WorldWideScience

Sample records for laboratory inel version

  1. RELAP5/MOD1-EUR evaluation. Comparison with the INEL original version

    International Nuclear Information System (INIS)

    Mazzantini, O.A.

    1990-01-01

    In this work, the values calculated from two versions of the RELAP5/MOD1 code are compared with those measured in different tests. The first version of RELAP5 is the cycle 19 of the original version of INEL (RELAP5/MOD1-INEL) and the second version improved by EURATOM (RELAP5/MOD1-EUR) which was transferred to ENACE through agreements made with SIEMENS/KWU. (Author) [es

  2. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the EPA published the final revised treatment standards for hazardous debris, including mixed debris. Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were evaluated against the debris rule to determine an overall treatment strategy for the INEL. Seven types of debris were identified: Combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  3. Development of waste chargeback systems at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Piscitella, R.R.

    1996-02-01

    Chargeback systems have been discussed (and cussed), tried, modified, and in some cases, successfully implemented in the DOE complex over the years. With the current emphasis on ''Doing business like a private company,'' there has been renewed interest at the Idaho National Engineering Laboratory (INEL) in implementing chargeback systems for waste management activities. The most recent activities relating to chargeback at the INEL started the summer of 1995 with direction from waste operations management to develop and pilot test a chargeback system. This paper presents the results of this effort to date

  4. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  5. Radiologically contaminated lead shot reuse at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Heileson, W.M.; Grant, R.P.

    1995-01-01

    This project involved the utilization of radioactively contaminated lead shot located at the Radioactive Waste Management Complex (RWMC) for radiation shielding on a radioactive liquid process tank located at Argonne National Laboratory-West (ANL-W). The use of previously contaminated shot precludes the radioactive contamination of clean shot. With limited treatment and disposal options for contaminated lead shot, the reuse of lead for shielding is significant due to the inherent characteristic of becoming a mixed waste when radiologically contaminated. The INEL conducted a lead cleanup campaign in 1990. This was designed to ensure control of potential Resource Conservation and Recovery Act (RCRA) regulated waste. Contaminated lead from throughout the INEL, was containerized per the lead Waste Acceptance Criteria at the generator sites. Limited areas at the INEL are designated for mixed waste storage. As a result, some of the lead was stored at the RWMC in the air support weather shield (ASWS). This lead was contaminated with small amounts of fission product contamination. The lead was in the form of shot, brick, sheet, casks, and other various sized pieces. In 1993, ANL-W identified a need for lead shot to be used as shielding in a radioactive liquid waste storage and processing tank at the Fuel Cycle Facility (FCF). The contaminated lead used on this project had been in storage as mixed waste at the RWMC. This paper will focus on the processes and problems encountered to utilize the contaminated lead shot

  6. A case study for evaluating ecological risks at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Peterson, S.; Brewer, R.; Morris, R.; VanHorn, R.

    1994-01-01

    A case study was conducted as a component of the development of guidance for ecological risk assessment at the Department of Energy's Idaho National Engineering Laboratory (INEL). The INEL is a large facility in southeastern Idaho, encompassing expanses of sagebrush-steppe that harbor numerous wildlife species. Nuclear research and waste disposal activities have resulted in releases of radionuclides at various sites. Due to the size and number of potentially contaminated areas, a cost-effective method was needed to evaluate ecological risks and to identify data needs for remedial investigations. Screening-level assessment approaches were developed to evaluate data collected from previous site investigations. Above-background concentrations of radionuclides and other contaminants in media were compared to risk-based criteria, which were derived from sources such as recent publications of the International Atomic Energy Agency (IAEA) and National Council on Radiation Protection and Measurements (NCRP). Site-specific risks to plants and wildlife were estimated for contaminants exceeding criteria. Dose rates derived using various estimation methods were compared to reference doses for wildlife obtained from IAEA, NCRP, and other publications

  7. INEL Sample Management Office

    International Nuclear Information System (INIS)

    Watkins, C.

    1994-01-01

    The Idaho National Engineering Laboratory (INEL) Sample Management Office (SMO) was formed as part of the EG ampersand G Idaho Environmental Restoration Program (ERP) in June, 1990. Since then, the SMO has been recognized and sought out by other prime contractors and programs at the INEL. Since December 1991, the DOE-ID Division Directors for the Environmental Restoration Division and Waste Management Division supported the expansion of the INEL ERP SMO into the INEL site wide SMO. The INEL SMO serves as a point of contact for multiple environmental analytical chemistry and laboratory issues (e.g., capacity, capability). The SMO chemists work with project managers during planning to help develop data quality objectives, select appropriate analytical methods, identify special analytical services needs, identify a source for the services, and ensure that requirements for sampling and analysis (e.g., preservations, sample volumes) are clear and technically accurate. The SMO chemists also prepare work scope statements for the laboratories performing the analyses

  8. Supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    This document reports on the status of supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory. Included is information on hydrology studies in wells open through large intervals, unsaturated zone contamination and transport processes, surface water-groundwater interactions, regional groundwater flow, and independent testing of air quality data

  9. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  10. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  11. User's and reference guide to the INEL RML/analytical radiochemistry sample tracking database version 1.00

    International Nuclear Information System (INIS)

    Femec, D.A.

    1995-09-01

    This report discusses the sample tracking database in use at the Idaho National Engineering Laboratory (INEL) by the Radiation Measurements Laboratory (RML) and Analytical Radiochemistry. The database was designed in-house to meet the specific needs of the RML and Analytical Radiochemistry. The report consists of two parts, a user's guide and a reference guide. The user's guide presents some of the fundamentals needed by anyone who will be using the database via its user interface. The reference guide describes the design of both the database and the user interface. Briefly mentioned in the reference guide are the code-generating tools, CREATE-SCHEMA and BUILD-SCREEN, written to automatically generate code for the database and its user interface. The appendices contain the input files used by the these tools to create code for the sample tracking database. The output files generated by these tools are also included in the appendices

  12. Environment, Safety and Health progress assessment of the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    1993-08-01

    The ES ampersand H Progress Assessments are part of the Department's continuous improvement process throughout DOE and its contractor organizations. The purpose of the INEL ES ampersand H Progress Assessment is to provide the Department with concise independent information on the following: (1) change in culture and attitude related to ES ampersand H activities; (2) progress and effectiveness of the ES ampersand H corrective actions resulting from previous Tiger Team Assessments; (3) adequacy and effectiveness of the ES ampersand H self-assessment programs of the DOE line organizations and the site management and operating contractor; and (4) effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES ampersand H problems. It is not intended that this Progress Assessment be a comprehensive compliance assessments of ES ampersand H activities. The points of reference for assessing programs at the INEL were, for the most part, the 1991 INEL Tiger Team Assessment, the INEL Corrective Action Plan, and recent appraisals and self-assessments of INEL. Horizontal and vertical reviews of the following programmatic areas were conducted: Management: Corrective action program; self-assessment; oversight; directives, policies, and procedures; human resources management; and planning, budgeting, and resource allocation. Environment: Air quality management, surface water management, groundwater protection, and environmental radiation. Safety and Health: Construction safety, worker safety and OSHA, maintenance, packaging and transportation, site/facility safety review, and industrial hygiene

  13. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Bandy, P.J.; Hall, L.F.

    1993-03-01

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG ampersand G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code

  14. INEL BNCT Program

    International Nuclear Information System (INIS)

    Ackermann, A.L.; Dorn, R.V. III.

    1991-03-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program for March 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, a milestone summary, and animal data charts

  15. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  16. Heat transfer correlation development and assessment: a summary and assessment of return to nucleate boiling phenomena during blowdown tests conducted at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.

    1979-04-01

    The data are presented which were obtained in Loss-of-Coolant Experiments (LOCE) at Idaho National Engineering Laboratory (INEL) which demonstrate the presence of cladding rewetting after the critical heat flux has been exceeded as a viable cooling mechanism during the blowdown phase of a LOCE. A brief review of the mechanisms associated with the boiling crisis and rewetting is also provided. The relevance of INEL LOCE rewetting data to nuclear reactor licensing Evaluation Model Requirements is considered, and the conclusion is made that the elimination of rewetting and return to nucleate boiling (RNB) in Evaluation Models represents a definite conservatism

  17. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  18. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D ampersand D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities

  19. INEL waste reduction: summary paper

    International Nuclear Information System (INIS)

    Rhoades, W.A.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho. Located at the INEL are a Waste Experimental Reduction Facility (WERF) which processes low level radioactive waste (LLW) materials and a Radioactive Waste Management Complex (RWMC) which provides for disposal of radioactive waste materials. There are currently 9 active facilities (waste generators) at the INEL which produce an average total volume of about 5000 cubic meters of solid LLW annually. This boxed or bulk waste is ultimately disposed of at the RWMC Subsurface Disposal Area (SDA). The SDA is currently the only active LLW disposal site at the INEL, and the prospects for opening another shallow land burial disposal facility are uncertain. Therefore, it has become imperative that EG and G Idaho Waste Management Department make every reasonable effort to extend the disposal life of the SDA. Among Waste Management Department's principal efforts to extend the SDA disposal life are operation of the Waste Experimental Reduction Facility (WERF) and administration of the INEL Waste Reduction Program. The INEL Waste Reduction Program is charged with providing assistance to all INEL facilities in reducing LLW generation rates to the lowest practical levels while at the same time encouraging optimum utilization of the volume reduction capabilities of WERF. Both waste volume and waste generation reductions are discussed

  20. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  1. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year)

  2. The 1988 INEL [Idaho National Engineering Laboratory] microearthquake survey near the western edge of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Jackson, S.M.; Anderson, D.M.; Carpenter, G.S.; Gilbert, H.K.; Martin, S.M.; Permann, P.J.

    1989-08-01

    A network of seventeen analog recording seismograph, spaced approximately 2 km apart, were operated from May to November, 1988 near the western edge of the eastern Snake River Plain (ESRP) to record small magnitude microearthquakes. Two three-component digital seismographs were also installed to record the microearthquake activity for analysis of earthquake source parameters and any regional earthquakes for possible analysis of the localized site and crustal effects of the ESRP on earthquake ground motions. We determined near-surface crustal velocities for this area that were slightly lower than the near-surface crustal velocities presently used in routine locations of events recorded by the INEL Seismic Network from five 100 lb surface blasts. During the survey period, only two earthquakes were located near the network area. One of the events occurred in May and was recorded by four of the portable seismic stations and two of the permanent INEL Seismic Network stations. It had a coda magnitude (M c ) of approximately 0.3. The other event was recorded by seventeen portable analog stations and three of the permanent INEL Seismic Network stations. We located this microearthquake, M c =0.5, about 2 km west of Howe, Idaho, off of the ESRP. We determined an unconstrained focal mechanism for this event, which could be interpreted as normal faulting striking N 44 degree W or strike-slip faulting on a plane striking either N 44 degree W or N 47 degree E. 26 refs., 10 figs., 3 tabs

  3. Stormwater management at the ARID INEL

    International Nuclear Information System (INIS)

    Walker, E.D.

    1994-01-01

    NPDES stormwater permits are required for stormwater discharges to waters of the US (WUS). The Idaho National Engineering Laboratory (INEL) applied for coverage under a general NPDES stormwater permit because there is some potential for stormwater discharge to the Big Lost River System, which could infiltrate to groundwater. The main requirements of the permit are to prevent contaminants from coming into contact with stormwater and prevent contaminated stormwater from running off of facilities into WUS or groundwater. All INEL major facility areas have prepared and implemented stormwater pollution prevention plans (SWPPPs). The INEL also applied for coverage under a separate NPDES general permit for stormwater discharges from construction sites. An INEL Generic SWPPP for construction activities was prepared and implemented for all construction projects at the INEL

  4. INEL D&D long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Buckland, R.J.; Kenoyer, D.J.; LaBuy, S.A.

    1995-09-01

    This Long-Range Plan presents the Decontamination and Dismantlement (D&D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D&D Program objectives, management criteria, and policy; discusses current activities; and documents the INEL D&D Program cost and schedule estimate projections for the next 15 years. Appendices are included that provide INEL D&D project historical information, a comprehensive descriptive summary of each current D&D surplus facility, and a summary database of all INEL contaminated facilities awaiting or undergoing the facility transition process.

  5. INEL D ampersand D long-range plan

    International Nuclear Information System (INIS)

    Buckland, R.J.; Kenoyer, D.J.; LaBuy, S.A.

    1995-09-01

    This Long-Range Plan presents the Decontamination and Dismantlement (D ampersand D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D ampersand D Program objectives, management criteria, and policy; discusses current activities; and documents the INEL D ampersand D Program cost and schedule estimate projections for the next 15 years. Appendices are included that provide INEL D ampersand D project historical information, a comprehensive descriptive summary of each current D ampersand D surplus facility, and a summary database of all INEL contaminated facilities awaiting or undergoing the facility transition process

  6. The INEL Tritium Research Facility

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-01-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.)

  7. The INEL Tritium Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-06-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.).

  8. 1994 INEL site-specific plan

    International Nuclear Information System (INIS)

    Couch, B.

    1994-01-01

    This report presents plans for environmental restoration and waste management activities at the Idaho National Engineering Laboratory for fiscal year 1994. This years's plan focuses on issues affecting the Environmental Restoration and Waste Management Programs. The Environmental Restoration Program is concerned with all aspects of assessment and cleanup of inactive operations. It involves assessing and cleaning up (where necessary) inactive INEL waste areas that could release harmful substances into the environment, as well as safely managing surplus nuclear facilities. The Waste Management program involves treatment, storage, and disposal of radioactive, hazardous, mixed, and industrial waste by DOE activities. This program is designed to protect the safety of INEL employees, the public, and the environment in the design, construction, maintenance, and operation of INEL treatment, storage, and disposal facilities. It operates facilities in a cost-effective, environmentally sound, regulatory compliant, and publicly acceptable manner

  9. 1994 INEL site-specific plan

    Energy Technology Data Exchange (ETDEWEB)

    Couch, B.

    1994-05-01

    This report presents plans for environmental restoration and waste management activities at the Idaho National Engineering Laboratory for fiscal year 1994. This years`s plan focuses on issues affecting the Environmental Restoration and Waste Management Programs. The Environmental Restoration Program is concerned with all aspects of assessment and cleanup of inactive operations. It involves assessing and cleaning up (where necessary) inactive INEL waste areas that could release harmful substances into the environment, as well as safely managing surplus nuclear facilities. The Waste Management program involves treatment, storage, and disposal of radioactive, hazardous, mixed, and industrial waste by DOE activities. This program is designed to protect the safety of INEL employees, the public, and the environment in the design, construction, maintenance, and operation of INEL treatment, storage, and disposal facilities. It operates facilities in a cost-effective, environmentally sound, regulatory compliant, and publicly acceptable manner.

  10. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  11. Technology status report: Transuranic contamination control at INEL

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1991-09-01

    This report summarizes proposed FY-92 work at the Idaho National Engineering Laboratory (INEL) in the field of contamination control during transuranic waste handling operations. The proposed work is both applied research and demonstration testing. The INEL needs for contamination control applied research and demonstration testing are listed along with a description of past accomplishments. The INEL proposal is compared to other proposals for contamination control work that are under consideration for funding by the Department of Energy. Benefits of this work and impacts of not sponsoring this work are also given. 21 refs

  12. INEL D ampersand D Long-Range Plan

    International Nuclear Information System (INIS)

    Buckland, R.J.; Kenoyer, D.J.; Preussner, D.H.

    1993-10-01

    This Long-Range Plan presents the Decontamination and Decommissioning (D ampersand D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D ampersand D Program objectives, management criteria, and philosophy; discusses current activities; and documents the INEL D ampersand D Program cost and schedule estimate projections for the next 15 years. appendices are included that provide INEL D ampersand D project historical information and a comprehensive descriptive summary of each current surplus facility

  13. TMI-2 core-examination program: INEL facilities readiness study

    International Nuclear Information System (INIS)

    McLaughlin, T.B.

    1983-02-01

    This report reviews the capability and readiness of remote handling facilities at the Idaho National Engineering Laboratory (INEL) to receive, and store the TMI-2 core, and to examine and analyze TMI-2 core samples. To accomplish these objectives, the facilities must be able to receive commercial casks, unload canisters from the casks, store the canisters, open the canisters, handle the fuel debris and assemblies, and perform various examinations. The report identifies documentation, including core information, necessary to INEL before receiving the entire TMI-2 core. Also identified are prerequisites to INEL's receipt of the first canister: costs, schedules, and a preliminary project plan for the tasks

  14. PDP cycle 1 tests at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Harker, Y.D.; Twedell, G.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Idaho National Engineering Laboratory (INEL) is a participant in the nondestructive assay Performance Demonstration Program (PDP) as part of the U.S. TRU Waste Characterization Program. The PDP program was designed to help ensure compliance with the quality assurance objectives (QAO`s) in the TRU Waste Characterization Program Plan. In June, 1996, cycle 1 of PDP program was completed at the Stored Waste Examination Pilot Plant (SWEPP) at INEL. The assay capability at INEL/SWEPP consists of a passive active neutron (PAN) radioassay system (for bulk fissile material assay) and a passive gamma spectrometry system (for isotopic mass ratio determination). The results from the two systems are combined to produce a single assay report which contains isotopic information ({sup 238}Pu, {sup 239}Pu), density, total activity, alpha activity, TRU activity, TRU activity concentration, Pu equivalent Curies and fissile gram equivalent. The PDP cycle 1 tests were expected to test bias and precision of the assay systems under nearly ideal conditions; ie., non-interfering matrices and little or no source self shielding. The test consisted of two drums in which the source loading was not known by the site. One drum was essentially empty and the other was filled with ethafoam. As per PDP`s instructions, the tests were to be conducted using the same procedures and equipment that normally would be used by SWEPP to assay real waste drums. This paper will discuss the lessons learned from these tests and INEL`s plans to improve the capabilities of the SWEPP assay systems. 7 refs., 6 tabs.

  15. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  16. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  17. Characterization of INEL compactible wastes, compactor options study, and recommendations

    International Nuclear Information System (INIS)

    Gillins, R.L.; Larsen, M.M.; Aldrich, W.C.

    1986-03-01

    This report provides the results of a detailed characterization and evaluation of low-level radioactive waste generated at the Idaho National Engineering Laboratory (INEL) and an evaluation of compactors available commercially. The results of these evaluations formed the basis for a study of compactor options suitable for compacting INEL-generated low-level waste. Seven compactor options were evaluated. A decision analysis performed on the results of the compactor option study and cost analysis showed that a 200-ton box compactor and a 5000-ton box supercompactor were the best options for an INEL compaction facility other than the RWMC. Two compactor locations were considered: WERF and CPP. The WERF location is recommended on the basis of existing facilities to house the compactor and store the waste, the presence of a trained waste-handling staff, and the desirability of maintaining a single location for processing INEL-generated low-level waste

  18. Low enrichment fuel development at INEL

    International Nuclear Information System (INIS)

    Newton, D.G.

    1993-01-01

    EG and G Idaho, Inc. is under contract to the Department of Energy to operate the Idaho National Engineering Laboratory (INEL). The INEL is located in southeastern Idaho. This facility has been operating since 1949 and was originally called the National Reactor Testing Station. Several contractors manage projects on this facility. Most projects at INEL are concerned with either reactor safety or irradiation testing. At Test Area North, for example, experiments are being conducted on the effects of loss of coolant. At the Test Reactor Area the ATR (Advanced Test Reactor) and ETR (Engineering Test Reactor) are used for irradiation testing and, of course, those of you working at Argonne will recognize the Experimental Breeder Reactors I and II. SPERT is an acronym for Special Power Excursion Reactor Test. A part of this former reactor facility has been converted into a fuel fabrication laboratory facility. At SPERT IV a miniature fabrication facility has been set up to duplicate the aluminide plate fuel processing line at Atomics International. In other words, a model of the supplier's processing has been created, so that what process changes are developed here can then be scaled up to production. The process is described showing: making UAI x powder, making compact for fuel core, making experimental fuel plate and compact assembly, inspection and testing the fuel plate. Main concern was related to possible swelling

  19. ISDMS, Inel Scientific Data Management System

    International Nuclear Information System (INIS)

    Bruestle, H.R.; Russell, K.D.; Snider, D.M.; Stewart, H.D.

    1993-01-01

    Description of program or function: The Idaho National Engineering Laboratory (INEL) Scientific Data Management System, ISDMS, is a generalized scientific data processing system designed to meet the needs of the various organizations at the INEL. It consists of a set of general and specific processors running under the control of an executive processor which serves as the interface between the system and the user. The data requirements at the INEL are primarily for times series analyses. Data acquired at various site facilities are processed on the central CDC CYBER computers. This processing includes: data conversion, data calibration, computed parameter calculations, time series plots, and sundry other applications. The data structure used in ISDMS is CWAF, a common word addressable format. A table driven command language serves as the ISDMS control language. Execution in both batch and interactive mode is possible. All commands and their input arguments are specified in free form. ISDMS is a modular system both at the top executive or MASTER level and in the independent lower or sub-level modules. ISDMS processors were designed and isolated according to their function. This release of ISDMS, identified as 1.3A by the developers, includes processors for data conversion and reformatting for applications programs (e.g. RELAP4), interactive and batch graphics, data analysis, data storage, and archival and development aids

  20. Remediating the INEL's buried mixed waste tanks

    International Nuclear Information System (INIS)

    Kuhns, D.J.; Matthern, G.E.; Reese, C.L.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL), formerly the National Reactor Testing Station (NRTS), encompasses 890 square miles and is located in southeast Idaho. In 1949, the United States Atomic Energy Commission, now the Department of Energy (DOE), established the NRTS as a site for the building and testing of nuclear facilities. Wastes generated during the building and testing of these nuclear facilities were disposed within the boundaries of the site. These mixed wastes, containing radionuclides and hazardous materials, were often stored in underground tanks for future disposal. The INEL has 11 buried mixed waste storage tanks regulated under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) ranging in size from 400 to 50,000 gallons. These tanks are constructed of either stainless or carbon steel and are located at 3 distinct geographic locations across the INEL. These tanks have been grouped based on their similarities in an effort to save money and decrease the time required to complete the necessary remediation. Environmental Restoration and Technology Development personnel are teaming in an effort to address the remediation problem systematically

  1. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  2. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  3. A User's Guide to the SNF ampersand INEL EIS

    International Nuclear Information System (INIS)

    1995-01-01

    This User's Guide is intended to help you find information in the SNF and INEL EIS (that's short for US Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement). The first section of this Guide gives you a brief overview of the SNF ampersand INEL EIS., The second section is organized to help you find specific information in the Environmental Impact Statement -- whether you're interested in a management alternative, a particular site (such as Hanford), or a discipline (such as land use or water quality)

  4. INEL Waste and Environmental Information Integration Project approach and concepts

    International Nuclear Information System (INIS)

    Dean, L.A.; Fairbourn, P.J.; Randall, V.C.; Riedesel, A.M.

    1994-06-01

    The Idaho National Engineering, Laboratory (INEL) Waste and Environmental Information integration Project (IWEIIP) was established in December 1993 to address issues related to INEL waste and environmental information including: Data quality; Data redundancy; Data accessibility; Data integration. This effort includes existing information, new development, and acquisition activities. Existing information may not be a database record; it may be an entire document (electronic, scanned, or hard-copy), a video clip, or a file cabinet of information. The IWEIIP will implement an effective integrated information framework to manage INEL waste and environmental information as an asset. This will improve data quality, resolve data redundancy, and increase data accessibility; therefore, providing more effective utilization of the dollars spent on waste and environmental information

  5. INEL metal recycle annual report, FY-94

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business

  6. INEL BNCT Research Program annual report 1994

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included

  7. INEL waste cleanup

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1979-01-01

    Decommissioning and decontamination activities at the Idaho National Engineering Laboratory are discussed. The projects planned and completed are presented. Problems encountered on these projects are discussed. A developmental program is recommended. Contaminated areas consist of test reactors, reactor support facilities, a fuel reprocessing facility and various soil areas. One D and D project in 1960 occurred as a result of an accident at a low-power reactor in which 3 persons were killed, the reactor and containment building were destroyed, and large areas of land were contaminated

  8. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  9. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  10. INEL environmental characterization report. Volume III. Appendices E-H

    International Nuclear Information System (INIS)

    1984-09-01

    This volume contains the following appendices: (1) INEL subsurface hydrology; (2) cultural resources assessment of two study areas on the INEL; (3) description of INEL facilities; and (4) effluent measurements and environmental monitoring programs

  11. 1983 Borah Peak earthquake and INEL structural performance

    International Nuclear Information System (INIS)

    Gorman, V.W.; Guenzler, R.C.

    1983-12-01

    At 8:06 a.m. Mountain Daylight Time on October 28, 1983 an earthquake registering 7.3 on the Richter Magnitude scale occurred about 30 km northwest of the town of Mackay, in central Idaho. This report describes the event and associated effects and the responses of facilities at Idaho National Engineering Laboratory (INEL), located approximately 100 km. from the epicenter, to ground motion. 21 references, 36 figures, 5 tables

  12. Use of a simplified pathways model to improve the environmental surveillance program at the radioactive waste management complex of the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Case, M.J.; Rope, S.K.

