreira, P; Gawryl, M; Clark, T; Westerhuis, L

    1999-01-01

    As part of a clinical trial, we evaluated the effects of the hemoglobin-based oxygen-carrier (HBOC) HBOC-201 (an ultrapurified, stroma-free bovine hemoglobin product, Biopure, Cambridge, MA, USA) on our routine clinical chemistry analyzer (Cobas Integra, F. Hoffmann-La Roche Ltd, Basel, Switzerland ), blood gas analyzer (Chiron 840, Chiron Diagnostics Corporation, East Walpole, MA, USA), routine hemocytometry analyzer (Sysmex SE-9000, TOA Medical Electronics Co Ltd., Kobe, Japan), hemostasis analyzer (BCT, Dade-Behring, Marburg, Germany) and bloodbanking system (Dia-Med-ID Micro Typing System, DiaMed AG, Cressier, Switzerland). The maximum tested concentration of HBOC-201 was 65 g/l. Of the 27 routine clinical chemistry tests challenged with HBOC-201, bilirubin-direct, creatine kinase MB-fraction (CK-MB), creatine kinase (CK), gamma-glutamyltransferase (GGT), magnesium and uric acid were influenced by even low concentrations of HBOC-201. These tests were excluded from use on the plasma of patients treated with HBOC-201. Since the non-availability of the cardiac marker CK-MB may lead to problems in acute situations, we introduced the qualitative Trop T-test (Boehringer Mannheim), which was not influenced. The applicability of another nine tests was limited by the concentration of the HBOC-201 in the patients' plasma. No interference of HBOC-201 in routine hemocytometry, hemostasis-analysis and red-blood cell agglutination detection (blood-bank tests) was observed. Although immediate patient-care was not compromised, routine use of hemoglobin-based oxygen carriers will have a strong impact on logistical management. The development of robust laboratory tests free from the interference of the pigmented oxygen carriers should therefore precede its introduction into routine transfusion medicine.

  7. A Prospective Screening of HLA-B*57.01 Allelic Variant for Preventing the Hypersensivity Reaction to Abacavir: Experience from the Laboratory of Molecular Biology of the Infectious Diseases Division at the University Hospital of Salerno.

    Science.gov (United States)

    Senatore, C; Charlier, B; Truono, A; Punzi, R; D'Aniello, F; Boffa, N; Izzo, V; Conti, V; Russomanno, G; Manzo, V; Filippelli, A; Mazzeo, M

    2015-01-01

    Abacavir is a nucleoside reverse transcriptase inhibitor largely used as part of the antiretroviral therapy in Human Immunodeficiency Virus (HIV)-infected patients. Some individuals (2-9%) who start an abacavir treatment show an immunologic reaction indicated as hypersensitivity reaction syndrome (HSR) that is often responsible for therapy discontinuation and could represent a life-threatening event. Some studies demonstrated a correlation between this adverse reaction and the class I of the major histocompatibility complex (MHC) allele, HLA-B*57.01, in several populations, including Caucasians. Nowadays, International HIV treatment guidelines recommend the HLA-B*57.01 genotyping before abacavir administration to reduce the incidence of HSR. Both male and female HIV-infected patients were enrolled at the Infectious Diseases Division at the University Hospital of Salerno, and admitted to a prospective HLAB*57.01 screening. Genetic analysis was carried out through two sequential Real-Time PCR reactions in which Sybr-Green was used. Out of 248 patients, 215 were Italians from Southern Italy and 33 were coming from several non-EU members countries. All were genotyped: 6 Italians (2.8%) and 1 of the non-EU group (3%) were identified as HLAB*57.01 carriers. In this paper we present our experience in the field of abacavir pharmacogenetic and confirm the importance of Real Time PCR as a valid and cost-effective HLA-B*57.01 typing methodology.

  8. The LAMP instrument at the LCLS

    Science.gov (United States)

    Osipov, Timur; Castagna, Jean-Charles; Bostedt, Christoph; Xiong, Hui; Ferguson, Ken; Bucher, Maximilian; Berrah, Nora

    2015-05-01

    We have commissioned and used a new instrument at the Linac Coherent Light (LCLS) Source at SLAC National Laboratory called LAMP. It consists of several detectors housed in a double chambered vacuum system. One detection scheme offered relies on the use of a double velocity map imaging (VMI) spectrometer which enables research in the gas phase such as molecular dynamics experiments. The latter are monitored via the detection of electron and ionic fragments resulting from x-ray photo-absorption of x-ray photons. With this new tool, we can record the different fragmentation pathways by measuring multi-particles ion-ion coincidences/multi-particle correlations. We can also simultaneously image the electrons momenta to capture the most detailed x-ray induced reaction in molecules and nano-systems. The other detection scheme offered consists of two imaging detectors of the pnCCD type for diffraction experiments of clusters and bio-specimens. This instrument, available to any users, has the possibility to uncover new mechanisms in physics, chemistry and biology. This work is funded in part by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under a SISGR grant and funds from the LCLS, funded by DOE-BES.

  9. IFCC reference procedures for measurement of the catalytic concentrations of enzymes: corrigendum, notes and useful advice. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)--IFCC Scientific Division.

    Science.gov (United States)

    Schumann, Gerhard; Canalias, Francesca; Joergensen, Poul J; Kang, Dongchon; Lessinger, Jean-Marc; Klauke, Rainer; Committee On Reference Systems For Enzymes C-Rse; International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division

    2010-05-01

    The primary reference measurement procedures (PRMPs) for the international standardization of catalytic concentration measurements of alpha-amylase, alanine aminotransferase, aspartate aminotransferase (AST), creatine kinase (CK), gamma-glutamyltransferase and lactate dehydrogenase have been performed in reference laboratories for several years. The IFCC Committee on Reference Systems for Enzymes and two reference laboratories, with official accreditation for the PRMPs, have collected useful information on some of the steps of the reference procedures that require special attention. This document comprises errata corrige for minor mistakes in published PRMPs for AST and CK. Several notes on the PRMPs are emphasized. This includes details that are very important for improved standardization, and general suggestions for reducing measurement uncertainty.

