WorldWideScience

Sample records for label-free quantitative mass

  1. Issues and Applications in Label-Free Quantitative Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xianyin Lai

    2013-01-01

    Full Text Available To address the challenges associated with differential expression proteomics, label-free mass spectrometric protein quantification methods have been developed as alternatives to array-based, gel-based, and stable isotope tag or label-based approaches. In this paper, we focus on the issues associated with label-free methods that rely on quantitation based on peptide ion peak area measurement. These issues include chromatographic alignment, peptide qualification for quantitation, and normalization. In addressing these issues, we present various approaches, assembled in a recently developed label-free quantitative mass spectrometry platform, that overcome these difficulties and enable comprehensive, accurate, and reproducible protein quantitation in highly complex protein mixtures from experiments with many sample groups. As examples of the utility of this approach, we present a variety of cases where the platform was applied successfully to assess differential protein expression or abundance in body fluids, in vitro nanotoxicology models, tissue proteomics in genetic knock-in mice, and cell membrane proteomics.

  2. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  3. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.

    Science.gov (United States)

    Holt, Tom G; Choi, Bernard K; Geoghagen, Neil S; Jensen, Kristian K; Luo, Qi; LaMarr, William A; Makara, Gergely M; Malkowitz, Lorraine; Ozbal, Can C; Xiong, Yusheng; Dufresne, Claude; Luo, Ming-Juan

    2009-10-01

    Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity. The in vitro assay used HTMS to quantify the unlabeled product of the CBS reaction, cystathionine. Cystathionine HTMS analyses were carried out with a throughput of 7 s per sample and quantitation over a linear range of 80-10,000 nM. A compound library of 25,559 samples (or 80 384-well plates) was screened as singlets using the HTMS assay in a period of 8 days. With a hit rate of 0.32%, the actives showed a 90% confirmation rate. The in vitro assay was applied to secondary screens in more complex matrices with no additional analytical development. Our results show that the HTMS method was useful for screening samples containing serum, for cell-based assays, and for liver explants. The novel extension of the in vitro analytical method, without modification, to secondary assays resulted in a significant and advantageous economy of development time for the drug discovery project.

  4. Morpheus Spectral Counter: A computational tool for label-free quantitative mass spectrometry using the Morpheus search engine.

    Science.gov (United States)

    Gemperline, David C; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2016-03-01

    Label-free quantitative MS based on the Normalized Spectral Abundance Factor (NSAF) has emerged as a straightforward and robust method to determine the relative abundance of individual proteins within complex mixtures. Here, we present Morpheus Spectral Counter (MSpC) as the first computational tool that directly calculates NSAF values from output obtained from Morpheus, a fast, open-source, peptide-MS/MS matching engine compatible with high-resolution accurate-mass instruments. NSAF has distinct advantages over other MS-based quantification methods, including a greater dynamic range as compared to isobaric tags, no requirement to align and re-extract MS1 peaks, and increased speed. MSpC features an easy-to-use graphic user interface that additionally calculates both distributed and unique NSAF values to permit analyses of both protein families and isoforms/proteoforms. MSpC determinations of protein concentration were linear over several orders of magnitude based on the analysis of several high-mass accuracy datasets either obtained from PRIDE or generated with total cell extracts spiked with purified Arabidopsis 20S proteasomes. The MSpC software was developed in C# and is open sourced under a permissive license with the code made available at http://dcgemperline.github.io/Morpheus_SpC/.

  5. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics.

    Science.gov (United States)

    Smits, Arne H; Jansen, Pascal W T C; Poser, Ina; Hyman, Anthony A; Vermeulen, Michiel

    2013-01-07

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.

  6. A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development

    Directory of Open Access Journals (Sweden)

    Lin Dawei

    2010-12-01

    Full Text Available Abstract Background Citrus is one of the most important and widely grown commodity fruit crops. In this study a label-free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various metabolic pathways affecting citrus fruit development and quality. Results Protein changes in citrus juice sac cells were identified and quantified using label-free shotgun methodologies. Two alternative methods, differential mass-spectrometry (dMS and spectral counting (SC were used to analyze protein changes occurring during earlier and late stages of fruit development. Both methods were compared in order to develop a proteomics workflow that could be used in a non-model plant lacking a sequenced genome. In order to resolve the bioinformatics limitations of EST databases from species that lack a full sequenced genome, we established iCitrus. iCitrus is a comprehensive sequence database created by merging three major sources of sequences (HarvEST:citrus, NCBI/citrus/unigenes, NCBI/citrus/proteins and improving the annotation of existing unigenes. iCitrus provided a useful bioinformatics tool for the high-throughput identification of citrus proteins. We have identified approximately 1500 citrus proteins expressed in fruit juice sac cells and quantified the changes of their expression during fruit development. Our results showed that both dMS and SC provided significant information on protein changes, with dMS providing a higher accuracy. Conclusion Our data supports the notion of the complementary use of dMS and SC for label-free comparative proteomics, broadening the identification spectrum and strengthening the identification of trends in protein expression changes during the particular processes being compared.

  7. Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments.

    Science.gov (United States)

    Egelhofer, Volker; Hoehenwarter, Wolfgang; Lyon, David; Weckwerth, Wolfram; Wienkoop, Stefanie

    2013-03-01

    Recently, new software tools have been developed for improved protein quantification using mass spectrometry (MS) data. However, there are still limitations especially in high-sample-throughput quantification methods, and most of these relate to extensive computational calculations. The mass accuracy precursor alignment (MAPA) strategy has been shown to be a robust method for relative protein quantification. Its major advantages are high resolution, sensitivity and sample throughput. Its accuracy is data dependent and thus best suited for precursor mass-to-charge precision of ∼1 p.p.m. This protocol describes how to use a software tool (ProtMAX) that allows for the automated alignment of precursors from up to several hundred MS runs within minutes without computational restrictions. It comprises features for 'ion intensity count' and 'target search' of a distinct set of peptides. This procedure also includes the recommended MS settings for complex quantitative MAPA analysis using ProtMAX (http://www.univie.ac.at/mosys/software.html).

  8. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  9. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  10. A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development

    OpenAIRE

    Lin Dawei; Fass Joseph N; Phinney Brett S; Eigenheer Richard A; Fon Mario; Katz Ehud; Sadka Avi; Blumwald Eduardo

    2010-01-01

    Abstract Background Citrus is one of the most important and widely grown commodity fruit crops. In this study a label-free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various metabolic pathways affecting citrus fruit development and quality. Results Protein changes in citrus juice sac cells were identified and quantified using label-fr...

  11. Generation of High-Quality SWATH(®) Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF(®) Mass Spectrometers.

    Science.gov (United States)

    Schilling, Birgit; Gibson, Bradford W; Hunter, Christie L

    2017-01-01

    Data-independent acquisition is a powerful mass spectrometry technique that enables comprehensive MS and MS/MS analysis of all detectable species, providing an information rich data file that can be mined deeply. Here, we describe how to acquire high-quality SWATH(®) Acquisition data to be used for large quantitative proteomic studies. We specifically focus on using variable sized Q1 windows for acquisition of MS/MS data for generating higher specificity quantitative data.

  12. Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Tsai Sheng-Ta

    2012-11-01

    Full Text Available Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.

  13. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  14. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  15. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    Science.gov (United States)

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  16. Label-free profiling of skeletal muscle using high-definition mass spectrometry

    Science.gov (United States)

    Burniston, Jatin G.; Connolly, Joanne; Kainulainen, Heikki; Britton, Steven L.; Koch, Lauren G.

    2014-01-01

    We report automated and time efficient (2 h per sample) profiling of muscle using ultra-performance liquid chromatography (LC) coupled directly with high-definition mass spectrometry (HDMSE). Soluble proteins extracted from rat gastrocnemius (n=10) were digested with trypsin and analysed in duplicate using a 90 min RPLC gradient. Protein identification and label-free quantitation were performed from HDMSE spectra analysed using TransOmics Informatics for Proteomics software. In total 1,514 proteins were identified. Of these, 811 had at least 3 unique peptides and were subsequently used to assess the dynamic range and precision of LC-HDMSE label-free profiling. Proteins analysed by LC-HDMSE encompass the entire complement of glycolytic, beta-oxidation and tricarboxylic acid enzymes. In addition, numerous components of the electron transport chain and protein kinases involved in skeletal muscle regulation were detected. The dynamic range of protein abundances spanned 4 orders of magnitude. The correlation between technical replicates of the 10 biological samples was R2 = 0.9961 ± 0.0036 (95 % CI = 0.9940 – 0.9992) and the technical coefficient of variation averaged 7.3 ± 6.7 % (95 % CI = 6.87 – 7.79 %). This represents the most sophisticated label-free profiling of skeletal muscle to date. PMID:25065561

  17. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics.

    Science.gov (United States)

    Distler, Ute; Kuharev, Jörg; Tenzer, Stefan

    2014-12-01

    Mass spectrometry-based proteomics greatly benefited from recent improvements in instrument performance and the development of bioinformatics solutions facilitating the high-throughput quantification of proteins in complex biological samples. In addition to quantification approaches using stable isotope labeling, label-free quantification has emerged as the method of choice for many laboratories. Over the last years, data-independent acquisition approaches have gained increasing popularity. The integration of ion mobility separation into commercial instruments enabled researchers to achieve deep proteome coverage from limiting sample amounts. Additionally, ion mobility provides a new dimension of separation for the quantitative assessment of complex proteomes, facilitating precise label-free quantification even of highly complex samples. The present work provides a thorough overview of the combination of ion mobility and data-independent acquisition-based label-free quantification LC-MS and its applications in biomedical research.

  18. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  19. Label-free peptide profiling of Orbitrap™ full mass spectra

    Directory of Open Access Journals (Sweden)

    Titulaer Mark K

    2011-01-01

    Full Text Available Abstract Background We developed a new version of the open source software package Peptrix that can yet compare large numbers of Orbitrap™ LC-MS data. The peptide profiling results for Peptrix on MS1 spectra were compared with those obtained from a small selection of open source and commercial software packages: msInspect, Sieve™ and Progenesis™. The properties compared in these packages were speed, total number of detected masses, redundancy of masses, reproducibility in numbers and CV of intensity, overlap of masses, and differences in peptide peak intensities. Reproducibility measurements were taken for the different MS1 software applications by measuring in triplicate a complex peptide mixture of immunoglobulin on the Orbitrap™ mass spectrometer. Values of peptide masses detected from the high intensity peaks of the MS1 spectra by peptide profiling were verified with values of the MS2 fragmented and sequenced masses that resulted in protein identifications with a significant score. Findings Peptrix finds about the same number of peptide features as the other packages, but peptide masses are in some cases approximately 5 to 10 times less redundant present in the peptide profile matrix. The Peptrix profile matrix displays the largest overlap when comparing the number of masses in a pair between two software applications. The overlap of peptide masses between software packages of low intensity peaks in the spectra is remarkably low with about 50% of the detected masses in the individual packages. Peptrix does not differ from the other packages in detecting 96% of the masses that relate to highly abundant sequenced proteins. MS1 peak intensities vary between the applications in a non linear way as they are not processed using the same method. Conclusions Peptrix is capable of peptide profiling using Orbitrap™ files and finding differential expressed peptides in body fluid and tissue samples. The number of peptide masses detected in

  20. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging.

    Science.gov (United States)

    Yang, Yaliang; Li, Fuhai; Gao, Liang; Wang, Zhiyong; Thrall, Michael J; Shen, Steven S; Wong, Kelvin K; Wong, Stephen T C

    2011-08-01

    We present a label-free, chemically-selective, quantitative imaging strategy to identify breast cancer and differentiate its subtypes using coherent anti-Stokes Raman scattering (CARS) microscopy. Human normal breast tissue, benign proliferative, as well as in situ and invasive carcinomas, were imaged ex vivo. Simply by visualizing cellular and tissue features appearing on CARS images, cancerous lesions can be readily separated from normal tissue and benign proliferative lesion. To further distinguish cancer subtypes, quantitative disease-related features, describing the geometry and distribution of cancer cell nuclei, were extracted and applied to a computerized classification system. The results show that in situ carcinoma was successfully distinguished from invasive carcinoma, while invasive ductal carcinoma (IDC) and invasive lobular carcinoma were also distinguished from each other. Furthermore, 80% of intermediate-grade IDC and 85% of high-grade IDC were correctly distinguished from each other. The proposed quantitative CARS imaging method has the potential to enable rapid diagnosis of breast cancer.

  1. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex.

    Science.gov (United States)

    Wang, Sai; Liu, Jiahui; Wu, Yanxia; You, Yawen; He, Jingyi; Zhang, Jichuan; Zhang, Liqun; Dong, Yiyang

    2016-04-15

    Commercial natural rubber is traditionally supplied by Hevea brasiliensis, but now there is a big energy problem because of the limited resource and increasing demand. Intensive study of key rubber-related substances is urgently needed for further research of in vitro biosynthesis of natural rubber. Natural rubber is biosynthesized on the surface of rubber particles. A membrane protein called small rubber particle protein (SRPP) is a key protein associated closely with rubber biosynthesis; however, SRPP in different plants has been only qualitatively studied, and there are no quantitative reports so far. In this work, H. brasiliensis was chosen as a model plant. The microscopic distribution of SRPP on the rubber particles during the washing process was investigated by transmission electron microscopy-immunogold labeling. A label-free surface plasmon resonance (SPR) immunosensor was developed to quantify SRPP in H. brasiliensis for the first time. The immunosensor was then used to rapidly detect and analyze SRPP in dandelions and prickly lettuce latex samples. The label-free SPR immunosensor can be a desirable tool for rapid quantitation of the membrane protein SRPP, with excellent assay efficiency, high sensitivity, and high specificity. The method lays the foundation for further study of the functional relationship between SRPP and natural rubber content.

  2. Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods.

    Science.gov (United States)

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Dorssaeler, Alain Van; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-03-01

    This data article describes a controlled, spiked proteomic dataset for which the "ground truth" of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It can be used to objectively evaluate bioinformatic pipelines for label-free quantitative analysis, and their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. More specifically, it can be useful for tuning software tools parameters, but also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. The raw MS files can be downloaded from ProteomeXchange with identifier PXD001819. Starting from some raw files of this dataset, we also provide here some processed data obtained through various bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, to exemplify the use of such data in the context of software benchmarking, as discussed in details in the accompanying manuscript [1]. The experimental design used here for data processing takes advantage of the different spike levels introduced in the samples composing the dataset, and processed data are merged in a single file to facilitate the evaluation and illustration of software tools results for the detection of variant proteins with different absolute expression levels and fold change values.

  3. Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils

    DEFF Research Database (Denmark)

    Christensen, Hanna B; Gloriam, David E; Pedersen, Daniel Sejer

    2017-01-01

    INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors...

  4. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers.

    Science.gov (United States)

    Labas, Valérie; Grasseau, Isabelle; Cahier, Karine; Gargaros, Audrey; Harichaux, Grégoire; Teixeira-Gomes, Ana-Paula; Alves, Sabine; Bourin, Marie; Gérard, Nadine; Blesbois, Elisabeth

    2014-12-01

    Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus) and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC-MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC) and extracted ion chromatograms (XIC) methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ) and seminal plasma (SP). We also show differential analyses of chicken semen (SPZ and corresponding SP) from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  5. Analysis of protein complexes through model-based biclustering of label-free quantitative AP-MS data.

    Science.gov (United States)

    Choi, Hyungwon; Kim, Sinae; Gingras, Anne-Claude; Nesvizhskii, Alexey I

    2010-06-22

    Affinity purification followed by mass spectrometry (AP-MS) has become a common approach for identifying protein-protein interactions (PPIs) and complexes. However, data analysis and visualization often rely on generic approaches that do not take advantage of the quantitative nature of AP-MS. We present a novel computational method, nested clustering, for biclustering of label-free quantitative AP-MS data. Our approach forms bait clusters based on the similarity of quantitative interaction profiles and identifies submatrices of prey proteins showing consistent quantitative association within bait clusters. In doing so, nested clustering effectively addresses the problem of overrepresentation of interactions involving baits proteins as compared with proteins only identified as preys. The method does not require specification of the number of bait clusters, which is an advantage against existing model-based clustering methods. We illustrate the performance of the algorithm using two published intermediate scale human PPI data sets, which are representative of the AP-MS data generated from mammalian cells. We also discuss general challenges of analyzing and interpreting clustering results in the context of AP-MS data.

  6. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2014-12-01

    Full Text Available Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC–MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC and extracted ion chromatograms (XIC methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ and seminal plasma (SP. We also show differential analyses of chicken semen (SPZ and corresponding SP from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  7. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food

    Science.gov (United States)

    Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos

    2016-03-01

    Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.

  8. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.

    Science.gov (United States)

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Van Dorssaeler, Alain; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-01-30

    Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have progressed tremendously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive way to analyze differential protein expression in complex biological samples. However, the computational processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different software packages developed in recent years. This experimental design allowed to finely assess their performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset has been deposited to the ProteomeXchange repository with the identifier PXD001819 and can be used to benchmark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the quantitative metrics from raw MS data, or evaluate downstream statistical methods. Bioinformatic pipelines for label-free quantitative analysis must be objectively evaluated in their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. This can be done through the use of complex spiked samples, for which the "ground truth" of variant proteins is known, allowing a statistical evaluation of the performances of the data processing workflow. We provide here such a controlled standard dataset and used it to evaluate the performances of several label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in

  9. A systematic evaluation of normalization methods in quantitative label-free proteomics.

    Science.gov (United States)

    Välikangas, Tommi; Suomi, Tomi; Elo, Laura L

    2016-10-02

    To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization method is a pivotal task for the reliability of the downstream analysis and results. Many normalization methods commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study, several popular and widely used normalization methods representing different strategies in normalization are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The normalization methods are evaluated in terms of their ability to reduce variation between technical replicates, their effect on differential expression analysis and their effect on the estimation of logarithmic fold changes. Additionally, we examined whether normalizing the whole data globally or in segments for the differential expression analysis has an effect on the performance of the normalization methods. We found that variance stabilization normalization (Vsn) reduced variation the most between technical replicates in all examined data sets. Vsn also performed consistently well in the differential expression analysis. Linear regression normalization and local regression normalization performed also systematically well. Finally, we discuss the choice of a normalization method and some qualities of a suitable normalization method in the light of the results of our evaluation.

  10. Label-free Methods in Quantitative Proteomics%定量蛋白质组学无标记定量方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    武鹏; 贺福初; 姜颖

    2013-01-01

    依靠质谱技术的蛋白质组学快速发展,寻求速度快、重复性好以及准确度高的定量方法是该领域的一项艰巨任务,定量蛋白质组学分支领域应运而生.其中,无标记定量方法以其样品制备简单、耗材费用低廉以及结果数据分析便捷等优点渐露锋芒.无标记定量方法通常分为信号强度法和谱图计数法两大类.本文在这两种无标记定量方法计算原理的基础上,针对各种常用的无标记定量方法及最新进展做一个较为全面的介绍,并将详细讨论两类方法的异同点,以及目前蛋白质组学中无标记定量方法所面临的主要挑战,希望能为这一领域的研究人员在选择无标记定量方法时提供一个合理的参考.%Mass spectrometry-based proteomics has developed rapidly, finding a method of quick, highly reproducible and accurate quantification is a great challenge in this research sphere. Quantitative proteomics as a new branch allows deeper insight into biological study. Recently, label-free quantification has been increasingly attractive for its simple sample preparation, low cost of reagents and clean results. Mass spectrometry-based label-free quantitative proteomics is generally divided into two categories, which are based on peptide chromatographic ion intensity and based on spectral counts. This review gives a general principle of these two label-free methods, presents a relatively complete summary of some commonly used label-free quantitative methods and their latest progress, and discusses the differences between the two methods and some challenges for label-free methods. We wish this review could provide a rational introduction of selecting label-free methods optimally suited to address your specific issue.

  11. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey.

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    Full Text Available The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or β-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD(+ becomes regenerated during fatty acid β-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.

  12. Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry.

    Science.gov (United States)

    Sun, Shuwen; Slaney, Thomas R; Kennedy, Robert T

    2012-07-03

    Droplet-based microfluidics is an attractive platform for screening and optimizing chemical reactions. Using this approach, it is possible to reliably manipulate nanoliter volume samples and perform operations such as reagent addition with high precision, automation, and throughput. Most studies using droplet microfluidics have relied on optical techniques to detect the reaction; however, this requires engineering color or fluorescence change into the reaction being studied. In this work, we couple electrospray ionization mass spectrometry (ESI-MS) to nanoliter scale segmented flow reactions to enable direct (label-free) analysis of reaction products. The system is applied to a screen of inhibitors for cathepsin B. In this approach, solutions of test compounds (including three known inhibitors) are arranged as an array of nanoliter droplets in a tube segmented by perfluorodecalin. The samples are pumped through a series of tees to add enzyme, substrate (peptides), and quenchant. The resulting reaction mixtures are then infused into a metal-coated, fused silica ESI emitter for MS analysis. The system has potential for high-throughput as reagent addition steps are performed at 0.7 s per sample and ESI-MS at up to 1.2 s per sample. Carryover is inconsequential in the ESI emitter and between 2 and 9% per reagent addition depending on the tee utilized. The assay was reliable with a Z-factor of ~0.8. The method required 0.8 pmol of test compound, 1.6 pmol of substrate, and 5 fmol of enzyme per reaction. Segmented flow ESI-MS allows direct, label free screening of reactions at good throughput and ultralow sample consumption.

  13. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation.

    Directory of Open Access Journals (Sweden)

    Richard J Perrin

    Full Text Available Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative diseases such as Alzheimer's disease. Cerebrospinal fluid (CSF is a favored source because its proteome reflects the composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance among control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation (MAF and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS for CSF biomarker discovery by (1 identifying reparable sources of technical variability, (2 assessing subject variance and residual technical variability for numerous CSF proteins, and (3 testing its ability to segregate samples on the basis of desired biomarker characteristics.Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among 11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides. Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample comparisons, identified several sources of technical variability: i incomplete MAF and keratins; ii globally- or segmentally-decreased ion current in isolated LC-MS analyses; and iii oxidized methionine-containing peptides. Exclusion of these sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation (CV<5% whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and

  14. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei

    2012-12-01

    Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.

    Science.gov (United States)

    Zhang, Hao; Sun, Jun; Ye, Jing; Ashraf, Usama; Chen, Zheng; Zhu, Bibo; He, Wen; Xu, Qiuping; Wei, Yanming; Chen, Huanchun; Fu, Zhen F; Liu, Rong; Cao, Shengbo

    2015-12-01

    West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.

  16. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  17. Quantitative label-free characterization of avidin-biotin assemblies on silanized glass.

    Science.gov (United States)

    Chen, Li-Jung; Seo, Jeong Hyun; Eller, Michael J; Verkhoturov, Stanislav V; Shah, Sunny S; Revzin, Alexander; Schweikert, Emile A

    2011-09-15

    In this study, a time-of-flight secondary ion mass spectrometer TOF-SIMS, operating in the event-by-event bombardment/detection mode was used to characterize avidin-biotin assemblies on silane-modified glass substrates. SIMS was used to analyze several variants of the biointerface, including avidin physically adsorbed on a monofunctional acryl silane surface and covalently attached on monofunctional (amine terminated) and bifunctional (amine and acryl terminated) silanes. The goal of these studies was to determine density of avidin and biotin layers chemically or physically adsorbed on silanized glass substrate. An individual impact of a C(60) projectile used in this study creates a hemispherical crater (∼10 nm in diameter) and emits large numbers of secondary ions from the same nanovolume. Thus, a single impact enables one to unfold distinct secondary ions that span the thickness of the assembled film. This method was used to monitor the presence of glass, silane, and protein ions and to estimate the thickness and density of the avidin layer. In addition, we employed the double coincidence mass spectrometry approach to identify ions coemitted from a specific stratum of the biointerface. This approach was used to determine density of biotin and avidin immobilization while eliminating interferences from isobaric ions that originated from other constituents on the surface. Overall, novel TOF-SIMS quantitative approaches employed here were useful for examining complex biointerfaces and determining both lateral and in depth composition of the film.

  18. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    Science.gov (United States)

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  19. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    Science.gov (United States)

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  20. Label-Free Quantitative Proteomic Analysis of Harmless and Pathogenic Strains of Infectious Microalgae, Prototheca spp.

    Science.gov (United States)

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2016-01-01

    Microalgae of the genus Prototheca (P.) spp are associated with rare algal infections of invertebrates termed protothecosis. Among the seven generally accepted species, P. zopfii genotype 2 (GT2) is associated with a severe form of bovine mastitis while P. blaschkeae causes the mild and sub-clinical form of mastitis. The reason behind the infectious nature of P. zopfii GT2, while genotype 1 (GT1) remains non-infectious, is not known. Therefore, in the present study we investigated the protein expression level difference between the genotypes of P. zopfii and P. blaschkeae. Cells were cultured to the mid-exponential phase, harvested, and processed for LC-MS analysis. Peptide data was acquired on an LTQ Orbitrap Velos, raw spectra were quantitatively analyzed with MaxQuant software and matching with the reference database of Chlorella variabilis and Auxenochlorella protothecoides resulted in the identification of 226 proteins. Comparison of an environmental strain with infectious strains resulted in the identification of 51 differentially expressed proteins related to carbohydrate metabolism, energy production and protein translation. The expression level of Hsp70 proteins and their role in the infectious process is worth further investigation. All mass spectrometry data are available via ProteomeXchange with identifier PXD005305. PMID:28036087

  1. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    Science.gov (United States)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  2. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    Science.gov (United States)

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A strategy with label-free quantification of the targeted peptides for quantitative peptidome analysis of human serum

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Peptidomics draws more and more attention in discovering useful biomarkers for early diagnosis of disease. However, there is lack of efficient quantification strategy in peptidome analysis. In this study, a strategy with label-free quantification of the targeted endogenous peptides based on peak intensity using μUPLC-Q-TOF-MS/MS was developed for quantitative peptidome analysis of human serum. Different amounts of standard BSA tryptic digesting peptides were added into the same serum extracts for evaluation of the developed strategy, and it was observed that the average relative error of the targeted peptides was 6.42%, which was superior to the result obtained directly by commercially available software PLGS. It was also demonstrated that this quantification strategy could obviously increase the detection sensitivity of the peptide by DDA analysis. Then, this strategy was applied to comparatively analyze the peptides extracted from the serum of HCC or breast cancer patients and healthy individuals, respectively. Peptides with charge states up to 5 and molecular weight over 4000 can be reliably identified and quantified. This quantitative analysis method based on μUPLC-Q-TOF-MS/MS exhibited superior sensitivity than that by MALDI-TOF-MS commonly used in peptidome analysis. Finally, some interesting endogenous peptides related to corresponding diseases were successfully obtained.

  4. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography.

    Science.gov (United States)

    Mölder, A; Sebesta, M; Gustafsson, M; Gisselson, L; Wingren, A Gjörloff; Alm, K

    2008-11-01

    Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that utilizes digital holography, allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. The images produced can provide both quantitative and qualitative phase information from a single hologram. The recently constructed microscope Holomonitor (Phase Holographic Imaging AB, Lund, Sweden) combines the commonly used phase contrast microscope with digital holography, the latter giving us the possibility of achieving quantitative information on cellular shape, area, confluence and optical thickness. This project aimed at determining the accuracy and repeatability of cell counting measurements using digital holography compared to the conventional manual cell counting method using a haemocytometer. The collected data were also used to determine cell size and cellular optical thickness. The results show that digital holography can be used for non-invasive automatic cell counting as precisely as conventional manual cell counting.

  5. A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders.

    Science.gov (United States)

    Pesciotta, Esther N; Sriswasdi, Sira; Tang, Hsin-Yao; Mason, Philip J; Bessler, Monica; Speicher, David W

    2012-12-05

    Red blood cells have been extensively studied but many questions regarding membrane properties and pathophysiology remain unanswered. Proteome analysis of red cell membranes is complicated by a very wide dynamic range of protein concentrations as well as the presence of proteins that are very large, very hydrophobic, or heterogeneously glycosylated. This study investigated the removal of other blood cell types, red cell membrane extraction, differing degrees of fractionation using 1-D SDS gels, and label-free quantitative methods to determine optimized conditions for proteomic comparisons of clinical blood samples. The results showed that fractionation of red cell membranes on 1-D SDS gels was more efficient than low-ionic-strength extractions followed by 1-D gel fractionation. When gel lanes were sliced into 30 uniform slices, a good depth of analysis that included the identification of most well-characterized, low-abundance red cell membrane proteins including those present at 500 to 10,000 copies per cell was obtained. Furthermore, the size separation enabled detection of changes due to proteolysis or in vivo protein crosslinking. A combination of Rosetta Elucidator quantitation and subsequent statistical analysis enabled the robust detection of protein differences that could be used to address unresolved questions in red cell disorders. This article is part of a Special Issue entitled: Integrated omics.

  6. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  7. Mass spectrometric techniques for label-free high-throughput screening in drug discovery.