    1985-01-01

    Systems analysis, including a simple pathways model based on first-order kinetics, is a useful way to design or improve environmental monitoring networks. This method allows investigators and administrators to consider interactions that may be occurring in the system and provides guidance in determining the need to collect data on various system components and processes. A simplified pathways model of radionuclide movement from low-level waste and transuranic waste buried at the Radioactive Waste Management Complex was developed (1) to identify critical pathways that should be monitored and (2) to identify key input parameters that need investigation by special studies. The model was modified from the Savannah River Laboratory DOSTOMAN code. Site-specific data were used in the model, if available. Physical and biological pathways include airborne and waterborne transport of surface soil, subsurface migration to the aquifer, waste container degradation, plant uptake, small mammal burrowing, and a few simplified food chain pathways. The model was run using a set of radionuclides determined to be significant in terms of relative hazard. Critical transport pathways which should be monitored were selected based on relative influence on model results. Key input parameters were identified for possible special studies by evaluating the sensitivity of model response to the parameters used to define transport pathways. A description of the approaches used and the guidance recommended to improve the environmental surveillance program are presented in this paper. 5 references, 1 figure, 2 tables

  13. 1990 INEL national emission standards for hazardous air pollutants

    International Nuclear Information System (INIS)

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, ''National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.'' Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL

  14. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  15. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. INEL environmental characterization report. Volume II. Appendices A-D

    International Nuclear Information System (INIS)

    1984-09-01

    This volume contains appendices: (1) a socioeconomic data base for southeastern Idaho; (2) an ecological characterization of the INEL; (3) site-specific climatology summary, NPR primary and alternate sites; (4) NPR site borehole completion; (5) an investigation of the principal lineament at the INEL; (6) an investigation of Clay Butte, Idaho; (7) Arco and Howe fault study; (8) seismology of the INEL; (9) geologic map of the INEL; and (1) geologic ages of the INEL

  17. Evaluation of seismic criteria used in design of INEL facilities

    International Nuclear Information System (INIS)

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  18. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  19. Transporting fuel debris from TMI-2 to INEL

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.; Bixby, W.W.; McIntosh, T.W.; McGoff, O.J.; Barkonic, R.J.; Henrie, J.O.

    1986-06-01

    Transportation of the damaged fuel from Unit 2 of Three Mile Island (TMI-2) presented noteworthy technical challenges involving complex institutional issues. The program resulted from both a need to package and remove the accident debris and also the opportunity to receive and study damaged core components. These combined to establish the safe transport of the TMI-2 fuel debris as a high priority for many diverse organizations. The capability of the sending and receiving facilities to handle spent fuel transport casks in the most cost-effective manner was assessed and resulted in the development by Nuclear Packaging Inc. (NuPac) of the NuPac 125-B rail cask. This paper reviews the technical challenges in preparation of the TMI-2 core debris for transport from TMI-2 to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that material at INEL. Challenges discussed include design and testing of fuel debris canisters; design, fabrication and licensing of a new rail cask for spent fuel transport; cask loading operations, equipment and facilities at TMI-2; transportation logistics; and, receipt, storage and core examination operations at INEL. 10 refs

  20. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  1. INEL environmental characterization report. Volume I. Summary

    International Nuclear Information System (INIS)

    1984-09-01

    This environmental characterization report contains general information on environmental aspects of the INEL, and specific information on two areas within the INEL which have been tentatively selected for NPR siting. The objective is to present environmental information but not assess environmental impacts. Impacts will be addressed specifically at a later date when an EIS is prepared. The information in this report will be used to evaluate the siting of various reactor types at each of the three reservation alternatives. The report covers geography, physiography, and demography of the INEL, ecology, climatology overview, geology and seismology, hydrology, cultural resources assessment, baseline socioeconomic data, description of INEL facilities and capabilities, effluent and environmental measurements and monitoring programs, exposure pathways, and environmental laws and regulations

  2. Hazards assessment for the INEL Landfill Complex

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  3. Hazards assessment for the INEL Landfill Complex

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment

  4. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  5. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    International Nuclear Information System (INIS)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources

  6. Using the INEL site-specific plan as a community relations tool

    International Nuclear Information System (INIS)

    Hart, Michael; Macdonald, Don; Couch, Brad; Reuel Smith, M.

    1992-01-01

    Idaho National Engineering Laboratory (INEL) activities have affected, or have the potential to affect the environment. For this reason) the issues surrounding INEL activities are of interest to a broad range of people. The preparation of the INEL Site-Specific Plan (SSP) reflects the U.S. Department of Energy Idaho Field Office's (DOE-ID'S) initiative for open and clear communications with the public. The INEL SSP describes for the public DOE-ID'S plan to clean up inactive facilities and locations that were contaminated due to past waste management practices. It also discusses waste management strategies for avoiding future contamination by active operations. The SSP is an over-arching document and supplies 'the big picture' of environmental restoration and waste management activities to the public, including budget information and long-range plans. DOE-ID has been using the INEL Site-Specific Plan and its associated public comment period as a primary tool for public involvement and as way to get meaningful citizen input into DOE-ID planning. Public involvement in the INBL Site-Specific Plan has four main objectives: To inform public officials, Indian Tribes, interest groups, businesses, and individuals about current plans for environmental restoration and waste management activities at INEL; To ensure that public concerns and interests relating to environmental restoration and waste management are reflected in the SSP and DOE-ID planning; To provide flexibility so modifications can be made to DOE-ID plans and the SSP in response to changing concerns within the community, and; To ensure that DOE-ID and INEL contractors are given feedback regarding public interest in, and concerns about, the DOE-ID'S plans. To carry out these objectives, DOE-ID has implemented an aggressive public outreach effort that provides multiple opportunities for public participation in cleanup and waste management decisions. (author)

  7. In situ vitrification engineering-scale test ES-INEL-5 test plan

    International Nuclear Information System (INIS)

    Stoots, P.R.

    1990-06-01

    In 1952, the Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL). RWMC is located on approximately 144 acres in the southwestern corner of the INEL site and was established as a controlled area for the burial of solid low-level wastes generated by INEL operations. In 1954, the 88-acre Subsurface Disposal Area (SDA) of RWMC began accepting solid transuranic-contaminated waste. From 1954 to 1970, transuranic-contaminated waste was accepted from the Rocky Flats Plant (RFP) near Golden, CO, as well as from other US Department of Energy (DOE) locations. In 1987, the Buried Waste Program (BWP) was established by EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine applicability of ISV to remediation of waste at SDA. This In Situ Vitrification Engineering-Scale Test ES-INEL-5 Test Plan considers the data needs of engineering, regulatory, health, and safety activities for all sampling and analysis activities in support of engineering scale test ES-INEL-5. 5 refs., 3 figs., 4 tabs

  8. Criticality safety for TMI-2 canister storage at INEL

    International Nuclear Information System (INIS)

    Jones, R.R.; Briggs, J.B.; Ayers, A.L. Jr.

    1986-01-01

    Canisters containing Three Mile Island Unit 2 (TMI-2) core debris will be researched, stored, and prepared for final disposition at the Idaho National Engineering Laboratory (INEL). The canisters will be placed into storage modules and assembled into a storage rack, which will be located in the Test Area North (TAN) storage pool. Criticality safety calculations were made (a) to ensure that the storage rack is safe for both normal and accident conditions and (b) to determine the effects of degradation of construction materials (Boraflex and polyethylene) on criticality safety

  9. INEL oversight program. Quarterly technical progress report, January 1993--December 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Idaho's successful lawsuit over shipments of spent nuclear fuel is a major milestone for 1993. The challenge forced the U.S. Department of Energy to cease all shipments of spent nuclear fuel to the Idaho National Engineering Laboratory until a site-wide environmental impact statement is completed. This agreement is a significant victory in Idaho's battle to hold the federal government responsible for its actions and force compliance with applicable laws. Much of the State's INEL-related activity in 1993 focused on ensuring that INEL operations are conducted in a manner that protects public health and the environment

  10. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    International Nuclear Information System (INIS)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.; Nagel, W.E.; Pearlman, H.; Schaubert, V.J.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments

  11. Simplified risk assessment for transporting ATR spent fuel within the INEL

    International Nuclear Information System (INIS)

    Franklin, E.M.; Courtney, J.C.

    1994-01-01

    Interest in characterizing the condition of stored spent fuels has generated the need to move spent fuels to hot cell facilities within the Idaho National Engineering Laboratory (INEL). A simplified probabilistic risk assessment (SPRA) and an evaluation of the radiological consequences in the event of an accident are discussed and applied to on-site Advanced Test Reactor (AYR) spent fuel shipments. Reported accident probabilities between 10 -4 and 10 -6 and low radiological consequences, affords this, and other spent fuel characterization efforts, an additional option to move spent fuels within the INEL

  12. INEL integrated spent nuclear fuel consolidation task team report

    International Nuclear Information System (INIS)

    Henry, R.N.; Clark, J.H.; Chipman, N.A.

    1994-01-01

    This document describes a draft plan and schedule to consolidate spent nuclear fuel (SNF) and special nuclear material (SNW) from aging storage facilities throughout the Idaho National Engineering Laboratory (INEL) to the Idaho Chemical Processing Plant (ICPP) in a safe, cost-effective, and expedient manner. A fully integrated and resource-loaded schedule was developed to achieve consolidation as soon as possible. All of the INEL SNF and SNM management task, projects, and related activities from fiscal year 1994 to the end of the consolidation period are logic-tied and integrated with each other. The schedule and plan are presented to initiate discussion of their implementation, which is expected to generate alternate concepts that can be evaluated using the methodology described in this report. Three perturbations to consolidating SNF as soon as possible are also explored. If the schedule is executed as proposed, the new and on-going consolidation activities will require about 6 years to complete and about $25.3M of additional funding. Reduced annual operating costs are expected to recover the additional investment in about 6.4 years. The total consolidation program as proposed will cost about $66.8M and require about 6 years to recover via reduced operating costs from retired SNF/SNM storage facilities. Detailed schedules and cost estimates for the Test Reactor Area Materials Test Reactor canal transfers are included as an example of the level of detail that is typical of the entire schedule (see Appendix D). The remaining work packages for each of the INEL SNF consolidation transfers are summarized in this document. Detailed cost and resource information is available upon request for any of the SNF consolidation transfers

  13. INEL/USNRC pipe damping experiments and studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-08-01

    Since the previous paper on this subject presented at the 8th SMiRT Conference, the Idaho National Engineering Laboratory (INEL) has conducted further research on piping system damping for the United States Nuclear Regulatory Commission (USNRC). These efforts have included vibration tests on two laboratory piping systems at response frequencies up to 100 Hz, and damping data calculations from both of these two systems and from a third laboratory piping system test series. In addition, a statistical analysis was performed on piping system damping data from tests representative of seismic and hydrodynamic events of greater than minimal excitation. The results of this program will be used to assist regulators in establishing suitable damping values for use in dynamic analyses of nuclear piping systems, and in revising USNRC Regulatory Guide (RG) 1.61

  14. The status of soil mapping for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    1995-01-01

    This report discusses the production of a revised version of the general soil map of the 2304-km 2 (890-mi 2 ) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presented on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information

  15. Summary and recommendations of the NRC/INEL Activated Carbon Testing Program

    International Nuclear Information System (INIS)

    Scarpellino, C.D.; Sill, C.W.

    1986-01-01

    The Committee on Nuclear Air and Gas Treatment (CONAGT) of the American Society of Mechanical Engineers (ASME) sponsored an interlaboratory testing program, round-robin, of nuclear-grade activated carbon. The results of this round-robin revealed gross differences in penetration of radio-labeled methyl iodide as measured by the various laboratories when using Method A of the ASTM D-3803-79 Standard. These differences prompted the Nuclear Regulatory Commission (NRC) to establish the NRC/INEL Activated Carbon Testing Program to determine the causes of these discrepancies and to provide recommendations that could lead to an accurate and reliable testing procedure that would ensure an adequate method for assessing the capability of activated carbon to remove radioiodine from gas streams within commercial nuclear power plants. The NRC/INEL Activated Carbon Testing Program has conducted formal and informal interlaboratory comparisons to identify problems with the test method and its application and to assess the effectiveness of changes to procedures and equipment voluntarily implemented by commercial laboratories to mitigate the disparity of test results. The results of the first formal NRC/INEL Interlaboratory Comparison (IC) essentially verified the CONAGT round-robin results despite the use of a detailed test protocol. This data indicated that many of the participating laboratories probably had been operating outside the ASTM specifications for relative humidity (RH) and flow. In addition, this process provided information which was used to modify the testing protocol employed for the second NRC/INEL Interlaboratory Comparison (IC-2) to make it more rugged and reliable. These changes to the protocol together with the results of INEL sensitivity testing are the basis for the recommendations presented

  16. Nuclear plant analyzer development at INEL

    International Nuclear Information System (INIS)

    Laats, E.T.; Russell, K.D.; Stewart, H.D.

    1983-01-01

    The Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC) has sponsored development of a software-hardware system called the Nuclear Plant Analyzer (NPA). This paper describes the status of the NPA project at the INEL after one year of development. When completed, the NPA will be an integrated network of analytical tools for performing reactor plant analyses. Development of the NPA in FY-1983 progressed along two parallel pathways; namely, conceptual planning and software development. Regarding NPA planning, and extensive effort was conducted to define the function requirements of the NPA, conceptual design, and hardware needs. Regarding software development conducted in FY-1983, all development was aimed toward demonstrating the basic concept and feasibility of the NPA. Nearly all software was developed and resides on the INEL twin Control Data Corporation 176 mainframe computers

  17. INEL BNCT Research Program, March/April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  18. Project Management Plan for the INEL technology logic diagrams

    International Nuclear Information System (INIS)

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ''Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG ampersand G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project

  19. INEL BNCT Research Program, May/June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  20. INEL BNCT Research Program, September--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  1. INEL BNCT Research Program, September--October 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  2. Compliance agreements at the INEL: A success story

    International Nuclear Information System (INIS)

    McBath, W.H.

    1995-01-01

    The Radioactive Waste Management Complex (RWMC), located at the Idaho National Engineering Laboratory (INEL), is the storage facility for approximately 135,000 containers of radioactive mixed waste that must be stored in accordance with Resource Conservation and Recovery Act (RCRA) requirements. Collectively, the compliance and safety basis documents governing the operation of the storage facility contain approximately 2,500 specific, identifiable requirements. Critical to the compliance with these 2,500 requirements was the development of a process which converted these requirements to a form and format that allowed implementation at the operator level. Additionally, to ensure continued compliance, a method of identifying and controlling implementing documents is imperative. This paper discusses the methods employed to identify, implement, and control these requirements

  3. INEL BNCT research program, July--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-10-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  4. IP and resistivity survey at the INEL cold test pit

    International Nuclear Information System (INIS)

    Frangos, W.

    1997-01-01

    Induced polarization (IP) is a technique for detection of diffuse occurrences of metallic material. The Idaho National Laboratory (INEL) Cold Test Pit (CTP) has been carefully constructed to simulate stored hazardous waste occurrences. IP and resistivity surveys of the CTP show a very strong IP response and a modest resistivity response associated with the simulated waste. Several false positive resistivity anomalies are noted. 2-D inversion of the data accurately determine the lateral limits of the waste zone. The depth of burial indicated is deeper than reported by the construction engineers. Limited depth extent is recognized, in distinction to results from other, resistivity-based, methods, but it also appears too deep. IP holds promise as a method for locating buried waste

  5. INEL BNCT Research Program, January/February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  6. Plasma treatment of INEL soil contaminated with heavy metals

    International Nuclear Information System (INIS)

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites

  7. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  8. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  9. INEL BNCT Research Program, January/February 1993

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  10. INEL BNCT Research Program, May/June 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  11. Philosophy and overview of the INEL waste management program

    International Nuclear Information System (INIS)

    Gertz, C.P.; Whitsett, J.B.; Hamric, J.P.

    1986-01-01

    The INEL philosophy of ''get the job done; do it right--the first time'' is described as it applies to all phases of waste management activities. In addition, an overview of INEL's waste management programs and projects--low-level waste management operations and technology development; transuranic waste management operations and technology development; high-level waste management operations and technology development; spent fuel storage operations and equipment/technology development; transportation operations, technology development, and prototype cask procurements--are discussed. Emphasis is placed on the application of the INEL philosophy to the successful initiation and continuation of INEL waste management activities

  12. Sampling and instrumentation requirements for long-range D and D activities at INEL

    International Nuclear Information System (INIS)

    Ahlquist, A.J.

    1985-01-01

    Assistance was requested to help determine sampling and instrumentation requirements for the long-range decontamination and decommissioning activities at the Idaho National Engineering Laboratory. Through a combination of literature review, visits to other DOE contractors, and a determination of the needs for the INEL program, a draft report has been prepared that is now under review. The final report should be completed in FY 84

  13. Robotic systems for the high level waste tank farm replacement project at INEL

    International Nuclear Information System (INIS)

    Berger, A.; White, D.; Thompson, B.; Christensen, M.

    1993-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is specifying and designing a new high level waste tank farm at the Idaho National Engineering Laboratory (INEL). The farm consists of four underground storage tanks, which replace the existing tanks. The new facility includes provisions for remote operations. One of the planned remote operations is robotic inspection of the tank from the interior and exterior. This paper describes the process used to design the robotic system for the inspection tasks

  14. Environmental surveillance for the INEL Radioactive-Waste-Management complex. Annual report 1981

    International Nuclear Information System (INIS)

    Janke, D.H.; Zahn, T.P.

    1982-09-01

    The 1981 environmental surveillance report for the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory contains data and discussions about routine radiological monitoring of the atmospheric, hydrologic, and geologic environments of the RWMC. Additional discussions include results of routine monitoring of two surplus facilities, the Stationary Low-Power Reactor No. 1 Surplus Area and the Organic Moderated Reactor Experiment. Each area has produced localized effects on the environment, but containment is well within the INEL site boundary

  15. TMI-2 fuel canister interface requirements for INEL. Revision 1

    International Nuclear Information System (INIS)

    Wilkins, D.E.; Martz, D.E.; Reno, H.W.

    1984-06-01

    This report focuses on fuel canister interface requirements at INEL which should be incorporated into the canister design criteria. The requirements will ensure compatibility with existing INEL structures and equipment to be used for receipt, unloading, and storage of fuel canisters. INEL can and does receive and store radioactive materials in many different forms, including reactor fuel. INEL requires detailed descriptions of canisters and casks. Therefore, requirements listed represent engineering design features which will simplify the handling and storage operations; consequently, they are not to be viewed as absolute or non-negotiable. However, the core acquisition contract was negotiated with certain storage assumptions which effect costs of storage. Deviations from those assumptions which significantly effect costs would require approval by DOE-Idaho. If some stated requirements are too restrictive, modifications based on sound engineering principles may be negotiated with INEL. 11 figures

  16. TMI-2 core-examination program: INEL facilities-readiness study

    International Nuclear Information System (INIS)

    McLaughlin, T.B.

    1982-09-01

    This document is a review of the Idaho National Engineering Laboratory's (INEL) remote handling facilities. Their availability and readiness to conduct examination and analyses of TMI-2 core samples was determined. Examination of these samples require that the facilities be capable of receiving commercial casks, unloading canisters from the casks, opening the canisters, handling the fuel debris and assemblies, and performing various examinations. The documentation that was necessary for the INEL to have before the receipt of the core material was identified. The core information was also required for input to these documents. The costs, schedules, and a preliminary-project plan are presented for the tasks which are identified as prerequisites to the receipt of the first core sample

  17. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  18. Fifth in situ vitrification engineering-scale test of simulated INEL buried waste sites

    International Nuclear Information System (INIS)

    Bergsman, T.M.; Shade, J.W.; Farnsworth, R.K.

    1992-06-01

    In September 1990, an engineering-scale in situ vitrification (ISV) test was conducted on sealed canisters containing a combined mixture of buried waste materials expected to be present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). The test was part of a Pacific Northwest Laboratory (PNL) program to assist INEL in treatability studies of the potential application of ISV to mixed transuranic wastes at the INEL SDA. The purpose of this test was to determine the effect of a close-packed layer of sealed containers on ISV processing performance. Specific objectives included determining (1) the effect of releases from sealed containers on hood plenum pressure and temperature, (2) the release pressure ad temperatures of the sealed canisters, (3) the relationships between canister depressurization and melt encapsulation, (4) the resulting glass and soil quality, (5) the potential effects of thermal transport due to a canister layer, (6) the effects on particle entrainment of differing angles of approach for the ISV melt front, and (7) the effects of these canisters on the volatilization of voltatile and semivolatile contaminants into the hood plenum

  19. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs)

  20. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  1. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  2. INEL RCRA [Resource Conservation and Recovery Act] permit for incineration of hazardous waste: Status report

    International Nuclear Information System (INIS)

    McFee, J.N.; Dalton, J.D.; Bohrer, H.A.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) was constructed to reduce the volume of low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). To address the problem of radioactively contaminated ignitable hazardous waste resulting from INEL activities, a development program was carried out to evaluate WERF's ability to meet the regulated criteria for incinerating liquid and solid ignitable waste. Concurrently, INEL submitted its hazardous waste Part B application under the Resource Conservation and Recovery Act (RCRA). As required, and as a major step in the permitting process, the WERF incinerator portion of the permit application included a proposed trial burn, which is a demonstration test of the incinerator's ability to destroy hazardous materials. The trial burn plan was designed to demonstrate the system performance for liquid and solid ignitable wastes at three operating conditions, using a prepared mix of materials representative of waste to be processed. EPA Region X reviewed and commented on the plan prior to the trial burn. Results of the liquid feed trial burn showed a greater than 97% probability of meeting the RCRA-dictated DRE value for chlorinated solvents and a greater than 99% probability for nonchlorinated solvents. Nonchlorinated solid waste results were calculated at a 93% probability of meeting the required DRE, with a 75% probability for chlorinated solid wastes. In addition, the incinerator DRE continued to improve long after the assumed pre-test equilibrium period had ended. The trial burn demonstrates that the WERF incinerator can safely and adequately destroy ignitable hazardous and mixed waste and provides a significant enhancement of the INEL's waste management system

  3. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  4. Nuclear decay data measurements at the INEL ISOL facility

    International Nuclear Information System (INIS)

    Greenwood, R.C.; Helmer, R.G.; Putnam, M.H.; Struttmann, D.A.; Watts, K.D.

    1991-01-01

    In recent years, the use of the mass separation technique coupled on-line to a source of fission product nuclides has provided a wealth of new information on the nuclear decay properties of such nuclides. In addition to their relevance in basic studies of nuclear properties of neutron-rich nuclei, the fission product nuclides as a group, because of their intimate link with energy production in fission reactors, occupy a unique position in the field of applied nuclear decay data. Further, in addition to their critical role in nuclear reactor technology (decay heat source term, environmental concerns, etc.), such data have important applications in astrophysical calculations involving the rapid neutron capture process (r-process) of elemental synthesis in stellar environments. The scope of the nuclear decay data measurements being undertaken using the Idaho National Engineering Laboratory's (INEL) isotope separation on-line (ISOL) facility is focused on a systematic study of the gross nuclear decay properties of short-lived fission product isotopes, i.e., ground-state half-lives, beta-decay energies and beta-decay feeding (or beta-strength) distributions. In this paper, the authors discuss the results of new measurements of beta-decay energies and feeding distributions

  5. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  6. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  7. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: Code of Conduct, Version 2--2008.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2009-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 10 years, more than 2000 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Federation of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). A Code of Conduct was adopted in 2003 and a revised and updated version, taking account particularly of the guidelines of the Conseil Européen des Professions Libérales (CEPLIS) of which EFCC is a member, is presented in this article. The revised version was approved by the EC4 Register Commission and by the EFCC Executive Board in Paris on 6 November, 2008.

  8. Simion 3D Version 6.0 User`s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, D.A.

    1995-11-01

    The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

  9. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  10. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  11. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  12. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  13. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    1993-05-01

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  14. Occupational radiation exposure history of Idaho Field Office Operations at the INEL

    International Nuclear Information System (INIS)

    Horan, J.R.; Braun, J.B.

    1993-10-01

    An extensive review has been made of the occupational radiation exposure records of workers at the Idaho National Engineering Laboratory (INEL) over the period of 1951 through 1990. The focus has been on workers employed by contractors and employees of the Idaho Field Operations Office (ID) of the United States Department of Energy (USDOE) and does not include the Naval Reactors Facility (NRF), the Argonne National Laboratory (ANL), or other operations field offices at the INEL. The radiation protection guides have decreased from 15 rem/year to 5 rem/year in 1990 for whole body penetrating radiation exposure. During these 40 years of nuclear operations (in excess of 200,000 man-years of work), a total of twelve individuals involved in four accidents exceeded the annual guidelines for exposure; nine of these exposures were received during life saving efforts on January 3, 1961 following the SL-1 reactor accident which killed three military personnel. These exposures ranged from 8 to 27 rem. Only one individual has exceeded the annual whole body penetrating radiation protection guidelines in the last 29 years

  15. Occupational radiation exposure history of Idaho Field Office Operations at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Horan, J.R.; Braun, J.B.

    1993-10-01

    An extensive review has been made of the occupational radiation exposure records of workers at the Idaho National Engineering Laboratory (INEL) over the period of 1951 through 1990. The focus has been on workers employed by contractors and employees of the Idaho Field Operations Office (ID) of the United States Department of Energy (USDOE) and does not include the Naval Reactors Facility (NRF), the Argonne National Laboratory (ANL), or other operations field offices at the INEL. The radiation protection guides have decreased from 15 rem/year to 5 rem/year in 1990 for whole body penetrating radiation exposure. During these 40 years of nuclear operations (in excess of 200,000 man-years of work), a total of twelve individuals involved in four accidents exceeded the annual guidelines for exposure; nine of these exposures were received during life saving efforts on January 3, 1961 following the SL-1 reactor accident which killed three military personnel. These exposures ranged from 8 to 27 rem. Only one individual has exceeded the annual whole body penetrating radiation protection guidelines in the last 29 years.