  10. Multispectral Imaging of Mars from the Mars Science Laboratory Mastcam Instruments: Spectral Properties and Mineralogic Implications Along the Gale Crater Traverse

    Science.gov (United States)

    Bell, James F.; Wellington, Danika; Hardgrove, Craig; Godber, Austin; Rice, Melissa S.; Johnson, Jeffrey R.; Fraeman, Abigail

    2016-10-01

    The Mars Science Laboratory (MSL) Curiosity rover Mastcam is a pair of multispectral CCD cameras that have been imaging the surface and atmosphere in three broadband visible RGB color channels as well as nine additional narrowband color channels between 400 and 1000 nm since the rover's landing in August 2012. As of Curiosity sol 1159 (the most recent PDS data release as of this writing), approximately 140 multispectral imaging targets have been imaged using all twelve unique bandpasses. Near-simultaneous imaging of an onboard calibration target allows rapid relative reflectance calibration of these data to radiance factor and estimated Lambert albedo, for direct comparison to lab reflectance spectra of rocks, minerals, and mixtures. Surface targets among this data set include a variety of outcrop and float rocks (some containing light-toned veins), unconsolidated pebbles and clasts, and loose sand and soil. Some of these targets have been brushed, scuffed, or otherwise disturbed by the rover in order to reveal the (less dusty) interiors of these materials, and those targets and each of Curiosity's drill holes and tailings piles have been specifically targeted for multispectral imaging.Analysis of the relative reflectance spectra of these materials, sometimes in concert with additional compositional and/or mineralogic information from Curiosity's ChemCam LIBS and passive-mode spectral data and CheMin XRD data, reveals the presence of relatively broad solid state crystal field and charge transfer absorption features characteristic of a variety of common iron-bearing phases, including hematite (both nanophase and crystalline), ferric sulfate, olivine, and pyroxene. In addition, Mastcam is sensitive to a weak hydration feature in the 900-1000 nm region that can provide insight on the hydration state of some of these phases, especially sulfates. Here we summarize the Mastcam multispectral data set and the major potential phase identifications made using that data set

  11. CAS Academic Divisions in 2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ 1.Election of New Members In 2001, 56 scientists were elected new CAS members, including l0 in the Division of Mathematics & Physics, 10 in the Division of Chemistry, 12 in the Division of Biology, nine in the Division of Earth Sciences and 15 in the Division of Engineering Sciences.The average age of the new members is 60.4, and the youngest one is 38 years old. They are now working in nine provinces or municipalities, or governmental departments under the State Council, including 23 outstanding experts working for the CAS.

  12. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  13. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. Fritz Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Features 800,000 lb and 5,000,000 lb universal testing machines, and a dynamic test bed with broad fatigue-testing capabilities, and a wide range of instrumentation....

  16. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  17. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  18. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  19. Deconstructing Calculation Methods, Part 4: Division

    Science.gov (United States)

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division. [For part…

  20. Virtual Laboratories

    Science.gov (United States)

    Hut, P.

    At the frontier of most areas in science, computer simulations playa central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

  1. Animation of MARDI Instrument

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation This animation shows a zoom into the Mars Descent Imager (MARDI) instrument onboard NASA's Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. 职业卫生技术服务机构噪声测量仪器实验室间比对研究%Study on noise measurement instruments of occupational hygiene technical service organization inter-laboratory comparison

    Institute of Scientific and Technical Information of China (English)

    肖斌; 陈青松; 温薇; 熊文波; 徐国勇; 林瀚生; 张骁; 郭义曹

    2014-01-01

    Objective To analyze the major factors which impacted the quality of noise measurement via inter -laboratory comparison of the noise measurement instruments value accuracy among various of occupational hygiene technical service organization.Methods Adjustable base noise measurement (2 modes of noise signals emission were set ) and fixed point imitative noise measurement of workplace were adopted to inter-laboratory comparison of noise measurement instruments of 6 occupational hygiene technical service organizations and to assess the measurement value after statistical analysis according to four robust technology and z-score evaluation method .Results Six occupational hygiene technical service organizations with 9 modes of noise measurement instruments , 13 certificate validity qualified instruments in total which 11 instruments with verification certificate , 2 instruments possessed calibration certificate of 84.6% acceptability ( 11/13 ) , had participated in this measurement comparison .In the progress of adjustable base noise source measurement , 10 instruments obtained satisfied solutions with frequencies of |z|2 000;in the noise signal emission mode 2, the entire instruments’ measurement values in different sound pressure levels of 1 000.0 Hz shown deviation range of -1.00 to 0.60 dB( A) within permission range of ±1.40 dB ( A).Afterwards, in the progress of fixed point workplace imitative nose measurement , z-score oscillated between -1.206 and 1.806 among all labs though z-score range of -1.318 to 1.788 within one lab , both were satisfied consequences less than 2.000. Conclusion Accuracy insufficiency commonly existed among noise measurement instruments belonged to occupational hygiene technical service organizations , which was able to tackle by introducing the combination of adjustable base noise source measurement and fixed point imitative noise measurement of workplace .%目的:通过实验室间比对分析职业卫生技术服务机构噪声测

  3. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts

    Science.gov (United States)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; De Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2014-02-01