    Science.gov (United States)

    Roddy, Thomas P; Horvath, Christopher R; Stout, Steven J; Kenney, Kristin L; Ho, Pei-I; Zhang, Ji-Hu; Vickers, Chad; Kaushik, Virendar; Hubbard, Brian; Wang, Y Karen

    2007-11-01

    High-throughput screening (HTS) is an important tool for finding active compounds to initiate medicinal chemistry programs in pharmaceutical discovery research. Traditional HTS methods rely on fluorescent or radiolabeled reagents and/or coupling assays to permit quantitation of enzymatic target inhibition or activation. Mass spectrometry-based high-throughput screening (MS-HTS) is an alternative that is not susceptible to the limitations imposed by labeling and coupling enzymes. MS-HTS offers a selective and sensitive analytical method for unlabeled substrates and products. Furthermore, method development times are reduced without the need to incorporate labels or coupling assays. MS-HTS also permits screening of targets that are difficult or impossible to screen by other techniques. For example, enzymes that are challenging to purify can lead to the nonspecific detection of structurally similar components of the impure enzyme or matrix of membraneous enzymes. The high selectivity of tandem mass spectrometry (MS/MS) enables these screens to proceed with low levels of background noise to sensitively discover interesting hits even with relatively weak activity. In this article, we describe three techniques that we have adapted for large-scale (approximately 175,000 sample) compound library screening, including four-way parallel multiplexed electrospray liquid chromatography tandem mass spectrometry (MUX-LC/MS/MS), four-way parallel staggered gradient liquid chromatography tandem mass spectrometry (LC/MS/MS), and eight-way staggered flow injection MS/MS following 384-well plate solid-phase extraction (SPE). These methods are capable of analyzing a 384-well plate in 37 min, with typical analysis times of less than 2 h. The quality of the MS-HTS approach is demonstrated herein with screening data from two large-scale screens.

  8. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods.

    Directory of Open Access Journals (Sweden)

    Kelvin Yen

    to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.

  9. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods.

    Science.gov (United States)

    Yen, Kelvin; Le, Thuc T; Bansal, Ankita; Narasimhan, Sri Devi; Cheng, Ji-Xin; Tissenbaum, Heidi A

    2010-09-16

    of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.

  10. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.

    Science.gov (United States)

    Lazar, Cosmin; Gatto, Laurent; Ferro, Myriam; Bruley, Christophe; Burger, Thomas

    2016-04-01

    Missing values are a genuine issue in label-free quantitative proteomics. Recent works have surveyed the different statistical methods to conduct imputation and have compared them on real or simulated data sets and recommended a list of missing value imputation methods for proteomics application. Although insightful, these comparisons do not account for two important facts: (i) depending on the proteomics data set, the missingness mechanism may be of different natures and (ii) each imputation method is devoted to a specific type of missingness mechanism. As a result, we believe that the question at stake is not to find the most accurate imputation method in general but instead the most appropriate one. We describe a series of comparisons that support our views: For instance, we show that a supposedly "under-performing" method (i.e., giving baseline average results), if applied at the "appropriate" time in the data-processing pipeline (before or after peptide aggregation) on a data set with the "appropriate" nature of missing values, can outperform a blindly applied, supposedly "better-performing" method (i.e., the reference method from the state-of-the-art). This leads us to formulate few practical guidelines regarding the choice and the application of an imputation method in a proteomics context.

  11. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.

    Science.gov (United States)

    Rardin, Matthew J; Newman, John C; Held, Jason M; Cusack, Michael P; Sorensen, Dylan J; Li, Biao; Schilling, Birgit; Mooney, Sean D; Kahn, C Ronald; Verdin, Eric; Gibson, Bradford W

    2013-04-16

    Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.

  12. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling.

    Science.gov (United States)

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y

    2015-08-17

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.

  13. Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics.

    Science.gov (United States)

    Guo, Jisheng; Wang, Xiaoyue; Lü, Xin; Jing, Ruirui; Li, Junqiang; Li, CuiLing; Wang, Daoguang; Bi, Baibin; Chen, Xinjun; Wang, Fengqin; Sun, Shengnan; Gong, Jing; Azadzoi, Kazem M; Yang, Jing-Hua

    2016-06-17

    ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.

  14. iMet-Q: A User-Friendly Tool for Label-Free Metabolomics Quantitation Using Dynamic Peak-Width Determination.

    Directory of Open Access Journals (Sweden)

    Hui-Yin Chang

    Full Text Available Efficient and accurate quantitation of metabolites from LC-MS data has become an important topic. Here we present an automated tool, called iMet-Q (intelligent Metabolomic Quantitation, for label-free metabolomics quantitation from high-throughput MS1 data. By performing peak detection and peak alignment, iMet-Q provides a summary of quantitation results and reports ion abundance at both replicate level and sample level. Furthermore, it gives the charge states and isotope ratios of detected metabolite peaks to facilitate metabolite identification. An in-house standard mixture and a public Arabidopsis metabolome data set were analyzed by iMet-Q. Three public quantitation tools, including XCMS, MetAlign, and MZmine 2, were used for performance comparison. From the mixture data set, seven standard metabolites were detected by the four quantitation tools, for which iMet-Q had a smaller quantitation error of 12% in both profile and centroid data sets. Our tool also correctly determined the charge states of seven standard metabolites. By searching the mass values for those standard metabolites against Human Metabolome Database, we obtained a total of 183 metabolite candidates. With the isotope ratios calculated by iMet-Q, 49% (89 out of 183 metabolite candidates were filtered out. From the public Arabidopsis data set reported with two internal standards and 167 elucidated metabolites, iMet-Q detected all of the peaks corresponding to the internal standards and 167 metabolites. Meanwhile, our tool had small abundance variation (≤ 0.19 when quantifying the two internal standards and had higher abundance correlation (≥ 0.92 when quantifying the 167 metabolites. iMet-Q provides user-friendly interfaces and is publicly available for download at http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html.

  15. iMet-Q: A User-Friendly Tool for Label-Free Metabolomics Quantitation Using Dynamic Peak-Width Determination.

    Science.gov (United States)

    Chang, Hui-Yin; Chen, Ching-Tai; Lih, T Mamie; Lynn, Ke-Shiuan; Juo, Chiun-Gung; Hsu, Wen-Lian; Sung, Ting-Yi

    2016-01-01

    Efficient and accurate quantitation of metabolites from LC-MS data has become an important topic. Here we present an automated tool, called iMet-Q (intelligent Metabolomic Quantitation), for label-free metabolomics quantitation from high-throughput MS1 data. By performing peak detection and peak alignment, iMet-Q provides a summary of quantitation results and reports ion abundance at both replicate level and sample level. Furthermore, it gives the charge states and isotope ratios of detected metabolite peaks to facilitate metabolite identification. An in-house standard mixture and a public Arabidopsis metabolome data set were analyzed by iMet-Q. Three public quantitation tools, including XCMS, MetAlign, and MZmine 2, were used for performance comparison. From the mixture data set, seven standard metabolites were detected by the four quantitation tools, for which iMet-Q had a smaller quantitation error of 12% in both profile and centroid data sets. Our tool also correctly determined the charge states of seven standard metabolites. By searching the mass values for those standard metabolites against Human Metabolome Database, we obtained a total of 183 metabolite candidates. With the isotope ratios calculated by iMet-Q, 49% (89 out of 183) metabolite candidates were filtered out. From the public Arabidopsis data set reported with two internal standards and 167 elucidated metabolites, iMet-Q detected all of the peaks corresponding to the internal standards and 167 metabolites. Meanwhile, our tool had small abundance variation (≤ 0.19) when quantifying the two internal standards and had higher abundance correlation (≥ 0.92) when quantifying the 167 metabolites. iMet-Q provides user-friendly interfaces and is publicly available for download at http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html.

  16. Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data.

    Science.gov (United States)

    Tu, Chengjian; Li, Jun; Sheng, Quanhu; Zhang, Ming; Qu, Jun

    2014-04-04

    Survey-scan-based label-free method have shown no compelling benefit over fragment ion (MS2)-based approaches when low-resolution mass spectrometry (MS) was used, the growing prevalence of high-resolution analyzers may have changed the game. This necessitates an updated, comparative investigation of these approaches for data acquired by high-resolution MS. Here, we compared survey scan-based (ion current, IC) and MS2-based abundance features including spectral-count (SpC) and MS2 total-ion-current (MS2-TIC), for quantitative analysis using various high-resolution LC/MS data sets. Key discoveries include: (i) study with seven different biological data sets revealed only IC achieved high reproducibility for lower-abundance proteins; (ii) evaluation with 5-replicate analyses of a yeast sample showed IC provided much higher quantitative precision and lower missing data; (iii) IC, SpC, and MS2-TIC all showed good quantitative linearity (R(2) > 0.99) over a >1000-fold concentration range; (iv) both MS2-TIC and IC showed good linear response to various protein loading amounts but not SpC; (v) quantification using a well-characterized CPTAC data set showed that IC exhibited markedly higher quantitative accuracy, higher sensitivity, and lower false-positives/false-negatives than both SpC and MS2-TIC. Therefore, IC achieved an overall superior performance than the MS2-based strategies in terms of reproducibility, missing data, quantitative dynamic range, quantitative accuracy, and biomarker discovery.

  17. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays.

    Science.gov (United States)

    Zhang, Kun; Zhao, Jingjing; Ji, Ji; Li, Yixin; Liu, Baohong

    2015-09-01

    Although surface-enhanced Raman scattering (SERS) has proven to be an effective tool for label-free monitoring of catalytic reactions, quantitative characterization of reaction kinetics via this technique remains challenging owing to the difficulty in integrating catalytic and plasmonic activities into a single platform. In this work, we report on an easy access to highly sensitive plasmonic nanoarrays for direct and label-free monitoring of a gold-catalyzed reaction by SERS. The hierarchically structured three-dimensional assemblies, which consist of small gold catalyst nanoparticles distributed on a self-assembled monolayer of larger gold nanoparticles, were formed through a simple and rapid stepwise interfacial self-assembling process (fabrication time quantitative determination of the rate constant and activation energy of the catalytic reaction with SERS.

  18. Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo.

    Science.gov (United States)

    Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F

    2015-10-01

    Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1-/- and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1-/- and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1-/- mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.

  19. Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Callister, Stephen J.; Barry, Richard C.; Adkins, Joshua N.; Johnson, Ethan T.; Qian, Weijun; Webb-Robertson, Bobbie-Jo M.; Smith, Richard D.; Lipton, Mary S.

    2006-02-01

    Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias, assigned ranks among the techniques revealed significant trends. For most LC-FTICR MS analyses, linear regression normalization ranked either first or second among the four techniques, suggesting that this technique was more generally suitable for reducing systematic biases.

  20. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics.

    Science.gov (United States)

    Strzelecka, Dominika; Holman, Stephen W; Eyers, Claire E

    2015-11-30

    Dimethyl sulfoxide (DMSO) has been advocated as a beneficial additive to electrospray solvents for peptide analysis due to the improved ionisation efficiency conferred. Previous reports have shown that the resultant improvements in peptide ion signal intensities are non-uniform. As a result, it was hypothesised that inclusion of DMSO in electrospray solvents could be detrimental to the outcome of intensity-based label-free absolute quantification approaches, specifically the top 3 method. The effect of DMSO as a mobile phase additive in top 3 label-free quantification was therefore evaluated. We show that inclusion of DMSO enhances data quality, improving the precision and number of proteins quantified, with no significant change to the quantification values observed in its absence.

  1. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    Science.gov (United States)

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  2. A Simplified Workflow for Protein Quantitation of Rat Brain Tissues Using Label-Free Proteomics and Spectral Counting.

    Science.gov (United States)

    Boutté, Angela M; Grant, Shonnette F; Dave, Jitendra R

    2016-01-01

    Mass spectrometry-based proteomics is an increasingly valuable tool for determining relative or quantitative protein abundance in brain tissues. A plethora of technical and analytical methods are available, but straightforward and practical approaches are often needed to facilitate reproducibility. This aspect is particularly important as an increasing number of studies focus on models of traumatic brain injury or brain trauma, for which brain tissue proteomes have not yet been fully described. This text provides suggested techniques for robust identification and quantitation of brain proteins by using molecular weight fractionation prior to mass spectrometry-based proteomics. Detailed sample preparation and generalized protocols for chromatography, mass spectrometry, spectral counting, and normalization are described. The rat cerebral cortex isolated from a model of blast-overpressure was used as an exemplary source of brain tissue. However, these techniques may be adapted for lysates generated from several types of cells or tissues and adapted by the end user.

  3. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  4. Rapid label-free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome.

    Science.gov (United States)

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Kountourakis, Nikos; Koukaki, Marina; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Tsolis, Konstantinos C; Karamanou, Spyridoula; Economou, Anastassios

    2016-01-01

    Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane-embedded sub-proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re-annotation of the theoretical E. coli IMP regarding the sub-cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC-MS/MS analysis, we experimentally identified ∼45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label-free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over-synthesizing the membrane-embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.

  5. Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing.

    Science.gov (United States)

    Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M

    2016-04-15

    Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy.

  6. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    Science.gov (United States)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  7. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    Science.gov (United States)

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-03-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.

  8. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    Science.gov (United States)

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2017-04-05

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017. Published by Elsevier B.V.

  9. Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods

    Science.gov (United States)

    Della Ventura, B.; Rea, I.; Caliò, A.; Giardina, P.; Gravagnuolo, A. M.; Funari, R.; Altucci, C.; Velotta, R.; De Stefano, L.

    2016-02-01

    Hydrophobins (HFBs) are peculiar proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, and some of them (class I HFB) are able to form much more stable amyloid-like layers. This feature makes them suitable for many purposes, particularly when stable surface functionalization is required, also in view of their versatility in binding different kinds of molecules. For instance, it has been shown that Vmh2 from Pleurotus ostreatus (a class I HFB) is able to bind molecules like glucose, thus offering the perspective of using Vmh2 as a surface functionalization tool in bio-hybrid devices. In this paper a quantitative analysis of glucose interaction with the Vmh2 layer is reported; in particular, it is shown that Vmh2 layer swells by almost doubling its thickness as a result of glucose diffusion and each Vmh2 monomer is able to bind approximately 30 glucose molecules. These results have been achieved by self-assembling multi-layers of Vmh2 on a gold substrate and, subsequently, measuring both the mass of the bound glucose and the thickness of the resulting layer through two different and complementary techniques: quartz crystal-microbalance and ellipsometry. The data provided by the two techniques are in a satisfactory agreement and offer a plausible description of the mechanisms underlying the interaction of glucose with Vmh2 layer. This facile and versatile coating is of interest for biomedical applications of gold surfaces and particles.

  10. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-06-01

    Full Text Available Abstract The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1 was quantitatively analyzed in Coomassie Blue G250 (CBB-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67 for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.

  11. The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham.

    Science.gov (United States)

    Gallego, Marta; Mora, Leticia; Concepción Aristoy, M; Toldrá, Fidel

    2016-04-01

    The aim of this work was to quantify changes in the abundance of the major sarcoplasmic proteins throughout the ham dry-curing process by using a label-free mass spectrometry methodology based on the measurement of mass spectral peak intensities obtained from the extracted ion chromatogram. For this purpose, extraction of sarcoplasmic proteins was followed by trypsin digestion and analysis by nanoliquid chromatography coupled to tandem mass spectrometry (Q/TOF) for the identification and relative quantification of sarcoplasmic proteins through individual quantification of trypsinised peptides. In total, 20 proteins, including 12 glycolytic enzymes, were identified and quantified. The accuracy of the protocol was based on MS/MS replicates, and beta-lactoglobulin protein was used to normalise data and correct possible variations during sample preparation or LC-MS/MS analysis. Mass spectrometry-based proteomics provides precise identification and quantification of proteins in comparison with traditional methodologies based on gel electrophoresis, especially in the case of overlapping proteins. Moreover, the label-free approach used in this study proved to be a simple, fast, reliable method for evaluating proteolytic degradation of sarcoplasmic proteins during the processing of dry-cured ham.

  12. Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L.

    Science.gov (United States)

    Soares, Eduardo de A; Werth, Emily G; Madroñero, Leidy J; Ventura, José A; Rodrigues, Silas P; Hicks, Leslie M; Fernandes, Patricia M B

    2017-01-16

    Papaya meleira virus (PMeV) infects papaya (Carica papaya L.) and leads to Papaya Sticky Disease (PSD) or "Meleira", characterized by a spontaneous exudation of latex from fruits and leaves only in the post-flowering developmental stage. The latex oxidizes in contact with air and accumulates as a sticky substance on the plant organs, impairing papaya fruit's marketing and exportation. To understand pre-flowering C. papaya resistance to PMeV, an LC-MS/MS-based label-free proteomics approach was used to assess the differential proteome of PMeV-infected pre-flowering C. papaya vs. uninfected (control) plants. In this study, 1333 proteins were identified, of which 111 proteins showed a significant abundance change (57 increased and 54 decreased) and supports the hypothesis of increased photosynthesis and reduction of 26S-proteassoma activity and cell-wall remodeling. All of these results suggest that increased photosynthetic activity has a positive effect on the induction of plant immunity, whereas the reduction of caspase-like activity and the observed changes in the cell-wall associated proteins impairs the full activation of defense response based on hypersensitive response and viral movement obstruction in pre-flowering C. papaya plants. The papaya (Carica papaya L.) fruit's production is severely limited by the occurrence of Papaya meleira virus (PMeV) infection, which causes Papaya Sticky Disease (PSD). Despite the efforts to understand key features involved with the plant×virus interaction, PSD management is still largely based on the observation of the first disease symptoms in the field, followed by the elimination of the diseased plants. However, C. papaya develops PSD only after flowering, i.e. about six-months after planting, and the virus inoculum sources are kept in field. The development of PMeV resistant genotypes is impaired by the limited knowledge about C. papaya resistance against viruses. The occurrence of a resistance/tolerance mechanism to PSD

  13. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    Science.gov (United States)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  14. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    Science.gov (United States)

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  15. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit.

    Science.gov (United States)

    Mora, Leticia; Bramley, Peter M; Fraser, Paul D

    2013-06-01

    A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.

  16. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    Science.gov (United States)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  17. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.

    Science.gov (United States)

    Lee, Young Ju; Lee, Gi-Ja; Kang, Sung Wook; Cheong, Youjin; Park, Hun-Kuk

    2013-06-01

    In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force-distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC₅₀ value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity.

  18. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants.

    Science.gov (United States)

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B

    2012-06-18

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.

  19. Quantitative proteomic analysis of the effects of a GalNAc/Man-specific lectin CSL on yeast cells by label-free LC-MS.

    Science.gov (United States)

    Liu, Shuai; Li, Linge; Tong, Changqing; Zhao, Qiancheng; Lukyanov, Pavel A; Chernikov, Oleg V; Li, Wei

    2016-04-01

    A Ca(2+)-dependent GalNAc/Man-specific lectin (CSL) from Cyclina sinensis was isolated, and its stimulatory action was characterized in yeast. CSL showed a potent effect on the production of ethanol by Saccharomyces cerevisiae. In this work, the changes in the protein expression profiles of S. cerevisiae after 24h of incubation with CSL were analyzed using label-free quantitative proteomics. A total of 1410 proteins were identified, but only 117 proteins showed significant differences in normalized volume (p<0.05). Among the latter proteins, 24 proteins were up-regulated, and 93 were down-regulated. Analysis of the proteome revealed that CSL triggered changes in the concentrations of some enzymes, such as increased expression of hexokinase, glyceraldehyde 3-phosphate dehydrogenase and enolase and decreased expression of dihydrolipoamide dehydrogenase and aldehyde dehydrogenase. These results indicate that CSL can cause some changes in the metabolic pathway involved in ethanol synthesis in S. cerevisiae. These data may help us understand the stimulatory mechanism of lectin in the fermentation process.

  20. A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.

    Science.gov (United States)

    Hakimi, Osnat; Ternette, Nicola; Murphy, Richard; Kessler, Benedikt M; Carr, Andrew

    2017-01-01

    Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS. Employing two digestion protocols (trypsin and elastase), we analysed grain-sized tendon supraspinatus biopsies from older patients with torn tendons and from healthy, young controls. Our findings confirm measurable degradation of collagen fibrils and associated proteins in old and torn tendons, suggesting a significant loss of tissue organisation. A particularly marked reduction of cartilage oligomeric matrix protein (COMP) raises the possibility of using changes in levels of this glycoprotein as a marker of abnormal tissue, as previously suggested in horse models. Surprisingly, and despite using an elastase digestion for validation, elastin was not detected, suggesting that it is not highly abundant in human supraspinatus tendon as previously thought. Finally, we identified marked changes to the elastic fibre, fibrillin-rich niche and the pericellular matrix. Further investigation of these regions may yield other potential biomarkers and help to explain detrimental cellular processes associated with tendon ageing and tendinopathy.

  1. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    Directory of Open Access Journals (Sweden)

    Hung V. Trinh

    2013-01-01

    Full Text Available Both isobaric tags for relative and absolute quantitation (iTRAQ and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or label-free methods were used, and the resulting samples were analyzed by liquid chromatography (LC and tandem mass spectrometry (MS/MS. To reduce a possible bias from quantitation software, we applied several software packages for each procedure. ProteinPilot and Scaffold Q+ software were used for iTRAQ-labeled samples, while Progenesis LC-MS and ProgenesisF-T2PQ/T3PQ were employed for label-free analyses. R2 correlation coefficients correlated well between two software packages applied to the same datasets with values between 0.48 and 0.78 for iTRAQ-label-based quantitations and 0.5 and 0.86 for label-free quantitations. Analyses of label-free samples showed higher levels of protein up- or downregulation in comparison to iTRAQ-labeled samples. The concentration differences were further evaluated by Western blotting for four downregulated proteins. These data suggested that the label-free method was more accurate than the iTRAQ method.

  2. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics.

    Science.gov (United States)

    Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C; McNeilly, Tom N; Weidt, Stefan K; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P David; Zadoks, Ruth N

    2016-08-16

    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously.

  3. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.

    Science.gov (United States)

    Küster, Simon K; Fagerer, Stephan R; Verboket, Pascal E; Eyer, Klaus; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2013-02-05

    Droplet-based microfluidic systems have become a very powerful tool to miniaturize chemical and biological reactions. However, droplet content analysis remains challenging and relies almost exclusively on optical methods such as fluorescence spectroscopy. Hence, labeling of the analyte is typically required which impedes a more universal applicability of microdroplets. Here we present a novel interface coupling droplet microfluidics and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for label-free content analysis of single droplets. Nanoliter aqueous droplets immersed in perfluorinated oil are created in a microfluidic T-junction, transferred into a capillary, and deposited on a high-density microarray MALDI plate mounted on a motorized xy-stage. The fully automated system is robust and reliable due to two unique features. First, a simple optical droplet detection system is used to synchronize stage movement and exit of droplets from the capillary. Second, the microarray plate contains an array of over 26,000 hydrophilic spots within a hydrophobic coating, each spot acting as a recipient to confine the droplets and to prevent cross-contamination. The MALDI matrix can also be applied using our system by spotting matrix droplets on the microarray in a separate run. To demonstrate the potential of our system, we studied the enzymatic cleavage of angiotensin I by angiotensin converting enzyme and monitored the increasing concentration of the product angiotensin II over time. The interface provides a robust and fully automated method for rapid label-free and information-rich content analysis of single droplets. With the high number of droplets per plate, this method is particularly suitable for high-throughput screening applications.

  4. Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry

    DEFF Research Database (Denmark)

    Danielsen, Heidi N; Hansen, Susan H; Herbst, Florian-Alexander

    2017-01-01

    Functional amyloids are important structural and functional components of many biofilms, yet our knowledge of these fascinating polymers is limited to a few examples for which the native amyloids have been isolated in pure form. Isolation of the functional amyloids from other cell components repr...

  5. Towards high throughput and spatiotemporal proteomics : analytical workflows and quantitative label-free mass spectrometry

    NARCIS (Netherlands)

    Mostovenko, Ekaterina

    2013-01-01

    A large part of modern biology is dedicated to the functional annotation and interpretation of genetic information and its influence on the subject’s phenotype. Proteomics describes the state of the system from the perspective of expression, structure, localization, interaction and function of the p

  6. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2015-09-01

    Full Text Available The full-length dystrophin protein isoform of 427 kDa (Dp427, the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context.

  7. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers

    Directory of Open Access Journals (Sweden)

    Ashling Holland

    2015-06-01

    Full Text Available The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.

  8. Deep Learning in Label-free Cell Classification

    National Research Council Canada - National Science Library

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    .... Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification...

  9. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.

    Science.gov (United States)

    Seong-Jin Kim; Euisik Yoon

    2012-06-01

    We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.

  10. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level.

  11. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors

    DEFF Research Database (Denmark)

    Klein, Anders B.; Nittegaard-Nielsen, Mia; Christensen, Julie T.

    2016-01-01

    Within the continuous quest for the discovery of pharmacol. interesting compds., the development of new and superior drug screening assays is desired. In recent years, the use of label-free techniques has paved the way for an alternative high-throughput screening method. An example is the Epic...... IMR-32 neuroblastoma cell line, which expresses relatively high levels of several endogenous GABAA receptor subunits, we show that GABA produces concn.-dependent cellular responses that can be measured and quantified in real-time. With the aid of the GABAA receptor-specific agonist muscimol...

  12. Label-Free Proteome Profiling of Carbapenem-Resistant Klebsiella pneumoniae LC-MS/MS

    Science.gov (United States)

    2016-12-12

    the sub-MIC doses of antibiotics was performed by using label-free quantitative mass spectrometry. Sample Processing Protocol The pellets were...were cleaned up with Stage-Tip prior to 1D-LC-MS/MS. 1 µg of tryptic digest was loaded in each LC-MS/MS analysis. Data Processing Protocol Raw data ...Taxonomy 272620) combined with common contaminants proteins. Data files (12 Pride.XML files) KP-DC-Bio1: Doxycycline- treated Klebsiella pneumoniae

  13. Label-Free Aptasensors for the Detection of Mycotoxins

    Directory of Open Access Journals (Sweden)

    Amina Rhouati

    2016-12-01

    Full Text Available Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins.

  14. Label-Free Aptasensors for the Detection of Mycotoxins.

    Science.gov (United States)

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-12-18

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins.

  15. Label-Free Aptasensors for the Detection of Mycotoxins

    Science.gov (United States)

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-01-01

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353

  16. A multicenter study benchmarks software tools for label-free proteome quantification.

    Science.gov (United States)

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  17. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.

    Science.gov (United States)

    Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2017-01-15

    With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu(2+) pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu(2+) in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu(2+)-ascorbic acid (H2A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu(2+) catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu(2+) in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu(2+), and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu(2+), which can determined accurately trace Cu(2+) in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety.

  18. Quantitative label-free phosphoproteomics of six different life stages of the late blight pathogen Phytophthora infestans reveals abundant phosphorylation of members of the CRN effector family.

    Science.gov (United States)

    Resjö, Svante; Ali, Ashfaq; Meijer, Harold J G; Seidl, Michael F; Snel, Berend; Sandin, Marianne; Levander, Fredrik; Govers, Francine; Andreasson, Erik

    2014-04-04

    The oomycete Phytophthora infestans is the causal agent of late blight in potato and tomato. Since the underlying processes that govern pathogenicity and development in P. infestans are largely unknown, we have performed a large-scale phosphoproteomics study of six different P. infestans life stages. We have obtained quantitative data for 2922 phosphopeptides and compared their abundance. Life-stage-specific phosphopeptides include ATP-binding cassette transporters and a kinase that only occurs in appressoria. In an extended data set, we identified 2179 phosphorylation sites and deduced 22 phosphomotifs. Several of the phosphomotifs matched consensus sequences of kinases that occur in P. infestans but not Arabidopsis. In addition, we detected tyrosine phosphopeptides that are potential targets of kinases resembling mammalian tyrosine kinases. Among the phosphorylated proteins are members of the RXLR and Crinkler effector families. The latter are phosphorylated in several life stages and at multiple positions, in sites that are conserved between different members of the Crinkler family. This indicates that proteins in the Crinkler family have functions beyond their putative role as (necrosis-inducing) effectors. This phosphoproteomics data will be instrumental for studies on oomycetes and host-oomycete interactions. The data sets have been deposited to ProteomeXchange (identifier PXD000433).

  19. Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes.

    Science.gov (United States)

    Joshi, Gayatri K; Deitz-McElyea, Samantha; Liyanage, Thakshila; Lawrence, Katie; Mali, Sonali; Sardar, Rajesh; Korc, Murray

    2015-11-24

    MicroRNAs are short noncoding RNAs consisting of 18-25 nucleotides that target specific mRNA moieties for translational repression or degradation, thereby modulating numerous biological processes. Although microRNAs have the ability to behave like oncogenes or tumor suppressors in a cell-autonomous manner, their exact roles following release into the circulation are only now being unraveled and it is important to establish sensitive assays to measure their levels in different compartments in the circulation. Here, an ultrasensitive localized surface plasmon resonance (LSPR)-based microRNA sensor with single nucleotide specificity was developed using chemically synthesized gold nanoprisms attached onto a solid substrate with unprecedented long-term stability and reversibility. The sensor was used to specifically detect microRNA-10b at the attomolar (10(-18) M) concentration in pancreatic cancer cell lines, derived tissue culture media, human plasma, and media and plasma exosomes. In addition, for the first time, our label-free and nondestructive sensing technique was used to quantify microRNA-10b in highly purified exosomes isolated from patients with pancreatic cancer or chronic pancreatitis, and from normal controls. We show that microRNA-10b levels were significantly higher in plasma-derived exosomes from pancreatic ductal adenocarcinoma patients when compared with patients with chronic pancreatitis or normal controls. Our findings suggest that this unique technique can be used to design novel diagnostic strategies for pancreatic and other cancers based on the direct quantitative measurement of plasma and exosome microRNAs, and can be readily extended to other diseases with identifiable microRNA signatures.