  16. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes

  17. Summary of INEL research on the iron-enriched basalt waste form

    International Nuclear Information System (INIS)

    Reimann, G.A.; Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1992-01-01

    This report summarizes the knowledge base on the iron-enriched basalt (IEB) waste form developed at the Idaho National Engineering Laboratory (INEL) during 1979--1982. The results presented discuss the applicability of IEB in converting retrieved transuranic (TRU) waste from INEL's Radioactive Waste Management Complex (RWMC) into a vitreous/ceramic (glassy/rock) stable waste form suitable for permanent disposal in an appropriate repository, such as the Waste Isolation Pilot Plant (WIPP) in New Mexico. Borosilicate glass (BSG), the approved high-level waste form, appears unsuited for this application. Melting the average waste-soil mix from the RWMC produces the IEB composition and attempting to convert IEB to the BSG composition would require additions of substantial B 2 0 3 , Na, and SiO 2 (glass frit). IEB requires processing temperatures of 1400 to 1600 degrees C, depending upon the waste composition. Production of the IEB waste form, using Joule heated melters, has proved difficult in the past because of electrode and refractory corrosion problems associated with the high temperature melts. Higher temperature electric melters (arc and plasma) are available to produce this final waste form. Past research focused on extensive slag property measurements, waste form leachability tests, mechanical, composition, and microstructure evaluations, as well as a host of experiments to improve production of the waste form. Past INEL studies indicated that the IEB glass-ceramic is a material that will accommodate and stabilize a wide range of heterogeneous waste materials, including long lived radionuclides and scrap metals, while maintaining a superior level of chemical and physical performance characteristics. Controlled cooling of the molten IEB and subsequent heat treatment will produce a glass-ceramic waste form with superior leach resistance

  18. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2010-07-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous Guides to the Register have been published, one in 1997 and another in 2003. The third version of the Guide is presented in this article and is based on the experience gained and development of the profession since the last revision. Registration is valid for 5 years and the procedure and criteria for re-registration are presented as an Appendix at the end of the article.

  19. TMI-2 [Three Mile Island Nuclear Power Station] fuel canister and core sample handling equipment used in INEL hot cells

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Shurtliff, W.T.; Lynch, R.J.; Croft, K.M.; Whitmill, L.J.; Allen, S.M.

    1987-01-01

    This paper describes the specialized remote handling equipment developed and used at the Idaho National Engineering Laboratory (INEL) to handle samples obtained from the core of the damaged Unit 2 reactor at Three Mile Island Nuclear Power Station (TM-2). Samples of the core were removed, placed in TMI-2 fuel canisters, and transported to the INEL. Those samples will be examined as part of the analysis of the TMI-2 accident. The equipment described herein was designed for removing sample materials from the fuel canisters, assisting with initial examination, and processing samples in preparation for detailed examinations. The more complex equipment used microprocessor remote controls with electric motor drives providing the required force and motion capabilities. The remaining components were unpowered and manipulator assisted

  20. Vitrifiable concrete for disposal of spent nuclear fuel reprocessing waste at I.N.E.L

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1996-01-01

    A cement capable of being Hot Isostatically Pressed (HIP'ed) into a glass-ceramic has been proposed for use as the waste form for SNF reprocessing wastes at the Idaho National Engineering Laboratories. Such an ''intermediate'' cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed I.N.E.L. wastes, blast furnace flag, reactive silica, alumina, and I.N.E.L. soil or vermiculite, which was activated with potassium or sodium hydroxide. Modified FUETAP processing was performed and the cement was subsequently characterized. Results of compressive strength testing ranged from 1,452 psi to 4,163 psi, exceeding the NRC-suggested standard of >500 psi. Total dissolved solids concentrations in waste form leachates were calculated from a static leach test in which leachate conductivity was measured. Effective diffusivities for radioisotopes Cs and Sr were calculated from leachate analysis data. Diffusivity values were on the order of 10 -15 to 10 -10 cm 2 /sec, which compare favorably with diffusivities in other materials

  1. Track 2 sites: Guidance for assessing low probability hazard sites at the INEL. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document presents guidance for assessment of Track 2 low probability hazard sites (LPHS) at the Idaho National Engineering Laboratory (INEL). The Track 2 classification was developed specifically for the INEL to streamline the implementation of Comprehensive Environmental Response, Compensation, and Liability Act. Track 2 LPHSs are described as sites where insufficient data are available to make a decision concerning the risk level or to select or design a remedy. As such, these types of sites are not described in the National Contingency Plan or existing regulatory guidance. The goal of the Track 2 process is to evaluate LPHSs using existing qualitative and quantitative data to minimize the collection of new environmental data. To this end, this document presents a structured format consisting of a series of questions and tables. A qualitative risk assessment is used. The process is iterative, and addresses an LPHS from multiple perspectives (i.e., historical, empirical, process) in an effort to generate a reproducible and defensible method. This rigorous approach follows the data quality objective process and establishes a well organized, logical approach to consolidate and assess existing data, and set decision criteria. If necessary, the process allows for the design of a sampling and analysis strategy to obtain new environmental data of appropriate quality to support decisions for each LPHS. Finally, the guidance expedites consensus between regulatory parties by emphasizing a team approach to Track 2 investigations.

  2. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  3. INEL studies concerning solidification of low-level waste in cement

    International Nuclear Information System (INIS)

    Mandler, J.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL) has performed numerous studies addressing issues concerning the solidification of low-level radioactive waste in cement. These studies have been performed for both the Nuclear Regulatory Commission (NRC) and the Department of Energy (DOE). This short presentation will only outline the major topics addressed in some of these studies, present a few conclusions, and identify some of the technical concerns we have. More details of the work and pertinent results will be given in the Working Group sessions. The topics that have been addressed at the INEL which are relevant to this Workshop include (1) solidification of ion-exchange resins and evaporator waste in cement at commercial nuclear power plants, (2) leachability and compressive strength of power plant waste solidified in cement, (3) suggested guidelines for preparation of a solid waste process control program (PCP), (4) cement solidification of EPICOR-II resin wastes, and (5) performance testing of cement-solidified EPICOR-II resin wastes

  4. Track 2 sites: Guidance for assessing low probability hazard sites at the INEL

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents guidance for assessment of Track 2 low probability hazard sites (LPHS) at the Idaho National Engineering Laboratory (INEL). The Track 2 classification was developed specifically for the INEL to streamline the implementation of Comprehensive Environmental Response, Compensation, and Liability Act. Track 2 LPHSs are described as sites where insufficient data are available to make a decision concerning the risk level or to select or design a remedy. As such, these types of sites are not described in the National Contingency Plan or existing regulatory guidance. The goal of the Track 2 process is to evaluate LPHSs using existing qualitative and quantitative data to minimize the collection of new environmental data. To this end, this document presents a structured format consisting of a series of questions and tables. A qualitative risk assessment is used. The process is iterative, and addresses an LPHS from multiple perspectives (i.e., historical, empirical, process) in an effort to generate a reproducible and defensible method. This rigorous approach follows the data quality objective process and establishes a well organized, logical approach to consolidate and assess existing data, and set decision criteria. If necessary, the process allows for the design of a sampling and analysis strategy to obtain new environmental data of appropriate quality to support decisions for each LPHS. Finally, the guidance expedites consensus between regulatory parties by emphasizing a team approach to Track 2 investigations

  5. Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version

    Energy Technology Data Exchange (ETDEWEB)

    Cornwell, Paris A [ORNL; Bunn, Jeffrey R [ORNL; Schmidlin, Joshua E [ORNL; Hubbard, Camden R [ORNL

    2012-04-01

    The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the

  6. Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version

    International Nuclear Information System (INIS)

    Cornwell, Paris A.; Bunn, Jeffrey R.; Schmidlin, Joshua E.; Hubbard, Camden R.

    2012-01-01

    The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the scan arm creates. Once

  7. Lead use and recycling at the INEL

    International Nuclear Information System (INIS)

    Losinski, S.J.; Thurmond, S.M.

    1995-08-01

    As part of DOE's efforts to develop a Department-wide management strategy for the use, reuse, and recycle of lead, DOE has requested that each site provide site-specific management and use practices for lead, specifically management and use information that responds to four specific questions of interest. This report provides the Idaho National Engineering Laboratory's response to those areas of interest

  8. Computer modeling of jet mixing in INEL waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  9. Human applications of the INEL patient treatment planning system

    International Nuclear Information System (INIS)

    Wheeler, F.; Wessol, D.; Atkinson, C.; Nigg, D.

    1995-01-01

    During the past few years, murine and large animal research, as well as human studies have provided data to the point where human clinical trials have been initiated at the BMRR using BPA-F for gliomas and at the Massachusetts Institute of Technology Reactor (MITR) using BPA for melanomas of the extremeties. It is expected that glioma trials using BSH will proceed soon at the Petten High Flux Reactor (HFR) in the Netherlands. The first human glioma epithermal boron neutron capture therapy application was performed at the BMRR in the fall of 1994. This was a collaborative effort by BNL, Beth Israel Manhattan hospital, and INEL. The INEL planning system was chosen to perform dose predictions for this application

  10. INEL metal recycle radioactive scrap metal survey report

    International Nuclear Information System (INIS)

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal

  11. Preparation and leaching of radioactive INEL waste forms

    International Nuclear Information System (INIS)

    Schuman, R.P.; Welch, J.M.; Staples, B.A.

    1982-01-01

    The purpose of this study is to prepare and leach test ceramic and glass waste form specimens produced from actual transuranic waste sludges and high-level waste calcines, respectively. Description of wastes, specimen fabrication, leaching procedure, analysis of leachates and results are discussed. The conclusion is that radioactive waste stored at INEL can be readily incorporated in fused ceramic and glass forms. Initial leach testing results indicate that these forms show great promise for safe long-term containment of radioactive wastes

  12. The INEL approach: Environmental Restoration Program management and implementation methodology

    International Nuclear Information System (INIS)

    1996-01-01

    The overall objectives of the INEL Environmental Restoration (ER) Program management approach are to facilitate meeting mission needs through the successful implementation of a sound, and effective project management philosophy. This paper outlines the steps taken to develop the ER program, and explains further the implementing tools and processes used to achieve what can be viewed as fundamental to a successful program. The various examples provided will demonstrate how the strategies for implementing these operating philosophies are actually present and at work throughout the program, in spite of budget drills and organizational changes within DOE and the implementing contractor. A few of the challenges and successes of the INEL Environmental Restoration Program have included: a) completion of all enforceable milestones to date, b) acceleration of enforceable milestones, c) managing funds to reduce uncosted obligations at year end by utilizing greater than 99% of FY-95 budget, d) an exemplary safety record, e) developing a strategy for partial Delisting of the INEL by the year 2000, f) actively dealing with Natural Resource Damages Assessment issues, g) the achievement of significant project cost reductions, h) and implementation of a partnering charter and application of front end quality principles

  13. In Situ Vitrification Engineering-Scale Test ES-INEL-4, ES-INEL-5, ES-INEL-6, and ES-INEL-7 Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-10-01

    The In Situ Vitrification Engineering-Scale Tests ES-4, ES-5, ES-6, and ES-7 Product Characterization Test Plan describes the methods and procedures to be used or the physical and chemical characterization of the solid product(s) resulting from the Idaho National Engineering Laboratory engineering scale in situ vitrification tests ES-4, ES-5, ES-6, and ES-7. The goals of this Test Plan are to insure that the product characterization results are sufficient to meet the data needs of the In Situ Vitrification Program and are technically and legally defensible. Important issues addressed by the test plan include sampling and analysis strategy, sampling procedures, laboratory analysis, sample control and document management, equipment, data reporting and validation, quality assurance, specific routine procedures to assess data representativeness, safety and training program, and data management. 9 refs., 1 fig., 3 tabs

  14. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  15. INEL experience and capabilities in design, operation, and maintenance of nuclear systems

    International Nuclear Information System (INIS)

    Leatham, J.; Masson, L.S.

    1982-07-01

    This study provides an overview of the experience, hardware, and managerial expertise available at the INEL for design, fabrication, and operation of tools and facilities for remote maintenance. The survey demonstrates that the INEL's fission reactor experience is directly applicable to the design of remote handling hardware which must be developed for fusion reactors, and that the experience and facilities are available at INEL to begin that work

  16. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  17. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  18. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    International Nuclear Information System (INIS)

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources

  19. INEL BNCT Research Program Annual Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1994-08-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogs that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.

  20. Solute travel time in the vadose zone under RWMC at INEL

    International Nuclear Information System (INIS)

    Liou, J.C.P.; Tian, J.

    1995-01-01

    Solute transport in the vadose zone under the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) is considered. The objective is to assess the relative importance of variables involved in modeling the travel time of a conservative solute from ground surface to water table. The vadose zone under RWMC is composed of several layers of basalt flows interceded with sediment layers. The thickness of the layers varies with location. The hydraulic properties also vary. The extents of the variations are large, with standard deviations exceed mean in some instances. The vadose zone is idealized as composed of horizontal layers. Solute transport starts at the ground surface and moves vertically downwards to the water table. The perceived process is one-dimensional. This study used VS2DT, a computer code developed by the US Geological Survey, for simulating solute transport in variably saturated porous media

  1. Idaho National Engineering Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities

  2. INEL BNCT research program publications, 1993

    International Nuclear Information System (INIS)

    1994-05-01

    This document is a collection of the published reports describing research supporting the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). These reports have previously appeared in the book: Advances in Neutron Capture Therapy, edited by A. H. Soloway, R. F. Barth, D. E. Carpenter, Plenum Press, 1993. Reports have also appeared in three journals: Angewandte Chemie, Strahlentherapie und Onkologie, and Nuclear Science and Engineering. This individual papers have been indexed separately elsewhere

  3. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  4. INEL BNCT Research Program annual report, 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database

  5. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to <12% or <5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    International Nuclear Information System (INIS)

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy's (DOE's) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations

  6. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

  7. EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine: version 3 - 2005.

    Science.gov (United States)

    Zerah, Simone; McMurray, Janet; Bousquet, Bernard; Baum, Hannsjorg; Beastall, Graham H; Blaton, Vic; Cals, Marie-Josèphe; Duchassaing, Danielle; Gaudeau-Toussaint, Marie-Françoise; Harmoinen, Aimo; Hoffmann, Hans; Jansen, Rob T; Kenny, Desmond; Kohse, Klaus P; Köller, Ursula; Gobert, Jean-Gérard; Linget, Christine; Lund, Erik; Nubile, Giuseppe; Opp, Matthias; Pazzagli, Mario; Pinon, Georges; Queralto, José M; Reguengo, Henrique; Rizos, Demetrios; Szekeres, Thomas; Vidaud, Michel; Wallinder, Hans

    2006-01-01

    The EC4 Syllabus for Postgraduate Training is the basis for the European Register of Specialists in Clinical Chemistry and Laboratory Medicine. The syllabus: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. The syllabus is not primarily meant to be a training guide, but on the basis of the overview given (common minimal programme), national societies should formulate programmes that indicate where knowledge and experience is needed. The main points of this programme are: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory management; and Quality insurance management. The aim of this version of the syllabus is to be in accordance with the Directive of Professional Qualifications published on 30 September 2005. To prepare the common platforms planned in this directive, the disciplines are divided into four categories: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory

  8. Use of an isotope separator at the INEL

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1977-01-01

    An electromagnetic isotope separator with a retardation lens as a collector was used to prepare highly enriched samples of Nd-143, -144, -145, -146, -148, -150, Sm-147, -149; Eu-151, -152, -153, -154. The 50 μg to 75 μg samples, deposited on 1 mil nickel foil or 0.5 mil vanadium foil, are part of a sample set to be irradiated in EBR-II as part of an integral-capture cross-section measurement program at the INEL. The isotope separator and the apparatus used for the sample preparation are described

  9. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use

  10. Impact and structural analysis of the INEL 55 gallon recycled shielded storage container

    International Nuclear Information System (INIS)

    Richins, W.D.

    1996-07-01

    The INEL Recycled Shielded Storage Containers (RSSC) are designed primarily for the transportation and storage of mixed RH-TRU solid waste using recycled, potentially contaminated lead and stainless steel construction materials. Two versions of the RSSC have been developed accommodating either 30 or 55 gallon drums. This report addresses the structural qualification of the 55 gallon version of the RSSC to DOT 7A Type A requirements. The controlling qualification test is a 4 ft drop onto a rigid surface. During and after this test, the container contents must remain within the container and shielding must not be reduced. The container is also designed to withstand stacking, internal pressure, lifting loads, tiedown failure, penetration, and a range of temperatures. Nonlinear dynamic finite element analyses were performed using a range of material properties. Loads in the major connections and strains in the stainless steel and lead were monitored as a function of time during impact analyses for three simulated drop orientations. Initial results were used to develop the final design. For the final design, the stainless steel and lead have maximum strains well below ultimate levels except at an impact corner where additional deformation is acceptable. The predicted loads in the connections indicate that some yielding will occur but the containment and shielding will remain intact. The results presented here provide assurance that the container will pass the DOT 7A Type A drop tests as well as the other structural requirements

  11. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    International Nuclear Information System (INIS)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE's mixed waste

  12. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

  13. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    International Nuclear Information System (INIS)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System

  14. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date

    International Nuclear Information System (INIS)

    Sims, A.M.; Taylor, K.A.

    1994-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System

  15. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    International Nuclear Information System (INIS)

    Oden, L.L.; O'Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-01-01

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  16. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    George, D.H.

    1996-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  17. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  18. Evaluation of potential for MSRE spent fuel and flush salt storage and treatment at the INEL

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ostby, P.A.; Nebeker, R.L.

    1996-09-01

    The potential for interim storage as well as for treatment of the Molten Salt Reactor Experiment spent fuel at INEL has been evaluated. Provided that some minimal packaging and chemical stabilization prerequisites are satisfied, safe interim storage of the spent fuel at the INEL can be achieved in a number of existing or planned facilities. Treatment by calcination in the New Waste Calcining Facility at the INEL can also be a safe, effective, and economical alternative to treatment that would require the construction of a dedicated facility. If storage at the INEL is chosen for the Molten Salt Reactor Experiment (MSRE) spent fuel salts, their transformation to the more stable calcine solid would still be desirable as it would result in a lowering of risks. Treatment in the proposed INEL Remote-Handled Immobilization Facility (RHIF) would result in a waste form that would probably be acceptable for disposal at one of the proposed national repositories. The cost increment imputable to the treatment of the MSRE salts would be a small fraction of the overall capital and operating costs of the facility or the cost of building and operating a dedicated facility. Institutional and legal issues regarding shipments of fuel and waste to the INEL are summarized. The transfer of MSRE spent fuel for interim storage or treatment at the INEL is allowed under existing agreements between the State of idaho and the Department of energy and other agencies of the Federal Government. In contrast, current agreements preclude the transfer into Idaho of any radioactive wastes for storage or disposal within the State of Idaho. This implies that wastes and residues produced from treating the MSRE spent fuel at locations outside Idaho would not be acceptable for storage in Idaho. Present agreements require that all fuel and high-level wastes stored at the INEL, including MSRE spent fuel if received at the INEL, must be moved to a location outside Idaho by the year 2035

  19. TIDBIT - the INEL database of BNCT information and treatment

    International Nuclear Information System (INIS)

    Mancuso, C.A.

    1995-01-01

    The INEL Database of BNCT Information and Treatment (TIDBIT) has been under development for several years. Late in 1993, a new software development team took over the project and did and assessment of the current implementation status, and determined that the user interface was unsatisfactory for the expected users and that the data structures were out of step with the current state of reality. The team evaluated several tools that would improve the user interface to make the system easier to use. Uniface turned out to be the product of choice. During 1994, TIDBIT got its name, underwent a complete change of appearance, had a major overhaul to the data structures that support the application, and system documentation was begun. A prototype of the system was demonstrated in September 1994

  20. NRC nuclear-plant-analyzer concept and status at INEL

    International Nuclear Information System (INIS)

    Aguilar, F.; Wagner, R.J.

    1982-01-01

    The Office of Research of the US NRC has proposed development of a software-hardware system called the Nuclear Plant Analyzer (NPA). This paper describes how we of the INEL envision the nuclear-plant analyzer. The paper also describes a pilot RELAP5 plant-analyzer project completed during the past year and current work. A great deal of analysis is underway to determine nuclear-steam-system response. System transient analysis being so complex, there is the need to present analytical results in a way that interconnections among phenomena and all the nuances of the transient are apparent. There is the need for the analyst to dynamically control system calculations to simulate plant operation in order to perform what if studies as well as the need to perform system analysis within hours of a plant emergency to diagnose the state of the stricken plant and formulate recovery actions. The NRC-proposed nuclear-plant analyzer can meet these needs

  1. A guide for the laboratory information management system (LIMS) for light stable isotopes--Versions 7 and 8

    Science.gov (United States)

    Coplen, Tyler B.

    2000-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic

  2. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites

    International Nuclear Information System (INIS)

    1994-01-01

    Under contract between US DOE Idaho National Engineering Laboratory (INEL) and the Blackhawk Geosciences Division of Coleman Research Corporation (BGD-CRC), geophysical investigations were conducted to improve the detection of buried wastes. Over the Cold Test Pit (CTP) at INEL, data were acquired with multiple sensors on a dense grid. Over the CTP the interpretations inferred from geophysical data are compared with the known placement of various waste forms in the pit. The geophysical sensors employed were magnetics, frequency and time domain electromagnetics, and ground penetrating radar. Also, because of the high data density acquired, filtering and other data processing and imaging techniques were tested. After completion and analysis of the survey and interpretation over the CTP, the second phase of investigation consisted of testing geophysical methods over the Idaho Chemical Processing Plant (ICPP). The sections of the ICPP surveyed are underlain by a complex network of buried utility lines of different dimensions and composition, and with placement at various depths up to 13 ft. Further complications included many metallic objects at the surface, such as buildings, reinforced concrete pads, and debris. Although the multiple geophysical sensor approach mapped many buried utilities, they mapped far from all utilities shown on the facility drawings. This report consists of data collected from these geophysical surveys over the ICPP

  3. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Sections 1 through 8, Tables 2-1 through 6-1, Figures 1 and 2

    International Nuclear Information System (INIS)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE's mixed waste

  4. A process for ensuring regulatory compliance at the INEL`s buried waste integrated demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, P.G.; Watson, L.R.; Blacker, P.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1993-03-01

    The Buried Waste Integrated Demonstration Program is funded by the Department of Energy Office of Technology Development. The mission of this Integrated Demonstration is to identify, evaluate, and demonstrate a suite of innovative technologies for the remediation of radioactive and hazardous waste buried throughout the DOE complex between 1950 and 1970. The program approach to development of a long-range strategy for improving buried waste remediation capabilities is to combine systems analysis with already identified remediation needs for DOE complex buried waste. The systems analysis effort has produced several configuration options (a top-level block diagram of a cradle-to-grave remediation system) capable of remediating the transuranic-contaminated waste pits and trenches at the Idaho National Engineering Laboratory. Technologies for demonstration are selected using three criteria: (a) the ability to satisfy a specific buried waste need, (b) the ability to satisfy functional and operational requirements defined for functional sub-elements in a configuration option, and (c) performance against Comprehensive Environmental Restoration and Compensation Liability Act selection criteria, such as effectiveness, implementability, and cost. Early demonstrations experienced problems with missed requirements, prompting the Buried Waste Integrated Demonstration Program Office to organize a Corrective Action Team to identify the cause and recommend corrective actions. The result of this team effort is the focus of this paper.

  5. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3

  6. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Warner, G.F.; Zack, N.R.

    1990-01-01

    This paper describes the development of the safeguards and security system that was to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site near Idaho Falls, Idaho. The Plant was designed to produce weapons grade plutonium from DOE owned fuel grade plutonium by converting off-spec. plutonium dioxide into metal buttons that would meet required chemical and isotopic specifications. Because this was to be a completely new facility there was a unique opportunity to provide an in-depth, ''state-of-the- art'' safeguards and security system without attempting to overlay upon an existing, older system. This facility was being designed to be in complete compliance with the new DOE Orders by integrating safeguards and security into the plant operating system and by providing graded protection to the areas of varying sensitivity within the plant

  7. Risk-based decision-making: A reality at the INEL

    International Nuclear Information System (INIS)

    Halford, V.E.; Nitschke, R.L.; Hula, G.A.

    1994-01-01

    Risk Analysis and Risk Management are major components of the Idaho National Engineering Laboratory's (INEL's) environmental restoration and waste management program. These tools help define responsible and cost-effective approaches to address potential human health and environmental risks from past operational practices. These techniques along with stake holder involvement, play a key role in the decision-making process which involves the US Department of Energy Idaho Operations Office (DOE), the US Environmental Protection Agency Region 10 (EPA), and the State of Idaho Department of Health and Welfare (IDHW), hereafter referred to as the agencies. An example of how this process works is Pad A, an above-ground mixed waste disposal site composed mainly of transuranic-contaminated evaporation pond salts. The site was constructed in 1972 for the disposal of solid radioactive wastes. A Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) baseline risk assessment was conducted to determine the incremental cancer risk and potential for adverse health effects to the public and the impacts to the environment if no action was performed. The risk characterization indicated that the carcinogenic risk for current and future hypothetical scenarios was below or within the NCP acceptable risk range. There was a potential 10 year window for an adverse health effect to an infant from nitrate contamination of the groundwater in about 250 years. Based on these results, a responsible and sound decision was reached to maintain and recontour the existing soil cover and to perform monitoring to confirm modeling assumptions

  8. Raptors of the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Craig, T.H.

    1979-04-01

    From 1974 through 1976 base line data were gathered on the raptors which occur on the Idaho National Engineering Laboratory (INEL) Site. Thirteen species were observed on the INEL Site during the non-breeding seasons. American Rough-legged Hawks, American Kestrels, Golden Eagles, and Prairie Falcons were the most numerous. Marsh Hawks, Ferruginous Hawks, Redtailed Hawks, Swainson's Hawks, Great Horned Owls, Short-eared Owls, Merlins, Cooper's Hawks, the endangered Bald Eagle, and the endangered Peregrine Falcon were all observed on the INEL Site during the nonbreeding seasons although less frequently. American Rough-legged Hawks and American Kestrels were commonly observed in agricultural lands while Prairie Falcons and Golden Eagles were usually seen in areas of native vegetation. Nesting species of raptors on the INEL Site include American Kestrels, and Long-eared Owls. Ferruginous Hawks, Merlins, Prairie Falcons, Red-tailed Hawks, Swainson's Hawks, Golden Eagles, Great Horned Owls, and Burrowing Owls also nest on or near the INEL Site. The nesting ecology of American Kestrels, Long-eared Owls, Prairie Falcons, Red-tailed Hawks, Swainson's Hawks, Golden Eagles, and Great Horned Owls on the INEL Site are summarized in this report. The decline of nesting Ferruginous Hawks, Golden Eagles, and Red-tailed Hawks on and near the INEL Site is discussed

  9. An Overview of INEL Fusion Safety R&D Facilities

    Science.gov (United States)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  10. Enhancements to the Idaho National Engineering Laboratory motor-operated valve assessment software

    International Nuclear Information System (INIS)

    Holbrook, M.R.; Watkins, J.C.