    A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  4. CO2, CO and CH4 measurements from the NOAA Earth System Research Laboratory's Tall Tower Greenhouse Gas Observing Network: instrumentation, uncertainty analysis and recommendations for future high-accuracy greenhouse gas monitoring efforts

    Science.gov (United States)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; de Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2013-02-01

    A robust in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Tall Tower Greenhouse Gas Observing Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary layer trace gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures and flow rates that are inputs for automated alerts and quality control algorithms. These algorithms provide detailed and time-dependent uncertainty estimates for all of the gases and could be adapted to other species or analysis systems. The design emphasizes use of off the shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  5. Bipolarity and the relational division

    OpenAIRE

    Tamani, Nouredine; Lietard, Ludovic; Rocacher, Daniel

    2011-01-01

    International audience; A fuzzy bipolar relation is a relation defined by a fuzzy bipolar condition, which could be interpreted as an association of a constraint and a wish. In this context, the extension of the relational division operation to bipolarity is studied in this paper. Firstly, we define a bipolar division when the involved relations are crisp. Then, we define, from the semantic point of view, several forms of bipolar division when the involved relations are defined by fuzzy bipol...

  6. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  7. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...

  8. Laboratory for Atmospheres 2008 Technical Highlights

    Science.gov (United States)

    Cote, Charles E.

    2009-01-01

    The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried

  9. Biology Division. Progress report, August 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Biology Division is the component of the Oak Ridge National Laboratory that investigates the potential adverse health effects of energy-related substances. The body of this report provides summaries of the aims, scope and progress of the research of groups of investigators in the Division during the period of August 1, 1982, through September 30, 1983. At the end of each summary is a list of publications covering the same period (published or accepted for publication). For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with an overview. It will be apparent, however, that currents run throughout the Division and that the various programs support and interact with each other.

  10. Materials and Components Technology Division research summary, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  11. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  12. Simulation and evaluation of mammography quality from an X-ray equipment of a instrument calibration laboratory; Simulacao e avaliacao das qualidades da mamografia do equipamento de raios-x de um laboratorio de calibracao de instrumentos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F. da; Castro, Maysa C. de; Caldas, Linda V.E., E-mail: na.fiorini@gmail.com, E-mail: maysadecastro@gmail.com, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The Instrument Calibration Laboratory (ICL) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP, Brazil has developed some work in order to establish a primary standard system for low energy X-ray employing a ionization chamber of free air. For this, one of the most important steps is the determination of factors of correction of its answer. Simulation is a frequently used tool for this because some correction factors can not be determined experimentally. For the correct simulation of these correction factors is necessary some input parameters such as geometry, the material composition of the dosimeter, the experimental arrangement and the radiation source are specified correctly. For the ionization chamber available on the LCI, the geometry, the material components and the experimental arrangement can be obtained easily. On the other hand, spectrum of radiation energy source, which must be inserted into the computer code has not been obtained. Thus, this study aims to determine this radiation spectrum, thus enabling the characterization of the new primary standard for low power X-radiation of ICL.

  13. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  14. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  15. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  16. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  17. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  18. 78 FR 17431 - Antitrust Division

    Science.gov (United States)

    2013-03-21

    ... January 2, 2013 (78 FR 117). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING...) of the Act on July 30, 2001 (66 FR 39336). The last notification was filed with the Department on... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  19. 77 FR 54611 - Antitrust Division

    Science.gov (United States)

    2012-09-05

    ... on June 8, 2012 (77 FR 34067). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division... Section 6(b) of the Act on June 30, 2000 (65 FR 40693). The last notification was filed with the... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  20. Critical analysis for physical adaptation and implementation of new procedures in the IPEN'S laboratory animal division; Analise critica para adequacao fisica e implantacao de novos procedimentos na divisao de animais de laboratorio do IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Elizabeth Brigadao de Faria

    2009-07-01

    The production and the supply of high quality laboratory animals have fundamental importance for the accomplishment of vanguard scientific research, with reproducibility and universality. The quality of those animals depends, largely, of the available facilities for their production and lodging, to assure the demanded sanitary control and animals' welfare, in agreement with the ethical principles that control the activity. The facilities also have to fill out other requirements, such as: the functionality of the environments to make possible the suitable and efficient handling of the animals, facilitating the execution of the routine activities; the respect to ergonomic principles to provide a safe environment and the operators' well being. The facilities design is of vital importance so that the mentioned requirements can be reached. The project of the Nuclear and Energy Research Institute (IPEN) Animal House Facilities was accomplished in the year of 1964. However, by that time there were not the current recommendations with respect to the sanitary, genetic and environmental controls. The facility was planned with the objective of being a production unit and a local for keeping of defined animals from sanitary, genetic and environmental point of view. Nevertheless, the original unit drawing presents an unsuitable distribution of the area where animals are stocked and also different activities are performed. The Animal House Facilities occupy an area of 840 m2, with one pavement, where the production areas and the stock of original animal models of the own Institution are distributed, as well as the maintenance of animals from other national or foreigner institutions. It supplies rats and mice for biological tests of radiopharmaceutical lots, produced in IPEN, before they be sent to hospitals and clinics spread out in Brazil, for use in Nuclear Medicine. It also supplies rats and mice for tests of dental materials, for tests with growth hormones and for

  1. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  3. Physics Division computer facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cyborski, D.R.; Teh, K.M.

    1995-08-01

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  4. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  5. Quarterly report of Biological and Medical Research Division, April 1955

    Energy Technology Data Exchange (ETDEWEB)

    Brues, A.M.

    1955-04-01

    This report is a compilation of 48 investigator prepared summaries of recent progress in individual research programs of the Biology and Medical Division of the Argonne National Laboratory for the quarterly period ending April,1955. Individual reports are about 3-6 pages in length and often contain research data.