  20. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.

    Science.gov (United States)

    Tran, Nhu Hoa Thi; Kim, Jisoo; Phan, Thang Bach; Khym, Sungwon; Ju, Heongkyu

    2017-09-07

    We demonstrated modulation of the waveguide mode mismatch via liquid cladding of the controllable refractive index for label-free quantitative detection of concentration of chemical or biological substances. A multimode optical fiber with its core exposed was used as the sensor head with the suitable chemical modification of its surface. Injected analyte liquid itself formed the liquid cladding for the waveguide. We found that modulation of the concentration of analyte injected enables a degree of the waveguide mode mismatch to be controlled, resulting in sensitive change in optical power transmission, which was utilized for its real-time quantitative assay. We applied the device to quantitating concentration of glycerol and bovine serum albumin (BSA) solutions. We obtained experimentally the limit of detection (LOD) of glycerol concentration, 0.001% (volume ratio), corresponding to the resolvable index resolution of ∼1.02 × 10(-6) RIU (refractive index unit). The presented sensors also exhibited reasonably good reproducibility. In BSA detection, the sensor device response was sensitive to change in the refractive indices not only of liquid bulk but also of layers just above the sensing surface with higher sensitivity, providing the LOD experimentally as ∼3.7 ng/mL (mass coverage of ∼30 pg/mm(2)). A theoretical model was also presented to invoke both mode mismatch modulation and evanescent field absorption for understanding of the transmission change, offering a theoretical background for designing the sensor head structure for a given analyte. Interestingly, the device sensing length played little role in the important sensor characteristics such as sensitivity, unlike most of the waveguide-based sensors. This unraveled the possibility of realizing a highly simple structured label-free sensor for point-of-care testing in a real-time manner via an optical waveguide with liquid cladding. This required neither metal nor dielectric coating but still produced

  1. Assessing the Phagosome Proteome by Quantitative Mass Spectrometry.

    Science.gov (United States)

    Peltier, Julien; Härtlova, Anetta; Trost, Matthias

    2017-01-01

    Phagocytosis is the process that engulfs particles in vesicles called phagosomes that are trafficked through a series of maturation steps, culminating in the destruction of the internalized cargo. Because phagosomes are in direct contact with the particle and undergo constant fusion and fission events with other organelles, characterization of the phagosomal proteome is a powerful tool to understand mechanisms controlling innate immunity as well as vesicle trafficking. The ability to isolate highly pure phagosomes through the use of latex beads led to an extensive use of proteomics to study phagosomes under different stimuli. Thousands of different proteins have been identified and quantified, revealing new properties and shedding new light on the dynamics and composition of maturing phagosomes and innate immunity mechanisms. In this chapter, we describe how quantitative-based proteomic methods such as label-free, dimethyl labeling or Tandem Mass Tag (TMT) labeling can be applied for the characterization of protein composition and translocation during maturation of phagosomes in macrophages.

  2. Deep Learning in Label-free Cell Classification

    Science.gov (United States)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  3. Deep Learning in Label-free Cell Classification.

    Science.gov (United States)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  4. Electrochemical Label-Free Nucleotide Sensors.

    Science.gov (United States)

    Aoki, Hiroshi

    2015-12-01

    Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.

  5. Label-Free Biosensors for Cell Biology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2011-01-01

    Full Text Available Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.

  6. Biopatterning for label-free detection.

    Science.gov (United States)

    Goddard, Julie M; Mandal, Sudeep; Nugen, Sam R; Baeumner, Antje J; Erickson, David

    2010-03-01

    We present a biopatterning technique suitable for applications which demand a high degree of surface cleanliness, such as immobilization of biological recognition elements onto label-free biosensors. In the case of label-free biosensing, the mechanism of signal transduction is based on surface bound matter, making them highly sensitive to surface contamination including residues left during the biopatterning process. In this communication we introduce a simple, rapid processing step that removes 98% of the residues that often remain after standard parylene lift-off patterning. Residue-free parylene biopatterning is combined with microfluidics to localize biomolecule immobilization onto the sensing region and to enable multiplexed biopatterning. We demonstrate the applicability of this method to multiplexed label-free detection platforms by patterning nucleic acid capture probes corresponding to the four different serotypes of Dengue virus onto parallel 1D photonic crystal resonator sensors. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to quantify surface cleanliness and uniformity. In addition to label-free biosensors, this technique is well suited to other nanobiotechnology patterning applications which demand a pristine, residue-free surface, such as immobilization of enzymes, antibodies, growth factors, or cell cultures.

  7. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  8. Label-Free Quantitation and Mapping of the ErbB2 Tumor Receptor by Multiple Protease Digestion with Data-Dependent (MS1 and Data-Independent (MS2 Acquisitions

    Directory of Open Access Journals (Sweden)

    Jason M. Held

    2013-01-01

    Full Text Available The receptor tyrosine kinase ErbB2 is a breast cancer biomarker whose posttranslational modifications (PTMs are a key indicator of its activation. Quantifying the expression and PTMs of biomarkers such as ErbB2 by selected reaction monitoring (SRM mass spectrometry has several limitations, including minimal coverage and extensive assay development time. Therefore, we assessed the utility of two high resolution, full scan mass spectrometry approaches, MS1 Filtering and SWATH MS2, for targeted ErbB2 proteomics. Endogenous ErbB2 immunoprecipitated from SK-BR-3 cells was in-gel digested with trypsin, chymotrypsin, Asp-N, or trypsin plus Asp-N in triplicate. Data-dependent acquisition with an AB SCIEX TripleTOF 5600 and MS1 Filtering data processing was used to assess peptide and PTM coverage as well as the reproducibility of enzyme digestion. Data-independent acquisition (SWATH was also performed for MS2 quantitation. MS1 Filtering and SWATH MS2 allow quantitation of all detected analytes after acquisition, enabling the use of multiple proteases for quantitative assessment of target proteins. Combining high resolution proteomics with multiprotease digestion enabled quantitative mapping of ErbB2 with excellent reproducibility, improved amino acid sequence and PTM coverage, and decreased assay development time compared to typical SRM assays. These results demonstrate that high resolution quantitative proteomic approaches are an effective tool for targeted biomarker quantitation.

  9. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  10. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  11. Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2010-04-01

    Full Text Available Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications.

  12. Using quantitative mass spectrometry to better understand the influence of genetics and nutritional perturbations on the virulence potential of Staphylococcus aureus.

    Science.gov (United States)

    Chapman, Jessica R; Balasubramanian, Divya; Tam, Kayan; Askenazi, Manor; Copin, Richard; Shopsin, Bo; Torres, Victor J; Ueberheide, Beatrix

    2017-02-14

    Staphylococcus aureus (Sa) is the leading cause of a variety of bacterial infections ranging from superficial skin infections to invasive and life threatening diseases such as septic bacteremia, necrotizing pneumonia, and endocarditis. The success of Sa as a human pathogen is due to its ability to adapt to the environment by changing expression, production, or secretion of virulence factors. Although Sa immune evasion is well-studied, the regulation of virulence factors under different nutrient and growth conditions is still not well understood. Here, we used label-free quantitative mass spectrometry to quantify and compare the secreted Sa proteins (i.e. exoproteomes) of master regulator mutants or established reference strains. Different environmental conditions were addressed by growing the bacteria in rich or minimal media at different phases of growth. We observed clear differences in the composition of the exoproteomes depending on the genetic background or growth conditions. The relative abundance of cytotoxins determined in our study correlated well with differences in cytotoxicity measured by lysis of human neutrophils. Our findings demonstrate that label-free quantitative mass spectrometry is a versatile tool for predicting the virulence of bacterial strains and highlights the importance of the experimental design for in vitro studies. Furthermore, the results indicate that label-free proteomics can be used to cluster isolates into groups with similar virulence properties and genetic lineages, highlighting the power of label-free quantitative mass spectrometry to distinguish Sa strains.

  13. Label-free photoacoustic microscopy of cytochromes

    Science.gov (United States)

    Zhang, Chi; Zhang, Yu Shrike; Yao, Da-Kang; Xia, Younan; Wang, Lihong V.

    2013-02-01

    Photoacoustic microscopy (PAM) has achieved submicron lateral resolution in showing subcellular structures; however, relatively few endogenous subcellular contrasts have so far been imaged. Given that the hemeprotein, mostly cytochromes in general cells, is optically absorbing around the Soret peak (˜420 nm), we implemented label-free PAM of cytochromes in cytoplasm for the first time. By measuring the photoacoustic spectra of the oxidized and reduced states of fibroblast lysate and fitting the difference spectrum with three types of cytochromes, we found that the three cytochromes account for more than half the optical absorption in the cell lysate at 420 nm wavelength. Fixed fibroblasts on slides were imaged by PAM at 422 and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard staining histology. PAM was also applied to label-free histology of mouse ear sections by showing cytoplasms and nuclei of various cells. PAM of cytochromes in cytoplasm is expected to be a high-throughput, label-free technique for studying live cell functions, which cannot be accomplished by conventional histology.

  14. 非标记液质联用法测定市售鸡肉和猪肉的蛋白组%Proteome Profiling of Chicken and Pork from Market by Label-free Liquid Chromatography-Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    曹进; 周晓宏; 苗兰; 孙明谦; 孙宝国; 廖永红

    2011-01-01

    Label-free liquid chromatography-mass spectrometry was employed for proteome profiling of commercial chicken and pork in present study.In addition,the differences in the variety and amounts of small peptides between fresh and cooked samples of both meat species were compared.The results showed that fresh chicken mainly contained 100 kD proteins with a pI ranging from 6 to 11.Most proteins in chicken soap ranged between 10 kD and 150 kD and revealed a pI of 4-9.Fresh pork also mainly contained 100 kD proteins with an pI ranging from 6 to 11.Most proteins in pork soap were 10-100 kD and had a pI of 3-9.Hence,similarly processed samples of different meat species differed in the proteome,suggesting indexes obtained in proteome profiling can provide a new strategy for meat quality evaluation.%采用非标记液质联用法对市售鸡肉和猪肉样品进行蛋白组测定,比较两种肉在新鲜和熬煮后的小肽种类、量的相对变化。结果显示新鲜鸡肉的蛋白主要是大于100kD的蛋白,pI值范围为6~11;而鸡肉汤中蛋白主要是10~150kD,pI值范围为4~9;新鲜猪肉的蛋白主要是大于100kD的蛋白,pI值范围为6~11,与鸡肉相似;而猪肉汤中蛋白主要是10~100kD,pI值范围为3~9。显示了不同肉材质在相似加工中,其蛋白组的变化会有所不同,根据这些不同,提示由蛋白组测试提取出的指标可为肉质量的评价提供新的评价方式。

  15. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry

    Directory of Open Access Journals (Sweden)

    Bertrand Fabre

    2014-09-01

    Full Text Available Protein complexes are the main molecular machines that support all major cellular pathways and their in-depth characterization are essential to understand their functions. Determining the stoichiometry of the different subunits of a protein complex still remains challenging. Recently, many label-free quantitative proteomic approaches have been developed to study the composition of protein complexes. It is therefore of great interest to evaluate these different methods in a stoichiometry oriented objective. Here we compare the ability of four absolute quantitative label-free methods currently used in proteomic studies to determine the stoichiometry of a well-characterized protein complex, the 26S proteasome.

  16. Label-free optical quantification of structural alterations in Alzheimer's disease

    CERN Document Server

    Lee, Moosung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2016-01-01

    We present a quantitative label-free imaging of mouse whole brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer's disease.

  17. Spectroscopic Methods for Label-Free Optical Nanoscopy

    Science.gov (United States)

    Chandler, John E.

    It is becoming increasingly evident that the nanoscale organization and structure of macromolecules play a significant role in determining the function and properties of biological systems. To understand the relationships between biological structure and function at nanometer length scales, there is a need for methods which enable imaging of intact nanoscale biological structure. An ideal technique for these applications is sensitive to nanoscale structure below the resolution limit of conventional optical microscopy ( 200 nm), achieves label-free contrast, is non-perturbing to biological samples, is quantitative, is capable of molecular specificity, is high-throughput, and finally is simple, enabling widespread utilization. Existing techniques meet some of these criteria, but all have limitations. For example, super-resolution optical microscopy methods achieve molecular-specific nanoscale resolution well below the resolution limit of conventional optical microscopes, however, they rely on fluorescent labels often at high densities that can be toxic and can often require potentially damaging illumination intensities for imaging. As a result, there remains a need for label-free optical techniques to study the nanoscale structural properties of cells. To address this need, the development of instrumentation and algorithms for Partial Wave Spectroscopic (PWS) microscopy will be described. PWS is a spectroscopic, label-free, nanoscale sensitive microscope which, senses rather than resolves structure below the resolution limit of conventional microscopes ( 200nm). First, PWS has shown utility as a diagnostic screening tool for cancer due to nanoscale structural alterations that occur in cells as part of the earliest stages of carcinogenesis. Instrumentation and algorithms developed to enable high-throughput cancer screening applications will be described. Further enhancement of data acquisition and analysis speed will then be described through the development of new

  18. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  19. Strategies for quantitation of phosphoproteomic data

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Thingholm, Tine Engberg

    2010-01-01

    Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation...... will be on different quantitation strategies. Methods for metabolic labeling, chemical modification and label-free quantitation and their applicability or inapplicability in phosphoproteomic studies are discussed....

  20. Label-free tissue scanner for colorectal cancer screening

    Science.gov (United States)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  1. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    Science.gov (United States)

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation. PMID:28248242

  2. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF.

    Science.gov (United States)

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-10-26

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  3. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    Directory of Open Access Journals (Sweden)

    Laëtitia Théron

    2016-10-01

    Full Text Available Mass spectrometry imaging (MSI is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  4. Artificial intelligence in label-free microscopy biological cell classification by time stretch

    CERN Document Server

    Mahjoubfar, Ata; Jalali, Bahram

    2017-01-01

    This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intell...

  5. Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates

    Directory of Open Access Journals (Sweden)

    Yannick eCharretier

    2015-02-01

    Full Text Available Both acquired and intrinsic mechanisms play a crucial role in Pseudomonas aeruginosa antibiotic resistance. Many clinically relevant resistance mechanisms result from changes in gene expression, namely multidrug efflux pump overproduction, AmpC beta-lactamase induction or derepression, and inactivation or repression of the carbapenem-specific porin OprD. Changes in gene expression are usually assessed using reverse-transcription quantitative real-time PCR (RT-qPCR assays. Here, we evaluated label-free Selected Reaction Monitoring (SRM-based mass spectrometry to directly quantify proteins involved in antibiotic resistance. We evaluated the label-free SRM using a defined set of P. aeruginosa isolates with known resistance mechanisms and compared it against RT-qPCR. Referring to efflux systems, we found a more robust relative quantification of antibiotic resistance mechanisms by SRM than RT-qPCR. The SRM-based approach was applied to a set of clinical P. aeruginosa isolates to detect antibiotic resistance proteins. This multiplexed SRM-based approach is a rapid and reliable method for the simultaneous detection and quantification of resistance mechanisms and we demonstrate its relevance for antibiotic resistance prediction.

  6. Photonic crystal microcapsules for label-free multiplex detection.

    Science.gov (United States)

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  7. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    Science.gov (United States)

    Chirvi, Sajal

    -channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  8. Diatom-based label-free optical biosensor for biomolecules.

    Science.gov (United States)

    Viji, S; Anbazhagi, M; Ponpandian, N; Mangalaraj, D; Jeyanthi, S; Santhanam, P; Devi, A Shenbaga; Viswanathan, C

    2014-10-01

    Diatoms are unicellular algae, which fabricates ornate biosilica shells called frustules that possess a surface rich in reactive silanol (Si-OH) groups. The intrinsic patterned porous structure of diatom frustules at nanoscale can be exploited in the effective detection of biomolecules. In this study, the frustules of a specific diatom Amphora sp. has been functionalized to detect bovine serum albumin (BSA). The functionalization of the diatom frustule substrate is achieved by using 3-aminopropyltriethoxysilane (APES). The field emission scanning electron microscopy (FESEM) results showed an ornately patterned surface of the frustule valve ordered at nanoscale. The Fourier transform infrared (FTIR) spectra confirmed the N-H bending and stretching of the amine group after amine functionalization. The emission peaks in the photoluminescence (PL) spectra of the amine-functionalized diatom biosilica selectively enhanced the intensity by a factor of ten when compared to that of a bare diatom biosilica. The result showed a significant quenching of PL intensity of BSA at around 445 nm due to the interaction of amine-functionalized diatom-BSA protein complex. The detection limit was found to be 3 × 10(-5) M of BSA protein. Hence, the study proves that the functionalized frustule of Amphora sp. is an effective quantitative analytical tool for optical label-free biosensing applications.

  9. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    Directory of Open Access Journals (Sweden)

    Yue Zhuo

    2015-08-01

    Full Text Available We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  10. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  11. Bioplasmonic calligraphy for multiplexed label-free biodetection.

    Science.gov (United States)

    Tian, Limei; Tadepalli, Sirimuvva; Park, Sang Hyun; Liu, Keng-Ku; Morrissey, Jeremiah J; Kharasch, Evan D; Naik, Rajesh R; Singamaneni, Srikanth

    2014-09-15

    Printable multi-marker biochips that enable simultaneous quantitative detection of multiple target biomarkers in point-of-care and resource-limited settings are a holy grail in the field of biodiagnostics. However, preserving the functionality of biomolecules, which are routinely employed as recognition elements, during conventional printing approaches remains challenging. In this article, we introduce a simple yet powerful approach, namely plasmonic calligraphy, for realizing multiplexed label-free bioassays. Plasmonic calligraphy involves a regular ballpoint pen filled with biofunctionalized gold nanorods as plasmonic ink for creating isolated test domains on paper substrates. Biofriendly plasmonic calligraphy approach serves as a facile method to miniaturize the test domain size to few mm(2), which significantly improves the sensitivity of the plasmonic biosensor compared to bioplasmonic paper fabricated using immersion approach. Furthermore, plasmonic calligraphy also serves as a simple and efficient means to isolate multiple test domains on a single test strip, which facilitates multiplexed biodetection and multi-marker biochips. Plasmonic calligraphy, which can be potentially automated by implementing with a robotic arm, serves as an alternate path forward to overcome the limitations of conventional ink-jet printing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microfluidics-integrated cascaded double-microring resonators for label-free biosensing

    Science.gov (United States)

    Chen, Yangqing; Yu, Fang; Yang, Chang; Li, Mingyu; Tang, Longhua; Song, Jinyan; He, Jian-Jun

    2014-11-01

    A highly-sensitive optical waveguide biosensor integrated with microfluidic channels based on silicon-on-insulator (SOI) was investigated in this paper. Experimental results of the label-free detection exhibits this novel biosensor with the superior reliability for quantitative and kinetic measurement of the interaction between biological molecules, dramatically improving the sensitivity due to the Vernier effect induced by cascaded double-microring resonators.

  13. Label-free optical quantification of structural alterations in Alzheimer’s disease

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, Jaehwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, Yongkeun

    2016-08-01

    We present a wide-field quantitative label-free imaging of mouse brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved by using the modified the scattering-phase theorem, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer’s disease.

  14. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6mb00290k Click here for additional data file.

    Science.gov (United States)

    Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C.; McNeilly, Tom N.; Weidt, Stefan K.; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P. David

    2016-01-01

    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously. PMID:27412694

  15. Large-scale plasmonic microarrays for label-free high-throughput screening.

    Science.gov (United States)

    Chang, Tsung-Yao; Huang, Min; Yanik, Ahmet Ali; Tsai, Hsin-Yu; Shi, Peng; Aksu, Serap; Yanik, Mehmet Fatih; Altug, Hatice

    2011-11-07

    Microarrays allowing simultaneous analysis of thousands of parameters can significantly accelerate screening of large libraries of pharmaceutical compounds and biomolecular interactions. For large-scale studies on diverse biomedical samples, reliable, label-free, and high-content microarrays are needed. In this work, using large-area plasmonic nanohole arrays, we demonstrate for the first time a large-scale label-free microarray technology with over one million sensors on a single microscope slide. A dual-color filter imaging method is introduced to dramatically increase the accuracy, reliability, and signal-to-noise ratio of the sensors in a highly multiplexed manner. We used our technology to quantitatively measure protein-protein interactions. Our platform, which is highly compatible with the current microarray scanning systems can enable a powerful screening technology and facilitate diagnosis and treatment of diseases.

  16. On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics

    Directory of Open Access Journals (Sweden)

    Benedetta Turriziani

    2014-04-01

    Full Text Available With the advent of the “-omics” era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.

  17. Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics.

    Science.gov (United States)

    Zhang, Yi; Tang, Yunfang; Hsieh, Yi-Heui; Hsu, Chuen-Yuan; Xi, Jianzhong; Lin, Kuan-Jiuh; Jiang, Xingyu

    2012-09-07

    This work reports an integrated platform combining localized-surface plasmon resonance (LSPR) and microfluidic chips to carry out multiplexed and label-free protein analysis. We fabricated an optical bench to enable detection using only a laboratory UV-Vis spectrophotometer. This assay not only improves throughput, but also allows quantitative analysis.

  18. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer;

    is a Fluorescent In Situ Hybridization, which is laborious and involves use of expensive reagents [1]. Here we present a label free technique for detection of chromosome translocations. As a proof of concept detection of chromosome translocation between chromosome 3 (Chr3) and chromosome 9 (Chr9) was chosen....

  19. Label-free characterization of biomembranes: from structure to dynamics

    NARCIS (Netherlands)

    Mashaghi, A.; Mashaghi, S.; Reviakine, I.; Heeren, R.M.A.; Sandoghdarf, V.; Bonn, M.

    2013-01-01

    We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applyi

  20. Emerging applications of label-free optical biosensors

    Science.gov (United States)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  1. Optimization of statistical methods impact on quantitative proteomics data

    NARCIS (Netherlands)

    Pursiheimo, A.; Vehmas, A.P.; Afzal, S.; Suomi, T.; Chand, T.; Strauss, L.; Poutanen, M.; Rokka, A.; Corthals, G.L.; Elo, L.L.

    2015-01-01

    As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled

  2. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    Science.gov (United States)

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  3. Optimization of Statistical Methods Impact on Quantitative Proteomics Data.

    Science.gov (United States)

    Pursiheimo, Anna; Vehmas, Anni P; Afzal, Saira; Suomi, Tomi; Chand, Thaman; Strauss, Leena; Poutanen, Matti; Rokka, Anne; Corthals, Garry L; Elo, Laura L

    2015-10-02

    As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled experiments with known quantitative differences for specific proteins used as standards as well as "real" experiments where differences in protein abundance are not known a priori. Our results suggest that data-driven reproducibility-optimization can consistently produce reliable differential expression rankings for label-free proteome tools and are straightforward in their application.

  4. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunxia Luan

    2015-12-01

    Full Text Available A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA was developed using a cationic polymer and gold nanoparticles (AuNPs. The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  5. Comparison of serum fractionation methods by data independent label-free proteomics

    Directory of Open Access Journals (Sweden)

    D. Baiwir

    2015-12-01

    Full Text Available Off-line sample prefractionations applied prior to biomarker discovery proteomics are options to enable more protein identifications and detect low-abundance proteins. This work compared five commercial methods efficiency to raw serum analysis using label-free proteomics. The variability of the protein quantities determined for each process was similar to the unprefractionated serum. A 49% increase in protein identifications and 12.2% of reliable quantification were obtained. A 61 times lower limit of protein quantitation was reached compared to protein concentrations observed in raw serum. The concentrations of detected proteins were confronted to estimated reference values.

  6. Label-free discrimination of normal and fibroadenomal breast tissues using second harmonic generation imaging.

    Science.gov (United States)

    Zheng, Liqin; Zhuo, Shuangmu; Chen, Gang; Zhu, Xiaoqin; Jiang, Xingshan; Yan, Jun; Chen, Jianxin; Xie, Shusen

    2011-01-01

    Early detection of fibroadenoma (FA) is critical for preventing subsequent breast cancer. In this work, we show that label-free second harmonic generation (SHG) imaging is feasible and effective in quantitatively differentiating the fibroadenomal tissue from normal breast tissue. With the advent of the clinical portability of miniature SHG microscopy, we believe that the technique has great potential in offering a noninvasive in vivo imaging tool for early detection of FA and monitoring the treatment responses of FA in clinics. Copyright © 2011 Wiley Periodicals, Inc.

  7. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  8. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles.

    Science.gov (United States)

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang

    2015-12-10

    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  9. Antibody mimetic receptor proteins for label-free biosensors.

    Science.gov (United States)

    Raina, M; Sharma, R; Deacon, S E; Tiede, C; Tomlinson, D; Davies, A G; McPherson, M J; Wälti, C

    2015-02-07

    The development of high sensitivity biosensors, for example for clinical diagnostics, requires the identification of suitable receptor molecules which offer high stability, specificity and affinity, even when embedded into solid-state biosensor transducers. Here, we present an electrochemical biosensor employing small synthetic receptor proteins (Mw pM and 6.7 nM. These findings demonstrate that these non-antibody receptor proteins are excellent candidates for recognition molecules in label-free biosensors.

  10. Emerging applications of label-free optical biosensors

    Directory of Open Access Journals (Sweden)

    Zanchetta Giuliano

    2017-01-01

    Full Text Available Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  11. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    Science.gov (United States)

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  12. Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography

    Science.gov (United States)

    Leitgeb, Rainer A.; Szkulmowski, Maciej; Blatter, Cedric; Wojtkowski, Maciej

    Information about tissue perfusion and the vascular structure is certainly most important for assessment of tissue state or personal health and the diagnosis of any pathological conditions. It is therefore of key medical interest to have tools available for both quantitative blood flow assessment as well as qualitative vascular imaging. The strength of optical techniques is the unprecedented level of detail even for small capillary structures or microaneurysms and the possibility to combine different techniques for additional tissue spectroscopy giving insight into tissue metabolism. There is an immediate diagnostic and pharmacological demand for high-resolution, label-free, tissue angiography and flow assessment that in addition allow for precise depth gating of flow information. The most promising candidate is Doppler optical coherence tomography (DOCT) being noncontact, label free, and without employing hazardous radiation. DOCT provides fully quantitative volumetric information about blood flow together with the vascular and structural anatomy. Besides flow quantification, analysis of OCT signal fluctuations allows to contrast moving scatterers in tissue such as red blood cells from static tissue. This allows for non-invasive optical angiography and yields high resolution even for smallest capillaries. Because of the huge potential of DOCT and lable-free optical angiography for diagnosis, the last years saw a rapid increase of publications in this field with many different approaches. The present chapter gives an overview over existing Doppler OCT approaches and angiography techniques. It furthermore discusses limitations and noise issues, and gives examples for angiography in the eye and the skin.

  13. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    Science.gov (United States)

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  14. Label-free classification of cultured cells through diffraction imaging.

    Science.gov (United States)

    Dong, Ke; Feng, Yuanming; Jacobs, Kenneth M; Lu, Jun Q; Brock, R Scott; Yang, Li V; Bertrand, Fred E; Farwell, Mary A; Hu, Xin-Hua

    2011-06-01

    Automated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for rapid classification among six types of cultured cells. Combined with numerical results we show that the method of diffraction imaging flow cytometry has the capacity as a platform for high-throughput and label-free classification of biological cells.

  15. Functionalized nanopipettes: toward label-free, single cell biosensors.

    Science.gov (United States)

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  16. Label-Free DNA Sequencing Using Millikan Detection

    OpenAIRE

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-01-01

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucl...

  17. Novel optical approaches for label-free quantification of nano-cytotoxic effects

    Science.gov (United States)

    Mues, Sarah; Antunovic, Jan; Ketelhut, Steffi; Kemper, Björn; Schnekenburger, Jürgen

    2016-03-01

    Commonly used cytotoxicity assays to determine the formation of reactive oxygen species, cell viability or cell death are often affected by applied nanomaterials, which lead to false-positive or false-negative results. Thus, novel nanomaterial toxicity testing strategies that allow for high nanomaterial doses to determine Low Effect Levels (LOEL) even of low toxic materials are of high interest. We demonstrate novel approaches to quantify cytotoxic effects with new parameter sets such as cellular refractive index, volume, density and dry mass that are obtained by digital holographic microscopy (DHM). Furthermore, we correlate results obtained from spherical (NM 300) and rod shaped (NM 302) silver nanomaterials with established cell viability and cell death assays. Moreover, in a label-free flow cytometry configuration, cell-nanoparticle-interaction-kinetics were determined by side scatter signal analysis. We demonstrate that silver spheres show a higher cytotoxicity than silver rods and found that this effect correlates with a decrease of the intracellular refractive index and a decreased temporal development of dry mass and cell covered surface area indicating reduced cell viability and increased cell death. Results from side scatter analysis suggest a dose-dependent uptake kinetics of both materials that correlates with cytotoxicity data of the established assays. Taken together, our results demonstrate DHM and flow cytometry as promising novel label-free tools for nanomaterial toxicity and cell particle interaction studies.

  18. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  19. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity.

    Science.gov (United States)

    Du, Jiao; Xu, Qinfeng; Lu, Xiaoquan; Zhang, Chun-yang

    2014-08-19

    Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring of the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. With the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simpler, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.