    1994-01-01

    In January 1991, the U.S. Nuclear Regulatory Commission (USNRC) commenced Part 1 inspections to review licensee's motor-operated valve (MOV) programs that were developed to address Generic Letter 89-10, open-quotes Safety-Related Motor-Operated Valve Testing and Surveillanceclose quotes. In support, of this effort, the Isolation Valve Assessment (IVA) software, Version 3.10, was developed by the Idaho National Engineering Laboratory (INEL) to enable rapid in-depth review of MOV sizing and torque switch setting calculations. In 1994, the USNRC commenced Part 2 inspections, which involve a more in-depth review of MOV in situ testing relative to design-basis assumptions. The purpose of this paper is to describe the latest INEL and industry research that has been incorporated into Version 4.00 of the IVA software to support the latest round of inspections. Major improvements include (a) using dynamic and static test results to determine MOV performance parameters and validate design-basis engineering assumptions, (b) determining the stem/stem-nut coefficient of friction using new research-based techniques, (c) adding the ability to evaluate globe valves, and (d) incorporating new methods to account for the effects of high ambient temperature on the output torque of alternating current (ac) motors

  11. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  12. Idaho National Engineering Laboratory High-Level Waste Roadmap

    International Nuclear Information System (INIS)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ''where we are now'' to ''where we want and need to be.'' The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues

  13. Management of national nuclear power programs for assured safety. Report of visit by international participants to INEL on August 24, 1985

    International Nuclear Information System (INIS)

    Rouhani, S.Z.

    1985-10-01

    Through a special arrangement with the US State Department and support from the Department of Energy a group of high ranking officials from six different countries visited the Idaho National Engineering Laboratory on August 24, 1985. They were briefed on the highlights of the US-NRC's nuclear safety research programs at the INEL. The purpose of this project was to broadcast the advancements of the US nuclear safety technology to other nations that are at the start of major programs for peaceful use of nuclear energy in their countries

  14. Conversion tool for the LWR transient analysis code RELAP5 from the CDC version to the FACOM version

    International Nuclear Information System (INIS)

    Shinozawa, Naohisa; Fujisaki, Masahide; Makino, Mitsuhiro; Kondou, Kazuya; Ishiguro, Misako

    1987-01-01

    The LWR transient analysis code RELAP5 has been developed on the CDC-CYBER 176 at Idaho National Engineering Laboratory (INEL), the RELAP5 code has been often updated in order to extend the analyzing model and correct the errors. At Japan Atomic Energy Research Institute the code has been converted from the CDC version to the FACOM version and the converted code has been used. The conversion is the task which consumes a lot of time, because the code is large and there is the difference between CDC's machines and FACOM's ones. In order to convert the RELAP5 code automatically, the software tool has been developed. By using this tools the efficiency for converting the RELAP5 code has been improved. Productivity of the conversion is increased about 2.0 to 2.6 times by the tools in comparison with in manual. The procedure of conversion by using the tools and the option parameters of each tool are described. (author)

  15. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010

    DEFF Research Database (Denmark)

    McMurray, Janet; Zérah, Simone; Hallworth, Michael

    2010-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more...... than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous...

  16. INEL cold test pit demonstration of improvements in information derived from non-intrusive geophysical methods over buried waste sites

    International Nuclear Information System (INIS)

    1994-01-01

    Under Contract between US DOE Idaho National Engineering Laboratory (INEL) and the Blackhawk Geosciences Division of Coleman Research Corporation (BGD-CRC), geophysical investigations were conducted to improve the detection of buried wastes. Site characterization is a costly and time consuming process with the most costly components being drilling, sampling, and chemical analysis of samples. There is a focused effort at US DOE and other agencies to investigate methodologies that reduce costs and shorten the time between characterization and clean-up. These methodologies take the form of employing non-invasive (geophysical) and minimal invasive (e.g., cone penetrometer driving) techniques of characterization, and implementing a near real-time, rational decision-making process (Expedited Site Characterization). Over the Cold Test Pit (CTP) at INEL, data were acquired with multiple sensors on a dense grid. Over the CTP the interpretations inferred from geophysical data are compared with the known placement of various waste forms in the pit. The geophysical sensors employed were magnetics, frequency and time domain electromagnetics, and ground penetrating radar. Also, because of the high data density acquired, filtering and other data processing and imaging techniques were tested. The conclusions derived from the geophysical surveys were that pit boundaries, berms between cells within the pit, and individual objects placed in the pit were best mapped by the new Geonics EM61 time domain EM metal detector. Part of the reason for the effectiveness of the time domain metal detector is that objects buried in the pit are dominantly metallic. Also, the utility of geophysical data is significantly enhanced by dimensional and 3-dimensional imaging formats. These images will particularly assist remediation engineers in visualizing buried wastes

  17. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  18. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  19. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  20. 1983 Environmental monitoring program report for Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Dickson, R.L.

    1984-05-01

    The results of the various monitoring programs for 1983 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. 11 figures, 14 tables

  1. Straddle-packer determination of the vertical distribution of hydraulic properties in the Snake River Plain Aquifer at well USGS-44, Idaho Chemical Processing Plant, INEL

    International Nuclear Information System (INIS)

    Monks, J.I.

    1994-01-01

    Many of the monitor wells that penetrate the upper portion of the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) are open over large intervals that include multiple water-bearing zones. Most of these wells are equipped with dedicated submersible pumps. Water of varying quality from different water-bearing zones is mixed within the wells. The hydrologic properties of individual water bearing zones are difficult to determine. Water quality and water-level data on organic, heavy metal, and radioactive contaminants have been collected, reported, and interpreted from these monitor wells for more than forty years. The problems associated with well completions over large intervals through multiple water-bearing zones raise significant questions about the data. A straddle-packer system was developed and applied at the INEL site to investigate the monitor well network. The straddle-packer system, hydraulic testing methods, data analysis procedures, and testing results are described in this report. The straddle-packer system and the straddle-packer testing and data evaluation procedures can be improved for future testing at the INEL site. Recommended improvements to the straddle-packer system are: (1) improved transducer pressure sensing systems, (2) faster opening riser valve, and (3) an in-line flowmeter in the riser pipe. Testing and data evaluation recommended improvements are: (1) simultaneous valve opening during slug tests, (2) analysis of the ratio of the times for head change and recovery to occur, (3) constant-drawdown tests of high transmissivity intervals, (4) multiple-well aquifer tests, and (5) long term head monitoring

  2. Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)

    NARCIS (Netherlands)

    Pfajfar, D.; Zakelj, B.

    2012-01-01

    Abstract: This paper compares the behavior of subjects' uncertainty in different monetary policy environments when forecasting inflation in the laboratory. We find that inflation targeting produces lower uncertainty and higher accuracy of interval forecasts than inflation forecast targeting. We also

  3. Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of EBC DP 2011-014)

    NARCIS (Netherlands)

    Pfajfar, D.; Zakelj, B.

    2012-01-01

    Abstract: This paper compares the behavior of subjects' uncertainty in different monetary policy environments when forecasting inflation in the laboratory. We find that inflation targeting produces lower uncertainty and higher accuracy of interval forecasts than inflation forecast targeting. We also

  4. A pocket guide to electronic laboratory notebooks in the academic life sciences [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ulrich Dirnagl

    2016-01-01

    Full Text Available Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  5. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  6. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  7. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  8. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  9. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  10. The European Federation of Clinical Chemistry and Laboratory Medicine syllabus for postgraduate education and training for Specialists in Laboratory Medicine: version 5 - 2018.

    Science.gov (United States)

    Jassam, Nuthar; Lake, Jennifer; Dabrowska, Milena; Queralto, Jose; Rizos, Demetrios; Lichtinghagen, Ralf; Baum, Hannsjörg; Ceriotti, Ferruccio; O'Mullane, John; Homšak, Evgenija; Charilaou, Charis; Ohlson, Mats; Rako, Ivana; Vitkus, Dalius; Kovac, Gustav; Verschuure, Pauline; Racek, Jaroslav; Chifiriuc, Mariana Carmen; Wieringa, Gilbert

    2018-06-05

    Although laboratory medicine practise varies across the European Union's (EU) member states, the extent of overlap in scope is such that a common syllabus describing the education and training associated with high-quality, specialist practise can be identified. In turn, such a syllabus can help define the common set of skills, knowledge and competence in a Common Training Framework (CTF) for non-medical Specialists in Laboratory Medicine under EU Directive 2013/55/EU (The recognition of Professional Qualifications). In meeting the requirements of the directive's CTF patient safety is particularly enhanced when specialists seek to capitalise on opportunities for free professional migration across EU borders. In updating the fourth syllabus, the fifth expands on individual discipline requirements, new analytical techniques and use of statistics. An outline structure for a training programme is proposed together with expected responsibilities of trainees and trainers; reference is provided to a trainee's log book. In updating the syllabus, it continues to support national programmes and the aims of EU Directive 2013/55/EU in providing safeguards to professional mobility across European borders at a time when the demand for highly qualified professionals is increasing in the face of a disparity in their distribution across Europe. In support of achieving a CTF, the syllabus represents EFLM's position statement for the education and training that underpins the framework.

  11. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.

  12. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-02

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  13. The EC4 European syllabus for post-graduate training in clinical chemistry and laboratory medicine: version 4--2012.

    Science.gov (United States)

    Wieringa, Gijsbert; Zerah, Simone; Jansen, Rob; Simundic, Ana-Maria; Queralto, José; Solnica, Bogdan; Gruson, Damien; Tomberg, Karel; Riittinen, Leena; Baum, Hannsjörg; Brochet, Jean-Philippe; Buhagiar, Gerald; Charilaou, Charis; Grigore, Camelia; Johnsen, Anders H; Kappelmayer, Janos; Majkic-Singh, Nada; Nubile, Giuseppe; O'Mullane, John; Opp, Matthias; Pupure, Silvija; Racek, Jaroslav; Reguengo, Henrique; Rizos, Demetrios; Rogic, Dunja; Špaňár, Július; Štrakl, Greta; Szekeres, Thomas; Tzatchev, Kamen; Vitkus, Dalius; Wallemacq, Pierre; Wallinder, Hans

    2012-08-01

    Laboratory medicine's practitioners across the European community include medical, scientific and pharmacy trained specialists whose contributions to health and healthcare is in the application of diagnostic tests for screening and early detection of disease, differential diagnosis, monitoring, management and treatment of patients, and their prognostic assessment. In submitting a revised common syllabus for post-graduate education and training across the 27 member states an expectation is set for harmonised, high quality, safe practice. In this regard an extended 'Core knowledge, skills and competencies' division embracing all laboratory medicine disciplines is described. For the first time the syllabus identifies the competencies required to meet clinical leadership demands for defining, directing and assuring the efficiency and effectiveness of laboratory services as well as expectations in translating knowledge and skills into ability to practice. In a 'Specialist knowledge' division, the expectations from the individual disciplines of Clinical Chemistry/Immunology, Haematology/Blood Transfusion, Microbiology/ Virology, Genetics and In Vitro Fertilisation are described. Beyond providing a common platform of knowledge, skills and competency, the syllabus supports the aims of the European Commission in providing safeguards to increasing professional mobility across European borders at a time when demand for highly qualified professionals is increasing and the labour force is declining. It continues to act as a guide for the formulation of national programmes supplemented by the needs of individual country priorities.

  14. Ecological risk assessment at the Idaho National Engineering Laboratory: Overview

    International Nuclear Information System (INIS)

    VanHorn, R.; Bensen, T.; Green, T.; Hampton, N.; Staley, C.; Morris, R.; Brewer, R.; Peterson, S.

    1994-01-01

    The paper will present an overview of the methods and results of the screening level ecological risk assessment (ERA) performed at the Idaho National Engineering Laboratory (INEL). The INEL is a site with some distinct characteristics. First it is a large Department of Energy (DOE) laboratory (2,300 km 2 ) having experienced 40 years of nuclear material production operations. Secondly, it is a relatively undisturbed cold desert ecosystem. Neither of these issues have been sufficiently addressed in previous ERAs. It was necessary in many instances to develop methods that differed from those used in other studies. This paper should provide useful methodologies for the ERAs performed at other similar sites

  15. The Intense Slow Positron Source concept: A theoretical perspective on a proposed INEL Facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Abrashoff, J.D.; Landman, W.H.; Albano, R.K.; Tajima, T.

    1992-01-01

    An analysis has been performed of the INEL Intense Slow Positron Source (ISPS) concept. The results of the theoretical study are encouraging. A full-scale device with a monoenergetic 5 KeV positron beam of ≥10 12 e + /s on a ≤0.03-cmdiameter target appears feasible and can be obtained within the existing infrastructure of INEL reactor facilities. A 30.0-cm-diameter, large area source dish, moderated at first with thin crystalline W films and later by solid Ne, is proposed as the initial device in order to explore problems with a facility scale system. A demonstration scale beam at ≥10 10 slow e + /s is proposed using a 58 Co source plated on a 6-cm-diameter source dish insert, placed in a 30- cm adapter

  16. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Genevieve Tchigossou

    2017-11-01

    Full Text Available Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole,and two mineral water namely FIFA and Possotômè and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation. Results:In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L and nitrate (118.8mg/L. Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3% and Possotômè(79.5% water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

  17. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Genevieve Tchigossou

    2018-01-01

    Full Text Available Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole, and two mineral water namely FIFA and Possotômè and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation (introduction of eggs’ batches into water. Results: In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L and nitrate (118.8mg/L. Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3% and Possotômè (79.5% water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

  18. 1985 Environmental Monitoring Program report for the Idaho National Engineering Laboratory site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1986-05-01

    The results of the various monitoring programs for 1985 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. It compares and evaluates the sample results, discussing implications, if any. Included for the first time this year are data from air and water samples routinely collected from onsite locations. The report also summarizes significant environmental activities at the INEL Site during 1985, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) groundwater monitoring program

  19. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INEL Oversight Committee

    International Nuclear Information System (INIS)

    King, B.; Bloomsburg, G.; Horn, D.; Liou, J.; Finnie, J.

    1992-01-01

    During the early years of the INEL, the USGS conducted extensive studies (sitewide drilling program) of the geology and hydrology of the area collecting varied data over the years. The unsaturated zone has not received much attention until recently. The studies that have been done are a result of problems or concerns arising from liquid radioactive waste disposal. The TRA facility has the most information published about its waste disposal activities. The ICPP has less data about the unsaturated zone due to the fact that most waste water disposal has been to a well. Little is known about the effect of waste water disposal at the NRF on the unsaturated zone. Essentially no information was found about waste disposal activities at other facilities, primarily because there does not appear to be any reported problems associated with waste water disposal at these locations. The RWMC has received much attention in the last few years as the result of being priority No. 1 in the superfund clean up of the INEL. A considerable amount of data are available describing the unsaturated zone at the RWMC. These data have been collected to field calibrate a radionuclide migration model for the RWMC

  20. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs

  1. INEL storage facility for sealed sources from the commercial sector

    International Nuclear Information System (INIS)

    Kingsford, C.O.; Satterthwaite, B.C.

    1994-08-01

    Commercially owned sealed radiation sources determine by the US Nuclear Regulatory Commission to be a public health or safety hazard are accepted by the US Department of Energy, under the Atomic Energy Act of 1954, as material for reuse of recycle. To implement this policy, the sealed sources must be stored until proper disposition is determined. This report documents the investigation and selection process undertaken to locate a suitable storage facility at the Idaho National Engineering Laboratory

  2. Long-term management plan INEL transuranic waste

    International Nuclear Information System (INIS)

    McKinney, J.D.

    1978-12-01

    The Idaho National Engineering Laboratory stores large quantities of transuranic-contaminated waste at its Radioactive Waste Management Complex. This report presents a 10-year plan for management of this transuranic waste and includes descriptions of projects involving nuclear waste storage, retrieval, processing, systems analysis, and environmental science. Detailed project schedules and work breakdown charts are provided to give the reader a clear view of transuranic waste management objectives

  3. Seismic procurement requirements at the FPR (Fuel Processing Restoration) facility at INEL (Idaho National Engineering Laboratory)

    International Nuclear Information System (INIS)

    Bingham, G.E.; Hardy, G.S.; Griffin, M.J.

    1989-01-01

    Traditional methods used to seismically qualify equipment for new facilities has been either by testing or analysis. Testing programs are generally expensive and their input loadings are conservative. It is also generally recognized that standard seismic analysis techniques produce overly conservative results. Seismic loads and response levels for equipment are typically calculated that far exceed the values actually experienced in earthquakes. A more efficient method for demonstrating the seismic adequacy of equipment has been developed which is based on conclusions derived from studying the performance of equipment that has been subjected to actual earthquake excitations. The earthquake experience data concludes that damage or malfunction to most types of equipment subjected to earthquakes is far less than that predicted by traditional testing and analysis techniques. The use of conclusions derived from experience data provides a more realistic approach in assessing the seismic ruggedness of equipment. By recognizing this inherently higher capacity that exists in specific classes of equipment, vendors can often supply off the shelf equipment without the need to perform expensive modifications to meet requirements imposed by conservative qualification analyses. This paper will describe the development of the experienced based method for equipment seismic qualification and its application at the FPR facility

  4. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  5. Technical protocol for laboratory tests of transformation of veterinary medicinal products and biocides in liquid manures. Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzig, Robert [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik

    2010-07-15

    The technical protocol under consideration describes a laboratory test method to evaluate the transformation of chemicals in liquid bovine and pig manures under anaerobic conditions and primarily is designed for veterinary medicinal products and biocides. The environmentally relevant entry routes into liquid manures occur via urine and feces of cattle and pigs in stable housings after excretion of veterinary medicinal products as parent compounds or metabolites and after the application of biocides in animal housings. Further entry routes such as solid dung application and direct dung pat deposition by production animals on pasture are not considered by this technical protocol. Thus, this technical protocol focused on the sampling of excrements from cattles and pigs kept in stables and fed under standard nutrition conditions. This approach additionally ensures that excrement samples are operationally free of any contamination by veterinary medicinal products and biocides. After the matrix characterization, reference-manure samples are prepared from the excrement samples by adding tap water to adjust defined dry substance contents typical for bovine or pig manures. This technical protocol comprehends a tiered experimental design in two parts: (a) Sampling of excrements and preparation of reference bovine and pig manures; (b) Testing of anaerobic transformation of chemicals in reference manures.

  6. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on the basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 (± 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs

  7. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D. [and others

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on the basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.

  8. Development of drag disk and turbines at the INEL

    International Nuclear Information System (INIS)

    Goodrich, L.D.; Edson, J.L.; Averill, R.H.

    1984-01-01

    One of the parameters that must be measured in nuclear safety research is mass flow rate. The reactor environment associated with two-phase flow makes this measurement difficult. To accomplish this at the Idaho National Engineering Laboratory, a drag disk and turbine transducer conbination was developed. These transducers can withstand >2000 h of continuous operation in the reactor environment. Mechanical problems have been solved with these transducers to the point where the electrical coils are now the limiting factor on lifetime. This paper presents the results of the development of the drag disk and turbine with problems and solutions pointed out

  9. INEL BNCT Research Program, March/April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-06-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium and boronophenylalanine are described. Treatment protocol development via the large animal (canine) modal studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  10. INEL BNCT Research Program, March/April 1993

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-06-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium and boronophenylalanine are described. Treatment protocol development via the large animal (canine) modal studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  11. Annual technology assessment and progress report for the Buried Transuranic Waste Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    An improved-confinement technology as applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste is being investigated. An improved-confinement technology, in situ grouting, is being demonstrated in a 2-year engineering feasibility test at the INEL. Grout formulation and development were completed by Oak Ridge National Laboratory in Tennessee to support the in situ grouting test. Three grout formulations have been adapted to the arid, unsaturated soil conditions at the INEL: ordinary particulate grout; microfine penetration grout; soil grout. Three test trenches were constructed north of the INEL's Subsurface Disposal Area (SDA). Nonradioactive waste forms closely resembling TRU waste buried at the INEL have been fabricated and are ready for emplacement into these test trenches. A literature search for a simulated (analog) TRU tracer was completed as well as a chemical characterization of the INEL soil. Data developed from the chemistry characterization and literature search have been inputed into the selection and laboratory testing of the TRU analog tracers. Simulated TRU tracers will be loaded into waste forms prior to emplacement into the test trenches. Test trench data acquisition instrumentation will be installed during waste form emplacement. Instrumentation will monitor for moisture movement and tracer detection. Plans for test completion in FY-1986 are also shown. Various buried waste improved-confinement technologies performed by other Department of Energy sites were assessed for applicability to the INEL buried TRU waste. Primary demonstrations were performed at the Hanford site in Washington and at ORNL. This report also includes information on accomplishments of related activities at the INEL such as the program for Environmental Surveillance of the Radioactive Waste Management complex as well as the Subsurface Migration Studies. 18 refs., 11 figs., 12 tabs

  12. A PC [personal computer]-based version of KENO V.a

    International Nuclear Information System (INIS)

    Nigg, D.A.; Atkinson, C.A.; Briggs, J.B.; Taylor, J.T.

    1990-01-01

    The use of personal computers (PCs) and engineering workstations for complex scientific computations has expanded rapidly in the last few years. This trend is expected to continue in the future with the introduction of increasingly sophisticated microprocessors and microcomputer systems. For a number of reasons, including security, economy, user convenience, and productivity, an integrated system of neutronics and radiation transport software suitable for operation in an IBM PC-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past 3 yr. Nuclear cross-section data and resonance parameters are preprocessed from the Evaluated Nuclear Data Files Version 5 (ENDF/B-V) and supplied in a form suitable for use in a PC-based spectrum calculation and multigroup cross-section generation module. This module produces application-specific data libraries that can then be used in various neutron transport and diffusion theory code modules. This paper discusses several details of the Monte Carlo criticality module, which is based on the well-known highly-sophisticated KENO V.a package developed at Oak Ridge National Laboratory and previously released in mainframe form by the Radiation Shielding Information Center (RSIC). The conversion process and a variety of benchmarking results are described

  13. Aerial radiological survey of the Idaho National Engineering Laboratory, Idaho Falls, Idaho. Date of survey: June 1982

    International Nuclear Information System (INIS)

    1984-02-01

    An aerial radiological survey of the Idaho National Engineering Laboratory (INEL) was conducted during June 1982 by EG and G Energy Measurements, Inc. for the United States Department of Energy (DOE). The survey consisted of airborne measurements of both natural and man-made gamma radiation from the terrain surface in and around the INEL site. These measurements allowed an estimate of the distribution of isotopic concentrations in the survey area. Results are reported as isopleths superimposed on maps and photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. The survey was designed to cover all of the area within a 2 mile radius of any facility at the INEL. Several areas of man-made activity were detected. These areas are all known working or storage areas which are associated with normal operations at the INEL. 3 references, 48 figures, 5 tables

  14. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  15. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Griebenow, B.E.; Marts, D.J.

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  16. Idaho National Engineering Laboratory historical dose evaluation: Volume 1

    International Nuclear Information System (INIS)

    Francis, S.J.

    1991-08-01

    The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 1 contains a summary of methods and results. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 50 refs., 23 figs., 10 tabs

  17. Use of Monte Carlo methods in environmental risk assessments at the INEL: Applications and issues

    International Nuclear Information System (INIS)

    Harris, G.; Van Horn, R.

    1996-06-01

    The EPA is increasingly considering the use of probabilistic risk assessment techniques as an alternative or refinement of the current point estimate of risk. This report provides an overview of the probabilistic technique called Monte Carlo Analysis. Advantages and disadvantages of implementing a Monte Carlo analysis over a point estimate analysis for environmental risk assessment are discussed. The general methodology is provided along with an example of its implementation. A phased approach to risk analysis that allows iterative refinement of the risk estimates is recommended for use at the INEL

  18. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  19. Use of Monte Carlo methods in environmental risk assessments at the INEL: Applications and issues

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G.; Van Horn, R.

    1996-06-01

    The EPA is increasingly considering the use of probabilistic risk assessment techniques as an alternative or refinement of the current point estimate of risk. This report provides an overview of the probabilistic technique called Monte Carlo Analysis. Advantages and disadvantages of implementing a Monte Carlo analysis over a point estimate analysis for environmental risk assessment are discussed. The general methodology is provided along with an example of its implementation. A phased approach to risk analysis that allows iterative refinement of the risk estimates is recommended for use at the INEL.

  20. The INEL Human Reliability Program: The first two years of experience

    International Nuclear Information System (INIS)

    Minner, D.E.

    1986-01-01

    This paper provides a review of the design, implementation, and operation of the INEL Human Reliability Program from January 1984 through June of 1986. Human Reliability Programs are defined in terms of the ''insider threat'' to security of nuclear facilities. The design of HRP's are discussed with special attention given the special challenge of the disgruntled employee. Each component of an HRP is reviewed noting pitfalls and opportunities with each: drug testing of applicants and incumbents, psychological evaluation by management, security clearance procedures and administration including the use of an Employee Review Board to recommend action prior to final management decision

  1. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-12-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that data are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  2. INEL test reactor facility alarms: descriptions, technical specifications, and modification procedure

    International Nuclear Information System (INIS)

    Potash, L.M.; Boone, M.P.