  6. Joint Urban 2003: Study Overview And Instrument Locations

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-16

    Quality-assured meteorological and tracer data sets are vital for establishing confidence that indoor and outdoor dispersion models used to simulate dispersal of potential toxic agents in urban atmospheres are giving trustworthy results. The U.S. Department of Defense-Defense Threat Reduction Agency and the U.S. Department of Homeland Security joined together to conduct the Joint Urban 2003 atmospheric dispersion study to provide this critically-needed high-resolution dispersion data. This major urban study was conducted from June 28 through July 31, 2003, in Oklahoma City, Oklahoma, with the participation of over 150 scientists and engineers from over 20 U.S. and foreign institutions. The Joint Urban 2003 lead scientist was Jerry Allwine (Pacific Northwest National Laboratory) who oversaw study design, logistical arrangements and field operations with the help of Joe Shinn (Lawrence Livermore National Laboratory), Marty Leach (Lawrence Livermore National Laboratory), Ray Hosker (Atmospheric Turbulence and Diffusion Division), Leo Stockham (Northrop Grumman Information Technology) and Jim Bowers (Dugway Proving Grounds). This report gives a brief overview of the field campaign, describing the scientific objectives, the dates of the intensive observation periods, and the instruments deployed. The data from this field study is available to the scientific community through an on-line database that is managed by Dugway Proving Ground. This report will be included in the database to provide its users with some general information about the field study, and specific information about the instrument coordinates. Appendix A of this document provides the definitive record of the instrument locations during this field campaign, and Appendix B lists all the study principal investigators and participants.

  7. Instrumented SSH

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  8. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  9. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  10. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  11. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  12. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R. [eds.

    1998-08-11

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  13. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  14. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  15. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  16. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  17. Active instruments

    DEFF Research Database (Denmark)

    Lim, Miguel Antonio; Ørberg, Jakob Williams

    2017-01-01

    ) show the dynamic nature of policy processes, and (3) consider the search for policy reference points among the different actors. We present rankers in motion, policies in motion, and finally the complex nature of the ranking device that needs to be both a relevant and malleable policy instrument...

  18. ftsZ gene and plastid division

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Plastid is one of the most important cellular organelles, the normal division process of plastid is essential for the differentiation and development of plant cells. For a long time, morphological observations and genetic analyses to special mutants are the major research fields of plastid division, but the molecular mechanisms underlying plastid division are largely unknown. Because of the endosymbiotic origin, plastid division might have mechanisms in common with those involved in bacterial cell division. It has been proved that several prokaryotic cell division genes also participate in the plastid division. Recently, the mechanisms of prokaryotic cell division have been well documented, which provides a valuable paradigm for understanding the plastid division mechanisms. In plants, the functional analyses of ftsZ, a key gene involved both in bacteria and plastid division, have established the solid foundation for people to understand the plastid division in molecular level. In this paper we will make a review for the research history and progress of plastid division.

  19. Laboratory and Field Characterizations of a Filter Inlet for Gases and AEROsols (FIGAERO) Collector Module for a Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) Instrument

    Science.gov (United States)

    Nowak, J. B.; Vogel, A.; Massoli, P.; Lambe, A. T.; Stark, H.; Kimmel, J.; Isaacman-VanWertz, G. A.; Kroll, J. H.; Canagaratna, M. R.; Worsnop, D. R.; Jayne, J. T.

    2015-12-01

    The Aerodyne Research, Inc. (ARI) Filter Inlet for Gases and AEROsols (FIGAERO) collector module is an add-on for Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) instruments. The FIGAERO enables simultaneous real-time chemical analysis of trace gases and particles in ambient air. The collector module described here is modelled after the University of Washington (UW) design of Lopez-Hilfikeret al., 2014. The collector module mounts directly to the front of the CI-TOFMS ion molecule reactor, replacing the standard gas phase inlet. Automated operation follows a two-step sequence alternating between gas and particle sampling. Gas and particle flows are sampled through separate inlet lines. Software provides automated control of the ARI FIGAERO and determines which inlet line is sampled into ion molecule reaction region. While in the gas phase measuring position particles are separately collected on a filter. After sufficient particle collection, heated clean nitrogen is passed over the filter to desorb the particles on the filter. The thermally desorbed material is then measured with the CI-TOFMS. Though conceptually similar, the ARI FIGAERO is mechanically different enough from the UW design that it requires its own performance assessment. Presented here is the characterization of the ARI FIGAERO collector module. The FIGAERO performance is assessed by using laboratory, chamber, and field data collected using iodide as the reagent ion to examine detection sensitivity, quantification limits, and time response. Lopez-Hilfiker et al., "A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)", Atmos. Meas. Tech., 7, 983-1001 (2014)

  20. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  1. Luminescence techniques: Instrumentation and methods

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    1997-01-01

    This paper describes techniques, instruments and methods used in luminescence dating and environmental dosimetry in many laboratories around the world. These techniques are based on two phenomena - thermally stimulated luminescence and optically stimulated luminescence. The most commonly used...... luminescence stimulation and detection techniques are reviewed and information is given on recent developments in instrument design and on the stale of the art in luminescence measurements and analysis. (C) 1998 Elsevier Science Ltd. All rights reserved....

  2. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  3. High division of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Tripti Shrivastava

    2014-04-01

    Results: In all except two cadavers, the nerve divided at the apex of the popliteal fossa. In two cadavers the sciatic nerve divided bilaterally in the upper part of thigh. Conclusion: The high division presented in this study can make popliteal nerve blocks partially ineffective. The high division of sciatic nerve must always be borne in mind as they have important clinical implications. [Int J Res Med Sci 2014; 2(2.000: 686-688

  4. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  5. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics Laboratory The Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose...