  20. Label-free detection of DNA on silicon surfaces using Brewster angle straddle interferometry (BASI)

    Science.gov (United States)

    Wang, Xiao; Rothberg, Lewis

    2012-02-01

    Label-free sensing of biomolecular interactions is of great importance for drug screening and a variety of clinical assays. Ultrasensitive detection of dsDNA on silicon substrates can be achieved using our new label-free sensing method - Brewster angle straddle interferometry (BASI) which exploits the removal of destructive interference to detect binding of target molecules on a silicon surface functionalized by probe molecules. By exploiting the fact that reflections of p-polarization undergo 180 degree phase shifts above the Brewster angle and none below it, we are able to use unprocessed silicon substrates with native oxide serving as the interference layer. Destructive interference in the geometry we use results in reflectivities ˜ 0.01%. Reflectivity from the chip is a quantitative measure of the amount of bound target molecules and can be imaged in real time in microarray format. We demonstrate detection of DNA intercalation on pyrene modified surfaces. The substrates are shown to exhibit excellent binding toward dsDNAs. This work provides an avenue for understanding the binding specificity of small molecule-DNA interactions that can be potentially helpful in developing anticancer agents.

  1. Label-free selection of RNA aptamers for metabolic engineering.

    Science.gov (United States)

    Hwang, Chuhern; Carothers, James M

    2016-08-15

    RNA aptamers can be assembled into genetic regulatory devices that sense and respond to levels of specific cellular metabolites and thus serve an integral part of designing dynamic control into engineered metabolic pathways. Here, we describe a practical method for generating specific and high affinity aptamers to enable the wider use of in vitro selection and a broader application of aptamers for metabolic engineering. Conventional selection methods involving either radioactive labeling of RNA or the use of label-free methods such as SPR to track aptamer enrichment require resources that are not widely accessible to research groups. We present a label-free selection method that uses small volume spectrophotometers to track RNA enrichment paired with previously characterized affinity chromatography methods. Borrowing techniques used in solid phase peptide synthesis, we present an approach for immobilizing a wide range of metabolites to an amino PEGA matrix. As an illustration, we detail laboratory techniques employed to generate aptamers that bind p-aminophenylalanine, a metabolic precursor for bio-based production of plastics and the pristinamycin family of antibiotics. We focused on the development of methods for ligand immobilization, selection via affinity chromatography, and nucleic acid quantification that can be performed with common laboratory equipment.

  2. Multiplexed label-free optical biosensor for medical diagnostics.

    Science.gov (United States)

    Bottazzi, Barbara; Fornasari, Lucia; Frangolho, Ana; Giudicatti, Silvia; Mantovani, Alberto; Marabelli, Franco; Marchesini, Gerardo; Pellacani, Paola; Therisod, Rita; Valsesia, Andrea

    2014-01-01

    This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 μm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated.

  3. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  4. Label-free disposable immunosensor for detection of atrazine.

    Science.gov (United States)

    Belkhamssa, Najet; Justino, Celine I L; Santos, Patrícia S M; Cardoso, Susana; Lopes, Isabel; Duarte, Armando C; Rocha-Santos, Teresa; Ksibi, Mohamed

    2016-01-01

    This work reports the construction of a fast, disposable, and label-free immunosensor for the determination of atrazine. The immunosensor is based on a field effect transistor (FET) where a network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel, constituting carbon nanotubes field effect transistors (CNTFETs). Anti-atrazine antibodies were adsorbed onto the SWCNTs and subsequently the SWCNTs were protected with Tween 20 to prevent the non-specific binding of bacteria or proteins. The principle of the immunoreaction consists in the direct adsorption of atrazine specific antibodies (anti-atrazine) to SWCNTs networks. After exposed to increasing concentrations of atrazine, the CNTFETs could be used as useful label-free platforms to detect atrazine. Under the optimal conditions, a limit of detection as low as 0.001 ng mL(-1) was obtained, which is lower than that of other methods for the atrazine detection, and in a working range between 0.001 and 10 ng mL(-1). The average recoveries obtained for real water samples spiked with atrazine varied from 87.3% to 108.0%. The results show that the constructed sensors display a high sensitivity and could be useful tools for detecting pesticides like atrazine at low concentrations. They could be also applied to the determination of atrazine in environmental aqueous samples, such as seawater and riverine water. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; La Barbera, Giorgia; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2016-01-01

    The proteome characterization of fish muscle tissues, together with the relative expression of each individual protein, provides knowledge on the biochemical response of the organisms and allows to assess the effect of different types of feeding, growth site and nutritional quality of the investigated species. This type of study is usually performed by gel-based proteomics approaches, however shotgun proteomics can serve as well, reducing analysis time and improving sample high-throughput. In this work, a shotgun proteomics method was thus developed and then applied to the characterization of gilthead sea bream edible muscle. The sarcoplasmic protein fraction was extracted, in-solution digested by trypsin and finally analyzed by nanoHPLC high resolution tandem mass spectrometry. Two different quantification strategies were also tested. One was based on chemical dimethyl labeling and the other one on label free quantification. A comparison between these two analytical workflows was performed, to evaluate their individual performance in the analysis of fish samples and assess the differences induced by farming practice on the final commercial product with respect to wild gilthead sea bream. Quantitative differences were detected, and the most relevant one regarded the common fish allergen parvalbumin, found overexpressed in farmed fish samples.

  6. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    Science.gov (United States)

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications.

  7. CEST theranostics: label-free MR imaging of anticancer drugs

    Science.gov (United States)

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  8. Label-free gold nanoparticles for the determination of neomycin

    Science.gov (United States)

    Apyari, Vladimir V.; Dmitrienko, Stanislava G.; Arkhipova, Viktoriya V.; Atnagulov, Aydar G.; Gorbunova, Mariya V.; Zolotov, Yury A.

    2013-11-01

    A new spectrophotometric method for the determination of neomycin has been developed. The method is based on aggregation of label-free gold nanoparticles leading to change in absorption spectra and color of the solution. Influence of different factors (the concentration of ethylenediaminetetraacetate (EDTA), pH, the concentrations of neomycin and the nanoparticles) on the aggregation and analytical performance of the method was investigated. EDTA plays an important role not only as a masking agent to eliminate interferences of metal cations but strongly affects the sensitivity of the nanoparticles relative to neomycin. The method allows to determine neomycin with detection limit of 28 ng mL-1. It was applied to analysis of eye- and ear-drops. The sample pretreatment is simply done by diluting the formulation with water.

  9. Label-free nonlinear optical imaging of mouse retina.

    Science.gov (United States)

    He, Sicong; Ye, Cong; Sun, Qiqi; Leung, Christopher K S; Qu, Jianan Y

    2015-03-01

    A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and nerve fibers in the ganglion cell and nerve fiber layers was achieved by capturing endogenous SRS and TPEF signals. In addition, the spectral and temporal analysis of TPEF images allowed visualization of different fluorescent components in the retinal pigment epithelium (RPE). Fluorophores with short TPEF lifetime, such as A2E, can be differentiated from other long-lifetime components in the RPE. The NLO imaging method would provide important information for investigation of retinal ganglion cell degeneration and holds the potential to study the biochemical processes of visual cycle in the RPE.

  10. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Ferrara

    2015-04-01

    Full Text Available A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH and Raman spectroscopy (RS. DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

  11. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study.

    Directory of Open Access Journals (Sweden)

    Juho Pirhonen

    Full Text Available Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD. We tested whether second-harmonic generation (SHG and coherent anti-Stokes Raman scattering (CARS microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD.We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0-4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals.We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III.This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.

  12. Protein analysis of atrial fibrosis via label-free proteomics in chronic atrial fibrillation patients with mitral valve disease.

    Directory of Open Access Journals (Sweden)

    Peide Zhang

    Full Text Available BACKGROUND: Atrial fibrosis, as a hallmark of atrial structure remodeling, plays an important role in maintenance of chronic atrial fibrillation, but interrelationship of atrial fibrosis and atrial fibrillation is uncertain. Label-free proteomics can implement high throughput screening for finding and analyzing pivotal proteins related to the disease.. Therefore, we used label-free proteomics to explore and analyze differentially proteins in chronic atrial fibrillation patients with mitral valve disease. METHODS: Left and right atrial appendages obtained from patients with mitral valve disease were both in chronic atrial fibrillation (CAF, AF≥6 months, n = 6 and in sinus rhythm (SR, n = 6. One part of the sample was used for histological analysis and fibrosis quantification; other part were analyzed by label-free proteomic combining liquid chromatography with mass spectrometry (LC-MS, we utilized bioinformatics analysis to identify differential proteins. RESULTS: Degree of atrial fibrosis was higher in CAF patients than that of SR patients. 223 differential proteins were detected between two groups. These proteins mainly had vital functions such as cell proliferation, stress response, focal adhesion apoptosis. We evaluated that serine/threonine protein kinase N2 (PKN2, dermatopontin (DP, S100 calcium binding protein B (S100B, protein tyrosine kinase 2 (PTK2 and discoidin domain receptor tyrosine kinase 2 (DDR2 played important roles in fibrotic process related to atrial fibrillation. CONCLUSION: The study presented differential proteins responsible for atrial fibrosis in chronic atrial fibrillation patients through label-free proteomic analysis. We assessed some vital proteins including their characters and roles. These findings may open up new realm for mechanism research of atrial fibrillation.

  13. Label-free bead-based metallothionein electrochemical immunosensor.

    Science.gov (United States)

    Nejdl, Lukas; Nguyen, Hoai Viet; Richtera, Lukas; Krizkova, Sona; Guran, Roman; Masarik, Michal; Hynek, David; Heger, Zbynek; Lundberg, Karin; Erikson, Kristofer; Adam, Vojtech; Kizek, Rene

    2015-08-01

    A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.

  14. Label-free structural photoacoustic tomography of intact mouse brain

    Science.gov (United States)

    Li, Lei; Xia, Jun; Li, Guo; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2015-03-01

    Capitalizing on endogenous hemoglobin contrast, photoacoustic computed tomography (PACT), a deep-tissue highresolution imaging modality, has drawn increasing interest in neuro-imaging. However, most existing studies are limited to functional imaging on the cortical surface, and the deep-brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep-brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can provide high-resolution label-free structural imaging through the entire mouse brain. With 100 μm in-plane resolution, we can clearly identify major structures of the brain, and the image quality is comparable to that of magnetic resonance microscopy. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome and lipid. The feasibility of imaging the structure of the brain in vivo has also been discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.

  15. Label-free screening of bio-molecular interactions.

    Science.gov (United States)

    Cooper, Matthew A

    2003-11-01

    The majority of techniques currently employed to interrogate a biomolecular interaction require some type of radio- or enzymatic- or fluorescent-labelling to report the binding event. However, there is an increasing awareness of novel techniques that do not require labelling of the ligand or the receptor, and that allow virtually any complex to be screened with minimal assay development. This review focuses on three major label-free screening platforms: surface plasmon resonance biosensors, acoustic biosensors, and calorimetric biosensors. Scientists in both academia and industry are using biosensors in areas that encompass almost all areas drug discovery, diagnostics, and the life sciences. The capabilities and advantages of each technique are compared and key applications involving small molecules, proteins, oligonucleotides, bacteriophage, viruses, bacteria, and cells are reviewed. The role of the interface between the biosensor surface (in the case of SPR and acoustic biosensors) and the chemical or biological systems to be studied is also covered with attention to the covalent and non-covalent coupling chemistries commonly employed.

  16. Label-Free Microcavity Biosensors: Steps towards Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Dragos Amarie

    2012-12-01

    Full Text Available Personalized medicine has the potential to improve our ability to maintain health and treat disease, while ameliorating continuously rising healthcare costs. Translation of basic research findings to clinical applications within regulatory compliance is required for personalized medicine to become the new foundation for practice of medicine. Deploying even a few of the thousands of potential diagnostic biomarkers identified each year as part of personalized treatment workflows requires clinically efficient biosensor technologies to monitor multiple biomarkers in patients in real time. This paper discusses a critical component of a regulatory system, a microcavity optical biosensor for label-free monitoring of biomolecular interactions at physiologically-relevant concentrations. While most current biosensor research focuses on improving sensitivity, this paper emphasizes other characteristics a biosensor technology requires to be practical in a clinical setting, presenting robust microcavity biosensors which are easy to manufacture and integrate with microfluidics into flexible and redesignable platforms making the microcavity biosensors deployable for continuous monitoring of biomarkers in body fluids in the clinic,  in dense 2D random arrays for high-throughput applications like drug-library screening in interactomics, and of the secretory behavior of single cells in the laboratory.

  17. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  18. Label-free DNA sequencing using Millikan detection.

    Science.gov (United States)

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-10-15

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.

  19. Label-free monitoring of individual DNA hybridization using SERS

    Science.gov (United States)

    Qi, Ji; Zeng, Jianbo; Zhao, Fusheng; Santos, Greggy M.; Lin, Steven Hsesheng; Raja, Balakrishnan; Strych, Ulrich; Willson, Richard C.; Shih, Wei-Chuan

    2015-03-01

    Sequence-specific detection of DNA hybridization at the single-molecule level has been instrumental and gradually become a ubiquitous tool in a wide variety of biological and biomedical applications such as clinical diagnostics, biosensors, and drug development. Label-free and amplification-free schemes are of particular interest because they could potentially provide in situ monitoring of individual hybridization events, which may lead to techniques for discriminating subtle variations due to single-base modification without stringency control or repetitive thermal cycling. Surface-enhanced Raman spectroscopy (SERS) has been widely used for molecular detection and identification by exploiting the localized surface plasmon resonance effect when the target molecules are near gold or silver nanostructures. However, effective and robust SERS assays have yet become a reality for trace detection. Recently, we have developed a SERS substrate by shaping nanoporous gold thin films into monolithic submicron disks, called nanoporous gold disks (NPGD). Here we demonstrate in situ monitoring of the same immobilized ssDNA molecules and their individual hybridization events.

  20. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    Science.gov (United States)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  1. Label-free three-dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  2. Label-free three dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  3. Imaging label-free biosensor with microfluidic system

    Science.gov (United States)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  4. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry

    Science.gov (United States)

    Yang, Yu-Sang Sabrina; Atukorale, Prabhani U.; Moynihan, Kelly D.; Bekdemir, Ahmet; Rakhra, Kavya; Tang, Li; Stellacci, Francesco; Irvine, Darrell J.

    2017-01-01

    Inorganic nanoparticles (NPs) are studied as drug carriers, radiosensitizers and imaging agents, and characterizing nanoparticle biodistribution is essential for evaluating their efficacy and safety. Tracking NPs at the single-cell level with current technologies is complicated by the lack of reliable methods to stably label particles over extended durations in vivo. Here we demonstrate that mass cytometry by time-of-flight provides a label-free approach for inorganic nanoparticle quantitation in cells. Furthermore, mass cytometry can enumerate AuNPs with a lower detection limit of ∼10 AuNPs (3 nm core size) in a single cell with tandem multiparameter cellular phenotyping. Using the cellular distribution insights, we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model vaccine in a B16-OVA melanoma mouse model. This technology provides a powerful new level of insight into nanoparticle fate in vivo. PMID:28094297

  5. Label-free identification of white blood cell using optical diffraction tomography (Conference Presentation)

    Science.gov (United States)

    Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun

    2016-03-01

    White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.

  6. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics

    DEFF Research Database (Denmark)

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment...... on precursor ion intensities, including element labels (e.g., (15)N), residue labels (e.g., SILAC and ICAT), termini labels (e.g., (18)O), functional group labels (e.g., mTRAQ), and label-free ion intensity approaches. MSQuant is available, including an installer and supporting scripts, at http://msquant.sourceforge.net ....

  7. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  8. Fluxomics: mass spectrometry versus quantitative imaging.

    Science.gov (United States)

    Wiechert, Wolfgang; Schweissgut, Oliver; Takanaga, Hitomi; Frommer, Wolf B

    2007-06-01

    The recent development of analytic high-throughput technologies enables us to take a bird's view of how metabolism is regulated in real time. We have known for a long time that metabolism is highly regulated at all levels, including transcriptional, posttranslational and allosteric controls. Flux through a metabolic or signaling pathway is determined by the activity of its individual components. Fluxomics aims to define the genes involved in regulation by following the flux. Two technologies are used to monitor fluxes. Pulse labeling of the organism or cell with a tracer, such as 13C, followed by mass spectrometric analysis of the partitioning of label into different compounds provides an efficient tool to study flux and to compare the effect of mutations on flux. The second approach is based on the use of flux sensors, proteins that respond with a conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the conformational change and serves as a proxy for ligand concentration. In contrast to the mass spectrometry assays, FRET nanosensors monitor only a single compound. Both methods provide high time resolution. The major advantages of FRET nanosensors are that they yield data with cellular and subcellular resolution and the method is minimally invasive.

  9. 组蛋白翻译后修饰无标定量方法可靠性的比较%Comparison of reliabilities of mass spectrometry-based label-free quantitation methods for histone posttranslational modification analysis

    Institute of Scientific and Technical Information of China (English)

    刘志伟; 朱明睿; 翟琳辉; 谭敏佳

    2016-01-01

    组蛋白翻译后修饰是一种表观遗传学修饰,参与调控细胞的新陈代谢等重要生理过程.蛋白质组学发展迅速,使监控组蛋白翻译后修饰的动态变化成为可能.目前主要有3种无标定量方法(谱图计数法、峰面积积分法和信号强度法),但何种定量方法更可靠尚未见系统性的详细报道.在稳定同位素标记细胞培养技术(SILAC)基础上,对去乙酰化酶抑制剂(SAHA)调控细胞乙酰化修饰水平的定量数据进行对比,比较3种无标定量方法对组蛋白翻译后修饰进行的定量分析,利用定量结果的标准差(SD)评估定量的可靠性,最终发现基于峰面积积分法定量的结果可靠性最高.该研究对难以进行同位素标记实验的样本分析,尤其对临床样本、大样本的组蛋白修饰谱分析具有重要参考意义.

  10. Comparative Label-free LC-MS/MS Analysis of Colorectal Adenocarcinoma and Metastatic Cells Treated with 5-Fluorouracil

    OpenAIRE

    Bauer, Kerry M.; Lambert, Paul A.; Hummon, Amanda B.

    2012-01-01

    A label-free mass spectrometric strategy was used to examine the effect of 5-fluorouracil (5-FU) on the primary and metastatic colon carcinoma cell lines, SW480 and SW620, with and without treatment. 5-FU is the most common chemotherapeutic treatment for colon cancer. Pooled biological replicates were analyzed by nanoLC-MS/MS and protein quantification was determined via spectral counting. Phenotypic and proteomic changes were evident and often similar in both cell lines. The SW620 cells were...

  11. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    Science.gov (United States)

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10(-8) RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm(-2) , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL(-1) range.

  12. Qualitative and quantitative proteomic profiling of cripto(-/-) embryonic stem cells by means of accurate mass LC-MS analysis.

    Science.gov (United States)

    Chambery, Angela; Vissers, Johannes P C; Langridge, James I; Lonardo, Enza; Minchiotti, Gabriella; Ruvo, Menotti; Parente, Augusto

    2009-02-01

    Cripto is one of the key regulators of embryonic stem cells (ESCs) differentiation into cardiomyocites vs neuronal fate. Cripto(-/-) murine ESCs have been utilized to investigate the molecular mechanisms underlying early events of mammalian lineage differentiation. 2D/LC-MS/MS and a label-free LC-MS approaches were used to qualitatively and quantitatively profile the cripto(-/-) ESC proteome, providing an integral view of the alterations induced in stem cell functions by deleting the cripto gene.

  13. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  14. Label-free probing of genes by time-domain terahertz sensing

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, P Haring [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Brucherseifer, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Nagel, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Kurz, H [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Bosserhoff, A [Institut fuer Pathologie, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg (Germany); Buettner, R [Institut fuer Pathologie, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn (Germany)

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a free-space analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  15. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.

    Science.gov (United States)

    Agnarsson, Björn; Lundgren, Anders; Gunnarsson, Anders; Rabe, Michael; Kunze, Angelika; Mapar, Mokhtar; Simonsson, Lisa; Bally, Marta; Zhdanov, Vladimir P; Höök, Fredrik

    2015-12-22

    Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 nm gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.

  16. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands.......Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  17. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries.

    Science.gov (United States)

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Ocaña, Cristina; Marty, Jean-Louis

    2015-08-19

    Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15-2.5 ng/mL, with an acceptable recovery percentage (91-95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A label-free optical biosensor for serotyping "unknown" influenza viruses

    Science.gov (United States)

    Zhang, Hanyuan; Henry Dunand, Carole; Wilson, Patrick; Miller, Benjamin L.

    2016-05-01

    The ability to accurately classify influenza viruses is critical to understanding patterns of infection, vaccine efficacy, and to the process of developing new vaccines. Unfortunately, this task is hampered both by the virus' ability to undergo antigenic drift and shift (rendering it a "previously unknown" strain), and by technological limitations. In an effort to overcome these challenges, we have developed a label-free human monoclonal antibody array for flu serology, using a pattern recognition approach to assign virus serotype. The array is built on the Arrayed Imaging Reflectometry (AIR) platform. AIR relies on the creation of a near-perfect antireflective condition on the surface of a silicon chip. When this antireflective condition is perturbed because of binding to an antibody spot (or other immobilized probe molecule), binding may be sensitively and quantitatively detected as an increase in reflected light. We describe fabrication and characterization of the array, and preliminary testing with isolated influenza hemagglutinin. We anticipate that this approach may be extended to other viruses by expansion of the array.

  19. A universal label-free biosensing platform based on opto-fluidic ring resonators

    Science.gov (United States)

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong

    2009-02-01

    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  20. A simple and sensitive approach for ochratoxin A detection using a label-free fluorescent aptasensor.

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lv

    Full Text Available Ochratoxin A(OTA is found to be one of the predominant contaminating mycotoxins in a wide variety of food commodities. To avoid the risk of OTA consumption, the detection and quantitation of OTA level are of great significance. Based on the fact that ssDNA aptamer has the ability to form a double-strand structure with its complementary sequence, a simple and rapid aptamer-based label-free approach for highly sensitive and selective fluorescence detection of OTA was developed by using ultra-sensitive double-strand DNA specific dyes PicoGreen. The results showed that as low as 1 ng/mL of OTA could be detected with a dynamic range of more than 5 orders of magnitude which satisfies the requirements for OTA maximum residue limit in various food regulated by European Commission. With the specificity of aptamer, the assay exhibited high selectivity for OTA against two other analogues (N-acetyl-l-phenylalanine and zearalenone. We also tested the aptasensor practicability using real sample of 1% beer spiked with a series of concentration of OTA and the results show good tolerance to matrix effect. All detections could be achieved in less than 30 min, which provides a simple, quick and sensitive detection method for OTA screening in food safety and could be easily extend to other small molecular chemical compounds detection which aptamer has been selected.

  1. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A.

    Science.gov (United States)

    Malvano, Francesca; Albanese, Donatella; Crescitelli, Alessio; Pilloton, Roberto; Esposito, Emanuela

    2016-06-30

    An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE) for quantitative determination of Ochratoxin A (OTA) has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs), the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  2. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Francesca Malvano

    2016-06-01

    Full Text Available An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE for quantitative determination of Ochratoxin A (OTA has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs, the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  3. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice.

    Science.gov (United States)

    Miao, Hong; Wang, Lan; Zhuo, Yan; Zhou, Zinan; Yang, Xiaoming

    2016-12-15

    A facile-green strategy to synthesize carbon dots (CDs) with a quantum yield (QY) of nearly 13.9% has been built up, while tomato juice served as the carbon source. Interestingly, not only the precursor of CDs and the whole synthesis procedure were environmental-friendly, but this type of CDs also exhibited multiple advantages including high fluorescent QY, excellent photostability, non-toxicity and satisfactory stability. Significantly, a label-free sensitive assay for detecting carcinoembryonic antigen (CEA) in a continuous and recyclable way has been proposed on the basis of adsorption and desorption of aptamers by the surface of CDs through a competitive mechanism. To be specific, the richness of carboxyl groups of the CDs enabled strong adsorption of ssDNA to the surface of CDs through π-π stacking interactions, resulting in the effective fluorescence quenching by forming CDs-aptamer complexes. The stronger binding affinity between CEA and CEA-aptamer than the π-π stacking interactions has been taken advantage to achieve immediate recovery of the fluorescence of CDs once CEA was introduced. Thereby, quantitative evaluation of CEA concentration in a broad range from 1ngmL(-1) to 0.5ngmL(-1) with the detection limit of 0.3ngmL(-1) was realized in this way. This strategy can be applied in a recyclable way, broadening the sensing application of CDs with biocompatibility. Besides, the CDs were used for cell imaging, potentiating them towards diverse purposes.

  4. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection.

    Science.gov (United States)

    Yang, Yuying; Liu, Qing; Liu, Yan; Cui, Jianjian; Liu, Hui; Wang, Ping; Li, Yueyun; Chen, Lei; Zhao, Zengdian; Dong, Yunhui

    2017-04-15

    A novel and ultrasensitive label-free electrochemical immunosensor was fabricated for quantitative detection of carcino-embryonic antigen (CEA). The nitrogen-doped graphene quantum dots (N-GQDs) supported PtPd bimetallic nanoparticles (PtPd/N-GQDs) were synthesized by a simple and green hydrothermal procedure. Subsequently, PtPd/N-GQDs functionalized Au nanoparticles (PtPd/N-GQDs@Au) were prepared successfully via a self-assembly approach. Because of the synergetic effect present in PtPd/N-GQDs@Au, this novel nanocomposites has shown excellent electrocatalytic activity towards hydrogen peroxide (H2O2) reduction. Featuring good biocompatibility, excellent conductivity and large surface area, PtPd/N-GQDs@Au was applied as transducing materials to efficiently conjugate capture antibodies and amplify electrochemical signal. Under the optimal conditions, the proposed immunosensor was used for the detection of CEA with wide dynamic range in the range from 5 fg/mL to 50ng/mL with a low detection limit of 2fg/mL (S/N=3). Furthermore, this label-free immunosensor possesses high sensitivity, special selectivity and long-term stability, which shows promising application in bioassay analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  6. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection.

    Science.gov (United States)

    Kravets, V G; Schedin, F; Jalil, R; Britnell, L; Gorbachev, R V; Ansell, D; Thackray, B; Novoselov, K S; Geim, A K; Kabashin, A V; Grigorenko, A N

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create 'twisted' photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm(-2) and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  7. A distributed national network for label-free rapid identification of emerging pathogens

    Science.gov (United States)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  8. Ultrasensitive and label-free molecular level detection enabled by light phase control in magnetoplasmonic nanoantennas

    Science.gov (United States)

    Maccaferri, Nicolò; Gregorczyk, Keith; de Oliveira, Thales V. A. G.; Kataja, Mikko; van Dijken, Sebastiaan; Pirzadeh, Zhaleh; Dmitriev, Alexandre; Åkerman, Johan; Knez, Mato; Vavassori, Paolo

    2015-01-01

    Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single molecule sensing, arising from intrinsically nanoscopic sensing volume, and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared torecently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (i.e., without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of ~0.8 ag per nanoantenna of polyamide-6.6 (n=1.51), which is representative for a large variety of polymers, peptides and proteins. PMID:25639190

  9. Label-free LC-MSMS analysis of vitreous from autoimmune uveitis reveals a significant decrease in secreted Wnt signalling inhibitors DKK3 and SFRP2.

    Science.gov (United States)

    Hauck, Stefanie M; Hofmaier, Florian; Dietter, Johannes; Swadzba, Margarete E; Blindert, Marcel; Amann, Barbara; Behler, Jennifer; Kremmer, Elisabeth; Ueffing, Marius; Deeg, Cornelia A

    2012-07-19

    Equine recurrent uveitis is a severe and frequent blinding disease in horses which presents with auto-reactive invading T-cells, resulting in the destruction of the inner eye. Infiltration of inflammatory cells into the retina and vitreous is driven by currently unknown guidance cues, however surgical removal of the vitreous (vitrectomy) has proven therapeutically successful. Therefore, proteomic analyses of vitrectomy samples are likely to result in detection of proteins contributing to disease pathogenesis. Vitreous from healthy and ERU diseased horses were directly compared by quantitative mass spectrometry based on label-free quantification of peak intensities across samples. We found a significant upregulation of complement and coagulation cascades and downregulation of negative paracrine regulators of canonical Wnt signalling including the Wnt signalling inhibitors DKK3 and SFRP2. Based on immunohistochemistry, both proteins are expressed in equine retina and suggest localisation to retinal Müller glial cells (RMG), which may be the source cells for these proteins. Furthermore, retinal expression levels and patterns of DKK3 change in response to ERU. Since many other regulated proteins identified here are associated with RMG cells, these cells qualify as the prime responders to autoimmune triggers.

  10. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.

    Science.gov (United States)

    Almassalha, Luay M; Bauer, Greta M; Chandler, John E; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K; Subramanian, Hariharan; Chandel, Navdeep S; Szleifer, Igal; Backman, Vadim

    2016-10-18

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.

  11. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina.