    1980-04-01

    This report identifies standards, procedures, and practices which will affect any attempt to integrate or introduce human engineering principles into nuclear power plant alarm systems. Additional information concerning type of signal used, expected reaction, type of sensor, etc., is presented because of its relevance to future work on alarm system integration. The INEL test reactors were studied. Interviews were conducted with operators, designers, and management personnel. Additional information was obtained from available documentation. Only fire-alarm systems, and to a lesser extent, criticality alarms, have detailed industry-wide standards. One general standard has been written for control-room annunciators

  3. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed.

  4. Immobilization of INEL low-level radioactive wastes in ceramic containment materials

    International Nuclear Information System (INIS)

    Seymour, W.C.; Kelsey, P.V.

    1978-11-01

    INEL low-level radioactive wastes have an overall chemical composition that lends itself to self-containment in a ceramic-based material. Fewer chemical additives would be needed to process the wastes than to process high-level wastes or use a mixture containment method. The resulting forms of waste material could include a basalt-type glass or glass ceramic and a ceramic-type brick. Expected leach resistance is discussed in relationshp to data found in the literature for these materials and appears encouraging. An overview of possible processing steps for the ceramic materials is presented

  5. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  6. Successful neural network projects at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

  7. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  8. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  9. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  10. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  11. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  12. Impact of the COBAS AmpliPrep/COBAS AMPLICOR HIV-1 MONITOR Test, Version 1.5, on Clinical Laboratory Operations▿

    Science.gov (United States)

    Germer, Jeffrey J.; Bendel, Jordan L.; Dolenc, Craig A.; Nelson, Sarah R.; Masters, Amanda L.; Gerads, Tara M.; Mandrekar, Jayawant N.; Mitchell, P. Shawn; Yao, Joseph D. C.

    2007-01-01

    The COBAS AmpliPrep/COBAS AMPLICOR HIV-1 MONITOR Test, version 1.5 (CAP/CA), and the COBAS AMPLICOR HIV-1 MONITOR Test, version 1.5, were compared. CAP/CA reduced and consolidated labor while modestly increasing assay throughput without increased failure rates or direct costs, regardless of batch size and assay format. PMID:17634308

  13. Age dating ground water by use of chlorofluorocarbons (CCl3F and CCl2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Busenberg, E.; Weeks, E.P.; Plummer, L.N.; Bartholomay, R.C.

    1993-04-01

    Detectable concentrations of chlorofluorocarbons (CFC's) were observed in ground water and unsaturated-zone air at the Idaho National Engineering Laboratory (INEL) and vicinity. The recharge ages of waters were determined to be from 4 to more than 50 years on the basis of CFC concentrations and other environmental data; most ground waters have ages of 14 to 30 years. These results indicate that young ground water was added at various locations to the older regional ground water (greater than 50 years) within and outside the INEL boundaries. The wells drilled into the Snake River Plain aquifer at INEL sampled mainly this local recharge. The Big Lost River, Birch Creek, the Little Lost River, and the Mud Lake-Terreton area appear to be major sources of recharge of the Snake River Plain aquifer at INEL. An average recharge temperature of 9.7±1.3 degrees C (degrees Celsius) was calculated from dissolved nitrogen and argon concentrations in the ground waters, a temperature that is similar to the mean annual soil temperature of 9 degrees C measured at INEL. This similarity indicates that the aquifer was recharged at INEL and not at higher elevations that would have cooler soil temperatures than INEL. Soil-gas concentrations at Test Area North (TAN) are explained by diffusion theory

  14. Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL

    International Nuclear Information System (INIS)

    1994-10-01

    The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project

  15. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    1993-01-01

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  16. Addressing earthquakes strong ground motion issues at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Silva, W.J.; Stark, C.L.; Jackson, S.; Smith, R.P.

    1991-01-01

    In the course of reassessing seismic hazards at the Idaho National Engineering Laboratory (INEL), several key issues have been raised concerning the effects of the earthquake source and site geology on potential strong ground motions that might be generated by a large earthquake. The design earthquake for the INEL is an approximate moment magnitude (M w ) 7 event that may occur on the southern portion of the Lemhi fault, a Basin and Range normal fault that is located on the northwestern boundary of the eastern Snake River Plain and the INEL, within 10 to 27 km of several major facilities. Because the locations of these facilities place them at close distances to a large earthquake and generally along strike of the causative fault, the effects of source rupture dynamics (e.g., directivity) could be critical in enhancing potential ground shaking at the INEL. An additional source issue that has been addressed is the value of stress drop to use in ground motion predictions. In terms of site geology, it has been questioned whether the interbedded volcanic stratigraphy beneath the ESRP and the INEL attenuates ground motions to a greater degree than a typical rock site in the western US. These three issues have been investigated employing a stochastic ground motion methodology which incorporates the Band-Limited-White-Noise source model for both a point source and finite fault, random vibration theory and an equivalent linear approach to model soil response

  17. The Idaho National Engineering Laboratory Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.; Bingham, L.

    1992-09-01

    The results of the various monitoring programs for 1991 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1991 and January 1 through June 1, 1992, INEL activities related to compliance with environmental regulations and laws. The major portion of the report summarizes results of the RESL environmental surveillance program, which includes the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results to appropriate federal regulations and standards and discusses implications, if any. The US Geological Survey (USGS) groundwater monitoring program is briefly summarized and data from USGS reports are included in tables and maps showing the spread of contaminants. Effluent monitoring and nonradiological drinking water monitoring performed by INEL contractors are discussed briefly and data are summarized in tables

  18. Structural performance of the DOE's Idaho National Engineering Laboratory during the 1983 Borah Peak Earthquake

    International Nuclear Information System (INIS)

    Guenzler, R.C.; Gorman, V.W.

    1985-01-01

    The 1983 Borah Peak Earthquake (7.3 Richter magnitude) was the largest earthquake ever experienced by the DOE's Idaho National Engineering Laboratory (INEL). Reactor and plant facilities are generally located about 90 to 110 km (60 miles) from the epicenter. Several reactors were operating normally at the time of the earthquake. Based on detailed inspections, comparisons of measured accelerations with design levels, and instrumental seismograph information, it was concluded that the 1983 Borah Peak Earthquake created no safety problems for INEL reactors or other facilities. 10 references, 16 figures, 2 tables

  19. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-01-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  20. The Idaho National Engineering Laboratory Site environmental report for calendar year 1988

    International Nuclear Information System (INIS)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.

    1989-06-01

    This report describes the monitoring program, the collection of foodstuffs at the Idaho National Engineering Laboratory (INEL) boundary and distant offsite locations, and the collection of air and water samples at Site locations and offsite boundary and distant locations. The report also compares and evaluates the samples results, discussing implications, if any. Significant environmental activities at the INEL Site during 1988, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 42 refs., 15 figs., 12 tabs

  1. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-03-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  2. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others

  3. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  4. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  5. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  6. Thermal treatment technology at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hillary, J.M.

    1994-01-01

    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes

  7. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards

  8. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  9. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    International Nuclear Information System (INIS)

    Markham, O.D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports

  10. A summary of the environmental restoration program Retrieval Demonstration Project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-01-01

    This document summarizes the of retrieval techniques developed to excavate buried transuranic (TRU) mixed waste from the Subsurface Disposal Area (SDA). The SDA is located at the Idaho National Engineering Laboratory (INEL) in the Radioactive Waste Management Complex (RWMC). 31 refs., 1 fig

  11. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Markham, O. D. [ed.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  12. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  13. Radioactive effluent monitoring at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Simpson, O.D.

    1975-01-01

    The Effluent and Radiation Measurements Laboratory at the Idaho National Engineering Laboratory (INEL) has recently upgraded capabilities in the field of monitoring and analysis of radioactive airborne and liquid effluents using the techniques of gamma-ray spectrometry. The techniques and equipment used include remotely-operated, computer-based Ge(Li) spectrometers which obtain data on a real-time basis. Permanent record files are maintained of both the effluent release values and the gamma-ray data from which the release values are calculated. Should values for release levels ever be challenged, the gamma-ray spectral information for any measurement can be recalled and analyzed as needed. Daily effluent release reports are provided to operating personnel which contributes to prompt correction of any operational problems. Monthly, quarterly, and annual reports are compiled which provide inventories of the radionuclides released. A description of the effluent monitoring, reporting and records system developed at INEL for this application will be presented

  14. Supporting surveillance capacity for antimicrobial resistance: Laboratory capacity strengthening for drug resistant infections in low and middle income countries [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Anna C. Seale

    2017-09-01

    Full Text Available Development of antimicrobial resistance (AMR threatens our ability to treat common and life threatening infections. Identifying the emergence of AMR requires strengthening of surveillance for AMR, particularly in low and middle-income countries (LMICs where the burden of infection is highest and health systems are least able to respond. This work aimed, through a combination of desk-based investigation, discussion with colleagues worldwide, and visits to three contrasting countries (Ethiopia, Malawi and Vietnam, to map and compare existing models and surveillance systems for AMR, to examine what worked and what did not work. Current capacity for AMR surveillance varies in LMICs, but and systems in development are focussed on laboratory surveillance. This approach limits understanding of AMR and the extent to which laboratory results can inform local, national and international public health policy. An integrated model, combining clinical, laboratory and demographic surveillance in sentinel sites is more informative and costs for clinical and demographic surveillance are proportionally much lower. The speed and extent to which AMR surveillance can be strengthened depends on the functioning of the health system, and the resources available. Where there is existing laboratory capacity, it may be possible to develop 5-20 sentinel sites with a long term view of establishing comprehensive surveillance; but where health systems are weaker and laboratory infrastructure less developed, available expertise and resources may limit this to 1-2 sentinel sites. Prioritising core functions, such as automated blood cultures, reduces investment at each site. Expertise to support AMR surveillance in LMICs may come from a variety of international, or national, institutions. It is important that these organisations collaborate to support the health systems on which AMR surveillance is built, as well as improving technical capacity specifically relating to AMR

  15. Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: Origin and implications

    International Nuclear Information System (INIS)

    Beasley, T.M.; Cecil, L.D.; Mann, L.J.; Sharma, P.; Fehn, U.; Gove, H.E.; Kubik, P.W.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. The measurements of 36 Cl in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3 H and 36 Cl concentrations in aquifer water and the advantages of 36 Cl as a tracer of subsurface-water dynamics at the site are discussed

  16. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    Science.gov (United States)

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  17. Analysis of the impacts of the 1984 Resource Conservation and Recovery Act amendments on the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Falconer, K.L.; Davis, K.D.; Johnson, R.D.; Nishimoto, D.D.; Wallace, M.T.

    1986-02-01

    The November 1984 Amendments to the Resource Conservation and Recovery Act (RCRA) have had, and will continue to have, a significant impact on the management of hazardous and radioactive mixed waste at the Idaho National Engineering Laboratory (INEL). These Amendments include new requirements specific to federal facilities such as the INEL. In this paper, areas of direct impact and associated INEL plans for complying with the 1984 RCRA Amendments will be described. The specific areas to be covered are the following: (1) changes in RCRA Part B permitting, including requirements for addressing past hazardous waste TSD sites; (2) the effects of increased restrictions on land disposal; (3) new requirements for undergrond tanks; (4) requirements for federal facilities; and (5) mandatory minimization of waste generation

  18. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  19. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  20. The Idaho National Engineering Laboratory site environmental report for calendar year 1989

    International Nuclear Information System (INIS)

    Hoff, D.L.; Mitchell, R.G.; Bowman, G.C.; Moore, R.

    1990-06-01

    To verify that exposures resulting from operations at the Department of Energy (DOE) nuclear facilities have remained very small, each site at which nuclear activities are underway operates an environmental surveillance program to monitor the air, water and any other pathway where radionuclides from operations might conceivably reach workers or members of the public. This report presents data collected in 1989 for the routine environmental surveillance program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of DOE and the US Geological Survey (USGS) at the Idaho National Engineering Laboratory (INEL) site. The environmental surveillance program for the INEL and vicinity for 1989 included the collection and analysis of samples from potential exposure pathways. Three basic groups of samples were collected. Those collected within the INEL boundaries will be referred to as onsite samples. Samples collected outside, but near, the Site boundaries will be referred to as boundary samples or part of a group of offsite samples. Samples collected from locations considerably beyond the Site boundaries will be referred to as distant samples or part of the offsite group. With the exception of Craters of the Moon National Monument, the distant locations are sufficiently remote from the Site to ensure that detectable radioactivity is primarily due to natural background sources or sources other than INEL operations. 35 refs., 14 figs., 13 tabs

  1. In summary: Idaho National Engineering Laboratory site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Roush, D.; Mitchell, R.G.; Peterson, D.

    1996-08-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in our bodies. In addition to natural sources of radiation, humans can also be exposed to man-made sources of radiation. Examples of man-made sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering Laboratory (INEL) is a U.S. Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and storing radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a remote possibility for a member of the public near the INEL to be exposed to radioactivity from the INEL. Extensive monitoring of the environment takes place on and around the INEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1995

  2. Tightly coupled transient analysis of EBR-II: An INEL [Idaho National Engineering Laboratory] Engineering Simulation Center Project

    International Nuclear Information System (INIS)

    Makowitz, H.; Barber, D.G.; Dean, E.M.

    1989-01-01

    A ''Tightly Coupled'' transient analysis system for the Experimental Breeder Reactor-II (FBR-II) is presently under development. The system consists of a faster-than-real-time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real-time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The first generation software has been developed and tested. Various subsystem couplings and the total system integration have been checked out. A ''Lightly Coupled'' EBR-II reactor startup was conducted in August of 1988 as a demonstration of the system. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors. 8 refs., 7 figs., 1 tab

  3. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  4. LMFBR safety: Interim test report for the characterization of released particle tests conducted at INEL during FY 1979

    International Nuclear Information System (INIS)

    Johnson, R.P.; Nelson, C.T.

    1979-01-01

    Two additional atmospheric sodium release tests were jointly conducted by ESG and ARL at INEL. These tests were conducted under very stable (Pasquill E and G) meteorological conditions where the natural humidity content was high (47 and 96% RH). Sufficient experimental data was obtained on Test 7 to quantitatively qualify the formation of Na 2 CO 3 in the open atmosphere from primary sodium combustion products. These data show that a maximum concentration of approx. 60% Na 2 CO 3 is reached with the plume 100 meters from the release point. This concentration increases slightly as the plume is dispersed beyond 2400 meters. The available particle fallout data is consistent with predictions

  5. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  6. Inclusion in the Workplace - Text Version | NREL

    Science.gov (United States)

    Careers » Inclusion in the Workplace - Text Version Inclusion in the Workplace - Text Version This is the text version for the Inclusion: Leading by Example video. I'm Martin Keller. I'm the NREL of the laboratory. Another very important element in inclusion is diversity. Because if we have a

  7. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  8. User manual for EXCALIBUR: A FE-BI numerical laboratory for cavity-backed antennas in a circular cylinder, version 1.2

    Science.gov (United States)

    Kempel, Leo C.

    1994-01-01

    The Finite Element-Boundary Integral (FE-BI) technique was used to analyze the scattering and radiation properties of cavity-backed patch antennas recessed in a metallic groundplane. A program, CAVITY3D, was written and found to yield accurate results for large arrays without the usual high memory and computational demand associated with competing formulations. Recently, the FE-BI approach was extended to cavity-backed antennas recessed in an infinite, metallic circular cylinder. EXCALIBUR is a computer program written in the Radiation Laboratory of the University of Michigan which implements this formulation. This user manual gives a brief introduction to EXCALIBUR and some hints as to its proper use. As with all computational electromagnetics programs (especially finite element programs), skilled use and best performance are only obtained through experience. However, several important aspects of the program such as portability, geometry generation, interpretation of results, and custom modification are addressed.

  9. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  10. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  11. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95

  12. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    International Nuclear Information System (INIS)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.; Shaw, R.M.

    1991-06-01

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. The balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs

  13. A preliminary survey of the National Wetlands Inventory as mapped for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hampton, N.L.; Rope, R.C.; Glennon, J.M.; Moor, K.S.

    1995-02-01

    Approximately 135 areas within the boundaries of the Idaho National Engineering Laboratory (INEL) have been mapped as wetland habitat as part of the United States Fish and Wildlife Service (FWS) National Wetlands Inventory (NWI). A preliminary survey of these wetlands was conducted to examine their general characteristics and status, to provide an estimation of relative ecological importance, to identify additional information needed to complete ecological characterization of important INEL wetlands, and to identify high priority wetland areas on the INEL. The purpose of the survey was to provide information to support the preparation of the Environmental Restoration and Waste Management (ER ampersand WM) Environmental Impact Statement (EIS). Information characterizing general vegetation, hydrology, wildlife use, and archaeology was collected at 105 sample sites on the INEL. Sites representing NWI palustrine, lacustrine, and riverine wetlands (including manmade), and areas unmapped or unclassified by the NWI were included in the sample. The field information was used to develop a preliminary ranking of relative ecological importance for each wetland visited during this survey. Survey limitations are identified

  14. Pipe damping: experimental results from laboratory tests in the seismic frequency range

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1986-06-01

    The Idaho National Engineering Laboratory (INEL) has been conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for the seismic analysis of nuclear piping systems. As part of this program, a 5-in. piping system was tested by the INEL, and data from USNRC/EPRI piping vibration tests at the ANCO Engineers facility were evaluated. These systems were subjected to various types of excitation methods and magnitudes, the support configurations were varied, and the effects of pipe insulation and internal pressure were investigated on the INEL system. The INEL has used several different methods to reduce the data to determine the damping in both these piping systems under the various test conditions. It was concluded that at representative seismic excitation levels, pressure was not a contributing factor, but the supports, insulation, and magnitude of response all were major influences contributing to damping. These tests are part of the ongoing program to determine how various parameters and data reduction methods affect piping system damping. The evaluation of all relevant test results, including these two series, will potentially lead to revised damping guidelines for the seismic analysis of nuclear plants, making them safer, less costly, and easier to inspect and maintain. The test results as well as accompanying evaluations and recommendations are presented in this report. 27 refs., 72 figs., 13 tabs

  15. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

  16. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  17. PVWatts Version 5 Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, A. P.

    2014-09-01

    The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.

  18. Idaho National Engineering Laboratory release criteria for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Case, M.J.

    1986-01-01

    Criteria have been developed for release of Idaho National Engineering Laboratory (INEL) facilities and land areas following decontamination and decommissioning (D and D). Decommissioning release criteria in the form of dose guidelines were proposed by the US Nuclear Regulatory Commission as early as 1980. These criteria were used on an interim basis for INEL D and D projects. However, dose guidelines alone do not adequately cover the criteria necessary to release sites for unrestricted use. In actual practice, other parameters such as pathways analyses, sampling and instrumentation techniques, and implementation procedures are required to develop the basis for unrestricted release of a site. Thus, a rigorous approach for evaluating these other parameters is needed to develop acceptable D and D release criteria. Because of the complex and sensitive nature of the dose and pathways analyses work, a thorough review by experts in those respective fields was desired. Input and support in preparing or reviewing each part of the criteria development task was solicited from several DOE field offices. Experts were identified and contracted to assist in preparing portions of the release criteria, or to serve on a peer-review committee. Thus, the entire release criteria development task was thoroughly reviewed by recognized experts from each DOE field office, to validate technical content of the INEL site-specific document

  19. Magnetotelluric soundings on the Idaho National Engineering Laboratory facility, Idaho

    International Nuclear Information System (INIS)

    Stanley, W.D.

    1982-01-01

    The magnetotelluric (MT) method was used as one of several geophysical tools to study part of the Idaho Engineering Laboratory (INEL) facility. The purpose of the geophysical study on INEL was to investigate the facility for a possible site to drill a geothermal exploration well. The initial interpretation of the MT sounding data was done with one-dimensional models consisting of four or five layers, the minimum number required to fit the data. After the test well (INEL-1) was completed, the electric log was used to guide an improved one-dimensional ID interpretation of the MT sounding data. Profile models derived from the well log provided good agreement with velocity models derived from refraction seismic data. A resolution study using generalized inverse techniques shows that the resolution of resistive layers in the lower part of the MT models is poor, as is the definition of a shallow, altered basalt unit. The only major structure observed on the MT data was the faulted contact between the SNRP and basin and range structures on the west. Modeling of the data near this structure with a two-dimensional computer program showed that the MT data near the fault require a model similar to the seismic refraction models and that structure on a deep crustal conductor is also required

  20. The Environmental Compliance Office at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cooper, S.C.

    1990-01-01

    The Idaho Operations Office of the U.S. Department of Energy (DOE-ID) has established an Environmental Compliance Office (ECO) at the Idaho National Engineering Laboratory (INEL). This office has been formed to ensure that INEL operations and activities are in compliance with all applicable environmental state and federal regulations. The ECO is headed by a DOE-ID manager and consists of several teams, each of which is led by a DOE-ID employee with members from DOE-ID, from INEL government contractors, and from DOE-ID consultants. The teams are (a) the negotiated compliance team, (b) the compliance implementation team (CIT), (c) the permits team, (d) the interagency agreement (IAG) team, (e) the consent order and compliance agreement (COCA) oversight team, and (f) the National Environmental Policy Act (NEPA) team. The last two teams were short term and have already completed their respective assignments. The functions of the teams and the results obtained by each are discussed

  1. Partnerships in cleanup at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hula, G.A.

    1995-01-01

    Environmental Restoration activities at the Idaho National Engineering Laboratory (INEL) are currently being conducted under a Federal Facility Agreement and Consent Order (FFA/CO). The FFA/CO was signed by the US Department of Energy-Idaho Operations Office (DOE-ID), the Environmental Protection Agency-Region 10 (EPA), and the state of Idaho Department of Health and Welfare (IDHW) in December 1991. The INEL FFA/CO has been successfully implemented due to the coordination, integration and communication among the DOE-ID, IDHW and EPA Project and WAG Managers. Successful implementation of this Tri-party Agreement hinges on one key concept: ownership of the agreement, including the routine and unexpected problems and conflicting schedules typically associated with three separate agencies. Other factors, such as (1) open and frequent communication, (2) trust among all players, (3) ''giving'' in order to ''get,'' (4) clear, concise documentation surrounding key decisions during implementation and (5) little turnover among the implementers of the Agreement, i.e., good institutional knowledge, will enhance implementation of the Agreement, but without ownership, successful implementation of the agreement may be jeopardized. This sense of ownership, as well as a sound professional working relationship between the Project and WAG Managers from each agency, has resulted in avoidance of the need for invoking the formal ''dispute resolution'' process outlined in the INEL Agreement. This facilitates timely decision-making (10 Record of Decisions have been signed to date at the INEL) which has quickly progressed the program from an ''assessment'' phase to a ''cleanup'' phase

  2. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II

  3. Development of a cumulative risk assessment for the Idaho National Engineering Laboratory's waste area group 2

    International Nuclear Information System (INIS)

    Burns, D.E.

    1995-01-01

    In 1989, the Idaho National Engineering Laboratory (INEL) was added to the Environmental Protection Agency's (EPA) National Priorities List of Superfund sites. A Federal Facility Agreement and Consent Order (FFA/CO) for the INEL was signed by the Department of Energy, Idaho Operations Office (DOE-ID), EPA, and the State of Idaho in December 1991. The goal of this agreement is to ensure that potential or actual INEL releases of hazardous substances to the environment are thoroughly investigated in accordance with the National Contingency Plan (NCP) and that appropriate response actions are taken as necessary to protect human health and the environment. The Test Reactor Area (TRA) is included as Waste Area Group (WAG) 2 of ten INEL WAGs identified in the FFA/CO. WAG 2 consists of 13 operable units (OUs) which include pits, tanks, rubble piles, ponds, cooling towers, wells, french drains, perched water and spill areas. OU 2-13 is the Comprehensive Remedial Investigation/Feasibility Study (RI/FS) for WAG 2. The study presented here is a preliminary evaluation of the comprehensive risk for WAG-2. This investigation will be used as the basis of the WAG-2 comprehensive baseline risk assessment (BRA), and it will serve as a model for other INEL comprehensive risk assessments. The WAG-2 preliminary risk evaluation consisted of two broad phases. These phases were (1) a site and contaminant screening that was intended to support the identification of COPCs and risk assessment data gaps, and (2) an exposure pathway analysis that evaluated the comprehensive human health risks associated with WAG-2. The primary purposes of the investigation were to screen WAG-2 release sites and contaminants, and to identify risk assessment data gaps, so the investigation will be referred to as the WAG-2 Screening and Data Gap Analysis (SDGA) for the remainder of this report

  4. Long-range plan for buried transuranic waste studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    This document presents a plan to perform detailed studies of alternatives considered for the long-term management of buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The studies will provide the technical basis for DOE to make a decision on the future management of that waste. Although the waste is currently being handled in an acceptable manner, new solutions are continually being researched to improve management techniques. Three alternatives are being considered: (a) leave the waste as is; (b) improve in situ confinement of the waste; and (c) retrieve, process, and certify the waste for disposal at a federal repository. Fourteen studies are described in this plan for Alternatives 2 and 3. The leave-as-is alternative involves continuing present procedures for managing the buried waste. An ongoing environmental surveillance program, a low-level-waste stabilization program, and enhanced subsurface migration studies begun in FY-1984 at the INEL will provide data for the decision-making process for the INEL buried TRU waste. These ongoing studies for the leave-as-is alternative are summarized in this plan in limited detail. The improved-confinement alternative involves leaving the waste in place, but providing additional protection against wind, water penetration, erosion, and plant and animal intrusion. Several studies proposed under this alternative will examine special techniques to immobilize or encapsulate the buried waste. An in situ grouting study was implemented at the INEL starting in FY-1985 and will be completed at the end of FY-1986 with the grouting of a simulated INEL buried TRU waste trench. Studies of the third alternative will investigate improved retrieval, processing, and certification techniques. New equipment, such as industrial manipulators and excavating machinery, will be tested in the retrieval studies. Processing and certification studies will examine rapidly changing or new technologies

  5. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  6. A summary of the environmental restoration program retrieval demonstration project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-02-01

    This report provides a summary of the Environmental Restoration Program's Retrieval Demonstration Project at the Idaho National Engineering Laboratory. This project developed concepts for demonstrating facilities and equipment for the retrieval of buried transuranic mixed waste at the INEL. Included is a brief assessment of the viability, cost effectiveness, and safety of retrieval based on the developed concept. Changes made in Revision 1 reflect editorial changes only. 31 refs., 1 fig

  7. Quality assurance on the Idaho National Engineering Laboratory Buried Waste Program

    International Nuclear Information System (INIS)

    Rasmussen, T.L.