  6. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  7. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  8. Environmental Research Division technical progress report, January 1984-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  9. Unit-specific calibration of Actigraph accelerometers in a mechanical setup - is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    DEFF Research Database (Denmark)

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L

    2008-01-01

    during free living conditions. RESULTS: Calibration reduced inter-instrument variability considerably in the mechanical setup, both in the MTI instruments (raw SDbetween units = 195 counts*min-1 vs. calibrated SDbetween units = 65 counts*min-1) and in the CSA instruments (raw SDbetween units = 343 counts...... conditions had no apparent effect on inter-instrument variability. In all probability, the effect of technical calibration was primarily attenuated in the field by other more dominant sources of variation. However, routine technical assessments are still very important for determining the acceleration...

  10. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  11. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  12. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  13. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  14. Aeronautical Research Laboratories Structures Division Annual Report 1979-80

    Science.gov (United States)

    1981-04-01

    of aircraft structures which contain significant amounts of advanced composite materials such as carbon fibre reinforced plastic (CFRP). Both the...Composite Materials Composite materials, such as carbon fibre reinforced plastic (CFRP), are being increasingly used in aircraft structures in place of

  15. Undergraduate Laboratory for Surface Science

    Science.gov (United States)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    be added to the curriculum this academic year. This experiment introduces students to the concepts of surface adsorption and desorption kinetics. The sample mount can be both heated to 900 oC and cooled by liquid nitrogen, allowing the study of the desorption of a variety of adsorbates, both chemisorbed and physisorbed. Adsorbed species evolving from the heated surface are detected with a quadrupole mass spectrometer. Initially, students will study the desorption kinetics of CO from a Pt(111) surface for a range of coverages and temperature programming rates in order to obtain rate parameters and to test the validity of Redhead's relationship between the activation energy of desorption and the peak desorption temperature. They then will be introduced to the mechanisms of surface reactions (Langmuir-Hinshelwood) in a study of CO oxidation on this surface. We have also set up a scanning tunneling microscopy (STM) laboratory using a commercially available instrument (Burleigh Instruments, Inc.), which complements the UHV surface structure experiments by introducing the topography of a real surface, for example, with steps and defect sites. With the apparatus now completed, we can explore other possible developments, for example, an applied physics track designed around experiments on semiconductor substrates. Future additions include X-ray photoelectron spectroscopy and completion of a separate surface infrared spectroscopy experiment on supported catalysts. We acknowledge support from the National Science Foundation, Division of Undergraduate Education Instrumentation and Laboratory Improvement (ILI) Program (Grant No. DUE-9352254) and an AT&T Special Purpose Grant. Literature Cited Somorjai, G. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1994; Woodruff, D. P.; Delchar, T. A. Modem Techniques of Surface Science; Cambridge University: Cambridge, 1986; Christmann, K. Introduction to Surface Physical Chemistry; Springer Verlag: New York, 1991

  16. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  17. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  18. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  19. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  20. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  1. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  2. Beyond Cookies: Understanding Various Division Models

    Science.gov (United States)

    Jong, Cindy; Magruder, Robin

    2014-01-01

    Having a deeper understanding of division derived from multiple models is of great importance for teachers and students. For example, students will benefit from a greater understanding of division contexts as they study long division, fractions, and division of fractions. The purpose of this article is to build on teachers' and students'…

  3. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman; Ganeshalingam, Mohan; DeMates, Lauren; Mathew, Paul; Sartor, Dale

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  4. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  5. Biology and Medicine Division annual report, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  6. Scientific Scope | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention conducts and supports research to determine a person's risk of developing cancer and to find ways to reduce that risk. Through laboratory, clinical, and epidemiologic research, scientists have shown that the diseases of cancer occur not as single, catastrophic events, but rather as the result of a complex and long-evolving molecular process that can take decades. This long-term process of carcinogenesis provides time and opportunities to slow down, stop, or reverse the cellular changes that can become cancer. | DCP research spans the initiation of cancer and the occurrence of invasive disease in major organ sites. The overall goal is to detect changes and intervene early to prevent symptomatic disease and death.

  7. Personal Computer Monitors Instrumentation Bus

    Science.gov (United States)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  8. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  9. Health, Safety, and Environment Division: Annual progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  10. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  11. Impact dynamics instrumentation

    Science.gov (United States)

    Mccormck, R. F.

    1986-01-01

    One of the tasks specified in the NASA Langley controlled impact demonstration (CID) work package was to furnish dynamic instrumentation sensors. The types of instrumentation sensors required were accelerometers for aircraft structural loads measurements, seat belt load cells to measure anthropomorphic dummy responses to the aircraft impact, and strain gage bending bridges to measure the aircraft fuselage and wing bending during impact. The objective in the selection of dynamic instrumentation for the CID was to provide 352 of the highest quality transducers and remain within budget allocation. The transducers that were selected for the CID evaluation process were each subjected to rigorous laboratory acceptance tests and to aircraft fuselage section drop tests at the LaRC Impact Dynamics Research Facility. Data compiled from this series of tests showed the selected transducers to be best suited for the CID mission requirement. The transducers installation technique on the airframe proved successful. The transducer quality assurance was guaranteed through rigorous acceptance testing. Data acquired was 97.0%.