    Directory of Open Access Journals (Sweden)

    Paula K Yu

    Full Text Available Radial peripapillary capillaries (RPCs comprise a unique network of capillary beds within the retinal nerve fibre layer (RNFL and play a critical role in satisfying the nutritional requirements of retinal ganglion cell (RGC axons. Understanding the topographical and morphological characteristics of these networks through in vivo techniques may improve our understanding about the role of RPCs in RGC axonal health and disease. This study utilizes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT, for quantitatively studying RPC networks in the human retina. Six different retinal eccentricities from 16 healthy eyes were imaged using svOCT. The same eccentricities were histologically imaged in 9 healthy donor eyes with a confocal scanning laser microscope. Donor eyes were subject to perfusion-based labeling techniques prior to retinal dissection, flat mounting and visualization with the microscope. Capillary density and diameter measurements from each eccentricity in svOCT and histological images were compared. Data from svOCT images were also analysed to determine if there was a correlation between RNFL thickness and RPC density. The results are as follows: (1 The morphological characteristics of RPC networks on svOCT images are comparable to histological images; (2 With the exception of the nasal peripapillary region, there were no significant differences in RPC density measurements between svOCT and histological images; (3 Capillary diameter measurements were significantly greater in svOCT images compared to histology; (4 There is a positive correlation between RPC density and RNFL thickness. The findings in this study suggest that svOCT is a reliable modality for analyzing RPC networks in the human retina. It may therefore be a valuable tool for aiding our understanding about vasculogenic mechanisms that are involved in RGC axonopathies. Further work is required to explore the

  12. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina.

    Science.gov (United States)

    Yu, Paula K; Balaratnasingam, Chandrakumar; Xu, Jing; Morgan, William H; Mammo, Zaid; Han, Sherry; Mackenzie, Paul; Merkur, Andrew; Kirker, Andrew; Albiani, David; Sarunic, Marinko V; Yu, Dao-Yi

    2015-01-01

    Radial peripapillary capillaries (RPCs) comprise a unique network of capillary beds within the retinal nerve fibre layer (RNFL) and play a critical role in satisfying the nutritional requirements of retinal ganglion cell (RGC) axons. Understanding the topographical and morphological characteristics of these networks through in vivo techniques may improve our understanding about the role of RPCs in RGC axonal health and disease. This study utilizes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT), for quantitatively studying RPC networks in the human retina. Six different retinal eccentricities from 16 healthy eyes were imaged using svOCT. The same eccentricities were histologically imaged in 9 healthy donor eyes with a confocal scanning laser microscope. Donor eyes were subject to perfusion-based labeling techniques prior to retinal dissection, flat mounting and visualization with the microscope. Capillary density and diameter measurements from each eccentricity in svOCT and histological images were compared. Data from svOCT images were also analysed to determine if there was a correlation between RNFL thickness and RPC density. The results are as follows: (1) The morphological characteristics of RPC networks on svOCT images are comparable to histological images; (2) With the exception of the nasal peripapillary region, there were no significant differences in RPC density measurements between svOCT and histological images; (3) Capillary diameter measurements were significantly greater in svOCT images compared to histology; (4) There is a positive correlation between RPC density and RNFL thickness. The findings in this study suggest that svOCT is a reliable modality for analyzing RPC networks in the human retina. It may therefore be a valuable tool for aiding our understanding about vasculogenic mechanisms that are involved in RGC axonopathies. Further work is required to explore the reason for

  13. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    Science.gov (United States)

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  14. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  15. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime.

    Science.gov (United States)

    García-Rupérez, Jaime; Toccafondo, Veronica; Bañuls, María José; Castelló, Javier García; Griol, Amadeu; Peransi-Llopis, Sergio; Maquieira, Ángel

    2010-11-08

    We report experimental results of label-free anti-bovine serum albumin (anti-BSA) antibody detection using a SOI planar photonic crystal waveguide previously bio-functionalized with complementary BSA antigen probes. Sharp fringes appearing in the slow-light regime near the edge of the guided band are used to perform the sensing. We have modeled the presence of these band edge fringes and demonstrated the possibility of using them for sensing purposes by performing refractive index variations detection, achieving a sensitivity of 174.8 nm/RIU. Then, label-free anti-BSA biosensing experiments have been carried out, estimating a surface mass density detection limit below 2.1 pg/mm2 and a total mass detection limit below 0.2 fg.

  16. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    Science.gov (United States)

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  17. Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free integrative pharmacology on-target.

    Directory of Open Access Journals (Sweden)

    Megan Morse

    Full Text Available Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs.

  18. Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and detects difference in tissue mechanical properties of treated and untreated: a tip for nanotoxicology.

    Directory of Open Access Journals (Sweden)

    Dimitrios A Lamprou

    Full Text Available Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM for visualising label-free, drug encapsulated polyester particles of ∼280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics.

  19. Progress of new label-free techniques for biosensors: a review.

    Science.gov (United States)

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  20. A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces.

    Science.gov (United States)

    Block, Ian D; Mathias, Patrick C; Ganesh, Nikhil; Jones, Sarah I; Dorvel, Brian R; Chaudhery, Vikram; Vodkin, Lila O; Bashir, Rashid; Cunningham, Brian T

    2009-07-20

    We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface. This technique is applied to a DNA microarray where label-free quantification of immobilized capture DNA enables improved quality control and subsequent enhanced fluorescence detection of dye-tagged hybridized DNA yields 3x more genes to be detected versus commercially available microarray substrates.

  1. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rupesh K. [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Hayat, Akhtar [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore 54000 (Pakistan); Catanante, Gaëlle; Ocaña, Cristina [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Marty, Jean-Louis, E-mail: jlmarty@univ-perp.fr [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France)

    2015-08-19

    Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15–2.5 ng/mL, with an acceptable recovery percentage (91–95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. - Highlights: • Simple and facile method to detect OTA. • The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL. • The first report on OTA detection in cocoa beans using impedimetric aptasensor.

  2. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis.

  3. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  4. Coherent label-free imaging through turbidity: a holographic approach

    Science.gov (United States)

    Bianco, V.; Paturzo, M.; Marchesano, V.; Miccio, L.; Memmolo, P.; Ferraro, P.

    2016-03-01

    A challenging issue has to be faced in microscopy whenever samples are immersed inside a dynamic turbid medium, as occluding objects provoke severe light scattering or unpredictable time-variable phase delays that scramble the object information. In these cases, the transmission matrix of the medium cannot be fully characterized. Here we show a simple technique, named Multi-Look Digital Holography (MLDH), able to fully recover the useful signal of biological specimens dipped inside a turbid liquid phase. Multiple hologram recordings are incoherently combined to synthesize the whole complex field diffused by the sample, which is revealed through turbidity providing quantitative phase-contrast information. Moreover, we show that the presence of a turbid medium can have a positive effect on a coherent imaging system, helping to reduce the effect of speckle artifacts. In other words, occluding biological elements, like e.g. Red Blood Cells (RBCs), can be thought as useful optical components providing denoising capabilities.

  5. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    Science.gov (United States)

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  6. Label-free detection of DNA single-base mismatches using a simple reflectance-based optical technique.

    Science.gov (United States)

    Nava, G; Ceccarello, E; Giavazzi, F; Salina, M; Damin, F; Chiari, M; Buscaglia, M; Bellini, T; Zanchetta, G

    2016-05-21

    Rapid and quantitative detection of the binding of nucleic acids to surface-immobilized probes remains a challenge in many biomedical applications. We investigated the hybridization of a set of fully complementary and defected 12-base long DNA oligomers by using the Reflective Phantom Interface (RPI), a recently developed multiplexed label-free detection technique. Based on the simple measurement of reflected light intensity, this technology enables to quantify the hybridization directly as it occurs on the surface with a sensitivity of 10 pg mm(-2). We found a strong effect of single-base mismatches and of their location on hybridization kinetics and equilibrium binding. In line with previous studies, we found that DNA-DNA binding is weaker on a surface than in the bulk. Our data indicate that this effect is a consequence of weak nonspecific binding of the probes to the surface.

  7. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microarrays of 20-base oligonucleotide with different concentrations are detected before and after hybridization by the oblique-incidence reflectivity difference (OI-RD) method. The experimental results prove that OI-RD is a label-free method which can not only distinguish the concentration difference of oligonucleotides before and after the hybridization but also detect the hybridization of short oligonucleotides. At present the OI-RD method can detect 0.39 μmol/L 20-base oligonucleotide or less. These results suggest that the OI-RD method is a promising and potential technique for label-free detection of biological microarrays.

  8. Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques.

    Science.gov (United States)

    Bonanno, Lisa M; Kwong, Tai C; DeLouise, Lisa A

    2010-12-01

    In this work, we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n = 50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was <9% both within-run and between-day at and above the cutoff limit of 300 ng mL(-1). This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semiquantitative demonstration of the technology's successful clinical use. These results motivate future development of label-free PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting.

  9. Data in support of comparative analysis of strawberry proteome in response to controlled atmosphere and low temperature storage using a label-free quantification

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-06-01

    Full Text Available To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT and controlled atmosphere (CA storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. ‘Akihime’. Postharvest volatile compounds were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry [2]. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis.

  10. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  11. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells

    Science.gov (United States)

    Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit

    2016-03-01

    Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.

  12. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2016-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  14. Label-free protein detection using a microfluidic Coulter-counter device

    DEFF Research Database (Denmark)

    Rodriguez-Trujíllo, Romén; Ajine, Mohammad Akram; Orzan, A.;

    2014-01-01

    A new method for measuring specific protein concentrations in solutions has been developed. The technique makes use of the Coulter effect for detecting and sizing of micro-scaled objects suspended in a buffer fluid. The method is completely label-free as it is only based on the electrical readout...

  15. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis

    NARCIS (Netherlands)

    De, Arpita; Nieuwkasteele, van Jan; Carlen, Edwin T.; Berg, van den Albert

    2013-01-01

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection syste

  16. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Chan, Leo L; Cunningham, Brian T

    2007-04-20

    A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.

  17. Chip-LC-MS for label-free profiling of human serum

    NARCIS (Netherlands)

    Horvatovich, Peter; Govorukhina, Natalia .; Reijmers, Theo H.; van der Zee, Ate G. J.; Suits, Frank; Bischoff, Rainer

    2007-01-01

    The discovery of biomarkers in easily accessible body fluids such as serum is one of the most challenging topics in proteomics requiring highly efficient separation and detection methodologies. Here, we present the application of a microfluidics-based LC-MS system (chip-LC-MS) to the label-free

  18. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  19. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2017-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  20. Free-solution, label-free molecular interactions studied by back-scattering interferometry

    DEFF Research Database (Denmark)

    Bornhop, D.J.; Latham, J.C.; Kussrow, A.

    2007-01-01

    Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules...

  1. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  2. High throughput label-free platform for statistical bio-molecular sensing

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, En-Te; Chen, Ching-Hsiu

    2011-01-01

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing...

  3. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  4. Lab-on-a-chip for label free biological semiconductor analysis of Staphylococcal Enterotoxin B

    NARCIS (Netherlands)

    Yang, Minghui; Sun, Steven; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2010-01-01

    We describe a new lab-on-a-chip (LOC) which utilizes a biological semiconductor (BSC) transducer for label free analysis of Staphylococcal Enterotoxin B (SEB) (or other biological interactions) directly and electronically. BSCs are new transducers based on electrical percolation through a multi-laye

  5. Quantitative relation between PMSE and ice mass density

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2010-06-01

    Full Text Available Radar reflectivities associated with Polar Mesosphere Summer Echoes (PMSE are compared with measurements of ice mass density in the mesopause region. The 54.5 MHz radar Moveable Atmospheric Radar for Antarctica (MARA, located at the Wasa/Aboa station in Antarctica (73° S, 13° W provided PMSE measurements in December 2007 and January 2008. Ice mass density was measured by the Solar Occultation for Ice Experiment (SOFIE. The radar operated continuously during this period but only measurements close to local midnight are used for comparison, to coincide with the local time of the measurements of ice mass density. The radar location is at high geographic latitude but low geomagnetic latitude (61° and the measurements were made during a period of very low solar activity. As a result, background electron densities can be modelled based on solar illumination alone. We find a close correlation between the time and height variations of radar reflectivity and ice mass density, at all PMSE heights, from 80 km up to 95 km. A quantitative expression relating radar reflectivities to ice mass density is found, including an empirical dependence on background electron density. Using this relation, we can use PMSE reflectivities as a proxy for ice mass density, and estimate the daily variation of ice mass density from the daily variation of PMSE reflectivities. According to this proxy, ice mass density is maximum around 05:00–07:00 LT, with lower values around local noon, in the afternoon and in the evening. This is consistent with the small number of previously published measurements and model predictions of the daily variation of noctilucent (mesospheric clouds and in contrast to the daily variation of PMSE, which has a broad daytime maximum, extending from 05:00 LT to 15:00 LT, and an evening-midnight minimum.

  6. Quantitative relation between PMSE and ice mass density

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden); Hervig, M. [GATS Inc., Driggs, ID (United States); Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation)

    2010-07-01

    Radar reflectivities associated with Polar Mesosphere Summer Echoes (PMSE) are compared with measurements of ice mass density in the mesopause region. The 54.5MHz radar Moveable Atmospheric Radar for Antarctica (MARA), located at theWasa/Aboa station in Antarctica (73 S, 13 W) provided PMSE measurements in December 2007 and January 2008. Ice mass density was measured by the Solar Occultation for Ice Experiment (SOFIE). The radar operated continuously during this period but only measurements close to local midnight are used for comparison, to coincide with the local time of the measurements of ice mass density. The radar location is at high geographic latitude but low geomagnetic latitude (61 ) and the measurements were made during a period of very low solar activity. As a result, background electron densities can be modelled based on solar illumination alone. We find a close correlation between the time and height variations of radar reflectivity and ice mass density, at all PMSE heights, from 80 km up to 95 km. A quantitative expression relating radar reflectivities to ice mass density is found, including an empirical dependence on background electron density. Using this relation, we can use PMSE reflectivities as a proxy for ice mass density, and estimate the daily variation of ice mass density from the daily variation of PMSE reflectivities. According to this proxy, ice mass density is maximum around 05:00-07:00 LT, with lower values around local noon, in the afternoon and in the evening. This is consistent with the small number of previously published measurements and model predictions of the daily variation of noctilucent (mesospheric) clouds and in contrast to the daily variation of PMSE, which has a broad daytime maximum, extending from 05:00 LT to 15:00 LT, and an evening-midnight minimum. (orig.)

  7. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments.

    Science.gov (United States)

    Matzke, Melissa M; Brown, Joseph N; Gritsenko, Marina A; Metz, Thomas O; Pounds, Joel G; Rodland, Karin D; Shukla, Anil K; Smith, Richard D; Waters, Katrina M; McDermott, Jason E; Webb-Robertson, Bobbie-Jo

    2013-02-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.

  8. A Comparative Analysis of Computational Approaches to Relative Protein Quantification Using Peptide Peak Intensities in Label-free LC-MS Proteomics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.; Metz, Thomas O.; Pounds, Joel G.; Rodland, Karin D.; Shukla, Anil K.; Smith, Richard D.; Waters, Katrina M.; McDermott, Jason E.; Webb-Robertson, Bobbie-Jo M.

    2013-02-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.

  9. Attomole quantitation of protein separations with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  10. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  11. Label-free Detection of Protein Released during Platelet Activation by CNT-Enhanced Love Mode SAW Sensors.

    Science.gov (United States)

    Wu, Huiyan; Zu, Hongfei; Wang, Qing-Ming; Zhao, Gangyi; Wang, Jamesu H-C

    2014-09-01

    Platelet-rich plasma (PRP) has been applied in a series of clinical treatments. PRP contains high-concentrated platelets, which, when activated, could secret a variety of growth factors and cytokines, to promote and/or enhance healing of injured tissues. Non-activated platelets suspension could be prepared by an isolation method of centrifugation and washing currently. However, it is not clear whether platelets, if any, are already activated during this process and there is no simple method to monitor their activation accordingly. Shear-Horizontal Surface Acoustic Wave sensors (SH-SAW, Love Mode) are promising in fundamental biology as well as biomedical engineering, detecting cell behaviors in liquid in a non-invasive, simple and quantitative manner. In this study, Love mode sensors are adopted for the label-free detection of protein secreted by platelets. Carbon nanotube (CNT) is reported as an advisable platform of both non-specific protein adsorption and specific protein binding. For further improvement of Love mode sensor performance, novel CNT -coated parylene-C film is prepared on its surface as both the acoustic-wave-guiding layer and bio-interface layer. The S21 loss curves of Love mode sensors were recorded and the corresponding resonance frequencies were extracted. The results showed that the CNT-enhanced sensor possessed an increased resonance frequency shift when compared to normal sensor with single parylene-C film under identical collagen concentrations. Then, the modified sensor is used for label-free detection of protein released by various concentrations of platelets. The results revealed high sensitivity and consistency, indicating the potential of CNT-enhanced Love mode sensors in cell-based applications.

  12. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  13. Quantitative geophysical log interpretation for rock mass characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Renate Sliwa; Roland Turner; Terry Medhurst

    2004-04-01

    Geophysical borehole logging is routinely employed as part of exploration drilling in open pit and underground mining operations. Analysis of results is often empirical or based on theoretical considerations that need not relate to the actual properties of the rocks under consideration. The objectives of this project are to develop techniques for quantitative geophysical log interpretation techniques to enable: better estimation of coal and rock properties such as strength and permeability; better lithological interpretation and strata correlation between boreholes; a rock mass rating scheme for mine design purposes which is based on geophysical logging. This study has placed the techniques for quantitative geophysical log assessment on a firm footing. The authors have demonstrated an approach for log assessment that can be routinely applied. Many of the mineralogical and physical rock properties that impact on the assessments have been investigated and discussed. They have also demonstrated the benefits of quantitative geophysical log assessment. The major recommendation made is that geologists and engineers in the coal mining industry take the time to study this report and begin to put the approach described into practice. The collective understanding that this experience will provide can only help fuel the drive to take the benefits of geophysical logging to greater levels.

  14. Quantitative Label-Free Cell Proliferation Tracking with a Versatile Electrochemical Impedance Detection Platform

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, M; Heiskanen, Arto

    2012-01-01

    optimal detection strategies. Electrochemical Impedance Spectroscopy (EIS) has been used to monitor and compare adhesion of different cell lines. HeLa cells and 3T3 fibroblasts have been cultured for 12 hours on interdigitated electrode arrays integrated into a tailor-made cell culture platform. Both...

  15. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  16. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    Science.gov (United States)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  17. Label-free identification of individual bacteria using Fourier transform light scattering

    CERN Document Server

    Jo, YoungJu; Kim, Min-hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun

    2015-01-01

    Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

  18. Label-Free Discrimination of Cells Undergoing Apoptosis by Hyperspectral Confocual Reflectance Imaging

    Science.gov (United States)

    Bertani, F. R.; Botti, E.; Costanzo, A.; Ferrari, L.; Mussi, V.; D'Alessandro, M.; Selci, S.

    2013-12-01

    Among the optical techniques used for exploring the properties of cells and tissues, those based on hyperspectral label-free analysis are particularly interesting due to their non-invasive character and their ability to fast collect a huge number of information on the different sample constituents and their spatial distribution. Here we present results obtained with a novel hyperspectral reflectance confocal microscope of label-free discrimination of cells undergoing apoptosis. Our data, analyzed by means of a powerful statistical method, enable to obtain information on the biological status at a single cell level through the local measurement of reflectivity. Furthermore, an optical model of the local dielectric response gives an additional insight of the parameters linking the optical responsivity to the biological status.

  19. Advance ultra sensitive multi-layered nano plasmonic devices for label free biosensing targeting immunodiagnostics

    Science.gov (United States)

    Sharma, Divya; Dwivedi, R. P.

    2016-09-01

    The rapid advancement in technology has envisaged and drafted the use of optical bio-sensing units into label free and multiplexed bio-sensing, exploring the surface plasmon polaritons, which has turned into a gold standard on the commercial basis, but they are bulky and find difficulty in scaling up for the throughput detection. The integration of plasmonic crystals with microfluidics on the bio-sensing frontier offers a multi-level validation of results with the ease of real-time detection and imaging and holds a great promise to develop ultra-sensitive, fast, portable device for the point-of-care diagnostics. The paper describes the fast, low cost approach of designing and simulating label free biosensor using open source MEEP and other software tools targeting Immunodiagnostics.

  20. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    Science.gov (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  1. Improving Probe Immobilization for Label-Free Capacitive Detection of DNA Hybridization on Microfabricated Gold Electrodes

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2008-02-01

    Full Text Available Alternative approaches to labeled optical detection for DNA arrays are actively investigated for low-cost point-of-care applications. In this domain, label-free capacitive detection is one of the most intensely studied techniques. It is based on the idea to detect the Helmholtz ion layer displacements when molecular recognition occurs at the electrodes/solution interface. The sensing layer is usually prepared by using thiols terminated DNA single-strength oligonucleotide probes on top of the sensor electrodes. However, published data shows evident time drift, which greatly complicates signal conditioning and processing and ultimately increases the uncertainty in DNA recognition sensing. The aim of this work is to show that newly developed ethylene-glycol functionalized alkanethiols greatly reduce time drift, thereby significantly improving capacitance based label-free detection of DNA.

  2. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  3. Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kenzo Maehashi

    2009-07-01

    Full Text Available Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs. In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs. Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  4. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    Science.gov (United States)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  5. Targeted quantitative mass spectrometric immunoassay for human protein variants

    Directory of Open Access Journals (Sweden)

    Nedelkov Dobrin

    2011-04-01

    Full Text Available Abstract Background Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants. Results Presented here is a mass spectrometric immunoassay method for targeted quantitative proteomics analysis of protein modifications. Cystatin C, a cysteine proteinase inhibitor and a potential marker for several pathological processes, was used as a target analyte. An internal reference standard was incorporated into the assay, serving as a normalization point for cystatin C quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing cystatin C ELISA. In application, the assay was utilized to determine the individual concentration of several cystatin C variants across a cohort of samples, demonstrating the ability to fully quantify individual forms of post-translationally modified proteins. Conclusions The mass spectrometric immunoassays can find use in quantifying specific protein modifications, either as a part of a specific protein biomarker discovery/rediscovery effort to delineate the role of these variants in the onset of the disease, progression, and response to therapy, or in a more systematic study to delineate and understand human protein diversity.

  6. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays

    OpenAIRE

    Cunningham, Brian T.

    2010-01-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic material...

  7. Novel image processing method study for a label-free optical biosensor

    Science.gov (United States)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  8. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    Science.gov (United States)

    2016-10-01

    regions in injured eyes 4) Measure TRPM7 and cellular/apoptosis biomarkers in retinas 5) Measure neuronal death and cell-specific biomarker in retinas...modal label-free imaging system and calibrating our system to measure blood oxygen levels in the eye . The reported problems with our coherent anti...now ready to test human hemoglobin with our CARS system. 3) Detect and map hypoxic regions in injured eyes In Quarter 1-2: We optimized our

  9. Label-free detection of small-molecule binding to a GPCR in the membrane environment.

    Science.gov (United States)

    Heym, Roland G; Hornberger, Wilfried B; Lakics, Viktor; Terstappen, Georg C

    2015-08-01

    Evaluation of drug-target interaction kinetics is becoming increasingly important during the drug-discovery process to investigate selectivity of a drug and predict in vivo target occupancy. To date, it remains challenging to obtain kinetic information for interactions between G-protein-coupled receptors (GPCRs) and small-molecule ligands in a label-free manner. Often GPCRs need to be solubilized or even stabilized by mutations which can be difficult and is time consuming. In addition, it is often unclear if the native conformation of the receptors is sustained. In this study, surface plasmon resonance (SPR) and surface acoustic wave (SAW) technologies have been used to detect ligand binding to the GPCR chemokine (C-X-C motif) receptor 4 (CXCR4) expressed in lipoparticles. We first evaluated different strategies to immobilize CXCR4-expressing lipoparticles. The highest small-molecule binding signal in SPR and SAW was achieved with a matrix-free carboxymethylated sensor chip coated with wheat germ agglutinin for lipoparticle capturing. Next, the binding kinetics of the anti-CXCR4 antibody 12G5 raised against a conformational epitope (k(on)=1.83×10(6)M(-1)s(-1), k(off)=2.79×10(-4) s(-1)) and the small molecule AMD3100 (k(on)=5.46×10(5)M(-1)s(-1), k(off)=1.01×10(-2)s(-1)) were assessed by SAW. Our kinetic and affinity data are consistent with previously published radioligand-binding experiments using cells and label-free experiments with solubilized CXCR4. This is the first study demonstrating label-free kinetic characterization of small-molecule binding to a GPCR in the membrane environment. The presented method holds the potential to greatly facilitate label-free assay development for GPRCs that can be expressed at high levels in lipoparticles.

  10. Optical tweezers for free-solution label-free single bio-molecule studies

    Science.gov (United States)

    Kotnala, Abhay; Al-Balushi, Ahmed A.; Gordon, Reuven

    2014-09-01

    Nanoaperture based trapping has developed as a significant tool among the various optical tweezer systems for trapping of very small particles down to the single nanometer range. The double nanohole aperture based trap provides a method for efficient, highly-sensitive, label-free, low-cost, free-solution single molecule trapping and detection. We use the double nanohole tweezer to understand biomolecular phenomena like protein unfolding, binding, structural conformation of DNA, protein-DNA interactions, and protein small molecule interactions.

  11. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing

    Science.gov (United States)

    Blanco, F. J.; Agirregabiria, M.; Berganzo, J.; Mayora, K.; Elizalde, J.; Calle, A.; Dominguez, C.; Lechuga, L. M.

    2006-05-01

    The fabrication, characterization and packaging of novel microfluidic-optical integrated biosensors for label-free biochemical detection is presented in this paper. The integrated device consists of a three-dimensional embedded microchannel network fabricated using enhanced CMOS compatible SU-8 multilevel polymer technology on top of a wafer containing Mach-Zehnder Interferometer (MZI) nanophotonic biosensor devices. PMMA housing provides connection to the macro-world and ensures robust leakage-free flow operation of the devices. This macro-microfluidic module can operate at pressure drops up to 1000 kPa. Fluid flow experiments have been performed in order to demonstrate the robustness of our microfluidic devices. The devices have been designed to operate under continuous flow. Steady-state flow rates ranging from 1 to 100 µl min-1 at pressure drops ranging from 10 to 500 kPa were measured in the laminar flow regime. Experimental results are in good agreement with laminar flow theory. The first interferometric sensing measurements are presented in order to demonstrate the functionality of these novel integrated devices for lab-on-a-chip and label-free biosensing applications. A bulk refractive index detection limit of 3.8 × 10-6 was obtained, close to the minimum detected up to now by label-free biosensor devices without microfluidic integration. As far as we know, this is the first time that a label-free biosensor device is integrated within a microfluidic network using a wafer-level CMOS compatible process technology.

  12. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    Science.gov (United States)

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques.

  13. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay.

    Science.gov (United States)

    Yang, Yan; Hu, Weihua

    2017-05-01

    Photoelectrochemical (PEC) detection is a promising method for label-free immunoassay by reporting the specific biological recognition events with electrical signals. However, it is challenging to rationally incorporate immunosensing components with a photocurrent conversion interface, which generally necessitates multistep fabrication and careful tailoring of various components such as photoactive material and biological probe. For high detection reliability and reproducibility, it is highly desirable to rationally construct an efficient PEC interface with architecture as simple as possible. In this work, a novel yet simple PEC immunosensor based on bio-inspired polydopamine (PDA) thin film-coated zinc oxide (ZnO) nanorods was reported. In this PEC immunosensor, the PDA thin film serves simultaneously as a unique sensitizer for charge separation as well as a functional layer for probe antibody attachment. The photocurrent on this electrode under illumination decreases upon the immunoreaction on the surface, possibly due to the blocking effect of formed immunocomplexes on the access of reducing reagent to the photoelectrode, thus offering a simple and reliable platform for PEC label-free immunoassay. By using an antibody-antigen pair as a model, successful label-free immunoassay was achieved with a detection limit of 10pgmL(-1) and a dynamic range from 100pgmL(-1) to 500ngmL(-1). This work demonstrates intriguing electro-optical property and bioconjugation activity of PDA film and may pave the way toward advanced PEC immunoassays.

  14. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  15. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    Science.gov (United States)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  16. In situ label-free cell viability assessment of nucleus pulposus tissue.

    Science.gov (United States)

    Dittmar, Roman; van Dijk, Bart G M; van Zandvoort, Marc A M J; Ito, Keita

    2014-04-01

    Regenerative medicine approaches aiming at treating degenerating intervertebral discs, a major cause of back pain, are increasingly tested in ex-vivo disc explant models mimicking in-vivo conditions. For assessing the efficacy of regenerative therapies, cell viability is commonly measured requiring specific labels to stain cells. Here, we demonstrate and evaluate how cellular auto-fluorescence can be utilized to non-invasively assess viability in disc tissue in-situ using label-free two-photon microscopy. Live and dead bovine disc cells (0% and 100% cell viability) from the nucleus pulposus were seeded into collagen gels and auto-fluorescence was characterized. Subsequently, nucleus pulposus explants were cultured for 6 days in media with different glucose supplementation (0, 0.25, 0.5, and 1 g/L) to induce different degrees of cell death. Then, samples were split and viability was assessed using label-free two-photon microscopy and conventional staining. Results show that live and dead nucleus pulposus cells systematically emit auto-fluorescent light with distinct characteristics. Cell viability values obtained with label-free microscopy did not significantly differ from those acquired with staining. In summary, monitoring auto-fluorescence facilitates accurate cell viability assessment in nucleus tissue requiring no additional dyes. Thus, this technique may be suitable for pre-clinical testing of regenerative therapies in nucleus pulposus cultures. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:545-550, 2014.