    1989-01-01

    This paper discusses the clean-up of an Idaho National Engineering Laboratory (INEL) site utilized for disposal of transuranic contaminated waste from 1954 until 1970. The author presents requirements of the environmental protection statutes that have generated quality assurance requirements in addition to those historically implemented as a part of facility design, construction and operation. A hierarchy of program guidance quality documentation and procedures is discussed. Data qualification and computer database management are identified as requirements

  8. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  9. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INLEL Oversight COmmittee

    International Nuclear Information System (INIS)

    Horn, D.; Liou, J.; Finnie, J.

    1993-03-01

    This project, begun in March 1991, was originally structured as two separate research efforts: An investigation of the recharge phenomenon and surface water-ground water interactions at the INEL; and a study of water and contaminant movement through the unsaturated zone, including a review of computer models used to described this process. During the initial months of work, it became obvious to those involved in these studies that the two topic areas were intimately related, and work since that time has proceeded with no firm boundaries between the two efforts. Much of the Phase I work (March 1991--March 1992) consisted of a detailed review of available literature pertinent to the two research topics and to the INEL site. This Annual Report summarizes the other project activities during Phase III, and is organized into three sections: Section I -- an overview of the ongoing efforts related to computer model algorithms and data requirements for modeling the transport process in the unsaturated zone (Dr. Jim Liou). Section H -- a review of ongoing work to predict the growth and decay of the ground water mound beneath the INEL spreading basins, using the computer model UNSAT-2 (Dr. John Finnie). Section M -- a final report of the completed study effort examining the recharge rates associated with stream flow in the Big Lost River, and the effects of this recharge on ground water levels at the INEL site (Dr. Dennis Horn). Phase M of the project has now begun, and will conclude in December 1993 with two final reports documenting the work that has been briefly described in Sections I and H of this report

  10. Survey and analysis of materials research and development at selected federal laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  11. INEL Operable Unit 7-13 containment and stabilization configuration option

    International Nuclear Information System (INIS)

    Raivo, B.D.; Richardson, J.G.; Nickelson, D.F.

    1993-05-01

    A containment and stabilization configuration option has been developed for the Idaho National Engineering Laboratory's Subsurface Disposal Area Operable Unit 7-13, the transuranic (TRU)-contaminated waste pits and trenches. The configuration option is presented as an end-to-end system block diagram. Functional subelements are separately discussed, and technical background information, assumptions, input, high-level subelement requirements, and output are presented for each option

  12. INEL design studies in support of the Westinghouse EPRI small plant study

    International Nuclear Information System (INIS)

    Burtt, J.D.; Kullberg, C.M.

    1986-03-01

    In support of the design effort of a Westinghouse EPRI small plant study, several analyses were performed at the Idaho National Engineering Laboratory. An analysis was performed to study fuel behavior under conditions of a limiting flow coastdown transient. Depressurization capabilities for the reactor coolant system were studied. The post-accident heat removal for the current containment design was studied. The results of all three studies are reported. 31 figs

  13. Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    R. L. VanHorn; N. L. Hampton; R. C. Morris

    1995-06-01

    This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.

  14. Version 1.00 programmer's tools used in constructing the INEL RML/analytical radiochemistry sample tracking database and its user interface

    International Nuclear Information System (INIS)

    Femec, D.A.

    1995-09-01

    This report describes two code-generating tools used to speed design and implementation of relational databases and user interfaces: CREATE-SCHEMA and BUILD-SCREEN. CREATE-SCHEMA produces the SQL commands that actually create and define the database. BUILD-SCREEN takes templates for data entry screens and generates the screen management system routine calls to display the desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions used by the user interface. This code is broadly applicable to a number of different databases

  15. Use of base isolation techniques for the design of high-level waste storage facility enclosure at INEL

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, Chun K.; Beer, M.J.

    1993-08-01

    Current Department of Energy criteria for facilities subjected to natural hazards provide guidelines to place facilities or portions of facilities into usage categories. Usage categories are based on characteristics such as mission dependence, type of hazardous materials involved, and performance goals. Seismic requirements are significantly more stringent for facilities falling into higher ''hazard facility use categories''. A special problem arises in cases where a facility or portion of a facility is dependent on another facility of lower ''hazard facility use category'' for support or protection. Creative solutions can minimize the cost Unpact of ensuring that the lower category item does not compromise the performance of the higher category item. In this paper, a base isolation solution is provided for a ''low hazard facility use category'' weather enclosure designed so it will not collapse onto a ''high hazard facility use category'' high level waste storage facility at INEL. This solution is compared to other more conventional procedures. Details, practical limitations, licensing and regulatory considerations, and cost comparisons are provided

  16. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    International Nuclear Information System (INIS)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria

  17. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  18. Environmental surveillance report for the INEL radioactive waste management complex. Annual report, 1976

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Janke, D.H.

    1977-05-01

    This report describes the environmental surveillance activities during 1976 at the two solid waste facilities of the Idaho National Engineering Laboratory. The monitoring program encompasses periodic and random sampling of air, water, and soil within and adjacent to the Radioactive Waste Management Complex and SL-1 Burial Ground. It was found that operation of the Radioactive Waste Management Complex and SL-1 during 1976 had little radiological impact on the environment and radioactivity levels were shown to be within appropriate guidelines for worker safety

  19. Environmental surveillance for the INEL radioactive waste management complex. Annual report, 1979

    International Nuclear Information System (INIS)

    Wickham, L.E.; Janke, D.H.

    1980-12-01

    This document is the 1979 annual environmental surveillance report for the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. Included are tabulated data from and discussions about routine radiological monitoring of atmospheric, hydrologic, geologic, and biotic environments of the RWMC. Also included are discussions of selected nonradiological pollutants (e.g., sodium, etc.). It is concluded that (a) RWMC operations have not adversely affected local, existing environments; (b) environmental conditions within the Transuranic Storage Area are not corrosive enough to adversely affect transuranic waste storage containers, and (c) the addition of lakebed soil to pit, trench, and soil test plot areas has altered the moisture cycle characteristic of RWMC soil

  20. Review of technologies and alternatives for dispositioning DOE/INEL spent nuclear fuels

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Olson, A.L.; Christian, J.D.; Thomas, T.R.

    1994-01-01

    Following the decision to cease processing of spent nuclear fuels (SNF) for purposes of uranium recovery, the Idaho National Engineering Laboratory is evaluating alternatives for management of the 90+ types of SNF now stored thereon. Two major classes of alternatives include direct disposal of SNF with little or minimal repackaging and chemical processing to reduce high-activity waste volumes and to reduce the number and type of waste forms requiring regulatory approval. The disposal alternatives are described and the primary advantages and disadvantages identified

  1. Low-level waste incineration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gillins, R.L.; Davis, J.N.; Maughan, R.Y.; Logan, J.A.

    1985-01-01

    A facility for the incineration of low-level beta/gamma contaminated combustible waste has been constructed at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL). The incineration facility was established to: (1) reduce the volume of currently generated contaminated combustible waste being disposed at the INEL's radioactive waste disposal site and thereby prolong the site's useful life; and (2) develop waste processing technology by providing a facility where full-size processes and equipment can be demonstrated and proven during production-scale operations. Cold systems testing has been completed, and contaminated operations began in September of 1984. Currently the facility is processing waste packaged in 2 x 2 x 2 ft cardboard boxes and measuring <10mR/h at contact. 3 figs

  2. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380 3 corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification

  3. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  4. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.; Bartholomay, R.C.

    1994-08-01

    The US Geological Survey's (USGS) Project Office at the Idaho National Engineering Laboratory (INEL) analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal

  5. The Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1993

    International Nuclear Information System (INIS)

    Mitchell, R.G.

    1994-07-01

    Results of the various environmental monitoring programs for 1993 are presented from the Idaho National Engineering Laboratory (INEL) operations. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. Chapter 2 summarizes INEL activities related to compliance with environmental regulations and laws for Calendar Year 1993. The major portion of the report summarizes results of the environmental surveillance program conducted by the DOE Radiological and Environmental Sciences Laboratory, which includes the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results to appropriate federal regulations and standards and discusses implications, if any. The US Geological Survey (USGS) ground-water monitoring program is briefly summarized and data are included in maps showing the spread of contaminants. Effluent monitoring and nonradiological drinking water monitoring are discussed briefly and data are summarized

  6. Idaho National Engineering Laboratory materials in inventory natural and enriched uranium management and storage costs

    International Nuclear Information System (INIS)

    Nebeker, R.L.

    1995-11-01

    On July 13, 1994, the Office of Environmental Management (EM) was requested to develop a planning process that would result in management policies for dealing with nuclear materials in inventory. In response to this request, EM launched the Materials In Inventory (MIN) Initiative. A Headquarters Working Group was established to develop the broad policy framework for developing MIN management policies. MIN activities cover essentially all nuclear materials within the DOE complex, including such items as spent nuclear fuel, depleted uranium, plutonium, natural and enriched uranium, and other materials. In August 1995, a report discussing the natural and enriched uranium portion of the Initiative for the Idaho National Engineering Laboratory (INEL) was published. That report, 'Idaho National Engineering Laboratory Materials-in-Inventory, Natural and Enriched Uranium'.' identified MIN under the control of Lockheed Idaho Technologies Company at the INEL. Later, additional information related to the costs associated with the storage of MIN materials was requested to supplement this report. This report provides the cost information for storing, disposing, or consolidating the natural and enriched uranium portion of the MIN materials at the INEL. The information consists of eight specific tables which detail present management costs and estimated costs of future activities

  7. Mixed waste treatment at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Larsen, M.M.; Hunt, L.F.; Sanow, D.J.

    1988-01-01

    The Idaho Operations Office of the Department of Energy (DOE) made the decision in 1984 to prohibit the disposal of mixed waste (MW) (combustible waste-toxic metal waste) in the Idaho National Engineering Laboratory (INEL) low-level radioactive waste (LLW) disposal facility. As a result of this decision and due to there being no EPA-permitted MW treatment/storage/disposal (T/S/D) facilities, the development of waste treatment methods for MW was initiated and a storage facility was established to store these wastes while awaiting development of treatment systems. This report discusses the treatment systems developed and their status. 3 refs., 2 figs., 1 tab

  8. Gamma-ray and surface organic results of the robotic survey of Pit 9 at INEL

    International Nuclear Information System (INIS)

    Clegg, B.; Rowland, M.; Pence, J.

    1991-09-01

    The Buried Waste Robotics Program demonstrated and evaluated robotic techniques to non-invasively characterize a representative radiological burial area at the Idaho National Engineering Laboratory (ML). Lawrence Livermore National Laboratory (LLNL) contributed a large, NaI gamma-ray detector system and a photo-ionization organics detector to this program. This Program mounted multiple geophysics, nucleonic, and chemical sensor systems on the Solder Robot Interface Program (SRIP) remotely operated vehicle. These sensors simultaneously collected radiological waste-site, surface characterization data on Pit 9 radiological burial area, and the Cold Test Pit (CTP), off-site control area. LLNL sensors found no radiological waste at the CTP control area, however, we easily detected the natural thorium series, the potassium radionuclides and trace worldwide fallout cesium. Earlier manual measurements indicated no significant data error invoked by the vehicle on our gamma-ray and organic sensor systems. Thick soil overburden at the Subsurface Disposal Area (SDA), Pit 9, permitted radiological, but no isotopic determinations. A flood of scattered photons from the buried waste allows a surface, spatial radiological dose assessment. We found no evidence of surface-evolving organics, sensitive to photo-ionization detection. The observed signals can safely guide a remediation excavation. The vehicle-supported multiple measurements enhanced the data collection efficiency. Data provided site-surface characterization, quickly and safely in potentially hazardous areas. However, a large, buried-waste site will require subsurface access for detailed characterization

  9. Transport, handling, and interim storage of intermediate-level transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Metzger, J.C.; Snyder, A.M.

    1977-09-01

    The Idaho National Engineering Laboratory stores transuranic (TRU)-contaminated waste emitting significant amounts of beta-gamma radiation. This material is referred to as intermediate-level TRU waste. The Energy Research and Development Administration requires that this waste be stored retrievably during the interim before a Federal repository becomes operational. Waste form and packaging criteria for the eventual storage of this waste at a Federal repository, i.e., the Waste Isolation Pilot Plant (WIPP), have been tentatively established. The packaging and storage techniques now in use at the Idaho National Engineering Laboratory are compatible with these criteria and also meet the requirement that the waste containers remain in a readily-retrievable, contamination-free condition during the interim storage period. The Intermediate Level Transuranic Storage Facility (ILTSF) provides below-grade storage in steel pipe vaults for intermediate-level TRU waste prior to shipment to the WIPP. Designated waste generating facilities, operated for the Energy Research and Development Administration, use a variety of packaging and transportation methods to deliver this waste to the ILTSF. Transfer of the waste containers to the ILTSF storage vaults is accomplished using handling methods compatible with these waste packaging and transport methods

  10. Operation manual for the INEL on-line mass-separator facility

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1984-06-01

    This report is an operation manual for an on-line mass-separator facility which is located in Building 661 at the Test Reactor Area of the Idaho National Engineering Laboratory. The facility provides mass-separated sources of short-lived fission-product radionuclides whose decay properties can be studied using a variety of nuclear spectroscopic techniques. This facility is unique in that it utilizes the gas-jet technique to transport fission products from a 252 Cf source located in a hot cell to the ion source of the mass separator. This document includes the following: (a) a detailed description of the facility, (b) identification of equipment hazards and safety controls, (c) detailed operating procedures for startup, continuous operation and shutdown, (d) operating procedures for the californium hot cell, and (e) an operator's manual for the automated moving tape collector/data acquisition system. 7 references, 16 figures, 8 tables

  11. Transporting TMI-2 core debris to INEL: Public safety and public response

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

    1987-01-01

    This paper describes the approach taken by the US Department of Energy to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions. 3 figs

  12. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    International Nuclear Information System (INIS)

    Surma, J.E.; Lawrence, W.E.; Titus, C.H.; Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P.

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way open-quotes National Laboratory-University-Industryclose quotes partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions

  13. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  14. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  15. Photo-oxidation of organic compounds in liquid low-level mixed wastes at the INEL

    International Nuclear Information System (INIS)

    Gering, K.L.; Schwendiman, G.L.

    1996-01-01

    A bench-scale oxidation apparatus is implemented to study the effectiveness of using an artificial ultraviolet source, a 175-watt medium pressure mercury vapor lamp, to enhance the destruction of organic contaminants in water with chemical oxidants. The waste streams used in this study are samples or surrogates of mixed wastes at the Idaho National Engineering Laboratory. The contaminants that are investigated include methylene chloride, 1,1,1-trichlorethane, 1, 1-dichlororethane, acetone, 2-propanol, and ethylenediamine tetraacetic acid. We focus on H 2 O 2 -based oxidizers for our treatment scheme, which include the UV/H 2 O 2 system, the dark Fenton system (H 2 O 2 /Fe 2+ ), and the photo- assisted Fenton system (UV/H 2 O 2 /Fe 3+ ) is used in particular. Variables include concentration of the chemical oxidizer, concentration of the organic contaminant, and the elapsed reaction time. Results indicate that the photo-assisted Fenton system provides the best overall performance of the oxidizing systems listed above, where decreases in concentrations of methylene chloride, 1,1,1- trichloroethane, 1,1-dichlororethane, 2-propanol, and ethylenediamine tetraacetic acid were seen. However, UV-oxidation treatment provided no measurable benefit for a mixed waste containing acetone in the presence of 2-propanol

  16. Comparison of the 1981 INEL dispersion data with results from a number of different models

    Energy Technology Data Exchange (ETDEWEB)

    Lewellen, W S; Sykes, R I; Parker, S F

    1985-05-01

    The results from simulations by 12 different dispersion models are compared with observations from an extensive field experiment conducted by the Nuclear Regulatory Commission at the Idaho National Engineering Laboratory in July, 1981. Comparisons were made on the bases of hourly SF/sub 6/ samples taken at the surface, out to approximately 10 km from the 46 m release tower, both during and following 7 different 8-hour releases. Comparisons are also made for total integrated doses collected out to approximately 40 km. Three classes of models are used. Within the limited range appropriate for Class A models this data comparison shows that neither the puff models or the transport and diffusion models agree with the data any better than the simple Gaussian plume models. The puff and transport and diffusion models do show a slight edge in performance in comparison with the total dose over the extended range approximate for class B models. The best model results for the hourly samples show approximately 40% calculated within a factor of two when a 15/sup 0/ uncertainty in plume position is permitted and it is assumed that higher data samples may occur at stations between the actual sample sites. This is increased to 60% for the 12 hour integrated dose and 70% for the total integrated dose when the same performance measure is used. None of the models reproduce the observed patchy dose patterns. This patchiness is consistent with the discussion of the inherent uncertainty associated with time averaged plume observations contained in our companion reports on the scientific critique of available models.

  17. Environmental considerations associated with siting, constructing, and operating a special isotope separation plant at INEL: Volume 1, Proceedings: Report of public hearings

    International Nuclear Information System (INIS)

    1987-03-01

    This report documents the two public hearings conducted for the purpose of determining the scope of issues to be addressed in relation to the siting, constructing, and operating of a special isotope separation plant at INEL. The report includes transcripts of the public hearings held in Idaho Falls, Idaho, February 24, 1987, and in Boise, Idaho, February 26, 1987, and includes the exhibits of records relating to those hearings. The review and hearing process meets pertinent National Environmental Policy Act (NEPA) requirements, Council on Environmental Quality (CEQ) regulations, and DOE guidelines

  18. Environmental considerations associated with siting, constructing, and operating a special isotope separation plant at INEL: Volume 2, Proceedings: Report of public hearings

    International Nuclear Information System (INIS)

    1987-03-01

    This report documents the two public hearings conducted for the purpose of determining the scope of issues to be addressed in relation to the siting, constructing, and operating of a special isotope separation plant at INEL. The report includes transcripts of the public hearings held in Idaho Falls, Idaho, February 24, 1987, and in Boise, Idaho, February 26, 1987, and includes the exhibits of record relating to those hearings. The review and hearing process meets pertinent National Environmental Policy Act (NEPA) requirements, Council on Environmental Quality (CEQ) regulations, and DOE guidelines

  19. GENII Version 2 Users’ Guide

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.

    2004-03-08

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can

  20. Remedial design and remedial action guidance for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-10-01

    The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ''Data Gaps in Remedial Design'' (Appendix C)

  1. Management of citation verification requests for multiple projects at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Crawford, C.S.

    1995-01-01

    Sandia National Laboratories' (SNL) Technical Library is now responsible for providing citation verification management support for all references cited in technical reports issued by the Nuclear Waste Management (NWM) Program. This paper dancing how this process is managed for the Yucca Mountain Site Characterization (YWP), Waste Isolation Pilot Plant (WIPP), Idaho National Engineering Laboratory (INEL), and Greater Confinement Disposal (GCD) projects. Since technical reports are the main product of these projects, emphasis is placed on meeting the constantly evolving needs of these customers in a timely and cost-effective manner

  2. Development of criteria for release of Idaho National Engineering Laboratory sites following decontamination and decommissioning

    International Nuclear Information System (INIS)

    Kirol, L.

    1986-08-01

    Criteria have been developed for release of Idaho National Engineering Laboratory (INEL) facilities and land areas following decontamination and decommissioning (D and D). Although these facilities and land areas are not currently being returned to the public domain, and no plans exist for doing so, criteria suitable for unrestricted release to the public were desired. Midway through this study, the implementation of Department of Energy (DOE) Order 5820.2, Radioactive Waste Management, required development of site specific release criteria for use on D and D projects. These criteria will help prevent remedial actions from being required if INEL reuse considerations change in the future. Development of criteria for release of INEL facilities following D and D comprised four study areas: pathways analysis, dose and concentration guidelines, sampling and instrumentation, and implementation procedures. Because of the complex and sensitive nature of the first three categories, a thorough review by experts in those respective fields was desired. Input and support in preparing or reviewing each part of the criteria development task was solicited from several DOE field offices. Experts were identified and contracted to assist in preparing portions of the release criteria, or to serve on a peer-review committee. Thus, the entire release criteria development task was thoroughly reviewed by recognized experts from contractors at several DOE field offices, to validate technical content of the document. Each of the above four study areas was developed originally as an individual task, and a report was generated from each. These reports are combined here to form this document. This release criteria document includes INEL-specific pathways analysis, instrumentation requirements, sampling procedures, the basis for selection of dose and concentration guidelines, and cost-risk-benefit procedures

  3. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet

  4. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  5. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  6. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  7. [External cephalic version].

    Science.gov (United States)

    Navarro-Santana, B; Duarez-Coronado, M; Plaza-Arranz, J

    2016-08-01

    To analyze the rate of successful external cephalic versions in our center and caesarean sections that would be avoided with the use of external cephalic versions. From January 2012 to March 2016 external cephalic versions carried out at our center, which were a total of 52. We collected data about female age, gestational age at the time of the external cephalic version, maternal body mass index (BMI), fetal variety and situation, fetal weight, parity, location of the placenta, amniotic fluid index (ILA), tocolysis, analgesia, and newborn weight at birth, minor adverse effects (dizziness, hypotension and maternal pain) and major adverse effects (tachycardia, bradycardia, decelerations and emergency cesarean section). 45% of the versions were unsuccessful and 55% were successful. The percentage of successful vaginal delivery in versions was 84% (4% were instrumental) and 15% of caesarean sections. With respect to the variables studied, only significant differences in birth weight were found; suggesting that birth weight it is related to the outcome of external cephalic version. Probably we did not find significant differences due to the number of patients studied. For women with breech presentation, we recommend external cephalic version before the expectant management or performing a cesarean section. The external cephalic version increases the proportion of fetuses in cephalic presentation and also decreases the rate of caesarean sections.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  9. Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Knutson, C.F.; Harrison, W.E.; Smith, R.P.

    1989-01-01

    We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

  10. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    International Nuclear Information System (INIS)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL

  11. Annual technology assessment and progress report for the buried transuranic waste program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Berreth, P.D.

    1984-11-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive waste. In 1983, DOE formulated a comprehensive plan to manage transuranic (TRU) defense waste. The DOE plan for buried TRU waste is to monitor it, take remedial actions as necessary, and reevaluate its safety periodically. The DOE strategy reflects concern that, based on present technology, retrieval and processing of buried waste may be risky and costly. To implement the DOE plan, EG and G Idaho, Inc., prime contractor at the Idaho National Engineering Laboratory (INEL), has developed a strategy for long-term management of the 2 million cubic feet of INEL buried TRU waste. That strategy involves four main activities: (a) environmental monitoring, (b) remedial action if necessary, (c) assimilation of data from both special studies and ongoing waste management activities, and (d) selection of a long-term management alternative in 1995. This report, submitted as the first in a series of annual reports, summarizes the buried TRU waste activities performed in fiscal year (FY) 1984 at the INEL in response to the DOE plan. Specifically, technologies applicable to buried waste confinement, retrieval, certification, and processing have been assessed, a long-range plan to conduct buried wasted studies over the next ten years has been prepared, and retrieval and soil management alternatives have been evaluated. 17 references, 7 figures, 1 table

  12. Annual technology assessment and progress report for the Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory (1987)

    International Nuclear Information System (INIS)

    Loomis, G.G.; Low, J.O.

    1988-01-01

    This report presents FY-87 activities for the Buried Transuranic (TRU) Waste Studies Program at the Idaho National Engineering Laboratory (INEL). This program investigates techniques to provide long-term confinement of buried TRU waste, as well as methods of retrieval. The confinement method of in situ grouting was examined in a simulated shallow-land buried TRU waste pit constructed adjacent to the RWMC TRU waste burial pits. The in situ grouting technique involved an experimental dyanmic compaction process which simultaneously grouts and compacts the waste. The simulated waste pit consisted of regions of randomly dumped drums, stacked boxes, and stacked drums, thus representing the various conditions of buried waste at the RWMC. Simulated waste and airborne tracers were loaded into the various simulated buried waste containers. Pregrouting and post-grouting data, such as hydraulic conductivity, were obtained to assess the hydrological integrity of the grouted waste material. In addition, post-grouting destructive examinations were performed and the results analyzed. Retrieval and processing of the TRU buried waste is also being examined at the INEL. At a conceptual level, retrieval of TRU buried waste involves a movable containment building to confine airborne particulate, heavy equipment to remove the waste, processing equipment, and equipment to control the air quality within the building. Studies were performed in FY-87 to identify containment building requirements such as type, mobility, and ventilation. An experimental program to demonstrate the retrieval technique using existing INEL heavy equipment has also been identified. 11 refs., 17 figs., 11 tabs

  13. Versioning Complex Data

    Energy Technology Data Exchange (ETDEWEB)

    Macduff, Matt C.; Lee, Benno; Beus, Sherman J.

    2014-06-29

    Using the history of ARM data files, we designed and demonstrated a data versioning paradigm that is feasible. Assigning versions to sets of files that are modified with some special assumptions and domain specific rules was effective in the case of ARM data, which has more than 5000 datastreams and 500TB of data.

  14. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  15. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    Energy Technology Data Exchange (ETDEWEB)

    Garza, I.A.

    1996-12-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency.

  16. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    International Nuclear Information System (INIS)

    Garza, I.A.