  12. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  13. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  14. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  15. Home | Division of Cancer Prevention

    Science.gov (United States)

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  16. 78 FR 17430 - Antitrust Division

    Science.gov (United States)

    2013-03-21

    ... pursuant to Section 6(b) of the Act on April 4, 2003 (68 FR 16552). The last notification was filed with... Section 6(b) of the Act on March 23, 2012 (77 FR 17095). Patricia A. Brink, Director of Civil Enforcement... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  17. Optical Instruments

    Science.gov (United States)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  18. Physics Division annual report, April 1, 1993--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  19. Atmospheric sciences division. Annual report, fiscal year 1981

    Energy Technology Data Exchange (ETDEWEB)

    Raynor, G. S. [ed.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  20. Accelerator and Fusion Research Division: Summary of activities, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  1. 21 CFR 211.194 - Laboratory records.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Laboratory records. 211.194 Section 211.194 Food... Laboratory records. (a) Laboratory records shall include complete data derived from all tests necessary to..., including all graphs, charts, and spectra from laboratory instrumentation, properly identified to show...

  2. Operational Characterization of Divisibility of Dynamical Maps

    Science.gov (United States)

    Bae, Joonwoo; Chruściński, Dariusz

    2016-07-01

    In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy.

  3. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  4. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  5. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR). DESCRIPTION: The Blackroom Laboratory is...

  6. C-Division annual review and operating plan, August 1990

    Energy Technology Data Exchange (ETDEWEB)

    Morse, N.R.

    1990-11-01

    The Computing and Communications Division is responsible for the Laboratory's Integrated Computing Network as well as Laboratory-wide communications. Our computing network, used by 8000 people distributed throughout the nation, constitutes one of the most powerful scientific computing facilities in the world. The purpose of this publication is to inform our clients of our strategic and operating plans. We review major accomplishments since early 1989 and describe our strategic planning goals and specific projects that will guide our operations over the next couple of years. Our mission statement, planning considerations, and management policies and practices are also included.

  7. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Physical and other data from CTD casts, current meters, and other instruments from the SHOYO and other platforms from the North Pacific Ocean and other locations by the Japanese Hydrographic Office and the Maritime Safety Agency; Hydrographic Division from 01 January 1990 to 31 December 1991 (NODC Accession 9300113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data from CTD casts, current meters, and other instruments from the SHOYO and other platforms from the North Pacific Ocean and other locations...

  9. Physical and other data from CTD casts, XBT casts, current meters, and other instruments from the SHOYO and other platforms from the NE Pacific (limit-180) and other locations by the Japanese Hydrographic Office and the Maritime Safety Agency; Hydrographic Division from 16 January 1993 to 01 December 1995 (NODC Accession 9600079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data from CTD casts, XBT casts, current meters, and other instruments from the SHOYO and other platforms from the NE Pacific (limit-180) and other...

  10. Physiographic divisions of the conterminous U. S.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a polygon coverage of Physiographic Divisions in the conterminous United States. It was automated from Fenneman's 1:7,000,000-scale map, "Physical Divisions...

  11. High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

    1996-10-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  12. Theoretical Division progress report. [October 1976-January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. (comp.)

    1979-04-01

    This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables.

  13. Cell division in apicomplexan parasites.

    Science.gov (United States)

    Francia, Maria E; Striepen, Boris

    2014-02-01

    Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.

  14. The state of computing at Los Alamos National Laboratory FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Agins, I.A.; Slocomb, C.; Trainor, M.; Land, D.

    1992-08-01

    This study is an effort to provide quantitative data concerning the state of computing at the Los Alamos National Laboratory as of the end of Fiscal Year 1991. It includes information pertaining to the Laboratory`s computing equipment inventory, costs associated with the acquisition and support of the Laboratory`s computing efforts during that fiscal year, and information related to the Laboratory`s central and distributed computing and networks capabilities. The bulk of the data was obtained from the Laboratory`s central property and financial databases. Additional information was obtained from the Computing and Communications Division`s personal computer and network support organizations.

  15. Asymmetric cell division of stem cells in the lung and other systems.

    Science.gov (United States)

    Berika, Mohamed; Elgayyar, Marwa E; El-Hashash, Ahmed H K

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms.

  16. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  17. Division of household tasks and financial management

    NARCIS (Netherlands)

    Antonides, G.

    2011-01-01

    Both the standard economic model and bargaining theory make predictions about financial management and the division of household labor between household partners. Using a large Internet survey, we have tested several predictions about task divisions reported by Dutch household partners. The division

  18. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  19. Algebraic divisibility sequences over function fields

    CERN Document Server

    Ingram, Patrick; Silverman, Joseph H; Stange, Katherine E; Streng, Marco

    2011-01-01

    We study the existence of primes and of primitive divisors in classical divisibility sequences defined over function fields. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field has only finitely many terms lacking a primitive divisor.

  20. Take a Bite out of Fraction Division

    Science.gov (United States)

    Cengiz, Nesrin; Rathouz, Margaret

    2011-01-01

    Division of fractions is often considered the most mechanical and least understood topic in elementary school. Enacting fraction division tasks in meaningful ways requires that teachers know not only "how" fraction division works but also "why" it works. The authors have created materials to help preservice teachers develop that knowledge. To…

  1. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... request for comments in the Federal Register at 77 FR 12245 on the request of Lockheed Martin Corp. to... National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division... licenses. FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of...

  2. 7 CFR 29.16 - Division.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Regulations Definitions § 29.16 Division. Tobacco Division, Agricultural Marketing Service, U.S... 7 Agriculture 2 2010-01-01 2010-01-01 false Division. 29.16 Section 29.16 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  3. Environmental Transport Division. 1980 report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.E.; Fliermans, C.B.; Garrett, A.J.; Halverson, J.E.

    1981-03-01

    Aquatic, atmospheric, and terrestrial studies and instrumentation developments are described in a series of articles. More details about specific studies are given in publications listed at the end of the report.

  4. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Science.gov (United States)

    2010-04-02

    ... Employment and Training Administration Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc..., 2009, applicable to workers of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc... of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc., Division, including...