  17. Reproducible E. coli detection based on label-free SERS and mapping.

    Science.gov (United States)

    Yang, Danting; Zhou, Haibo; Haisch, Christoph; Niessner, Reinhard; Ying, Yibin

    2016-01-01

    The biosensing for rapid detection of bacteria based on surface-enhanced Raman scattering (SERS) has been widely explored for recent years. It is still a challenge to achieve a high sensitive, reproducible label free detection method for bacteria. In this work, a label-free SERS detection method of Escherichia coli based on incubation with silver colloid was reported. Optimized incubation conditions including shaking speed, time and temperature were used to help construct a rapid SERS method for E. coli analysis. It was found that the enhancement of the Raman signal of E. coli could be achieved to 1.8×10(4) cps (counts per second) with high reproducibility. Three strains of E. coli DSM 1116/498/5695 could be successfully discriminated using such SERS method combining discriminant analysis. Finally, the lowest concentration of E. coli at 1×10(5) cell/mL can be detected by SERS mapping. Thus, our detection method offers higher sensitivity and reproducibility compared to previously reported label free simple-mixing methods, opening an avenue for developing various SERS-based biosensor.

  18. Suitability of Cell-Based Label-Free Detection for Cytotoxicity Screening of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Claudia Meindl

    2013-01-01

    Full Text Available Cytotoxicity testing of nanoparticles (NPs by conventional screening assays is often complicated by interference. Carbon nanotubes (CNTs are particularly difficult to assess. To test the suitability of cell-based label-free techniques for this application, a panel of CNTs with different diameters and surface functionalizations was assessed by impedance-based technique (xCELLigence RTCA and automated microscopy (Cell-IQ compared to formazan bioreduction (MTS assay. For validation of the label-free systems different concentrations of ethanol and of amine (AMI polystyrene NPs were used. CNTs were evaluated in various cell lines, but only endothelial EAhy926 cells and L929 and V79 fibroblasts could be evaluated in all systems. Polystyrene particles obtained similar results in all assays. All systems identified thin (20 nm CNTs, but detection by xCELLigence system was less sensitive to CNT-induced cytotoxicity. Despite advantages, such as continuous monitoring and more detailed analysis of cytotoxic effects, label-free techniques cannot be generally recommended for cytotoxicity screening of NPs.

  19. Label-free assay for the detection of glucose mediated by the effects of narrowband absorption on quantum dot photoluminescence

    Science.gov (United States)

    Khan, Saara A.; Smith, Gennifer T.; Ellerbee, Audrey K.

    2014-03-01

    We present a novel strategy for label-free detection of glucose based on CdSe/ZnS core/shell quantum dots (QDs). We exploit the concentration-dependent, narrowband absorption of the hexokinase-glucose 6-phosphate dehydrogenase enzymatic assay to selectively filter a 365-nm excitation source, leading to a proportional decrease in the photoluminescence intensity of the QDs. The visible wavelength emission of the QDs enables quantitative readout using standard visible detectors (e.g., CCD). Experimental results show highly linear QD photoluminescence over the clinically relevant glucose concentration range of 1-25mM, in excellent agreement with detection methods demonstrated by others. The method has a demonstrated limit of detection of 3.5μM, also on par with the best proposed methods. A significant advantage of our strategy is the complete elimination of QDs as a consumable. In contrast with other methods of QD-based measurement of glucose, our system does not require the glucose solution to be mixed with the QDs, thereby decreasing its overall cost and making it an ideal strategy for point-of-care detection of glucose in low-resource areas. Furthermore, readout can be accomplished with low-cost, portable detectors such as cellular phones, eliminating the need for expensive and bulky spectrophotometers to output quantitative information. The general strategy we present is useful for other biosensing applications involving chemistries with unique absorption peaks falling within the excitation band of available QDs.

  20. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Mönchgesang, Susann; Majovsky, Petra; Thieme, Domenika; Trutschel, Diana; Hoehenwarter, Wolfgang

    2017-04-07

    We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.

  1. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  2. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  3. Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sibilio, Leonardo; Sonntag, Frank; Occhicone, Agostino; Falvo, Elisabetta; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-06-15

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of ERBB2/neu/Her2 in cell lysates. ERBB2 is a pivotal breast cancer biomarker and targetable oncogenic driver associated with aggressive breast cancer subtypes. To quantitate soluble ERBB2, we developed an optical platform that combines label-free and fluorescence detection modes. Such platform makes use of a sandwich assay in which the one-dimensional photonic crystals sustaining Bloch surface waves are tailored with a monoclonal antibody for highly specific biological recognition (BSW biochip). In a second step, a second antibody to ERBB2 quantitatively detects the bound analyte. The strategy of the present approach takes advantage of the combination of label-free and fluorescence techniques, making bio-recognition more robust and sensitive. In the fluorescence operation mode, the platform can attain the limit of detection 0.3ng/mL (1.5pM) for ERBB2 in cell lysates. Such resolution meets the international guidelines and recommendations (15ng/mL) for diagnostic ERBB2 assays that in the future may help to more precisely assign therapies counteracting cancer cell proliferation and metastatic spread.

  4. Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective.

    Science.gov (United States)

    Helmerhorst, Erik; Chandler, David J; Nussio, Matt; Mamotte, Cyril D

    2012-11-01

    Radioactive, chromogenic, fluorescent and other labels have long provided the basis of detection systems for biomolecular interactions including immunoassays and receptor binding studies. However there has been unprecedented growth in a number of powerful label free biosensor technologies over the last decade. While largely at the proof-of-concept stage in terms of clinical applications, the development of more accessible platforms may see surface plasmon resonance (SPR) emerge as one of the most powerful optical detection platforms for the real-time monitoring of biomolecular interactions in a label-free environment.In this review, we provide an overview of SPR principles and current and future capabilities in a diagnostic context, including its application for monitoring a wide range of molecular markers of disease. The advantages and pitfalls of using SPR to study biomolecular interactions are discussed, with particular emphasis on its potential to differentiate subspecies of analytes and the inherent ability for quantitation through calibration-free concentration analysis (CFCA). In addition, recent advances in multiplex applications, high throughput arrays, miniaturisation, and enhancements using noble metal nanoparticles that promise unprecedented sensitivity to the level of single molecule detection, are discussed.In summary, while SPR is not a new technique, technological advances may see SPR quickly emerge as a highly powerful technology, enabling rapid and routine analysis of molecular interactions for a diverse range of targets, including those with clinical applicability. As the technology produces data quickly, in real-time and in a label-free environment, it may well have a significant presence in future developments in lab-on-a-chip technologies including point-of-care devices and personalised medicine.

  5. Biotin-Streptavidin Binding Interactions of Dielectric Filled Silicon Bulk Acoustic Resonators for Smart Label-Free Biochemical Sensor Applications

    Directory of Open Access Journals (Sweden)

    Amir Heidari

    2014-03-01

    Full Text Available Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests.

  6. Label-free biomolecular characterization of human breast cancer tissue with stimulated Raman scattering (SRS) spectral imaging (Conference Presentation)

    Science.gov (United States)

    Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.

    2017-02-01

    Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.

  7. In-depth evaluation of software tools for data-independent acquisition based label-free quantification.

    Science.gov (United States)

    Kuharev, Jörg; Navarro, Pedro; Distler, Ute; Jahn, Olaf; Tenzer, Stefan

    2015-09-01

    Label-free quantification (LFQ) based on data-independent acquisition workflows currently experiences increasing popularity. Several software tools have been recently published or are commercially available. The present study focuses on the evaluation of three different software packages (Progenesis, synapter, and ISOQuant) supporting ion mobility enhanced data-independent acquisition data. In order to benchmark the LFQ performance of the different tools, we generated two hybrid proteome samples of defined quantitative composition containing tryptically digested proteomes of three different species (mouse, yeast, Escherichia coli). This model dataset simulates complex biological samples containing large numbers of both unregulated (background) proteins as well as up- and downregulated proteins with exactly known ratios between samples. We determined the number and dynamic range of quantifiable proteins and analyzed the influence of applied algorithms (retention time alignment, clustering, normalization, etc.) on quantification results. Analysis of technical reproducibility revealed median coefficients of variation of reported protein abundances below 5% for MS(E) data for Progenesis and ISOQuant. Regarding accuracy of LFQ, evaluation with synapter and ISOQuant yielded superior results compared to Progenesis. In addition, we discuss reporting formats and user friendliness of the software packages. The data generated in this study have been deposited to the ProteomeXchange Consortium with identifier PXD001240 (http://proteomecentral.proteomexchange.org/dataset/PXD001240).

  8. Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein

    Science.gov (United States)

    Wang, Yaoguang; Zhang, Yong; Wu, Dan; Ma, Hongmin; Pang, Xuehui; Fan, Dawei; Wei, Qin; Du, Bin

    2017-01-01

    In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nanoparticles (Au NPs) and toluidine blue (TB). As a kind of redox probe, TB can produce the electrochemical signal. Graphene owns large specific surface area, high electrical conductivity and good adsorption property to load a large number of TB. Fe3O4 NPs have good electrocatalytic performance towards the redox of TB. Au NPs have good biocompatibility to capture the antibodies. Due to the good electrochemical performance of TB-Au-Fe3O4-rGO, the effective and sensitive detection of AFP was achieved by the designed electrochemical immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide linear range from 1.0 × 10−5 ng/mL to 10.0 ng/mL with a low detection limit of 2.7 fg/mL for AFP. It also displayed good electrochemical performance including good reproducibility, selectivity and stability, which would provide potential applications in the clinical diagnosis of other tumor markers. PMID:28186128

  9. A Label-Free Proteomic Analysis on Competent Larvae and Juveniles of the Pacific Oyster Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Pin Huan

    Full Text Available Current understandings on the molecular mechanisms underlying bivalve metamorphosis are still fragmentary, and a comprehensive description is required. In this study, using a large-scale label-free proteomic approach, we described and compared the proteomes of competent larvae (CL and juveniles (JU of the Pacific oyster, Crassostrea gigas. A total of 788 proteins were identified: 392 in the CL proteome and 636 in the JU proteome. Gene Ontology analysis of the proteome from each sample revealed active metabolic processes in both stages. Further quantitative analyses revealed 117 proteins that were differentially expressed between the two samples. These proteins were divided into eight groups: cytoskeleton and cell adhesion, protein synthesis and degradation, immunity and stress response, development of particular tissues, signal regulation, metabolism and energy supply, transport, and other proteins. A certification experiment using real-time PCR assay confirmed 20 of 30 examined genes exhibited the same trends at the mRNA and protein levels. The differentially expressed proteins may play roles in tissue remodeling, signal transduction, and organ development during and after metamorphosis. Novel roles were proposed for some differentially expressed proteins, such as chymotrypsin. The results of this work provide an overview of metamorphosis and post-metamorphosis development of C. gigas at the protein level. Future studies on the functions of the differentially expressed proteins will help to obtain a more in-depth understanding of bivalve metamorphosis.

  10. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Serr, Andreas; Wunderlich, Bernhard K; Bausch, Andreas R

    2007-10-08

    A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.

  11. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ortrud Uckermann

    2015-01-01

    Full Text Available Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes.

  12. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Beiermeister, Rudolf; Sitoci-Ficici, Kerim-Hakan; Later, Robert; Leipnitz, Elke; Neuwirth, Ales; Chavakis, Triantafyllos; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF) in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS) and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes. PMID:26355949

  13. Application of a Label-Free Immunosensor for White Spot Syndrome Virus (WSSV) in Shrimp Cultivation Water.

    Science.gov (United States)

    Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera

    2015-10-01

    White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.

  14. Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

    Directory of Open Access Journals (Sweden)

    Yun-ah Han

    2013-03-01

    Full Text Available The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV, full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1 the PWV can be measured by the reflection peak measurement instruments, (2 the grating pitch and duty can be manufactured using conventional lithography systems, and (3 the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU−1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.

  15. CSI-FID: high throughput label-free detection of DNA binding molecules.

    Science.gov (United States)

    Hauschild, Karl E; Stover, James S; Boger, Dale L; Ansari, Aseem Z

    2009-07-15

    Determining the sequence specifity of DNA binding molecules is a non-trivial task. Here we describe the development of a platform for assaying the sequence specificity of DNA ligands using label free detection on high density DNA microarrays. This is achieved by combining Cognate Site Identification (CSI) with Fluorescence Intercalation Displacement (FID) to create CSI-FID. We use the well-studied small molecule DNA ligand netropsin to develop this high throughput platform. Analysis of the DNA binding properties of protein- and small molecule-based libraries with CSI-FID will advance the development of genome-anchored molecules for therapeutic purposes.

  16. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  17. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    Science.gov (United States)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  18. Physical characterization of hematopoietic stem cells using multidirectional label-free light scatterings.

    Science.gov (United States)

    Shahin, Hesam; Gupta, Manisha; Janowska-Wieczorek, Anna; Rozmus, Wojciech; Tsui, Ying Y

    2016-12-12

    An experimental setup capable of measuring simultaneous 2D scattered light angular distribution from two directions to study cell morphology without the use of bio-labels was developed. Experiments with hematopoietic stem cells (CD34+ cells) show good agreement with detailed numerical simulations of light scattering. Numerical simulations and computer models of cells are used to identify physical features of cells with the largest scattering cross sections. This allows for determination of size, geometry of the nucleus and distribution of mitochondria in hematopoietic stem cells by means of our label-free method.

  19. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    Science.gov (United States)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  20. High-contrast grating resonators for label-free detection of disease biomarkers

    Science.gov (United States)

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-06-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.

  1. Label-free single molecule imaging with numerical aperture-shaped interferometric scattering microscopy

    CERN Document Server

    Cole, Daniel; Weigel, Alexander; Kukura, P

    2016-01-01

    Our ability to optically interrogate nanoscopic objects is controlled by the difference between their extinction cross sections and the diffraction limited area to which light can be confined in the far field. We show that a partially transmissive spatial mask placed near the back focal plane of a high numerical aperture microscope objective enhances the extinction contrast of a scatterer near an interface by approximately $T^{-1/2}$, where T is the transmissivity of the mask. Numerical aperture based differentiation of background from scattered light represents a general approach to increasing extinction contrast and enables routine label free imaging down to the single molecule level.

  2. Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy

    Science.gov (United States)

    Wu, Xiaojun; E, Yiwen; Xu, Xinlong; Wang, Li

    2012-07-01

    We demonstrated the feasibility of applying terahertz time-domain spectroscopy (THz-TDS) to monitor the molecular reactions in aqueous solutions of anticancer drug oxaliplatin with λ-DNA and macrophages DNA. The reaction time dependent refractive index and absorption coefficient were extracted and analyzed. The reaction half-decaying time of about 4.0 h for λ-DNA and 12.9 h for M-DNA was established. The results suggest that the THz-TDS detection could be an effective label-free technique to sense the molecular reaction in aqueous solutions and could be very useful in biology, medicine, and pharmacy industry.

  3. Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease

    Science.gov (United States)

    Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu

    2015-06-01

    A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.

  4. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  5. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.

    Science.gov (United States)

    Jaeger, Daniel; Pilger, Christian; Hachmeister, Henning; Oberländer, Elina; Wördenweber, Robin; Wichmann, Julian; Mussgnug, Jan H; Huser, Thomas; Kruse, Olaf

    2016-10-21

    Oleaginous photosynthetic microalgae hold great promise as non-food feedstocks for the sustainable production of bio-commodities. The algal lipid quality can be analysed by Raman micro-spectroscopy, and the lipid content can be imaged in vivo in a label-free and non-destructive manner by coherent anti-Stokes Raman scattering (CARS) microscopy. In this study, both techniques were applied to the oleaginous microalga Monoraphidium neglectum, a biotechnologically promising microalga resistant to commonly applied lipid staining techniques. The lipid-specific CARS signal was successfully separated from the interfering two-photon excited fluorescence of chlorophyll and for the first time, lipid droplet formation during nitrogen starvation could directly be analysed. We found that the neutral lipid content deduced from CARS image analysis strongly correlated with the neutral lipid content measured gravimetrically and furthermore, that the relative degree of unsaturation of fatty acids stored in lipid droplets remained similar. Interestingly, the lipid profile during cellular adaption to nitrogen starvation showed a two-phase characteristic with initially fatty acid recycling and subsequent de novo lipid synthesis. This works demonstrates the potential of quantitative CARS microscopy as a label-free lipid analysis technique for any microalgal species, which is highly relevant for future biotechnological applications and to elucidate the process of microalgal lipid accumulation.

  6. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    Science.gov (United States)

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  7. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine

    Science.gov (United States)

    Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan

    2015-02-01

    A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.

  8. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma.

    Science.gov (United States)

    Kirk, James T; Brault, Norman D; Baehr-Jones, Tom; Hochberg, Michael; Jiang, Shaoyi; Ratner, Daniel M

    2013-04-15

    A widely acknowledged goal in personalized medicine is to radically reduce the costs of highly parallelized, small fluid volume, point-of-care and home-based diagnostics. Recently, there has been a surge of interest in using complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonic circuits for biosensing, with the promise of producing chip-scale integrated devices containing thousands of orthogonal sensors, at minimal cost on a per-chip basis. A central challenge in biosensor translation is to engineer devices that are both sensitive and specific to a target analyte within unprocessed biological fluids. Despite advances in the sensitivity of silicon photonic biosensors, poor biological specificity at the sensor surface remains a significant factor limiting assay performance in complex media (i.e. whole blood, plasma, serum) due to the non-specific adsorption of proteins and other biomolecules. Here, we chemically modify the surface of silicon microring resonator biosensors for the label-free detection of an analyte in undiluted human plasma. This work highlights the first application of a non-fouling zwitterionic surface coating to enable silicon photonic-based label-free detection of a protein analyte at clinically relevant sensitivities in undiluted human plasma.

  9. Label-free optical detection of cells grown in 3D silicon microstructures.

    Science.gov (United States)

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  10. Nanogap biosensors for electrical and label-free detection of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kyu Kim, Sang; Cho, Hyunmin; Park, Hye-Jung; Kwon, Dohyoung; Min Lee, Jeong; Hyun Chung, Bong, E-mail: chungbh@kribb.re.k [BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2009-11-11

    We demonstrate nanogap biosensors for electrical and label-free detection of biomolecular interactions. Parallel fabrication of nanometer distance gaps has been achieved using a silicon anisotropic wet etching technique on a silicon-on-insulator (SOI) wafer with a finely controllable silicon device layer. Since silicon anisotropic wet etching resulted in a trapezoid-shaped structure whose end became narrower during the etching, the nanogap structure was simply fabricated on the device layer of a SOI wafer. The nanogap devices were individually addressable and a gap size of less than 60 nm was obtained. We demonstrate that the nanogap biosensors can electrically detect biomolecular interactions such as biotin/streptavidin and antigen/antibody pairs. The nanogap devices show a current increase when the proteins are bound to the surface. The current increases proportionally depending upon the concentrations of the molecules in the range of 100 fg ml{sup -1}-100 ng ml{sup -1} at 1 V bias. It is expected that the nanogap developed here could be a highly sensitive biosensor platform for label-free detection of biomolecular interactions.

  11. Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics

    Science.gov (United States)

    Sohn, Lydia L.

    2013-03-01

    Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine

  12. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy

    Science.gov (United States)

    Witte, Stefan; Negrean, Adrian; Lodder, Johannes C.; de Kock, Christiaan P. J.; Testa Silva, Guilherme; Mansvelder, Huibert D.; Louise Groot, Marie

    2011-01-01

    The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain. PMID:21444784

  13. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis.

    Science.gov (United States)

    De, Arpita; van Nieuwkasteele, Jan; Carlen, Edwin T; van den Berg, Albert

    2013-06-07

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection system that eliminates erroneous sensor responses from sample switching due to flow rate fluctuations and provides precise sample volumes down to 10 nl. Biochemical sensing is demonstrated with real-time 15-mer DNA-PNA (peptide nucleic acid) duplex hybridization measurements from different sample concentrations in a low ionic strength, and the equilibrium dissociation constant KD ≈ 140 nM has been extracted from the experimental data using the first order Langmuir binding model. Chemical sensing is demonstrated with pH measurements from different injected samples in flow that have sensitivities consistent with the gate-oxide materials. A differential sensor measurement configuration results in a 30× reduction in sensor drift. The integrated label-free analysis platform is suitable for a wide range of small volume chemical and biochemical analyses.

  14. Label-free detection of C-reactive protein using an electrochemical DNA immunoassay

    Directory of Open Access Journals (Sweden)

    Temsiri Songjaroen

    2016-05-01

    Full Text Available A label-free electrochemical immunoassay that combines DNA-directed immobilization (DDI with electrochemical impedance spectroscopy (EIS on microwire sensors is reported for the detection of C-reactive protein (CRP. CRP is an acute-phase protein that is strongly correlated with systemic inflammation. Since inflammation plays a role in pathogenesis of cardiovascular diseases, CRP can be used to predict the likelihood of coronary events. To demonstrate the new chemistry, 25-μm Au electrodes were modified with single strand DNA (ssDNA and exposed to a solution containing complementary ssDNA conjugated to monoclonal anti-CRP. The charge-transfer resistance of the [Fe(CN6]3−/4− redox couple was used to determine the CRP concentration after binding. A stepwise increase in the charge transfer resistance was observed using EIS for each modification step, ssDNA, ssDNA-anti-CRP hybridization and the final CRP capture. Cyclic voltammetry (CV was used to verify the EIS results, and showed an increase in peak potential splitting in a similar stepwise manner for each modification step. Finally, fluorescence microscopy was used to confirm the DNA hybridization and CRP binding. Standard addition of CRP revealed that EIS could be used to detect CRP at clinically relevant levels in serum samples. This new form of electrochemical DNA immunoassay (eDI has significant potential as a simple, label-free sensor for proteins in microfluidic devices.

  15. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.

    Science.gov (United States)

    Barrios, C A; Zhenhe, C; Navarro-Villoslada, F; López-Romero, D; Moreno-Bondi, M C

    2011-01-15

    Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.

  16. A Label-Free Biosensing Platform Using a PLL Circuit and Biotin-Streptavidin Binding System.

    Science.gov (United States)

    Yunseog Hong; Hee-Jo Lee; Sang-Gyu Kim; Byung-Hyun Kim; Gi-Ho Yun; Jong-Gwan Yook

    2015-06-01

    This paper proposes a novel RF biosensor that utilizes a frequency synthesizer associated with a microstrip open-loop resonator for label-free biomolecular detection. The RF biosensor consists mainly of a resonance-assisted transducer and a phase locked loop (PLL) circuit. In this work, the performance of the RF biosensor is validated using the well-known biotin-streptavidin binding system. When biotin is bound to streptavidin, the input impedance of the resonator is varied, resulting in a change in the oscillation frequency. The concentration of the streptavidin is ultimately detected by a voltage signal of the PLL's loop filter with simple measurement equipment. According to the experimental results, the RF biosensor has revealed excellent sensitivity ( ~ 61 kHz/ngml(-1)) and a low detection limit ( ~ 1 ng/ml), as well as a rapid response. These results demonstrate that the RF biosensor can be an effective sensing platform for label-free detection in a biomolecular binding system.

  17. Ultrasensitive Sensing Material Based on Opal Photonic Crystal for Label-Free Monitoring of Transferrin.

    Science.gov (United States)

    Wu, Enqi; Peng, Yuan; Zhang, Xihao; Bai, Jialei; Song, Yanqiu; He, Houluo; Fan, Longxing; Qu, Xiaochen; Gao, Zhixian; Liu, Ying; Ning, Baoan

    2017-02-22

    A new opal photonic crystal (PC) sensing material, allowing label-free detection of transferrin (TRF), is proposed in the current study. This photonic crystal was prepared via a vertical convective self-assembly method with monodisperse microspheres polymerized by methyl methacrylate (MMA) and 3-acrylamidophenylboronic acid (AAPBA). FTIR, TG, and DLS were used to characterize the components and particle size of the monodisperse microspheres. SEM was used to observe the morphology of the PC. The diffraction peak intensity decreases as the TRF concentration increase. This was due to the combination of TRF to the boronic acid group of the photonic crystal. After condition optimization, a standard curve was obtained and the linear range of TRF concentration was from 2 × 10(-3) ng/mL to 200 ng/mL. Measurement of TRF concentration in simulated urine sample was also investigated using the sensing material. The results indicated that the PC provided a cheap, label-free, and easy-to-use alternative for TRF determination in clinical diagnostics.

  18. Label-free detection of cardiac troponin I with a photonic crystal biosensor.

    Science.gov (United States)

    Zhang, Bailin; Morales, Andres W; Peterson, Ralph; Tang, Liang; Ye, Jing Yong

    2014-08-15

    A biosensor has been developed with a photonic crystal structure used in a total-internal-reflection (PC-TIR) configuration for label-free detection of a cardiac biomarker: Troponin I (cTnI). In contrast to a conventional optical microcavity that has a closed structure with its cavity layer sandwiched between two high-reflection surfaces, the PC-TIR configuration creates a unique open microcavity, which allows its cavity layer (sensing layer) to be easily functionalized and directly exposed to analyte molecules for bioassays. In this study, a PC-TIR sensor has been used for the label-free measurements of cardiac biomarkers by monitoring the changes in the resonant condition of the cavity due to biomolecular binding processes. Antibodies against cTnI are immobilized on the sensor surface for specific detection of cTnI with a wide range of concentrations. Detection limit of cTnI with a concentration as low as 0.1ngmL(-1) has been achieved.

  19. Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction.

    Science.gov (United States)

    Hiep, Ha Minh; Kerman, Kagan; Endo, Tatsuro; Saito, Masato; Tamiya, Eiichi

    2010-02-19

    In this report, Au-coated nanostructured biochip with functionalized thiolated primers on its surface is developed for label-free and real-time optical detection of polymerase chain reaction (PCR). A PCR chamber of 150 microm in thickness containing Au-coated nanostructured substrate in the bottom layer was bordered with SU-8 100 walls. After immobilization of 5'-thiolated primers on the surface, simultaneous DNA amplification and detection were performed without any labeled molecules via the relative reflected intensity (RRI) of Au-coated nanostructured substrate. When human genomic DNA at several concentrations of 0.2, 0.5 and 1 ng microL(-1) was included in the initial DNA samples, the increases in the RRI peak values were clearly observed with the increasing PCR cycle numbers. We found that the starting point of the optical signal, which was divergent from the background in our PCR biochip, was around 3-4 cycles, much lower than that of the fluorescent real-time PCR analysis (around 23-25 cycles). Our proposed PCR device using Au-coated nanostructured substrate holds noteworthy promise for rapid, label-free and real-time DNA detection for point-of-care testing (POCT) applications.

  20. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  1. Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing.

    Science.gov (United States)

    Zang, Faheng; Gerasopoulos, Konstantinos; Brown, Adam D; Culver, James N; Ghodssi, Reza

    2017-03-15

    A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP receptor layer on impedance sensor has been achieved using capillary action and surface evaporation from an open-channel capillary microfluidic system. VLPs create a dense and localized receptor monolayer on the impedance sensor using only 5 μL of VLP sample solution (0.2 mg/mL) in only 6 min at room temperature. The VLP-functionalized impedance sensor is capable of label-free detection of target antibodies down to 55 pM concentration within 5 min. These results highlight the significant potentials of an integrated microsystem for rapid and controlled receptor-transducer interface creation and the nanoscale VLP-based sensors for fast, accurate, and decentralized pathogen detection.

  2. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Steffen Dietzel

    Full Text Available Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.

  3. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells.

    Science.gov (United States)

    Qi, Dandan; Feng, Jingwen; Yang, Chengwen; Jin, Changrong; Sa, Yu; Feng, Yuanming

    2016-10-01

    Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.

  4. Label-free fluorescence detection of melamine with a truncated aptamer.

    Science.gov (United States)

    Gu, Chunmei; Xiang, Yu; Guo, Hongli; Shi, Hanchang

    2016-07-21

    The 2008 Chinese milk scandal caused by the adulteration of melamine encouraged the public to pay attention to melamine detection in milk products and other food stuffs. To allow simple and rapid detection of melamine, we previously isolated an 88 nt melamine aptamer (called Rd29C33) using the structure-switching SELEX. However, this 88 nt oligonucleotide is costly to synthesize, and may also complicate the rational design of biosensors for melamine detection. To overcome this obstacle, we truncated Rd29C33 at several sites, and a 34 nt Rd29C33-T7 melamine aptamer was finally found to show comparable binding affinity and better selectivity to melamine compared to the original 88 nt Rd29C33. Furthermore, a label-free bioassay method for melamine detection was designed by using Rd29C33-T7 and thiazole orange (TO). The addition of melamine to a mixture of Rd29C33-T7 and TO caused the release of TO from Rd29C33-T7, resulting in a decrease of the fluorescence intensity of the solution. A detection limit of 0.12 μM for melamine was achieved using this label-free method. Good recovery ranging from 82.6% to 97.2% for melamine detection in whole milk samples suggested the promise of this bioassay method for application in monitoring melamine in real food stuffs.

  5. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance.

    Science.gov (United States)

    Martínez-Rivas, Adrián; Chinestra, Patrick; Favre, Gilles; Pinaud, Sébastien; Séverac, Childérick; Faye, Jean-Charles; Vieu, Christophe

    2010-09-07

    We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv)-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM) to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane) (<2 nm thick) and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.