    1996-01-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency

  17. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  18. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  19. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  20. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  1. Ecology studies at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1978-01-01

    In September 1977 a radioecological research program was initiated at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex in the southcentral Idaho. The primary goals of the research are to: (1) determine floral and faunal composition in the area; (2) sample various ecosystem components for radionuclides; (3) determine impacts of small mammal burrowing and vegetation growth on movement of radioactive materials; (4) compare ambient radiation exposures to radiation doses received by animals inhabiting the area; and (5) understand the interrelationships between the organisms and their role in radionuclide transport

  2. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  3. Hazardous and mixed waste solidification development conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-04-01

    EG and G Idaho, Inc., has initiated a program to develop safe, efficient, cost-effective solidification treatment methods for the disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Testing has shown that Extraction Procedure (EP) toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long-term disposal as general or low-level waste, depending upon the radioactivity. The results of the solidification development program are presented in this report

  4. New Open-Source Version of FLORIS Released | News | NREL

    Science.gov (United States)

    New Open-Source Version of FLORIS Released New Open-Source Version of FLORIS Released January 26 , 2018 National Renewable Energy Laboratory (NREL) researchers recently released an updated open-source simplified and documented. Because of the living, open-source nature of the newly updated utility, NREL

  5. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    International Nuclear Information System (INIS)

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial 'cold' simulated waste results and confirmed the selective removal provided by ligand-particle web technology

  6. Test plan for preparing the Rapid Transuranic Monitoring Laboratory for field deployment

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

    1994-04-01

    This plan describes experimental work that will be performed during fiscal year 1994 to prepare the Rapid Transuranic Monitoring Laboratory (RTML) for routine field use by US Department of Energy (DOE) Environmental Restoration and Waste Management programs. The RTML is a mobile, field-deployable laboratory developed at the Idaho National Engineering Laboratory (INEL) that provides a rapid, cost-effective means of characterizing and monitoring radioactive waste remediation sites for low-level radioactive contaminants. Analytical instruments currently installed in the RTML include an extended-range, germanium photon analysis spectrometer with an automatic sample changer; two, large-area, ionization chamber alpha spectrometers; and four alpha continuous air monitors. The RTML was field tested at the INEL during June 1993 in conjunction with the Buried Waste Integrated Demonstration's remote retrieval demonstration. The major tasks described in this test plan are to (a) evaluate the beta detectors for use in screening soil samples for 90 Sr, (b) upgrade the alpha spectral analysis software programs, and (c) upgrade the photon spectral analysis software programs

  7. Enigma Version 12

    Science.gov (United States)

    Shores, David; Goza, Sharon P.; McKeegan, Cheyenne; Easley, Rick; Way, Janet; Everett, Shonn; Guerra, Mark; Kraesig, Ray; Leu, William

    2013-01-01

    Enigma Version 12 software combines model building, animation, and engineering visualization into one concise software package. Enigma employs a versatile user interface to allow average users access to even the most complex pieces of the application. Using Enigma eliminates the need to buy and learn several software packages to create an engineering visualization. Models can be created and/or modified within Enigma down to the polygon level. Textures and materials can be applied for additional realism. Within Enigma, these models can be combined to create systems of models that have a hierarchical relationship to one another, such as a robotic arm. Then these systems can be animated within the program or controlled by an external application programming interface (API). In addition, Enigma provides the ability to use plug-ins. Plugins allow the user to create custom code for a specific application and access the Enigma model and system data, but still use the Enigma drawing functionality. CAD files can be imported into Enigma and combined to create systems of computer graphics models that can be manipulated with constraints. An API is available so that an engineer can write a simulation and drive the computer graphics models with no knowledge of computer graphics. An animation editor allows an engineer to set up sequences of animations generated by simulations or by conceptual trajectories in order to record these to highquality media for presentation. Enigma Version 12 Lyndon B. Johnson Space Center, Houston, Texas 28 NASA Tech Briefs, September 2013 Planetary Protection Bioburden Analysis Program NASA's Jet Propulsion Laboratory, Pasadena, California This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous

  8. Version pressure feedback mechanisms for speculative versioning caches

    Science.gov (United States)

    Eichenberger, Alexandre E.; Gara, Alan; O& #x27; Brien, Kathryn M.; Ohmacht, Martin; Zhuang, Xiaotong

    2013-03-12

    Mechanisms are provided for controlling version pressure on a speculative versioning cache. Raw version pressure data is collected based on one or more threads accessing cache lines of the speculative versioning cache. One or more statistical measures of version pressure are generated based on the collected raw version pressure data. A determination is made as to whether one or more modifications to an operation of a data processing system are to be performed based on the one or more statistical measures of version pressure, the one or more modifications affecting version pressure exerted on the speculative versioning cache. An operation of the data processing system is modified based on the one or more determined modifications, in response to a determination that one or more modifications to the operation of the data processing system are to be performed, to affect the version pressure exerted on the speculative versioning cache.

  9. Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Douglas Kell

    2015-09-01

    Full Text Available For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically ‘nonculturable’ on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as ‘persisters’. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one’s bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known. This dormancy (and resuscitation therefrom often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron might be of much therapeutic benefit.

  10. Applicability of a generic monitoring program for radioactive waste burial grounds at Oak Ridge National Laboratory and Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1978-07-01

    Six burial grounds were evaluated at Oak Ridge to determine which would be most suitable for testing the generic monitoring approach, and two were selected. Burial Ground 4 was chosen because it is known to be leaking radioactivity and a monitoring program is desirable to determine the source, pattern and extent of the leakage. Burial Ground 6 was chosen because the most complete radiologic and geologic data is available and modern burial practices have been utilized at this site. At the Idaho National Engineering Laboratory (INEL) only one burial ground exists, the Radioactive Waste Management Complex (RWMC). The data available on the burial grounds are insufficient for an adequate understanding of radionuclide migration patterns and accordingly, inadequate for the design of reliable monitoring programs. It was decided, therefore, that preliminary monitoring programs should be designed in order to obtain additional data for a later implementation of reliable monitoring programs. The monitoring programs designed for ORNL consist primarily of the installation of surface water monitoring stations, the surveillance of trench sump wells, a test boring program to study subsurface geologic conditions, a ground water sampling program and the installation of instrumentation, specifically infiltrometers and evaporation pans, to develop data on site water balances. The program designed for the INEL burial ground includes installation of trench sumps, a ground water monitoring program, test borings to further define subsurface geohydrologic conditions and the installation of instrumentation to develop data on the site water balance. The estimated costs of implementing the recommended programs are about $420,820 for monitoring Burial Grounds 4 and 6 at Oak Ridge and $382,060 for monitoring the RWMC at INEL. 12 figures

  11. Determining Optimal Decision Version

    Directory of Open Access Journals (Sweden)

    Olga Ioana Amariei

    2014-06-01

    Full Text Available In this paper we start from the calculation of the product cost, applying the method of calculating the cost of hour- machine (THM, on each of the three cutting machines, namely: the cutting machine with plasma, the combined cutting machine (plasma and water jet and the cutting machine with a water jet. Following the calculation of cost and taking into account the precision of manufacturing of each machine, as well as the quality of the processed surface, the optimal decisional version needs to be determined regarding the product manufacturing. To determine the optimal decisional version, we resort firstly to calculating the optimal version on each criterion, and then overall using multiattribute decision methods.

  12. Version 2 of RSXMULTI

    International Nuclear Information System (INIS)

    Heinicke, P.; Berg, D.; Constanta-Fanourakis, P.; Quigg, E.K.

    1985-01-01

    MULTI is a general purpose, high speed, high energy physics interface to data acquisition and data investigation system that runs on PDP-11 and VAX architecture. This paper describes the latest version of MULTI, which runs under RSX-11M version 4.1 and supports a modular approach to the separate tasks that interface to it, allowing the same system to be used in single CPU test beam experiments as well as multiple interconnected CPU, large scale experiments. MULTI uses CAMAC (IEE-583) for control and monitoring of an experiment, and is written in FORTRAN-77 and assembler. The design of this version, which simplified the interface between tasks, and eliminated the need for a hard to maintain homegrown I/O system is also discussed

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  14. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    1995-03-01

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study

  15. The role of performance assessment in the evaluation of remedial action alternatives for the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rood, A.S.; Case, M.J.

    1988-01-01

    The Idaho National Engineering Laboratory (INEL) is operated by the Department of Energy (DOE) and is involved in nuclear research and development. The Radioactive Waste Management Complex (RWMC) at the INEL serves as a disposal facility for low level radioactive wastes generated onsite. Transuranic (TRU) wastes received from other DOE sites are currently stored at the RWMC, but were buried at the facility from 1952 until 1970. Recent findings of the Subsurface Investigations Program have determined that migration of TRU nuclides and hazardous materials from the RWMC has occurred. The primary source of organics in the buried TRU waste was generated by the Rocky Flats Plant. The INEL has proposed an aggressive four-year action plan for buried TRU waste. As a part of this plan, a task has been identified to evaluate existing remedial technologies for preventing further contaminant migration or removing the source of TRU radionuclides and nonradioactive hazardous material from the RWMC. A systems approach is being applied to evaluate, compare and recommend technologies or combinations of technologies. One criterion used in the evaluation is the net risk reduction afforded by each proposed remedial action. The method used to develop the criterion relies on models to assess the potential pathways and scenarios for the migration of radioactive and nonradioactive materials and the subsequent exposure of individuals to those materials. This paper describes the approach used to assess the performance of various remedial actions and the results obtained to date

  16. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  17. Procedures for use of, and drill cores and cuttings available for study at, the Lithologic Core Storage Library, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Davis, L.C.; Hannula, S.R.; Bowers, B.

    1997-03-01

    In 1990, the US Geological Survey, in cooperation with the US Department of Energy, Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Engineering Laboratory (INEL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from investigations of the subsurface conducted at the INEL, and to provide a location for researchers to examine, sample, and test these materials. The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the well names, well locations, and depth intervals available. Most cores and cuttings stored at the facility were drilled at or near the INEL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose the majority of cores and cuttings, most of which are continuous from land surface to their total depth. The deepest core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility, and examination, sampling, and return of materials

  18. User's Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam reg-sign, a text-based database system, was chosen. WordPerfect 5.1 copyright is being used as a text-editor to input data records into askSam

  19. Versioning of printed products

    Science.gov (United States)

    Tuijn, Chris

    2005-01-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  20. COSY INFINITY Version 9

    International Nuclear Information System (INIS)

    Makino, Kyoko; Berz, Martin

    2006-01-01

    In this paper, we review the features in the newly released version of COSY INFINITY, which currently has a base of more than 1000 registered users, focusing on the topics which are new and some topics which became available after the first release of the previous versions 8 and 8.1. The recent main enhancements of the code are devoted to reliability and efficiency of the computation, to verified integration, and to rigorous global optimization. There are various data types available in COSY INFINITY to support these goals, and the paper also reviews the feature and usage of those data types

  1. In situ vitrification program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Loehr, C.A.; Merrill, S.K.

    1991-01-01

    A program to demonstrate the viability of in situ vitrification (ISV) technology in remediating a buried mixed transuranic (TRU) waste site is under way at the Idaho National Engineering Laboratory (INEL). The application of the technology to buried waste is being evaluated as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) feasibility study. The ISV thermal treatment process converts contaminated soil into a chemically inert and stable glass and crystalline product. The process uses joule heating, accomplished by applying electric potential to electrodes that are placed in the soil to initiate and maintain soil melting. Organic contaminants in the soil are destroyed or removed while inorganic contaminants, including radionuclides, are incorporated into the stable, glass-like product or volatilized. Off-gases are collected in a confinement hood over the melt area and processed through an off-gas treatment system. The paper illustrates and describes the ISV process

  2. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  3. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  4. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  6. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    International Nuclear Information System (INIS)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these open-quotes geomorphic hazardsclose quotes include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC

  7. Geophysical surveys for buried waste detection at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Sandness, G.A.; Rising, J.L.; Kimbrough, J.R.

    1979-12-01

    This report describes a series of geophysical surveys performed at the Idaho National Engineering Laboratory (INEL). The main purpose of the surveys was to evaluate techniques, principally ground-penetrating radar, for detecting and mapping radioactive wastes buried in shallow trenches and pits. A second purpose was to determine the feasibility of using ground-penetrating radar to measure the depth of basalt bedrock. A prototype geophyscal survey system developed by the US Department of Energy's Pacific Northwest Laboratory was used for this study. Radar, magnetometer, and metal detector measurements were made at three sites in the Radioactive Waste Management Complex (RWMC) at INEL. Radar measurements were made at fourth site adjacent to the RWMC. The combination of three geophysical methods was shown to provide considerable information about the distribution of buried waste materials. The tests confirmed the potential effectiveness of the radar method, but they also pointed out the need for continued research and development in ground-penetrating radar technology. The radar system tested in this study appears to be capable of measuring the depth to basalt in the vicinity of the RWMC

  8. A comparison of the costs of treating wastes from a radio analytical laboratory

    International Nuclear Information System (INIS)

    Moore, R.

    1996-01-01

    The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL's traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it

  9. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  10. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  11. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    2016-01-01

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  12. Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho - emphasis: 1974-1978

    International Nuclear Information System (INIS)

    Barraclough, J.T.; Lewis, B.D.; Jensen, R.G.

    1982-09-01

    The Idaho National Engineering Laboratory (INEL) site covers about 890 square miles of the eastern Snake River Plain and overlies the Snake River Plain aquifer. Low concentrations of aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the site since 1952. A large body of perched ground water has formed in the basalt underlying the waste disposal ponds in the Test Reactor Area. This perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive ions. Tritium is the only mappable waste constituent in that portion of the Snake River Plain aquifer directly underlying this perched zone. Low concentrations of chemical and low-level radioactive wastes enter directly into the Snake River Plain aquifer through the Idaho Chemical Processing Plant (ICPP) disposal well. Tritium has been discharged to the well since 1953 and has formed the largest waste plume, about 28 square miles in area, in the regional aquifer, and minute concentrations have migrated downgradient a horizontal distance of 7.5 miles. Other waste plumes south of the ICPP contain sodium, chloride, nitrate, and the resultant specific conductance. These plumes have similar configurations and flow southward; the contaminants are in general laterally dispersed in that portion of the aquifer underlying the INEL. Other waste plumes, containing strontium-90 and iodine-129, cover small areas near their points of discharge because strontium-90 is sorbed from solution as it moves through the aquifer and iodine-129 is discharged in very low quantities. Cesium-137 is also discharged through the well but it is strongly sorbed from solution and has never been detected in a sample of ground water at the INEL

  13. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  14. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  15. Version control with Git

    CERN Document Server

    Loeliger, Jon

    2012-01-01

    Get up to speed on Git for tracking, branching, merging, and managing code revisions. Through a series of step-by-step tutorials, this practical guide takes you quickly from Git fundamentals to advanced techniques, and provides friendly yet rigorous advice for navigating the many functions of this open source version control system. This thoroughly revised edition also includes tips for manipulating trees, extended coverage of the reflog and stash, and a complete introduction to the GitHub repository. Git lets you manage code development in a virtually endless variety of ways, once you understand how to harness the system's flexibility. This book shows you how. Learn how to use Git for several real-world development scenarios ; Gain insight into Git's common-use cases, initial tasks, and basic functions ; Use the system for both centralized and distributed version control ; Learn how to manage merges, conflicts, patches, and diffs ; Apply advanced techniques such as rebasing, hooks, and ways to handle submodu...

  16. Global Historical Climatology Network (GHCN), Version 1 (Version Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Please note, this dataset has been superseded by a newer version (see below). Users should not use this version except in rare cases (e.g., when reproducing previous...

  17. COSY INFINITY version 8

    International Nuclear Information System (INIS)

    Makino, Kyoko; Berz, Martin

    1999-01-01

    The latest version of the particle optics code COSY INFINITY is presented. Using Differential Algebraic (DA) methods, the code allows the computation of aberrations of arbitrary field arrangements to in principle unlimited order. Besides providing a general overview of the code, several recent techniques developed for specific applications are highlighted. These include new features for the direct utilization of detailed measured fields as well as rigorous treatment of remainder bounds

  18. EASI graphics - Version II

    International Nuclear Information System (INIS)

    Allensworth, J.A.

    1984-04-01

    EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of the Version II of EASI Graphics and illustrates its application with some examples. 5 references, 15 figures, 6 tables

  19. Transporting TMI-2 [Three Mile Island Unit 2] core debris to INEL: Public safety and public response

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

    1987-01-01

    This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions

  20. Department of Energy, highly enriched uranium ES ampersand H vulnerability assessment, Idaho National Engineering Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1996-01-01

    In accordance with the February 22, 1996 directive issued by Secretary of Energy O'Leary on the Vulnerability Assessment of Highly Enriched Uranium (HEU) Storage, the Idaho National Engineering Laboratory conducted an assessment of the site's HEU holdings and any associated vulnerabilities. The assessment was conducted between April 25 and May 24, 1996. The scope of this assessment, as defined in the Assessment Plan, included all HEU, and any spent fuel not evaluated in the Spent Fuel Vulnerability Assessment. Addressed in this assessment were all of the holdings at the Idaho National Engineering Laboratory (INEL) except any located at Argonne National Laboratory-West (ANL-W) and the Naval Reactors Facility. Excluded from the assessment were those HEU holdings previously assessed in the Idaho National Engineering Laboratory Spent Nuclear Fuel Inventory and Vulnerability Site Assessment Report and any HEU holdings evaluated in the Plutonium Vulnerability Assessment Report

  1. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  2. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  3. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  4. The Unified Extensional Versioning Model

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred; Christensen, H. B.

    1999-01-01

    Versioning of components in a system is a well-researched field where various adequate techniques have already been established. In this paper, we look at how versioning can be extended to cover also the structural aspects of a system. There exist two basic techniques for versioning - intentional...

  5. Pathways and cost-risk-benefit analyses for INEL radioactively contaminated soil areas being evaluated for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1980-12-01

    Several radioactively contaminated soil areas exist at the Idaho National Engineering Laboratory; virtually all are contaminated with nuclides of cesium, strontium, and cobalt at low levels of activity. This study develops a method of analysis to determine cost effective alternatives for decommissioning these areas, considering risk to the workers and general public, as well as the benefits to be gained. Because much of the input data to the analysis is highly subjective and detailed radiological characterization of the soil areas is minimal, it was decided that an analysis based on a relative weighting method be employed. The results of this analysis constitute a relative prioritization list of the soil areas being considered for decommissioning as well as the recommended decommissioning alternatives. The results of this analysis indicate that, of the 46 areas considered, 11 should be left in place under protective storage and 16 should be left as is. Nineteen areas were not analyzed because they were either operational or characterization data were not available. These results are based on a maximum exposure to a member of the general population, through realistic exposure pathways, of 5 mrem/yr

  6. MCNP(trademark) Version 5

    International Nuclear Information System (INIS)

    Cox, Lawrence J.; Barrett, Richard F.; Booth, Thomas Edward; Briesmeister, Judith F.; Brown, Forrest B.; Bull, Jeffrey S.; Giesler, Gregg Carl; Goorley, John T.; Mosteller, Russell D.; Forster, R. Arthur; Post, Susan E.; Prael, Richard E.; Selcow, Elizabeth Carol; Sood, Avneet

    2002-01-01

    The Monte Carlo transport workhorse, MCNP, is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP Version 5 (V5) (expected to be released to RSICC in Spring, 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, and improved parallelism support (PVM, MPI, OpenMP).

  7. UNSAT-H infiltration model calibration at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Martian, P.

    1995-10-01

    Soil moisture monitoring data from the expanded neutron probe monitoring network located at the Subsurface Disposal Area (SDA) of the Idaho National Engineering Laboratory (INEL) were used to calibrate numerical infiltration models for 15 locations within and near the SDA. These calibrated models were then used to simulate infiltration into the SDA surficial sediments and underlying basalts for the entire operational period of the SDA (1952--1995). The purpose of performing the simulations was to obtain a time variant infiltration source term for future subsurface pathway modeling efforts as part of baseline risk assessment or performance assessments. The simulation results also provided estimates of the average recharge rate for the simulation period and insight into infiltration patterns at the SDA. These results suggest that the average aquifer recharge rate below the SDA may be at least 8 cm/yr and may be as high as 12 cm/yr. These values represent 38 and 57% of the average annual precipitation occurring at the INEL, respectively. The simulation results also indicate that the maximum evaporative depth may vary between 28 and 148 cm and is highly dependent on localized lithology within the SDA

  8. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  9. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  10. Special isotope separation project, Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    1988-02-01

    Construction and operation of a Special Isotope Separation (SIS) project using the Atomic Vapor Laser Isotope Separation (AVLIS) process technology at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho are proposed. The SIS project would process fuel-grade plutonium administered by the Department of Energy (DOE) into weapon-grade plutonium using AVLIS and supporting chemical processes. The SIS project would require construction and operation of a Laser Support Facility to house the laser system and a Plutonium Processing Facility. The SIS project would be integrated with existing support and waste management facilities at the selected site. The SIS project would provide DOE with the capability of segregating the isotopes of DOE-owned plutonium into specific isotopic concentrations. This capability would provide redundancy in production capacity, technological diversity, and flexibility in DOE's production of nuclear materials for national defense. Use of the INEL site would impact 151,350 square meters (37.4 acres) of land, of which more than 70% has been previously disturbed. During construction, plant and animal habitat associated with a sagebrush vegetation community would be lost. During operation of the SIS facilities, unavoidable radiation exposures would include occupational exposures and exposures to the public from normal atmospheric releases of radioactive materials that would be minimal compared to natural background radiation

  11. URGENCES NOUVELLE VERSION

    CERN Multimedia

    Medical Service

    2002-01-01

    The table of emergency numbers that appeared in Bulletin 10/2002 is out of date. The updated version provided by the Medical Service appears on the following page. Please disregard the previous version. URGENT NEED OF A DOCTOR GENEVAPATIENT NOT FIT TO BE MOVED: Call your family doctor Or SOS MEDECINS (24H/24H) 748 49 50 Or ASSOC. OF GENEVA DOCTORS (7H-23H) 322 20 20 PATIENT CAN BE MOVED: HOPITAL CANTONAL 24 Micheli du Crest 372 33 11 382 33 11 CHILDREN'S HOSPITAL 6 rue Willy Donzé 382 68 18 382 45 55 MATERNITY 24 Micheli du Crest 382 68 16 382 33 11 OPHTALMOLOGY 22 Alcide Jentzer 382 84 00 HOPITAL DE LA TOUR Meyrin 719 61 11 CENTRE MEDICAL DE MEYRIN Champs Fréchets 719 74 00 URGENCES : FIRE BRIGADE 118 FIRE BRIGADE CERN 767 44 44 BESOIN URGENT D'AMBULANCE (GENEVE ET VAUD) : 144 POLICE 117 ANTI-POISON CENTRE 24H/24H 01 251 51 510 EUROPEAN EMERGENCY CALL: 112 FRANCE PATIENT NOT FIT TO BE MOVED: call your family doctor PATIENT CAN BE MOVED: ST. JULIE...

  12. The implementation of the CDC version of RELAP5/MOD1/019 on an IBM compatible computer system (AMDAHL 470/V8)

    International Nuclear Information System (INIS)

    Kolar, W.; Brewka, W.

    1984-01-01

    RELAP5/MOD1 is an advanced one-dimensional best estimate system code, which is used for safety analysis studies of nuclear pressurized water reactor systems and related integral and separate effect test facilities. The program predicts the system response for large break, small break LOCA and special transients. To a large extent RELAP5/MOD1 is written in Fortran, only a small part of the program is coded in CDC assembler. RELAP5/MOD1 was developed on the CDC CYBER 176 at INEL*. The code development team made use of CDC system programs like the CDC UPDATE facility and incorporated in the program special purpose software packages. The report describes the problems which have been encountered when implementing the CDC version of RELAP5/MOD1 on an IBM compatible computer systems (AMDAHL 470/V8)

  13. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  14. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  15. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  16. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  17. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  18. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  19. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  20. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  1. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  2. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  3. Report on the participation of US laboratories in the work of the IAEA coordinated research program on the measurement and evaluation of transactinium isotope nuclear decay data

    International Nuclear Information System (INIS)

    Reich, C.W.

    1984-01-01

    In this report, we summarize the current status of the work being carried out in various US laboratories that is specifically oriented toward the objectives of this IAEA CRP. Reported below are the gamma-ray emission probability measurements, and related work, at INEL and α-particle related work being conducted by I. Ahmad at ANL. The results of the work of the US Half-Life Evaluation Committee on the half-lives of 234 240 241 Pu have now all been published; and no additional information regarding this activity is included in this report

  4. Issues in radioactive mixed waste compliance with RCRA [Resource Conservation and Recovery Act]: Some examples from ongoing operations at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eaton, D.L.; Smith, T.H.; Clements, T.L. Jr.; Hodge, V.

    1990-01-01

    Radioactive mixed waste is subject to regulation under both the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). The regulation of such waste is the responsibility of the Environmental Protection Agency (EPA) and either the Nuclear Regulatory Commission (NRC) or the Department of Energy (DOE), depending on whether the waste is commercially generated or defense-related. The recent application of the RCRA regulations to ongoing operations at the DOE's Idaho National Engineering Laboratory (INEL) are described in greater detail. 8 refs., 2 figs

  5. Procedure guideline for thyroid scintigraphy (version 3)

    International Nuclear Information System (INIS)

    Dietlein, M.; Schicha, H.; Eschner, W.; Deutsche Gesellschaft fuer Medizinische Physik; Koeln Univ.; Leisner, B.; Allgemeines Krankenhaus St. Georg, Hamburg; Reiners, C.; Wuerzburg Univ.

    2007-01-01

    The version 3 of the procedure guideline for thyroid scintigraphy is an update of the procedure guideline previously published in 2003. The interpretation of the scintigraphy requires the knowledge of the patients' history, the palpation of the neck, the laboratory parameters and of the sonography. The interpretation of the technetium-99m uptake requires the knowledge of the TSH-level. As a consequence of the improved alimentary iodine supply the 99m Tc-uptake has decreased; 100 000 counts per scintigraphy should be acquired. For this, an imaging time of 10 minutes is generally needed using a high resolution collimator for thyroid imaging. (orig.)