  5. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  6. Terms in elliptic divisibility sequences divisible by their indices

    CERN Document Server

    Stange, Katherine E

    2010-01-01

    Let D = (D_n)_{n\\ge1} be an elliptic divisibility sequence. We study the set S(D) of indices n satisfying n | D_n. In particular, given an index n in S(D), we explain how to construct elements nd in S(D), where d is either a prime divisor of D_n, or d is the product of the primes in an aliquot cycle for D. We also give bounds for the exceptional indices that are not constructed in this way.

  7. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  8. Consortium for Molecular Characterization of Screen-Detected Lesions Created: Eight Grants Awarded | Division of Cancer Prevention

    Science.gov (United States)

    The NCI has awarded eight grants to create the Consortium for Molecular Characterization of Screen-Detected Lesions. The consortium has seven molecular characterization laboratories (MCLs) and a coordinating center, and is supported by the Division of Cancer Prevention and the Division of Cancer Biology. | 7 laboratories and a coordinating center focused on identifying screening-detected pre-cancers and early cancers, including within the tumor microenvironment.

  9. Introducing the B I P (Biomedical Instrumentation Package). Many Important Electronic Functions in One Instrument.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described are the use and purposes of the Biomedical Instrumentation Package (BIP) in science classrooms. Science activities are suggested and equipment use is described. A sample laboratory activity, which includes materials, procedure, and discussion, is provided. (SA)

  10. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  11. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  12. Analytical Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...

  13. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  14. Laboratory Tests

    Science.gov (United States)

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  15. The Clementine instrument complement

    Science.gov (United States)

    Lucey, Paul G.

    1993-01-01

    The recent successes of the Galileo solid-state imaging (SSI) experiment at the Moon and Gaspra show the utility of multispectral imaging of planetary objects. 'Clementine' is the planetary community's 'code name' for the SDIO (Space Defense Initiative Organization), mission to the Moon and the asteroid Geographos. This mission is designed as a long term stressing test on sensors and space systems developed for SDIO. In the course of this test Clementine will obtain science data using a varied and powerful array of remote sensing instruments which were developed by or for Lawrence Livermore National Laboratory in Livermore, California. Clementine carries five cameras, one for navigation and four for science experiments. In addition, a laser ranger is included which will serve as a laser altimeter. The Clementine cameras cover a wider range of spatial resolutions and wavelength range than did Galileo and are almost ideally suited to mapping of mafic rock types as are present on the Moon and expected at Geographos. Calibration of the cameras will occur at the sensor calibration laboratory at LLNL. In flight calibrations, using standard stars and other standards should improve the stated accuracies. Signal-to-noise ratios (SNRs) include the following noise sources: shot noise, calibration error, digitization noise, readout noise, and frame transfer noise (where applicable). The achieved SNRs are a balance between detector saturation and acceptable image smear. The 'worst' case uses the longest possible integration times.

  16. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  17. A division's worth of data.

    Science.gov (United States)

    Pearce, Christopher; Shearer, Marianne; Gardner, Karina; Kelly, Jill

    2011-03-01

    Throughout the international community there is an increasing focus on the benefits of collecting, pooling and analysing patient data. General practice provides a great opportunity to create a comprehensive database of the Australian population as 90% of Australians visit their general practitioner each year and general practices are increasingly computerised. This article discusses the facilitatory role divisions of general practice can play in harnessing quality data from general practice and the benefits that may follow. It describes experience from 3 years of data pooling by the Melbourne East General Practice Network in Victoria and makes recommendations for other organisations interested in data collection.

  18. Code division multiple access (CDMA)

    CERN Document Server

    Buehrer, R Michael

    2006-01-01

    This book covers the basic aspects of Code Division Multiple Access or CDMA. It begins with an introduction to the basic ideas behind fixed and random access systems in order to demonstrate the difference between CDMA and the more widely understood TDMA, FDMA or CSMA. Secondly, a review of basic spread spectrum techniques are presented which are used in CDMA systems including direct sequence, frequency-hopping and time-hopping approaches. The basic concept of CDMA is presented, followed by the four basic principles of CDMA systems that impact their performance: interference averaging, universa

  19. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.

  20. Carbon Characterization Laboratory Report

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  1. Dr. Andras Siegler, President of the Hungarian CERN Committee, Ministry of Education, Research and Development Division, Budapest, Hungary

    CERN Document Server

    Maximilien Brice

    2002-01-01

    Photo 01: Dr András Siegler, President of the Hungarian CERN Committee, Ministry of Education, Research and Development Division (right) visiting the ALICE data acquisition laboratory with Ervin Denes. Photo 02: Ervin Denes in the ALICE DAQ (data acquisition) laboratory on the occasion of the visit of Dr András Siegler, President of the Hungarian CERN Committee, Ministry of Education, Research and Development Division. Photo 03: Detector Data Link and data generator used for data acquisition system of the ALICE experiment photographed on the occasion of the visit of Dr. András Siegler, President of the Hungarian CERN Committee, Ministry of Education, Research and Development Division.

  2. Physics Division: Annual report, 1 January-31 December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e/sup +/e/sup -/ annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics.

  3. Evaluating musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  4. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  5. E-Division semiannual report. Progress report, July 1--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1979-01-01

    The status of the programs and projects of the Electronics Division for the period July through December 1978 is reported. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support Branch is to apply advanced technology to Laboratory and material problems. The primary goal of the Technical Services Branch is to provide a technical base and support for Laboratory programs. Most of the individual reports are quite short.