  6. Label-free aptasensor for platelet-derived growth factor (PDGF) protein

    Energy Technology Data Exchange (ETDEWEB)

    Degefa, Tesfaye Hailu [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kwak, Juhyoun [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)], E-mail: Juhyoun_Kwak@kaist.ac.kr

    2008-04-21

    A label-free aptasensor for platelet-derived growth factor (PDGF) protein is reported. The aptasensor uses mixed self-assembled monolayers (SAMs) composed of a thiol-modified PDGF binding aptamer and 6-mercaptohexanol (MCH) on a gold electrode. The SAMs were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) before and after binding of the protein using [Fe(CN){sub 6}]{sup 3-/4-}, a redox marker ion as an indicator for the formation of a protein-aptamer complex. The CVs at the PDGF modified electrode showed significant differences, such as changes in the peak currents and peak-to-peak separation, before and after binding of the target protein. The EIS spectra, in the form of Nyquist plots, were analyzed with a Randles circuit while the electron transfer resistance R{sub ct} was used to monitor the binding of the target protein. The results showed that, without any modification to the aptamer, the target protein can be recognized effectively at the PDGF binding aptamer SAMs at the electrode surface. Control experiments using non-binding oligonucleotides assembled at the electrode surfaces also confirmed the results and showed that there was no formation of an aptamer-protein complex. The DPV signal at the aptamer functionalized electrode showed a linearly decreased marker ion peak current in a protein concentrations range of 1-40 nM. Thus, label-free detection of PDGF protein at an aptamer modified electrode has been demonstrated.

  7. Optimal design of label-free silicon “lab on a chip” biosensors

    Institute of Scientific and Technical Information of China (English)

    Yaping Zhang

    2013-01-01

    This paper reported the optimal design of label-free silicon on insulator (SOI)“lab on a chip”biosensors. These devices are designed on the basis of the evanescent field detection principles and interferometer technologies. The well-established silicon device process technology can be applied to fabricate and test these biosensor devices. In addition, these devices can be monolithically integrated with CMOS electronics and microfluidics. For these biosensor devices, multi-mode interferometer (MMI) was employed to combine many stand-alone biosensors to form chip-level biosensor arrays, which enable real-time and label-free monitoring and parallel detection of various analytes in multiple test samples. This sensing and detection technology features the highest detection sensitivity, which can detect analytes at extremely low concentrations instantaneously. This research can lead to innovative commercial development of the new generation of high sensitivity biosensors for a wide range of applications in many fields, such as environmental monitoring, food security control, medical and biological applications.

  8. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin.

    Science.gov (United States)

    Peng, Hailong; Wang, Shenqi; Zhang, Zhong; Xiong, Hua; Li, Jinhua; Chen, Lingxin; Li, Yanbin

    2012-02-29

    A novel colorimetric sensor for the rapid and label-free detection of vanillin, based on the combination of photonic crystal and molecular imprinting technique, was developed. The sensing platform of molecularly imprinted photonic hydrogel (MIPH) was prepared by a noncovalent and self-assembly approach using vanillin as a template molecule. Morphology characterization by scanning electron microscope (SEM) showed that the MIPH possessed a highly ordered three-dimensional (3D) macroporous structure with nanocavities. The vanillin recognition events of the created nonocavities could be directly transferred into readable optical signals through a change in Bragg diffraction of the ordered macropores array of MIPH. The Bragg diffraction peak shifted from 451 to 486 nm when the concentration of the vanillin was increased from 10⁻¹² to 10⁻³ mol L⁻¹ within 60 s, whereas there were no obvious peak shifts for methyl and ethyl vanillin, indicating that the MIPH had high selectivity and rapid response for vanillin. The adsorption results showed that the hierarchical porous structure and homogeneous layers were formed in the MIPH with higher adsorption capacity. The application of such a label-free sensor with high selectivity, high sensitivity, high stability, and easy operation might offer a potential method for rapid real-time detection of trace vanillin.

  9. Molybdenum carbide nanotubes: a novel multifunctional material for label-free electrochemical immunosensing.

    Science.gov (United States)

    Zhai, Qingfeng; Zhang, Xiaowei; Li, Jing; Wang, Erkang

    2016-08-18

    Herein, a multifunctional nanoarchitecture has been developed by integrating well-crystalline molybdenum carbide (Mo2C) nanotubes and an electrochemical indicator - thionin (TH). The Mo2C nanotubes were synthesized through the self-degradable template method and high-temperature calcination, and their structure and morphology were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Due to the high electrocatalytic properties, excellent conductivity and highly active surface area of Mo2C nanotubes, the Mo2C-based material was used as a nanocarrier to load TH molecules for the development of a label-free electrochemical immunosensor for α-fetoprotein (AFP) detection. The decorated TH probe on the Mo2C nanotubes not only acted as a bridging molecule to effectively capture and immobilize primary anti-AFP on the Mo2C nanotubes, but also acted as a signal indicator for the detection of AFP. The proposed immunosensor exhibited excellent selectivity (with a detection limit of 3 pg mL(-1)), high stability and good reproducibility by combining the unique structure and features of the Mo2C nanotubes. Furthermore, this sensing platform was finally used for the detection of AFP in human serum with satisfactory results. Therefore, the Mo2C nanotubes can be considered as a candidate carbon material for fabrication of simple, label-free and ultrasensitive electrochemical sensors, broadening the application of this material.

  10. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  11. Design Low Crosstalk Ring-Slot Array Structure for Label-Free Multiplexed Sensing

    Directory of Open Access Journals (Sweden)

    Lijun Huang

    2014-08-01

    Full Text Available We theoretically demonstrate a low crosstalk ring-slot array structure used for label-free multiplexed sensing. The proposed sensors array is based on an array of three ring-slot and input/output line defect coupling waveguides. Each ring-slot cavity has slightly different cavity spacing and different resonant frequency. Results obtained using two dimensional finite-difference time-domain (2D-FDTD simulation indicate that the resonant frequencies of each sensor unit in response to the refractive index variations are independent. The refractive index sensitivity is 134 ~ 145.5 nm/RIU (refractive index unit and the Q factors more than 104 can be achieved. The calculated detect limit lower than 1.13 × 10−4 RIU is obtained. In addition, an extremely small crosstalk lower than −25.8 dB is achieved among the array of three ring-slot cavities. The results demonstrate that this multiplexed sensor array is a promising platform for integrated optical devices and enables highly parallel label-free detection.

  12. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  13. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-07-01

    Full Text Available Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  14. Label-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays

    Science.gov (United States)

    Li, Yifen; Syed, Lateef; Liu, Jianwei; Hua, Duy H.; Li, Jun

    2012-01-01

    We demonstrate the feasibility of a label-free electrochemical method to detect the kinetics of phosphorylation and dephosphorylation of surface-attached peptides catalyzed by kinase and phosphatase, respectively. The peptides with a sequence specific to c-Src tyrosine kinase and protein tyrosine phosphatase 1B (PTP1B) were first validated with ELISA-based protein tyrosine kinase assay and then functionalized on vertically aligned carbon nanofiber (VACNF) nanoelectrode arrays (NEAs). Real-time electrochemical impedance spectroscopy (REIS) measurements showed reversible impedance changes upon the addition of c-Src kinase and PTP1B phosphatase. Only a small and unreliable impedance variation was observed during the peptide phosphorylation, but a large and fast impedance decrease was observed during the peptide dephosphorylation at different PTP1B concentrations. The REIS data of dephosphorylation displayed a well-defined exponential decay following the Michaelis-Menten heterogeneous enzymatic model with a specific constant, kcat/Km, of (2.1 ± 0.1) × 107 M−1 s−1. Consistent values of the specific constant was measured at PTP1B concentration varying from 1.2 to 2.4 nM with the corresponding electrochemical signal decay constant varying from 38.5 to 19.1 s. This electrochemical method can be potentially used as a label-free method for profiling enzyme activities in fast reactions. PMID:22935373

  15. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes

    CERN Document Server

    Kim, Kyoohyun; Yoon, Jonghee; Heo, JiHan; Choi, Chulhee; Park, YongKeun

    2016-01-01

    Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.

  16. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes

    Science.gov (United States)

    Kim, Kyoohyun; Lee, Seoeun; Yoon, Jonghee; Heo, Jihan; Choi, Chulhee; Park, Yongkeun

    2016-11-01

    Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.

  17. A regenerative label-free fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen

    Directory of Open Access Journals (Sweden)

    Nguyen TT

    2015-08-01

    Full Text Available Tan Tai Nguyen,1 Sun Oh Bea,1 Dong Min Kim,2 Won Jung Yoon,3 Jin-Won Park,4 Seong Soo A An,1 Heongkyu Ju1,5,6 1Department of Bionano Technology, College of Bionano Technology, Gachon University, Seongnam, 2Department of Materials Science and Engineering, Hongik University, Sejong City, 3Department of Chemical and Bio Engineering, Gachon University, Seongnam, 4Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul, 5Department of Nanophysics, College of Bionano Technology, Gachon University, Seongnam, 6Neuroscience Institute, Gil Hospital, Incheon, South Korea Purpose: We present the regenerative label-free fiber optical biosensor that exploits surface plasmon resonance for quantitative detection of fibrinogen (Fbg extracted from human blood plasma.Materials and methods: The sensor head was made up of a multimode optical fiber with its polymer cladding replaced by metal composite of nanometer thickness made of silver, aluminum, and nickel. The Ni layer coated allowed a direct immobilization of histidine-tagged peptide (HP on its metal surface without an additional cross-linker in between. On the coated HP layer, immunoglobulin G was then immobilized for specific capturing of Fbg.Results: We demonstrated a real-time quantitative detection of Fbg concentrations with limit of detection of ~10 ng/mL. The fact that the HP layer could be removed by imidazole with acid also permitted us to demonstrate the regeneration of the outermost metal surface of the sensor head for the sensor reusability.Conclusion: The sensor detection limit was estimated to be ~10 pM, which was believed to be sensitive enough for detecting Fbg during the clinical diagnosis of cardiovascular diseases, myocardial infarction, strokes, and Alzheimer’s diseases. Keywords: SPR, real-time assay, histidine-tagged peptide, protein sensing

  18. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes.

    Science.gov (United States)

    Bhavsar, Kinjal; Fairchild, Aaron; Alonas, Eric; Bishop, Daniel K; La Belle, Jeffrey T; Sweeney, James; Alford, T L; Joshi, Lokesh

    2009-10-15

    A biosensor for the serum cytokine, Interleukin-12 (IL-12), based upon a label-free electrochemical impedance spectroscopy (EIS) monitoring approach is described. Overexpression of IL-12 has been correlated to the diagnosis of Multiple Sclerosis (MS). An immunosensor has been fabricated by electroplating gold onto a disposable printed circuit board (PCB) electrode and immobilizing anti-IL-12 monoclonal antibodies (MAb) onto the surface of the electrode. This approach yields a robust sensor that facilitates reproducible mass fabrication and easy alteration of the electrode shape. Results indicate that this novel PCB sensor can detect IL-12 at physiological levels, <100 fM with f-values of 0.05 (typically <0.0001) in a label-free and rapid manner. A linear (with respect to log concentration) detectable range was achieved. Detection in a complex biological solution is also explored; however, significant loss of dynamic range is noted in the 100% complex solution. The cost effective approach described here can be used potentially for diagnosis of diseases (like MS) with known biomarkers in body fluids and for monitoring physiological levels of biomolecules with healthcare, food, and environmental relevance.

  19. OCT-based label-free in vivo lymphangiography within human skin and areola

    Science.gov (United States)

    Baran, Utku; Qin, Wan; Qi, Xiaoli; Kalkan, Goknur; Wang, Ruikang K.

    2016-02-01

    Due to the limitations of current imaging techniques, visualization of lymphatic capillaries within tissue in vivo has been challenging. Here, we present a label-free high resolution optical coherence tomography (OCT) based lymphangiography (OLAG) within human skin in vivo. OLAG enables rapid (~seconds) mapping of lymphatic networks, along with blood vessel networks, over 8 mm x 8 mm of human skin and 5 mm x 5 mm of human areola. Moreover, lymphatic system’s response to inflammation within human skin is monitored throughout an acne lesion development over 7 days. The demonstrated results promise OLAG as a revolutionary tool in the clinical research and treatment of patients with pathologic conditions such as cancer, diabetes, and autoimmune diseases.

  20. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

    Science.gov (United States)

    Wang, Han-Wei; Le, Thuc T; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  1. High throughput label-free platform for statistical bio-molecular sensing.

    Science.gov (United States)

    Bosco, Filippo G; Hwu, En-Te; Chen, Ching-Hsiu; Keller, Stephan; Bache, Michael; Jakobsen, Mogens H; Hwang, Ing-Shouh; Boisen, Anja

    2011-07-21

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing cantilever based sensors. These sensors have often been acclaimed to facilitate highly parallelized operation. Unfortunately, so far no concept has been presented which offers large datasets as well as easy liquid sample handling. We use optics and mechanics from a DVD player to handle liquid samples and to read-out cantilever deflection and resonant frequency. Also, surface roughness is measured. When combined with cantilever deflection the roughness is discovered to hold valuable additional information on specific and unspecific binding events. In a few minutes, 30 liquid samples can be analyzed in parallel, each by 24 cantilever-based sensors. The approach was used to detect the binding of streptavidin and antibodies.

  2. Label-free discrimination of membrane-translocating peptides on porous silicon microfluidic biosensors.

    Science.gov (United States)

    Li, Zhen; Luo, Qiaohui; Wu, Jianmin

    2016-11-01

    A label-free optical sensor was constructed by integrating electrochemically etched porous silicon (pSi) and supported phospholipid bilayers in a microfluidic chip. The translocation of peptides through the phospholipid bilayers could induce a red shift in effective optical thickness of the pSi layer, which could be monitored by reflective interferometric Fourier transform spectroscopy. By measuring the kinetic data of membrane translocating on the phospholipid bilayers/pSi chip, the relationship between the behavior of membrane-translocating peptides (MTPs) and translocating mechanism was established. With these optical data, MTPs with different action modes on the cell membrane can be correctly discriminated. The bio-functionalized microfluidic sensor will provide a reliable and cost-effective platform to study the transmembrane behavior of peptides, which is of great importance in the MTP screening and peptide function study.

  3. Limitations of Label-Free Sensors in Serum Based Molecular Diagnostics

    CERN Document Server

    Varma, Manoj M

    2015-01-01

    Immunoassay formats applicable for clinical or point-of-care diagnostics fall into two broad classes. One which uses labeled secondary antibodies for signal transduction and the other which does not require the use of any labels. Comparison of the limits of detection (LoD) reported by these two sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Further, a vast majority of commercial tests and recent examples of technology translations are based on labeled assay formats. In light of this data, it is argued that extension of traditional labeled approaches and enhancing their functionality may have better clinical impact than the development of newer label-free techniques.

  4. Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA.

    Science.gov (United States)

    Haring, Alexander P; Cesewski, Ellen; Johnson, Blake N

    2017-01-01

    This chapter reviews the design, fabrication, characterization, and application of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The sensor transduction mechanism, sensing principle, and mode of operation are discussed. Bio-recognition strategies and surface functionalization methods for detection of DNA and RNA are discussed with a focus on self-assembly-based approaches. Methods for the verification of biosensor response via secondary binding assays, reversible binding assays, and the integration of complementary transduction mechanisms are presented. Sensing applications for medical diagnostics, food safety, and environmental monitoring are provided. PEMC sensor technology provides a robust platform for the real-time, label-free detection of DNA and RNA in complex matrices over nanomolar (nM) to attomolar (aM) concentration ranges.

  5. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    Science.gov (United States)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  6. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers.

    Science.gov (United States)

    Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

    2010-08-30

    There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical biosensors based on applying the analyte onto a surface-functionalized photonic crystal slab and performing a transmission measurement with two crossed polarization filters. This dark-field approach allows for efficient background suppression as only the photonic crystal guided-mode resonances interacting with the functionalized surface experience significant polarization rotation. We present a compact biosensor demonstrator using a low-cost light emitting diode and a simple photodiode capable of detecting the binding kinetics of a 2.5 nM solution of the protein streptavidin on a biotin-functionalized photonic crystal surface.

  7. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    Science.gov (United States)

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid.

  8. Label-Free Vapor Selectivity in Poly(p-Phenylene Oxide) Photonic Crystal Sensors.

    Science.gov (United States)

    Lova, Paola; Bastianini, Chiara; Giusto, Paolo; Patrini, Maddalena; Rizzo, Paola; Guerra, Gaetano; Iodice, Mario; Soci, Cesare; Comoretto, Davide

    2016-11-23

    The lack of sensors for low cost, extensive, and continuous detection of vapor pollutants is a serious concern for health and safety in industrialized urban areas. Colorimetric sensors, such as distributed Bragg reflectors made of polymers, could achieve this task thanks to their low cost and easy signal transduction but are typically affected by low vapor permeability and lack of selectivity without chemical labeling. Here we demonstrate all-polymer Bragg multilayers for label-free selective detection of organic volatile compounds. The system exploits the ability of amorphous poly(p-phenylene oxide), PPO, to uptake large amount of guest molecules and to form cocrystalline phases with distinct optical properties. Bragg stacks embedding PPO active layers show selective colorimetric response to vapors of carbon tetrachloride and aromatic homologues, which can be revealed by the naked eye.

  9. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays.

    Science.gov (United States)

    Cunningham, Brian T

    2010-04-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described.

  10. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    Directory of Open Access Journals (Sweden)

    PingAn Hu

    2010-05-01

    Full Text Available Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  11. Analytical modeling of label free biosensor using charge plasma based gate underlap dielectric modulated MOSFET

    Science.gov (United States)

    Chanda, Manash; Das, Rahul; Kundu, Atanu; Sarkar, Chandan K.

    2017-04-01

    In this paper charge plasma based dielectric modulated four gated MOSFET (CP-GUDM-MOSFET) has been proposed for the efficacy of label free electrical detection of the biomolecules. To achieve low thermal budgeting, charge-plasma concept is employed using appropriate metal work function electrodes. Extensive simulations have been done using the Sentaurus TCAD to validate the proposed architecture. An analytical modeling has also been done on surface potential and drain current to consolidate the feasibility of the structure. Significant improvements in the on current (ION) and threshold voltage have been observed in presence of the charged biomolecules. The performance of proposed structure is found to be sensitive to gate-oxide thickness variations. High sensitivity of the proposed CP-GUDM-MOSFET based biosensor with low thermal budgeting scheme; simple structure and its compatibility with the existing CMOS processes make it an exciting alternative to the conventional FET-based biosensors.

  12. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  13. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  14. Label-free colorimetric estimation of proteins using nanoparticles of silver

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Shrivastava; Debabrata Dash

    2010-01-01

    Metallic nanoparticles have received considerable attention in bioassays and diagnostics due to their unique surface plasmon resonance (SPR) properties. Gold nanoparticles have been employed for the development of SPR-based colorimetric bioassays. In the present report we have described a sensitive colorimetric approach for estimation of proteins, within a detection limit of 10~80 μg/mL, using unmodified silver nanoparticles. Besides the common advantages of colorimetric assay such as simplicity, high sensitivity, and low cost, our method has a label-free design and provides an important and attractive alternative to classical sensing probes and systems. The present work will contribute to the development of nanotechnology-based diagnostic tools.

  15. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    Science.gov (United States)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  16. NEMS Capacitive Sensors for Highly Sensitive, Label-Free Nucleic-Acid Analysis

    Science.gov (United States)

    Mannoor, Manu Sebastian; James, Teena; Ivanov, Dentcho V.; Beadling, Les; Braunlin, William

    A highly sensitive NEMS capacitive sensor with electrode separation in the order of Debye length is fabricated for label free DNA analysis. The use of nano-scale electrode separation provides better insight in to the target-probe interaction which was not previously attainable with macro or even micro scale devices. As the double layers from both the capacitive electrodes merge together and occupy a major fraction of the capacitive volume, the contribution from bulk sample resistance and noises due to electrode polarization effects are eliminated. The dielectric properties during hybridization reaction were measured using 10-mer nucleotide sequences. A 45-50% change in relative permittivity (capacitance) was observed due to DNA hybridization at 10Hz. Capacitive sensors with 30nm electrode separation were fabricated using standard silicon micro/nano technology and show promise for future electronic DNA arrays and high throughput screening of nucleic acid samples.

  17. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Directory of Open Access Journals (Sweden)

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  18. A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans.

    Science.gov (United States)

    Malvano, Francesca; Albanese, Donatella; Pilloton, Roberto; Di Matteo, Marisa

    2016-12-01

    In this work the development and optimization of an impedimetric label free immunosensor for the detection of Ochratoxin A (OTA) is reported. Two antibody immobilization methods (oriented and not oriented) were compared highlighting a lower limit of detection (5pg/ml) for the not oriented immobilization but a closer linear range in contrast to oriented anti-OTA immunosensors which showed linearity in the range of 0.01-5ng/mL OTA. The analysis of the Atomic Force Microscopy (AFM) images showed two different nanostructures indicating that the use of oriented immobilization created a more ordered and highly dense antibody surface. Finally the oriented immunosensor was used to quantify OTA in spiked cocoa bean samples and the results were compared with those registered with competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2μg/kg that represents the lower acceptable limit of OTA established by European legislation for the common food products.

  19. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  20. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers

    Science.gov (United States)

    Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il

    2013-07-01

    In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.

  1. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  2. Label-free single cell analysis with a chip-based impedance flow cytometer

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Di Berardino, Marco; Tarnok, Attila

    2010-02-01

    For description of cellular phenotypes and physiological states new developments are needed. Axetris' impedance flow cytometer (IFC) (Leister) is a new promising label-free alternative to fluorescence-based flow cytometry (FCM). IFC measures single cells at various frequencies simultaneously. The frequencies used for signal acquisition range from 0.1 to 20 MHz. The impedance signal provides information about cell volume (4 MHz) and membrane capacitance (1-4 MHz). Our data indicate that IFC can be a valuable alternative to conventional FCM for various applications in the field of cell death and physiology. The work will be extended to address further potential applications of IFC in biotechnology and biomedical cell analysis, as well as in cell sorting.

  3. Label Free Detection of CD4+ and CD8+ T Cells Using the Optofluidic Ring Resonator

    Directory of Open Access Journals (Sweden)

    John T. Gohring

    2010-06-01

    Full Text Available We have demonstrated label free detection of CD4+ and CD8+ T-Lymphocyte whole cells and CD4+ T-Lymphocyte cell lysis using the optofluidic ring resonator (OFRR sensor. The OFRR sensing platform incorporates microfluidics and photonics in a setup that utilizes small sample volume and achieves a fast detection time. In this work, white blood cells were isolated from healthy blood and the concentrations were adjusted to match T-Lymphocyte levels of individuals infected with HIV. Detection was accomplished by immobilizing CD4 and CD8 antibodies on the inner surface of the OFRR. Sensing results show excellent detection of CD4+ and CD8+ T-Lymphocyte cells at medically significant concentrations with a detection time of approximately 30 minutes. This work will lead to a rapid and low-cost sensing device that can provide a CD4 and CD8 count as a measure of HIV progression.

  4. Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer.

    Science.gov (United States)

    Soler, Maria; Estevez, M-Carmen; Villar-Vazquez, Roi; Casal, J Ignacio; Lechuga, Laura M

    2016-08-03

    Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and reproducibility, achieving limits of detection around 1 nM (150-160 ng mL(-1)). A preliminary evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the achievement of a sensitive diagnostic tool for early detection of colorectal cancer.

  5. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    CERN Document Server

    Alfinito, Eleonora; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2016-01-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors, with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer thrombin-binding aptamer (TBA), has been widely explored concerning both its structure, which was resolved with different techniques, and its function, especially about the possibility of using it as the active part of biosensors. This paper proposes a microscopic model of the electrical properties of TBA and the aptamer-thrombin complex, combining information from both structure and function. The novelty consists in describing both the aptamer alone and the complex as an impedance network, thus going deeper inside the issues...

  6. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.

    Science.gov (United States)

    Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin

    2016-05-15

    Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability.

  7. Label-free nanopore proximity bioassay for platelet-derived growth factor detection.

    Science.gov (United States)

    Zhang, Ling; Zhang, Kaixiang; Liu, Guangchao; Liu, Mengjia; Liu, Yang; Li, Jinghong

    2015-06-02

    Rapid and sensitive detection of biomarkers with ultralow concentrations remains a great challenge in disease diagnostics. Herein, we present a label-free α-hemolysin (α-HL) nanopore proximity bioassay for protein biomarker detection by a binding-induced DNA strand displacement strategy. In this bioassay, an individual target protein, platelet-derived growth factor B-chain (PDGF-BB), was selectively recognized by two oligonucleotide affinity ligands in which an output DNA was released and translocated through α-HL nanopore with a spikelike short current block. The frequency of the current block events had a linear relationship with the concentration of PDGF-BB with a wide linear dynamic range of 5 orders of magnitude and a detection limit at 500 fM. The selectivity and anti-interference capability of this bioassay show great potential for biomarker detection in bioanalytical chemistry.

  8. Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications

    Science.gov (United States)

    Terracciano, Monica; Galstyan, Vardan; Rea, Ilaria; Casalino, Maurizio; De Stefano, Luca; Sbervegleri, Giorgio

    2017-10-01

    In this study, we have fabricated TiO2 nanotube arrays by the potentiostatic anodic oxidation of Ti foils in fluoride-containing electrolyte and explored them as versatile devices for biosensing applications. TiO2 nanotubes have been chemically modified in order to bind Protein A as a specific target analyte for the optical biosensing. The obtained structures have been characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle, fluorescence microscopy, spectroscopic reflectometry and photoluminescence. Investigations show that the prepared TiO2 nanotubes, 2.5 μm long and 75 nm thick, can be easily and efficiently bio-modified, and the obtained structures are strongly photoluminescent, thus suitable for the label-free biosensing applications in the range of μM, due to their peculiar optical properties.

  9. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    Science.gov (United States)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  10. Large area, label-free imaging of extracellular matrix using telecentricity

    Science.gov (United States)

    Visbal Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.

    2017-02-01

    Subtle alterations in stromal tissue structures and organizations within the extracellular matrix (ECM) have been observed in several types of tissue abnormalities, including early skin cancer and wounds. Current microscopic imaging methods often lack the ability to accurately determine the extent of malignancy over a large area, due to their limited field of view. In this research we focus on the development of simple mesoscopic (i.e. between microscopic and macroscopic) biomedical imaging device for non-invasive assessment of ECM alterations over a large, heterogeneous area. In our technology development, a telecentric lens, commonly used in machine vision systems but rarely used in biomedical imaging, serves as a key platform to visualize alterations in tissue microenvironments in a label-free manner over a clinically relevant area. In general, telecentric imaging represents a simple, alternative method for reducing unwanted scattering or diffuse light caused by the highly anisotropic scattering properties of biological tissue. In particular, under telecentric imaging the light intensity backscattered from biological tissue is mainly sensitive to the scattering anisotropy factor, possibly associated with the ECM. We demonstrate the inherent advantages of combining telecentric lens systems with hyperspectral imaging for providing optical information of tissue scattering in biological tissue of murine models, as well as light absorption of hemoglobin in blood vessel tissue phantoms. Thus, we envision that telecentric imaging could potentially serve for simple site-specific, tissue-based assessment of stromal alterations over a clinically relevant field of view in a label-free manner, for studying diseases associated with disruption of homeostasis in ECM.

  11. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  12. Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)

    Science.gov (United States)

    Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis

    2016-03-01

    Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.

  13. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  14. Label-free SnO2 nanowire FET biosensor for protein detection

    Science.gov (United States)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  15. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Noori, Abolhassan

    2012-04-21

    A novel label-free electrochemical DNA hybridization biosensor using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified screen printed electrode (CD/PNAANI/CNT/SPE) has been developed. The proposed DNA hybridization biosensor relies on the intrinsic oxidation signals of guanine (G) and adenine (A) from single-stranded DNA entered into the cyclodextrin (CD) cavity. Due to the binding of G and A bases to complementary cytosine and thymine bases in dsDNA, the signals obtained for ssDNA were much higher than that of dsDNA. The synergistic effect of the multi-walled carbon nanotubes provides a significantly enhanced voltammetric signal, and the CD encapsulation effect makes anodic peaks of G and A shift to less positive potentials than that at the bare SPE. The peak heights of G and A signals are dependent on both the number of the respective bases in oligonucleotides and the concentration of the target DNA sequences. Hybridization of complementary strands was monitored through the measurements of oxidation signal of purine bases, which enabled the detection of target sequences from 0.01 to 1.02 nmol μl(-1) with the detection limit of target DNA as low as 5.0 pmol μl(-1) (S/N = 3). Implementation of label-free and homogeneous electrochemical hybridization detection constitutes an important step toward low-cost, simple, highly sensitive and accurate DNA assay. Discrimination between complementary, noncomplementary, and two-base mismatch targets was easily accomplished using the proposed electrode.

  16. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Science.gov (United States)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  17. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    Science.gov (United States)

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-07

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

  18. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Ayres Pereira, Marina; Oo, Htoo Zarni;

    2016-01-01

    In clinical oncology, diagnosis and evaluation of optimal treatment strategies are mostly based on histopathological examination combined with immunohistochemical (IHC) expression analysis of cancer-associated antigens in formalin fixed paraffin-embedded (FFPE) tissue biopsies. However, informative...... of epitopes available, this readout offers a quantitative and unbiased readout for in situ binding-avidity and amount of binding epitopes. In summary, this method adds a new and important dimension to classical IHC-based molecular pathology by adding information about the binding characteristics...... IHC analysis depends on both the specificity and affinity of the binding reagent, which are inherently difficult to quantify in situ. Here we describe a label-free method that allows for the direct and real-time assessment of molecular binding kinetics in situ on FFPE tissue specimens using quartz...