  6. Mineralogy and depositional sources of sedimentary interbeds beneath the Idaho National Engineering Laboratory; eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.

    1994-01-01

    Idaho State University, in cooperation with the U.S. Geological Survey, and the U.S. Department of Energy, collected 57 samples of sedimentary interbeds at 19 sites at the Idaho National Engineering Laboratory (INEL) for mineralogical analysis. Previous work by the U.S. Geological Survey on surficial sediments showed that ratios detrital of quartz, total feldspars, and calcite can be used to distinguish the sedimentary mineralogy of specific stream drainages at the INEL. Semi-quantitative x-ray diffraction analyses were used to determine mineral abundances in the sedimentary interbeds. Samples were collected from wells at the New Production Reactor (NPR) area, Idaho Chemical Processing Plant (ICPP), Test Reactor Area (TRA), miscellaneous sites, Radioactive Waste Management Complex (RWMC), Naval Reactors Facility (NRF), and Test Area North (TAN). Normalized mean percentages of quartz, feldspar, and carbonate were calculated from sample data sets at each site. Percentages for quartz, feldspar, and carbonate from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF ranged from 37 to 59, 26 to 40, and 5 to 25, respectively. Percentages for quartz, feldspar, and carbonate from wells at Test Area North (TAN) were 24, 10, and 66, respectively. Mineralogical data indicate that sedimentary interbed samples collected from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF correlate with surficial sediment samples from the present day Big Lost River. Sedimentary interbeds from TAN sites correlate with surficial sediment samples from Birch Creek. These correlations suggest that the sources for the sediments at and near the INEL have remained relatively consistent for the last 580,000 years. 12 refs., 4 figs., 3 tabs

  7. ERRATUM - French version only

    CERN Multimedia

    Le texte suivant remplace la version française de l'encadré paru en page 2 du Bulletin 28/2003 : Le 1er juillet 1953, les représentants des douze Etats Membres fondateurs du CERN signèrent la convention de l'Organisation. Aujourd'hui, le CERN compte vingt Etats Membres Européens : l'Allemagne, l'Autriche, la Belgique, la Bulgarie, le Danemark, l'Espagne, la Finlande, la France, la Grèce, la Hongrie, l'Italie, la Norvège, les Pays-Bas, la Pologne, le Portugal, la République Slovaque, la République Tchèque, le Royaume-Uni, la Suède, et la Suisse. Les Etats-Unis, l'Inde, l'Israël, le Japon, la Fédération Russe, la Turquie, la Commission Européenne et l'UNESCO ont un statut d'Etat observateur.

  8. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  9. Audio Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment and facilities for auditory display research. A primary focus is the performance use of binaurally rendered 3D sound in conjunction...

  10. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  11. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  12. The INEL beryllium multiplication experiment

    International Nuclear Information System (INIS)

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of 56 Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo 4 . The capture of neutrons by Mn produces a 56 Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO 4 solution, and produce a 56 Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a 56 Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs

  13. Degraded core studies at INEL

    International Nuclear Information System (INIS)

    Buescher, B.J.; Howe, T.M.; Miller, R.W.

    1982-01-01

    During 1980, planning of prototypical severe fuel damage tests to be conducted in the Power Burst Facility (PBF) to investigate fuel behavior in severe accidents up to temperatures of 2400 0 K was initiated. This first series of tests is designated Phase I. Also, a code development effort was initiated to provide a reliable predictive tool for core behavior during severe accidents. During 1981, an assessment of capabilities and preliminary planning were begun for an in-pile experimental program to investigate the behavior of larger arrays of previously irradiated fuel rods at temperatures through UO 2 melting. This latter series of tests is designated Phase II

  14. Assessment of radionuclide databases in CAP88 mainframe version 1.0 and Windows-based version 3.0.

    Science.gov (United States)

    LaBone, Elizabeth D; Farfán, Eduardo B; Lee, Patricia L; Jannik, G Timothy; Donnelly, Elizabeth H; Foley, Trevor Q

    2009-09-01

    In this study the radionuclide databases for two versions of the Clean Air Act Assessment Package-1988 (CAP88) computer model were assessed in detail. CAP88 estimates radiation dose and the risk of health effects to human populations from radionuclide emissions to air. This program is used by several U.S. Department of Energy (DOE) facilities to comply with National Emission Standards for Hazardous Air Pollutants regulations. CAP88 Mainframe, referred to as version 1.0 on the U.S. Environmental Protection Agency Web site (http://www.epa.gov/radiation/assessment/CAP88/), was the very first CAP88 version released in 1988. Some DOE facilities including the Savannah River Site still employ this version (1.0) while others use the more user-friendly personal computer Windows-based version 3.0 released in December 2007. Version 1.0 uses the program RADRISK based on International Commission on Radiological Protection Publication 30 as its radionuclide database. Version 3.0 uses half-life, dose, and risk factor values based on Federal Guidance Report 13. Differences in these values could cause different results for the same input exposure data (same scenario), depending on which version of CAP88 is used. Consequently, the differences between the two versions are being assessed in detail at Savannah River National Laboratory. The version 1.0 and 3.0 database files contain 496 and 838 radionuclides, respectively, and though one would expect the newer version to include all the 496 radionuclides, 35 radionuclides are listed in version 1.0 that are not included in version 3.0. The majority of these has either extremely short or long half-lives or is no longer in production; however, some of the short-lived radionuclides might produce progeny of great interest at DOE sites. In addition, 122 radionuclides were found to have different half-lives in the two versions, with 21 over 3 percent different and 12 over 10 percent different.

  15. NODC Standard Product: World Ocean Database 1998 version 2 (5 disc set) (NODC Accession 0098461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since the first release of WOD98, the staff of the Ocean Climate Laboratory have performed additional quality control on the database. Version 2.0 also includes...

  16. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  17. Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Fromm, J.M.

    1995-01-01

    A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

  18. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  19. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  20. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    International Nuclear Information System (INIS)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory

  1. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  2. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  3. Environmental surveillance for EG ampersand G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG ampersand G Idaho, Inc., performed at EG ampersand G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

  4. Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

    1993-08-01

    This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

  5. Kingsbury Laboratories

    International Nuclear Information System (INIS)

    Hughes, S.B.

    1986-01-01

    The paper concerns the work of the Kingsbury Laboratories of Fairey Engineering Company, for the nuclear industry. The services provided include: monitoring of nuclear graphite machining, specialist welding, non-destructive testing, and metallurgy testing; and all are briefly described. (U.K.)

  6. Procedure guideline for thyroid scintigraphy (version 3); Verfahrensanweisung fuer die Schilddruesenszintigraphie (Version 3)

    Energy Technology Data Exchange (ETDEWEB)

    Dietlein, M.; Schicha, H. [Deutsche Gesellschaft fuer Nuklearmedizin (DGN) (Germany); Koeln Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Dressler, J. [Deutsche Gesellschaft fuer Nuklearmedizin (DGN) (Germany); Nuklearmedizinische Klinik der Henriettenstiftung, Hannover (Germany); Eschner, W. [Deutsche Gesellschaft fuer Nuklearmedizin (DGN) (Germany); Deutsche Gesellschaft fuer Medizinische Physik (DGMP) (Germany); Koeln Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Leisner, B. [Deutsche Gesellschaft fuer Nuklearmedizin (DGN) (Germany); Allgemeines Krankenhaus St. Georg, Hamburg (Germany). Abt. fuer Nuklearmedizin; Reiners, C. [Deutsche Gesellschaft fuer Nuklearmedizin (DGN) (Germany); Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-07-01

    The version 3 of the procedure guideline for thyroid scintigraphy is an update of the procedure guideline previously published in 2003. The interpretation of the scintigraphy requires the knowledge of the patients' history, the palpation of the neck, the laboratory parameters and of the sonography. The interpretation of the technetium-99m uptake requires the knowledge of the TSH-level. As a consequence of the improved alimentary iodine supply the {sup 99m}Tc-uptake has decreased; 100 000 counts per scintigraphy should be acquired. For this, an imaging time of 10 minutes is generally needed using a high resolution collimator for thyroid imaging. (orig.)

  7. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J.

    1993-05-01

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho's INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ''Data'' section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ''Data'' section does not include actual values or data

  8. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Mann, L.J.

    1996-10-01

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey's (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation's water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities will be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient

  9. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1982-04-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive wastes. In connection with this responsibility, the DOE is formulating a program for the long-term management of transuranic (TRU) waste buried and stored at the Idaho National Engineering Laboratory (INEL). This report has been prepared to document the results of environmental and other evaluations for three decisions that the DOE is considering: (1) the selection of a general method for the long-term management of the buried TRU waste; (2) the selection of a method for processing the stored waste and for processing the buried waste, if it is retrieved; (3) the selection of a location for the waste-processing facility. This document pertains only to the contact-handled TRU waste buried in pits and trenches and the contact-handled TRU waste held in aboveground storage at the INEL. A decision has previously been made on a method for the long-term management of the stored waste; it will be retrieved and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The WIPP is also used in this report as a reference repository for evaluation purposes for the buried waste. This report is contained in two volumes. Volume I is arranged as follows: the summary is an overview of the analyses contained in this document. Section 1 is a statement of the underlying purpose and need to which the report is responding. Section 2 describes the alterntives. Section 3 describes the affected environment at the INEL and the WIPP sites. Section 4 analyzes the environmental effects of each alternative. The appendices in Volume II contain data and discussions supporting the material presented in Volume I

  10. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  11. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  12. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  13. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  14. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  15. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  16. TOUGH2-GRS version 1. User manual

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Martin; Eckel, Jens

    2016-07-15

    TOUGH2 is a code for the simulation of multi-phase flow processes in porous media that has been developed by the Lawrence Berkeley National Laboratory, California, USA. Since 1991, GRS has been using the code for process analyses and safety assessments for deep geological repositories and has extended the code by several processes that are relevant for repository systems. The TOUGH2 source code that has been developed further by GRS is referred to as TOUGH2-GRS. The present report presents code version 1.1.g, which was developed in project UM13 A 03400 sponsored by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB).

  17. Modeling report of DYMOND code (DUPIC version)

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Yacout, Abdellatif M.

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc

  18. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  19. ELIPGRID-PC: Upgraded version

    International Nuclear Information System (INIS)

    Davidson, J.R.

    1995-12-01

    Evaluating the need for and the effectiveness of remedial cleanup at waste sites often includes finding average contaminant concentrations and identifying pockets of contamination called hot spots. The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID code of singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM reg-sign personal computer (PC) or compatible. A new version of ELIPGRID-PC, incorporating Monte Carlo test results and simple graphics, is herein described. Various examples of how to use the program for both single and multiple hot spot cases are given. The code for an American National Standards Institute C version of the ELIPGRID algorithm is provided, and limitations and further work are noted. This version of ELIPGRID-PC reliably meets the goal of moving Singer's ELIPGRID algorithm to the PC

  20. [Fetal version as ambulatory intervention].

    Science.gov (United States)

    Nohe, G; Hartmann, W; Klapproth, C E

    1996-06-01

    The external cephalic version (ECV) of the fetus at term reduces the maternal and fetal risks of intrapartum breech presentation and Caesarean delivery. Since 1986 over 800 external cephalic versions were performed in the outpatient Department of Obstetrics and Gynaecology of the Städtische Frauenklinik Stuttgart. 60.5% were successful. NO severe complications occurred. Sufficient amniotic fluid as well as the mobility of the fetal breech is a major criterion for the success of the ECV. Management requires a safe technique for mother and fetus. This includes ultrasonography, elektronic fetal monitoring and the ability to perform immediate caesarean delivery as well as the performance of ECV without analgesicas and sedatives. More than 70% of the ECV were successful without tocolysis. In unsuccessful cases the additional use of tocolysis improves the success rate only slightly. Therefore routine use of tocolysis does not appear necessary. External cephalic version can be recommended as an outpatient treatment without tocolysis.

  1. Fiscal impacts model documentation. Version 1.0

    International Nuclear Information System (INIS)

    Beck, S.L.; Scott, M.J.

    1986-05-01

    The Fiscal Impacts (FI) Model, Version 1.0 was developed under Pacific Northwest Laboratory's Monitored Retrievable Storage (MRS) Program to aid in development of the MRS Reference Site Environmental Document (PNL 5476). It computes estimates of 182 fiscal items for state and local government jurisdictions, using input data from the US Census Bureau's 1981 Survey of Governments and local population forecasts. The model can be adapted for any county or group of counties in the United States

  2. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  3. Montage Version 3.0

    Science.gov (United States)

    Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia

    2006-01-01

    The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.

  4. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  5. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.

  6. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria

  7. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  8. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970's, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC's Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory

  9. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  10. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures

  14. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  15. Deployment of Remotely-Accessible Robotics Laboratory

    Directory of Open Access Journals (Sweden)

    Richard Balogh

    2012-03-01

    Full Text Available Robotnacka is an autonomous drawing mobile robot, designed for eaching beginners in the Logo programming language. It can also be used as an experimental platform, in our case in a remotely accessible robotic laboratory with the possibility to control the robots via the Internet. In addition to a basic version of the robot a version equipped with a gripper is available too, one with a wireless camera, and one with additional ultrasonic distance sensors. The laboratory is available on-line permanently and provides a simple way to incorporate robotics in teaching mathematics, programming and other subjects. The laboratory has been in use several years. We provide description of its functionality and summarize our experience.

  16. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  17. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  18. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  19. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  20. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  1. Zgoubi user`s guide. Version 4

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Fermi National Accelerator Lab., Batavia, IL (United States). Dept. of Physics; Valero, S. [CEA, Gif-sur-Yvette (France)

    1997-10-15

    The computer code Zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so-evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, quadrupoles, arbitrary multipoles and other magnetic or electric devices, and is able as well to handle periodic structures. Compared to other codes, it presents several peculiarities: (1) a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes computing time and provides high accuracy and strong symplecticity, (2) spin tracking, using the same numerical method as for the Lorentz equation, (3) calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the ray-tracing outcomes, (4) the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) field maps, (5) Monte Carlo procedures: unlimited number of trajectories, in-flight decay, etc. (6) built-in fitting procedure, (7) multiturn tracking in circular accelerators including many features proper to machine parameter calculation and survey, and also the simulation of time-varying power supplies. The initial version of the Code, dedicated to the ray-tracing in magnetic fields, was developed by D. Garreta and J.C. Faivre at CEN-Saclay in the early 1970`s. It was perfected for the purpose of studying the four spectrometers (SPES I, II, III, IV) at the Laboratoire National Saturne (CEA-Saclay, France), and SPEG at Ganil (Caen, France). It is now in use in several national and foreign laboratories. This manual is intended only to describe the details of the most recent version of Zogoubi, which is far from being a {open_quotes}finished product{close_quotes}.

  2. SPARK Version 1.1 user manual

    International Nuclear Information System (INIS)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs

  3. SPARK Version 1. 1 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  4. NCDC International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 2 (Version Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 2 of the dataset has been superseded by a newer version. Users should not use version 2 except in rare cases (e.g., when reproducing previous studies that...

  5. NCDC International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 1 (Version Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 1 of the dataset has been superseded by a newer version. Users should not use version 1 except in rare cases (e.g., when reproducing previous studies that...

  6. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-01-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60 Co were below the detection limit. The highest 137 Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

  7. The FORM version of MINCER

    International Nuclear Information System (INIS)

    Larin, S.A.; Academy of Sciences of the USSR, Moscow; Tkachov, F.V.; McGill Univ., Montreal, PQ; Academy of Sciences of the USSR, Moscow; Vermaseren, J.A.M.

    1991-01-01

    The program MINCER for massless three-loop Feynman diagrams of the propagator type has been reprogrammed in the language of FORM. The new version is thoroughly optimized and can be run from a utility like the UNIX make, which allows one to conveniently process large numbers of diagrams. It has been used for some calculations that were previously not practical. (author). 22 refs.; 14 figs

  8. Department of Transportation -- Exemption for using the Transuranic Package Transporter-I (TRUPACT-I) at the Idaho National Engineering Laboratory (Code of Federal Regulations, Title 49, Part 107, Subpart B -- Exemptions, 107-103 Application for Exemption)

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Macdonald, R.J.

    1992-08-01

    Exemption from specific regulations is being sought for the Transuranic Package Transporter Model I (TRUPACT-I) container. The design has successfully undergone extensive testing of a quarter-scale model and a full-scale prototype of the container. Results from the analysis and testing are in the TRUPACT-1 Safely Analysis Report for Packaging (SARP), GA-Al8695/SAND 87-7104 (TTC0735), April 1987 (see Attachment 1). The container was never certified or used because of questions raised during the certification process. Two features of the container design failed to satisfy the regulations for Type B packaging. First, the design utilizes a venting system to control internal and external pressures; this venting system is not allowed by the Code of Federal Regulations, Title 10, Parts 71(h) and 71.51(b) [10 CFR 71.(h) and 71.51(b)]. Second, the maximum quantity fissile material proposed to be hauled in TRUPACT-I exceeded the limits in 10 CFR 71.63(b) for a single-containment container. To correct these design deficiencies, the vents would be plugged during transport, and the maximum quantity of fissile material would be limited to the allowables for a single-containment container. An engineering analysis showed that the container could safely transport radioactive material within the boundaries of the Idaho National Engineering Laboratory (INEL) with the vent system plugged (see Attachment 2). However, some of the requirements for determining pressure on a container need to be changed (i.e., exempted) to reflect conditions unique to the INEL. The following are the requirements needing to be changed for INEL conditions, variances being sought, and justifications for the variances

  9. FORM version 4.0

    Science.gov (United States)

    Kuipers, J.; Ueda, T.; Vermaseren, J. A. M.; Vollinga, J.

    2013-05-01

    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Gröbner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Finally, FORM 4.0 has become available as open source under the GNU General Public License version 3. Program summaryProgram title: FORM. Catalogue identifier: AEOT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 151599 No. of bytes in distributed program, including test data, etc.: 1 078 748 Distribution format: tar.gz Programming language: The FORM language. FORM itself is programmed in a mixture of C and C++. Computer: All. Operating system: UNIX, LINUX, Mac OS, Windows. Classification: 5. Nature of problem: FORM defines a symbolic manipulation language in which the emphasis lies on fast processing of very large formulas. It has been used successfully for many calculations in Quantum Field Theory and mathematics. In speed and size of formulas that can be handled it outperforms other systems typically by an order of magnitude. Special in this version: The version 4.0 contains many new features. Most important are factorization and rational arithmetic. The program has also become open source under the GPL. The code in CPC is for reference. You are encouraged to upload the most recent sources from www.nikhef.nl/form/formcvs.php because of frequent bug fixes. Solution method: See "Nature of Problem", above. Additional comments: NOTE: The code in CPC is for reference. You are encouraged

  10. Versions of the Waste Reduction Model (WARM)

    Science.gov (United States)

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  11. A constructive version of AIP revisited

    NARCIS (Netherlands)

    Barros, A.; Hou, T.

    2008-01-01

    In this paper, we review a constructive version of the Approximation Induction Principle. This version states that bisimilarity of regular processes can be decided by observing only a part of their behaviour. We use this constructive version to formulate a complete inference system for the Algebra

  12. Embrittlement data base, version 1

    International Nuclear Information System (INIS)

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets

  13. Strong versions of Bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  14. ASPEN Version 3.0

    Science.gov (United States)

    Rabideau, Gregg; Chien, Steve; Knight, Russell; Schaffer, Steven; Tran, Daniel; Cichy, Benjamin; Sherwood, Robert

    2006-01-01

    The Automated Scheduling and Planning Environment (ASPEN) computer program has been updated to version 3.0. ASPEN is a modular, reconfigurable, application software framework for solving batch problems that involve reasoning about time, activities, states, and resources. Applications of ASPEN can include planning spacecraft missions, scheduling of personnel, and managing supply chains, inventories, and production lines. ASPEN 3.0 can be customized for a wide range of applications and for a variety of computing environments that include various central processing units and random access memories.

  15. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs

  16. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  17. Curiosity rover LEGO® version could land soon

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    Now that NASA's Curiosity rover has landed on Mars, a smaller LEGO® plastic brick construction version could be landing in toy stores. Less than 2 weeks after Curiosity set down on 5 August, a LEGO® set concept model designed by a mechanical and aerospace engineer who worked on the real rover garnered its 10,000th supporter on the Web site of CUUSOO, a Japanese partner of the LEGO® group. That milestone triggered a company review that began in September 2012 to test the model's “playability, safety, and ft with the LEGO® brand,” according to a congratulatory statement from the company to designer Stephen Pakbaz. Pakbaz told Eos that he has been an avid LEGO® and space exploration fan for most of his life. “For me, creating a LEGO® model of Curiosity using my firsthand knowledge of the rover was inevitable. What I enjoyed most was being able to faithfully replicate and subsequently demonstrate the rocker-bogie suspension system to friends, family, and coworkers,” he noted, referring to the suspension system that allows the rover to climb over obstacles while keeping its wheels on the ground. Pakbaz, who is currently with Orbital Sciences Corporation, was involved with aspects of the rover while working at the Jet Propulsion Laboratory from 2007 to 2011 as a mechanical engineer.

  18. Version 4. 00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  19. Version 4.00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  20. School version of ESTE EU

    International Nuclear Information System (INIS)

    Carny, P.; Suchon, D.; Chyly, M.; Smejkalova, E.; Fabova, V.

    2008-01-01

    ESTE EU is information system and software for radiological impacts assessment to the territory of the country in case of radiation accident inside/outside of the country .The program enables to model dispersion of radioactive clouds in small-scale and meso-scale. The system enables the user to estimate prediction of the source term (release to the atmosphere ) for any point of radiation/nuclear accident in Europe (for any point of the release, but especially for the sites of European power reactors ). The system enables to utilize results of real radiological monitoring in the process of source term estimation. Radiological impacts of release to the atmosphere are modelled and calculated across the Europe and displayed in the geographical information system (GIS). The school version of ESTE EU is intended for students of the universities which are interested in or could work in the field of emergency response, radiological and nuclear accidents, dispersion modelling, radiological impacts calculation and urgent or preventive protective measures implementation. The school version of ESTE EU is planned to be donated to specialized departments of faculties in Slovakia, Czech Republic, etc. System can be fully operated in Slovak, Czech or English language. (authors)

  1. School version of ESTE EU

    International Nuclear Information System (INIS)

    Carny, P.; Suchon, D.; Chyly, M.; Smejkalova, E.; Fabova, V.

    2009-01-01

    ESTE EU is information system and software for radiological impacts assessment to the territory of the country in case of radiation accident inside/outside of the country .The program enables to model dispersion of radioactive clouds in small-scale and meso-scale. The system enables the user to estimate prediction of the source term (release to the atmosphere ) for any point of radiation/nuclear accident in Europe (for any point of the release, but especially for the sites of European power reactors ). The system enables to utilize results of real radiological monitoring in the process of source term estimation. Radiological impacts of release to the atmosphere are modelled and calculated across the Europe and displayed in the geographical information system (GIS). The school version of ESTE EU is intended for students of the universities which are interested in or could work in the field of emergency response, radiological and nuclear accidents, dispersion modelling, radiological impacts calculation and urgent or preventive protective measures implementation. The school version of ESTE EU is planned to be donated to specialized departments of faculties in Slovakia, Czech Republic, etc. System can be fully operated in Slovak, Czech or English language. (authors)

  2. A sensitivity study of an evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Roesener, W.S.; Smith, T.H.; Jorgenson-Waters, M.J.; Sherick, M.J.

    1995-01-01

    This paper presents insights gained from an informal sensitivity study of an evaluation of disposal alternatives for Idaho National Engineering Laboratory low-level waste and low-level mixed waste. The insights relate to the sensitivity of the alternative rankings to changes in assumptions identified as open-quotes key uncertaintiesclose quotes. The result of the sensitivity study is that significant changes occur in the rankings when selected open-quotes key uncertaintiesclose quotes are varied over reasonable ranges. Three alternatives involving the use of (a) shallow land burial and boreholes or (b) greater-depth burial and boreholes rank high for all cases investigated. The other alternatives rank low in some or all cases

  3. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE's instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department's obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act

  4. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  5. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs

  6. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  7. Environmental protection at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1987-07-01

    The primary objective of radioactive waste management at the INEL is to minimize the generation of waste products and to ensure that these waste products do not constitute a hazard to life forms. All radioactive waste streams are monitored by highly sensitive instruments and are carefully controlled so that corrective action can be taken, if necessary. In addition, the environment itself is monitored to ensure that controls at the various facilities have been adequate to prevent significant releases of radioactivity. Samples of air, soil, water, and foodstuffs from the vicinity of the INEL are routinely monitored. These surveillance activities verify that the doses to people at or near the INEL from radioisotoptes are extremely small, and far below acceptable limits specified by state and federal regulations

  8. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  9. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  10. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  11. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  12. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  14. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  15. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  16. Impact of surface water recharge on the design of a groundwater monitoring system for the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wood, T.R.

    1990-01-01

    Recent hydrogeologic studies have been initiated to characterize the hydrogeologic conditions at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Measured water levels in wells penetrating the Snake River Plain aquifer near the RWMC and the corresponding direction of flow show change over time. This change is related to water table mounding caused by recharge from excess water diverted from the Big Lost River for flood protection during high flows. Water levels in most wells near the RWMC rise on the order of 10 ft (3 m) in response to recharge, with water in one well rising over 60 ft (18 m). Recharge changes the normal south-southwest direction of flow to the east. Design of the proposed groundwater monitoring network for the RWMC must account for the variable directions of groundwater flow. 11 refs., 9 figs., 2 tabs

  17. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Nash, C.L. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  18. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  19. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J.; Nash, C.L.

    1992-01-01

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

  20. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...