  6. Divisions Panel Discussion: Astronomy for Development

    Science.gov (United States)

    Govender, Kevin; Hemenway, Mary Kay; Wolter, Anna; Haghighipour, Nader; Yan, Yihua; van Dishoeck, E. F.; Silva, David; Guinan, Edward

    2016-10-01

    The main purpose of this panel discussion was to encourage conversation around potential collaborations between the IAU Office of Astronomy for Development (OAD) and IAU Divisions. The discussion was facilitated by the OAD and the conversation revolved mainly around two questions: (i) What should the OAD be doing to enhance the work of the Divisions? (ii) What could the Divisions (both members and respective scientific discipline in general) contribute towards the implementation of the IAU strategic plan?

  7. Exploration Laboratory Analysis - ARC

    Science.gov (United States)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  8. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  9. Major Programs | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  10. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...

  11. Fair division theory and climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Helm, C. [Technical University Darmstadt (Germany). Department of Law and Economics

    2008-09-30

    This paper analyzes the fair division of common property resources when monetary compensations are feasible. A prominent example is the fair division of the atmosphere's limited absorptive capacity for greenhouse gases. I propose a solution that is Pareto efficient and satisfies the axiomatic fair division criteria of individual rationality, stand-alone upper bound, and a version of envy-freeness. The latter criterion is adapted to problems where monetary compensations can be used to facilitate the fair division of the common resource. Applied to climate change, the solution implies that developing countries should participate in emission reduction efforts, but should be fully compensated for their incremental abatement costs.

  12. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    -recurrence algorithm to BID representation and implement the division unit in standard cell technology. The implementation of the proposed BID division unit is compared to that of a BCD based unit implementing the same algorithm. The comparison shows that for normalized operands the BID unit has the same latency......In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  13. Division Algebras and Quantum Theory

    CERN Document Server

    Baez, John C

    2011-01-01

    Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...

  14. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  15. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  16. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  17. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  18. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  19. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  20. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  1. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  2. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  4. Decision support for clinical laboratory capacity planning.

    Science.gov (United States)

    van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M

    1995-01-01

    The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.

  5. Physics Division annual review, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  7. Environmental Sciences Division annual progress report for period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  8. Learning Laboratory.

    Science.gov (United States)

    Hay, Lyn; Callison, Daniel

    2000-01-01

    Considers the school library media center as an information learning laboratory. Topics include information literacy; Kuhlthau's Information Search Process model; inquiry theory and approach; discovery learning; process skills of laboratory science; the information scientist; attitudes of media specialists, teachers, and students; displays and Web…

  9. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    behavior, and transport processes in geologic systems; and (6) Materials and Molecular Research--microstructures, electron microscopy, surfaces, and interfaces; solid-state and atomic physics; chemical energy, chemical physics, and reaction dynamics. Research and support activities conducted by LBL's Information and Computing Sciences and Engineering Divisions are central to the achievement of DOE goals. These divisions provide essential computational, instrumentation, and fabrication capability that strengthen the unique role of this national laboratory. The Laboratory's future is based on the multidisciplinary capability of its staff, its beneficial interactions with universities and industry, and the scientific and technical value of its programs and research facilities.

  10. River Ice Data Instrumentation

    Science.gov (United States)

    1997-06-01

    edge in the field of ice engineering expands. For example, ice concentration and freezeup stage are not considered by the survey respondents to...im- pacts both freezeup and breakup jam formation Table 2. Ice parameters currently monitored, by Divisions (as of 1995). Ice parameters currently...V V V V Date of ice in V V V V Ice concentration V V V V Freezeup stage V V V V V Note: Southwestern Division does not currently monitor ice

  11. "American Gothic" and the Division of Labor.

    Science.gov (United States)

    Saunders, Robert J.

    1987-01-01

    Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…

  12. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  13. On Durkheim's Explanation of Division of Labor.

    Science.gov (United States)

    Rueschemeyer, Dietrich

    1982-01-01

    In De la Division du Travail Social, Durkheim's causal explanation for secular increases in the division of labor and the differentiation of social structure is flawed. His metatheoretical concerns expressed in the critique of utilitarian social theory flawed his contributions to a causal explanation of social differentiation. (Author/AM)

  14. Introduction to JPL's Mechanical Systems Division

    Science.gov (United States)

    Short, Kendra

    2007-01-01

    This slide presentation reviews the work of the Mechanical Systems Division. It reviews the projects, both past and current that the engineers of this division have worked on. It also reviews the work environment as an exciting place for the entry level engineer.

  15. The Division of Labor as Social Interaction

    Science.gov (United States)

    Freidson, Eliot

    1976-01-01

    Three different principles and ideologies by which the division of labor can be organized are sketched, along with their consequences for variation in structure and content. It is noted that the reality of the division of labor lies in the social interaction of its participants. (Author/AM)

  16. Teaching Cell Division: Basics and Recommendations.

    Science.gov (United States)

    Smith, Mike U.; Kindfield, Ann C. H.

    1999-01-01

    Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…

  17. Polarized Cell Division of Chlamydia trachomatis

    Science.gov (United States)

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  18. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  19. Hemispheric Division of Labour in Reading

    Science.gov (United States)

    Shillcock, Richard C.; McDonald, Scott A.

    2005-01-01

    We argue that the reading of words and text is fundamentally conditioned by the splitting of the fovea and the hemispheric division of the brain, and, furthermore, that the equitable division of labour between the hemispheres is a characteristic of normal visual word recognition. We report analyses of a representative corpus of the eye fixations…

  20. Nicely semiramified division algebras over Henselian fields

    Directory of Open Access Journals (Sweden)

    Karim Mounirh

    2005-01-01

    Full Text Available This paper deals with the structure of nicely semiramified valued division algebras. We prove that any defectless finite-dimensional central division algebra over a Henselian field E with an inertial maximal subfield and a totally ramified maximal subfield (not necessarily of radical type (resp., split by inertial and totally ramified field extensions of E is nicely semiramified.