  19. A Computational Strategy to Analyze Label-Free Temporal Bottom-Up Proteomics Data§

    Science.gov (United States)

    Du, Xiuxia; Callister, Stephen J.; Manes, Nathan P.; Adkins, Joshua N.; Alexandridis, Roxana A.; Zeng, Xiaohua; Roh, Jung Hyeob; Smith, William E.; Donohue, Timothy J.; Kaplan, Samuel; Smith, Richard D.; Lipton, Mary S.

    2008-01-01

    Biological systems are in a continual state of flux, which necessitates an understanding of the dynamic nature of protein abundances. The study of protein abundance dynamics has become feasible with recent improvements in mass spectrometry-based quantitative proteomics. However, a number of challenges still remain related to how best to extract biological information from dynamic proteomics data, for example, challenges related to extraneous variability, missing abundance values, and the identification of significant temporal patterns. This paper describes a strategy that addresses these issues and demonstrates its values for analyzing temporal bottom-up proteomics data using data from a Rhodobacter sphaeroides 2.4.1 time-course study. PMID:18442284

  20. Label-Free Proteome Analysis of Plasma from Patients with Breast Cancer: Stage-Specific Protein Expression

    Science.gov (United States)

    Lobo, Marina Duarte Pinto; Moreno, Frederico Bruno Mendes Batista; Souza, Gustavo Henrique Martins Ferreira; Verde, Sara Maria Moreira Lima; Moreira, Renato de Azevedo; Monteiro-Moreira, Ana Cristina de Oliveira

    2017-01-01

    Breast cancer is one of the most commonly diagnosed types of cancer among women. Breast cancer mortality rates remain high probably because its diagnosis is hampered by inaccurate detection methods. Since changes in protein expression as well as modifications in protein glycosylation have been frequently reported in cancer development, the aim of this work was to study the differential expression as well as modifications of glycosylation of proteins from plasma of women with breast cancer at different stages of disease (n = 30) compared to healthy women (n = 10). A proteomics approach was used that depleted albumin and IgG from plasma followed by glycoprotein enrichment using immobilized Moraceae lectin (frutalin)-affinity chromatography and data-independent label-free mass spectrometric analysis. Data are available via ProteomeXchange with identifier PXD003106. As result, 57,016 peptides and 4,175 proteins among all samples were identified. From this, 40 proteins present in unbound (PI—proteins that did not interact with lectin) and bound (PII—proteins that interacted with lectin) fractions were differentially expressed. High levels of apolipoprotein A-II were detected here that were elevated significantly in the early and advanced stages of the disease. Apolipoprotein C-III was detected in both fractions, and its level was increased slightly in the PI fraction of patients with early-stage breast cancer and expressed at higher levels in the PII fraction of patients with early and intermediate stages. Clusterin was present at higher levels in both fractions of patients with early and intermediate stages of breast cancer. Our findings reveal a correlation between alterations in protein glycosylation, lipid metabolism, and the progression of breast cancer. PMID:28210565

  1. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    Science.gov (United States)

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  2. Label free detection of white spot syndrome virus using lead magnesium niobate-lead titanate piezoelectric microcantilever sensors.

    Science.gov (United States)

    Capobianco, Joseph A; Shih, Wei-Heng; Leu, Jiann-Horng; Lo, Grace Chu-Fang; Shih, Wan Y

    2010-11-15

    We have investigated rapid, label free detection of white spot syndrome virus (WSSV) using the first longitudinal extension resonance peak of five lead-magnesium niobate-lead titanate (PMN-PT) piezoelectric microcantilever sensors (PEMS) 1050-700 μm long and 850-485 μm wide constructed from 8 μm thick PMN-PT freestanding films. The PMN-PT PEMS were encapsulated with a 3-mercaptopropyltrimethoxysilane (MPS) insulation layer and further coated with anti-VP28 and anti-VP664 antibodies to target the WSSV virions and nucleocapsids, respectively. By inserting the antibody coated PEMS in a flowing virion or nucleocapsid suspension, label free detection of the virions and nucleocapsids were respectively achieved by monitoring the PEMS resonance frequency shift. We showed that positive label free detection of both the virion and the nucleocapsid could be achieved at a concentration of 100virions(nucleocapsids)/ml or 10 virions(nucleocapsids)/100 μl, comparable to the detection sensitivity of polymerase chain reaction (PCR). However, in contrast to PCR, PEMS detection was label free, in situ and rapid (less than 30 min), potentially requiring minimal or no sample preparation.

  3. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, K-J.; Fallnich, C.

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression wh

  4. A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics

    DEFF Research Database (Denmark)

    Eberl, H.C.; Mann, M.; Spruijt, C.G.;

    2013-01-01

    . Here we describe a sensitive, label-free histone peptide pull-down technology with extracts of different mouse tissues. Applying this workflow to the classical activating and repressive epigenetic marks on histone H3, H3K4me3, and H3K9me3, we identified known and putative readers in extracts from brain...

  5. Label-free detection in a lab-on-a-chip with a three-dimensional Mach-Zehnder interferometer

    NARCIS (Netherlands)

    Crespi, A.; Gu, Y.; Ngamson, B.; Dongre, C.; Hoekstra, H.J.W.M.; Vlekkert, van den H.H.; Watts, P.; Pollnau, M.; Cerullo, G.; Osellame, R.

    2010-01-01

    A Mach-Zehnder refractive index sensor is inscribed in a microfluidic lab-on-a-chip by exploiting the unique three-dimensional capabilities of femtosecond laser fabrication. This enables high sensitivity and spatially resolved label-free detection of biomolecules.

  6. Universal chitosan-assisted synthesis of Ag-including heterostructured nanocrystals for label-free in situ SERS monitoring.

    Science.gov (United States)

    Cai, Kai; Xiao, Xiaoyan; Zhang, Huan; Lu, Zhicheng; Liu, Jiawei; Li, Qin; Liu, Chen; Foda, Mohamed F; Han, Heyou

    2015-12-07

    A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.

  7. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes

    DEFF Research Database (Denmark)

    Boonyasit, Yuwadee; Heiskanen, Arto; Chailapakul, Orawan

    2015-01-01

    We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Du...

  8. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob

    2007-01-01

    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  9. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    Science.gov (United States)

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  10. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    Science.gov (United States)

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  11. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Adrián Martínez-Rivas

    2010-09-01

    Full Text Available Adrián Martínez-Rivas1,2, Patrick Chinestra3,4, Gilles Favre3,4, Sébastien Pinaud1, Childérick Séverac1,2, Jean-Charles Faye3,4, Christophe Vieu1,21LAAS-CNRS; Université de Toulouse, Toulouse, France; 2Université de Toulouse, UPS, INSA, INP, ISAE; LAAS; Toulouse, France; 3INSERM U563, Université de Toulouse, CPTP, “Signalisation Cellulaire, GTPase Rho et cancers”, Toulouse, France; 4Institut Claudius Regaud, Biology Department, Toulouse, FranceAbstract: We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane (<2 nm thick and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.Keywords: nickel nanoislands, cancer biomarkers, quartz crystal microbalance, PEG-silane, RhoA protein, nanobiosensor

  12. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    Science.gov (United States)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  13. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago;

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...

  14. Quantitative analysis of HIV-1 protease inhibitors in cell lysates using MALDI-FTICR mass spectrometry.

    NARCIS (Netherlands)

    Kampen, JJ van; Burgers, P.C.; Groot, R. de; Osterhaus, A.D.; Reedijk, M.L.; Verschuren, E.J.; Gruters, R.A.; Luider, T.M.

    2008-01-01

    In this report we explore the use of MALDI-FTICR mass spectrometry for the quantitative analysis of five HIV-1 protease inhibitors in cell lysates. 2,5-Dihydroxybenzoic acid (DHB) was used as the matrix. From a quantitative perspective, DHB is usually a poor matrix due to its poor shot-to-shot and p

  15. [Identification and quantitative determination of baclofen in human blood by HPLC with mass spectrometry detection].

    Science.gov (United States)

    Dukova, O A; Kotlovsky, M Yu; Pokrovsky, A A; Suvorova, E V; Shivrina, T G; Krasnov, E A; Efremov, A A

    2016-03-01

    A method of identification and quantitative determination of baclofen in blood by HPLC with mass spectrometry detection has been developed. It is characterized by high sensitivity, specificity, linearity, accuracy, reproducibility, and a low detection for quantitative determination. The method has been used for diagnostics of acute baclofen poisoning in patients.

  16. Accelerator mass spectrometry for quantitative in vivo tracing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  17. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    Science.gov (United States)

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  19. Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2017-08-01

    Full Text Available In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2, to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication.

  20. Label-free characterization of articular cartilage in osteoarthritis model mice by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa

    2017-02-01

    Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this study, we generated an animal OA model surgically induced by knee joint instability, and the femurs were harvested at two weeks after the surgery. We performed Raman spectroscopic analysis for the articular cartilage of distal femurs in OA side and unaffected side in each mouse. In the result, there is no gross findings in the surface of the articular cartilage in OA. On the other hand, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The major finding of this study is that the relative intensity of phosphate band (960 cm-1) increases in the degenerative cartilage. This may be the result of exposure of subchondral bone due to thinning of the cartilage layer. In conclusion, Raman spectroscopic technique is sufficient to characterize articular cartilage in OA as a pilot study for Raman application in cartilage degeneration and regeneration using animal models and human subjects.

  1. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  2. Photo-imprint Photoacoustic Microscopy for Three-dimensional Label-free Sub-diffraction Imaging

    Science.gov (United States)

    Yao, Junjie; Wang, Lidai; Li, Chiye; Zhang, Chi; Wang, Lihong V.

    2014-01-01

    Sub-diffraction optical microscopy allows the imaging of cellular and subcellular structures with resolution finer than the diffraction limit. Here, combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, we demonstrate a simple method for sub-diffraction photoacoustic imaging of both fluorescent and non-fluorescent samples. Our method is based on a double-excitation process, where the first excitation pulse partially and inhomogeneously bleaches the molecules in the diffraction-limited excitation volume, thus biasing the signal contributions from a second excitation pulse striking the same region. The differential signal between the two excitations preserves the signal contribution mostly from the center of the excitation volume, and dramatically sharpens the lateral resolution. Moreover, due to the nonlinear nature of the signal, our method offers inherent optical sectioning capability, which is lacking in conventional photoacoustic microscopy. By scanning the excitation beam, we performed three-dimensional sub-diffraction imaging of varied fluorescent and non-fluorescent species. As any molecules have absorption, this technique has the potential to enable label-free sub-diffraction imaging, and can be transferred to other optical imaging modalities or combined with other sub-diffraction methods. PMID:24483902

  3. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    Science.gov (United States)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  4. Temporal proteomic analysis and label-free quantification of viral proteins of an invertebrate iridovirus.

    Science.gov (United States)

    İnce, İkbal Agah; Boeren, Sjef; van Oers, Monique M; Vlak, Just M

    2015-01-01

    Invertebrate iridescent virus 6 (IIV-6) is a nucleocytoplasmic virus with a ~212 kb linear dsDNA genome that encodes 215 putative ORFs. The IIV-6 virion-associated proteins consist of at least 54 virally encoded proteins. One of our previous findings showed that most of these proteins are encoded by genes from the early transcriptional class. This indicated that these structural proteins may not only function in the formation of the virion, but also in the initial stage of viral infection. In the current study, we followed the protein expression profile of IIV-6 over time in Drosophila S2 cells by label-free quantification using a proteomic approach. A total of 95 virally encoded proteins were detected in infected cells, of which 37 were virion proteins. The expressed IIV-6 virion proteins could be categorized into three main clusters based on their expression profiles: proteins with stably low expression levels during infection, proteins with exponentially increasing expression levels during infection and proteins that were initially highly abundant, but showed slightly reduced levels after 48 h post-infection. We thus provided novel information on the kinetics of virion and infected cell-specific protein levels that assists in our understanding of gene regulation in this lesser-known DNA virus model.

  5. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  6. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A.; Fouad, H.; Ansari, Z.A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-01-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera. PMID:26611737

  7. Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae

    Science.gov (United States)

    Panja, Chiranjit; Setty, Rakesh K. S.; Vaidyanathan, Gopal; Ghosh, Sanjay

    2016-01-01

    Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin. PMID:26881076

  8. Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage.

    Science.gov (United States)

    Reta, Nekane; Michelmore, Andrew; Saint, Christopher; Prieto-Simón, Beatriz; Voelcker, Nicolas H

    2016-06-15

    A proof of concept for the label-free detection of bacteriophage MS2, a model indicator of microbiological contamination, is validated in this work as a porous silicon (pSi) membrane-based electrochemical biosensor. PSi membranes were used to afford nanochannel architectures. The sensing mechanism was based on the nanochannel blockage caused by MS2 binding to immobilized capture antibodies. This blockage was quantified by measuring the oxidation current of the electroactive species reaching the electrode surface, by means of differential pulse voltammetry (DPV). The immunosensor showed a limit of detection of 6 pfu/mL in buffer, allowing the detection of MS2 to levels commonly found in real-world applications, and proved to be unaffected by matrix effects when analyzing MS2 in reservoir water. This platform enables the straightforward, direct and sensitive detection of a broad range of target analytes and constitutes a promising approach towards the development of portable electronic point of sample analysis devices.

  9. A Biocatalytic Nanomaterial for the Label-Free Detection of Virus-Like Particles.

    Science.gov (United States)

    Sykora, Sabine; Correro, M Rita; Moridi, Negar; Belliot, Gaël; Pothier, Pierre; Dudal, Yves; Corvini, Philippe F-X; Shahgaldian, Patrick

    2017-06-01

    The design of nanomaterials that are capable of specific and sensitive biomolecular recognition is an on-going challenge in the chemical and biochemical sciences. A number of sophisticated artificial systems have been designed to specifically recognize a variety of targets. However, methods based on natural biomolecular detection systems using antibodies are often superior. Besides greater affinity and selectivity, antibodies can be easily coupled to enzymatic systems that act as signal amplifiers, thus permitting impressively low detection limits. The possibility to translate this concept to artificial recognition systems remains limited due to design incompatibilities. Here we describe the synthesis of a synthetic nanomaterial capable of specific biomolecular detection by using an internal biocatalytic colorimetric detection and amplification system. The design of this nanomaterial relies on the ability to accurately grow hybrid protein-organosilica layers at the surface of silica nanoparticles. The method allows for label-free detection and quantification of targets at picomolar concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    Science.gov (United States)

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  11. Study on a Luminol-based Electrochemiluminescent Sensor for Label-Free DNA Sensing

    Directory of Open Access Journals (Sweden)

    Yi-Feng Tu

    2010-10-01

    Full Text Available Automatic, inexpensive, simple and sensitive methods for DNA sensing and quantification are highly desirable for biomedical research. The rapid development of both the fundamentals and applications of electrochemiluminescence (ECL over the past years has demonstrated its potential for analytical and bio-analytical chemistry. This paper reports the quenching effect of DNA on the ECL of luminol and the further development of a DNA sensing device. With the pre-functionalization by a composite of carbon nano-tubes (CNTs and Au nanoparticles (AuNPs, the sensor provides a novel and valuable label-free approach for DNA sensing. Here the ECL intensity was remarkably decreased when more than 1.0 × 10−12 molar of DNA were adsorbed on the sensor. Linearity of the DNA amount with the reciprocal of ECL intensity was observed. A saturated sensor caused a 92.8% quenching effect. The research also proposes the mechanism for the quenching effect which could be attributed to the interaction between luminol and DNA and the elimination of reactive oxygen species (ROSs by DNA.

  12. Ultrasensitive, label-free detection of cardiac biomarkers with optical SIS sensor.

    Science.gov (United States)

    Diware, Mangesh S; Cho, Hyun Mo; Chegal, Won; Cho, Yong Jai; Kim, Dong Soo; O, Sang Won; Kim, Kyeong-Suk; Paek, Se-Hwan

    2017-01-15

    Acute myocardial infarction (MI) is the leading cause of high mortality and morbidity rate worldwide, early and accurate diagnosis can increase the chances of survival. In this work, we report a simple, ultrasensitive, label-free, and high-throughput solution immersed silicon (SIS) immunosensor based on non-reflection condition (NRC) for p-polarized wave for early diagnosis of MI. SIS sensor chips are just a thin dielectric polymer layer on the silicon surface, which can be functionalized for specific application. At NRC, SIS sensors are extremely sensitive to the growing thickness of a bio-layer on the sensor surface while independent of refractive index change of the surrounding medium. Therefore, SIS signal is free from thermal noise, unlike surface plasmon resonance based sensor. Also, there is no need of reference signal which facilitates fast and accurate interaction measurement. Here, SIS technology is applied to tackle two issues in MI diagnosis: high sensitivity with the direct assay and the ability to measure in human serum. Myoglobin, creatine kinase-MB, and cardiac troponin I (cTnI) proteins were used as the MI biomarkers. We were able to measure over a broad concentration range with the detection limit of 5 and 10pg/ml for cTnI in PBS and blood serum, respectively. The response time is about 5min. This novel technique is a suitable candidate for cost effective point-of-care application.

  13. [Review on label-free optical bio-sensing technology based on whisper-gallery-mode].

    Science.gov (United States)

    Jiang, Jun-feng; Liu, Tie-gen; Li, Hai-wei; Hui, Rong-qing; Liu, Kuni; Zhang, Yi-mo

    2010-11-01

    Optical biosensors are becoming an important tool for drug research and life science, and the label-free optical biosensor based on whisper-gallery-mode (WGM) is reviewed in the present paper. The WGM-based sensors are categorized into three types according to the microcavity structure. The biosensor using microsphere got extensive research because of high quality factor, and its response to protein, virus, and bacteria had been studied. The models based on single photon resonant state and perturbation theory were established. The biosensor using microdisk was proposed early since it can make use of mature lithography technology; however, the quality factor was increased greatly only after the thermal reflow process was introduced and single molecule measurement was then realized. The biosensor using microring has simpler mode structure and materials such as polymer, silicon nitride and silicon-on-insulator had been used for sensor fabrication. As a 3-dimension expansion, sensor using microtube can combine the optical channel and fluidic channel, which attracting more and more attention.

  14. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization.

    Science.gov (United States)

    Liu, Xu; Wei, Min; Xu, Ensheng; Yang, Haitang; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-05-15

    Telomerase has become one of the most typical tumor marker because it is closely related to cancers. In this paper, a simple label-free electrochemical detection of telomerase activity by using methylene blue (MB) as a G-quadruplex binding probe was proposed, avoiding commonly used complex label procedures, nano-probe synthesis, complicated electrode modification, probe immobilization or signal amplification. In the presence of telomerase substrate (TS) primer, the binding of MB on primer was weak. When repeats of (TTAGGG) were extended on the TS primer under the action of telomerase, they formed multiple G-quadruplexes with the help of K(+). As a result, a large amount of MB bounded to multiple G-quadruplexes because they have more strong interaction with G-quadruplexes than TS primer. As a result, the diffusion current of MB decreased sharply, which was strongly dependent on the telomerase activity. The DPV current change has a linear correlation with the logarithm of HeLa cell number in the range of 10-10,000 cells, with the detection limit of 3 cells. The high sensitivity was due to the formed multiple G-quadruplexes. Using indium tin oxide (ITO) as working electrode without modification ensured the good reproducibility of the method. The method was also simple, rapid, and has been successfully applied in the telomerase activity detection in urine with good selectivity and reproducibility, which is significant for cancer diagnosis, anticancer drugs screening, and cancer therapy evaluation.

  15. Label-free electronic detection of bio-toxins using aligned carbon nanotubes.

    Science.gov (United States)

    Palaniappan, Al; Goh, W H; Fam, D W H; Rajaseger, G; Chan, C E Z; Hanson, B J; Moochhala, S M; Mhaisalkar, S G; Liedberg, B

    2013-05-15

    A facile route for sensitive label-free detection of bio-toxins using aligned single walled carbon nanotubes is described. This approach involves patterning of a catalyst on the surface of a quartz substrate using a sub-100 μm stripe-patterned polydimethylsiloxane stamp for aligned carbon nanotube generation followed by fabrication of field effect transistor (FET). Atomic force microscopy, field emission scanning electron microscopy and Raman spectroscopy are employed to characterize the synthesized nanotubes. Unlike previous reports, the adopted approach enables direct electronic detection of bio-toxins with sensitivities comparable to ELISA. As a proof of concept, the fabricated FET responds to nM concentration levels (with a LOD of ∼2 nM) of epsilon toxin produced by Clostridium perfringens and a prominent food toxin. This facile approach could be customized to detect other classes of toxins and biomarkers upon appropriate functionalization of the aligned carbon nanotubes. Finally, we demonstrate the use of the FET-platform for detection of toxin in more complex matrices such as orange juice.

  16. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2011-03-01

    Full Text Available This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG antibody-antigen pair.

  17. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    Science.gov (United States)

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  18. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.

    Science.gov (United States)

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-10-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles.

  19. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor

    Directory of Open Access Journals (Sweden)

    Bailin Zhang

    2013-01-01

    Full Text Available The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  20. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    Science.gov (United States)

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences.

  1. Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli.

    Science.gov (United States)

    Ma, Fen; Rehman, Abdul; Liu, Haiying; Zhang, Jingtuo; Zhu, Shilei; Zeng, Xiangqun

    2015-02-03

    In this report, a new polythiophene interface is fabricated containing fused quinone moieties which are then glycosylated to form a carbohydrate platform for bacterial detection. Very importantly, this interface can be used for label-free and reagentless detection, both by electrochemical and Quartz Crystal Microbalance (QCM) transducers and by using the direct pili-mannose binding as well as Concanavalin A (Con A) mediated lipopolysaccharides (LPS)-mannose binding. The conductive polymer's unique collective properties are very sensitive to very minor perturbations, which result in significant changes of electrical conductivity and providing amplified sensitivity and improved limits of detection (i.e., 25 cell/mL for electrochemical sensor and 50 cells/mL for QCM sensor), a widened logarithmic range of detection (i.e., 3-7 for pili-mannose binding and 2-8 for Con A mediated binding), high specificity and selectivity, and an extraordinary reliability by a mechanism of internal validation. With these analytical performances, the described biosensor is envisaged for being capable of differentiating Gram-negative bacterial strain and species, for many important applications.

  2. Label-free genetic and proteomic marker detection within a single flowcell assay.

    Science.gov (United States)

    Kastl, Katja F; Lowe, Christopher R; Norman, Carl E

    2010-12-15

    No one technique for multiplexing 100+ label-free measurements in a single well or flowcell has yet gained wide acceptance, probably because the added complexity introduced by the multiplexing element is seen to outweigh any possible cost advantage, or the multiplexing scheme itself is not flexible enough to accommodate the desired combinations of immobilization conditions and target/analyte molecules. Here, we demonstrate a simple yet highly versatile technology which uses microparticles, each bearing both an identifier code and an optical grating, to permit the inclusion of diverse molecules such as protein A, IgG and DNA, on chemically diverse -OH, -NH(2) and -COOH-terminated surfaces, within a single flowcell assay. Binding of avidin is used to reveal the presence of the immobilized biotinylated species, and to compare directly the binding of similar molecules on dissimilar surfaces, and vice-versa. Though we report the results of a 26-plex assay here, the technique itself has scope for increased throughput up to the level of hundreds of molecular species. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  4. Label-Free Classification of Bax/Bak Expressing vs. Double-Knockout Cells.

    Science.gov (United States)

    Naser, Mohammad; Graham, Michelle T; Pierre, Kamau; Boustany, Nada N

    2016-11-01

    We combine optical scatter imaging with principal component analysis (PCA) to classify apoptosis-competent Bax/Bak-expressing, and apoptosis resistant Bax/Bak-null immortalized baby mouse kidney cells. We apply PCA to 100 stacks each containing 236 dark-field cell images filtered with an optically implemented Gabor filter with period between 0.3 and 2.9 μm. Each stack yields an "eigencell" image corresponding to the first principal component obtained at one of the 100 Gabor filter periods used. At each filter period, each cell image is multiplied by (projected onto) the eigencell image. A Feature Matrix consisting of 236 × 100 scalar values is thus constructed with significantly reduced dimension compared to the initial dataset. Utilizing this Feature Matrix, we implement a supervised linear discriminant analysis and classify successfully the Bax/Bak-expressing and Bax/Bak-null cells with 94.7% accuracy and an area under the curve (AUC) of 0.993. Applying a feature selection algorithm further reveals that the Gabor filter period ranges most significant for the classification correspond to both large (likely nuclear) features as well as small sized features (likely organelles present in the cytoplasm). Our results suggest that cells with a genetic defect in their apoptosis pathway can be differentiated from their normal counterparts by label-free multi-parametric optical scatter data.

  5. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  6. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Roberta Galli

    Full Text Available Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments.

  7. Label-free imaging of rat spinal cords based on multiphoton microscopy

    Science.gov (United States)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  8. Label-free detection of sex determining region Y (SRY) via capacitive biosensor

    KAUST Repository

    Sivashankar, Shilpa

    2016-10-20

    In this work, we present for the first time, the use of a simple fractal capacitive biosensor for the quantification and detection of sex-determining region Y (SRY) genes. This section of genetic code, which is found on the Y chromosome, finds importance for study as it causes fetuses to develop characteristics of male sex-like gonads when a mutation occurs. It is also an important genetic code in men, and disorders involving the SRY gene can cause infertility and sexual malfunction that lead to a variety of gene mutational disorders. We have therefore designed silicon-based, label-free fractal capacitive biosensors to quantify various proteins and genes. We take advantage of a good dielectric material, Parylene C for enhancing the performance of the sensors. We have integrated these sensors with a simple microchannel for easy handling of fluids on the detection area. The read-out value of an Agilent LCR meter used to measure capacitance of the sensor at a frequency of 1 MHz determined gene specificity and gene quantification. These data revealed that the capacitance measurement of the capacitive biosensor for the SRY gene depended on both the target and the concentration of DNA. The experimental outcomes in the present study can be used to detect DNA and its variations in crucial fields that have a great impact on our daily lives, such as clinical and veterinary diagnostics, industrial and environmental testing and forensic sciences.

  9. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  10. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform

    Science.gov (United States)

    Baaske, Martin D.; Foreman, Matthew R.; Vollmer, Frank

    2014-11-01

    Biosensing relies on the detection of molecules and their specific interactions. It is therefore highly desirable to develop transducers exhibiting ultimate detection limits. Microcavities are an exemplary candidate technology for demonstrating such a capability in the optical domain and in a label-free fashion. Additional sensitivity gains, achievable by exploiting plasmon resonances, promise biosensing down to the single-molecule level. Here, we introduce a biosensing platform using optical microcavity-based sensors that exhibits single-molecule sensitivity and is selective to specific single binding events. Whispering gallery modes in glass microspheres are used to leverage plasmonic enhancements in gold nanorods for the specific detection of nucleic acid hybridization, down to single 8-mer oligonucleotides. Detection of single intercalating small molecules confirms the observation of single-molecule hybridization. Matched and mismatched strands are discriminated by their interaction kinetics. Our platform allows us to monitor specific molecular interactions transiently, hence mitigating the need for high binding affinity and avoiding permanent binding of target molecules to the receptors. Sensor lifetime is therefore increased, allowing interaction kinetics to be statistically analysed.

  11. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection.

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A; Fouad, H; Ansari, Z A; Ansari, S G; Malhotra, Bansi D

    2015-11-27

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R(2)) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  12. Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber

    CERN Document Server

    Mazhorova, Anna; Ng, Andy; Chinnappan, Raja; Zourob, Mohammed; Skorobogatiy, Maksim

    2011-01-01

    We propose for the first time an E. coli bacteria sensor based on the evanescent field of the fundamental mode of a suspended-core terahertz fiber. The sensor is capable of E. coli detection at concentrations in the range of 104-109 cfu/ml. The polyethylene fiber features a 150 {\\mu}m core suspended by three deeply sub-wavelength bridges in the center of a 5.1 mm-diameter cladding tube. The fiber core is biofunctionalized with T4 bacteriophages which bind and eventually destroy (lyse) their bacterial target. Using environmental SEM we demonstrate that E. coli is first captured by the phages on the fiber surface. After 25 minutes, most of the bacteria is infected by phages and then destroyed with ~1{\\mu}m-size fragments remaining bound to the fiber surface. The bacteria-binding and subsequent lysis unambiguously correlate with a strong increase of the fiber absorption. This signal allows the detection and quantification of bacteria concentration. Presented bacteria detection method is label-free and it does no...

  13. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    Science.gov (United States)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  14. Label-free detection of DNA hybridization using InAs μ-Hall sensors

    Science.gov (United States)

    Aledealat, Khaled; Hira, S.; Chen, K.; Strouse, G. F.; Chase, P. B.; Xiong, P.; von Molnar, S.; Mihajlovic, G.; Field, M.; Sullivan, G.

    2010-03-01

    We present results on label-free detection of DNA hybridization using InAs μ-Hall sensors. The μ-Hall sensor consisted of six 1-μm Hall crosses defined on an InAs quantum well substrate. The sensor was then covered with sputter-deposited SiO2 and Au pads were patterned on top of some of the Hall crosses. Thiolated ssDNA strands that are complementary to one end of the target ssDNA were assembled on the Au pads and the rest of the device platform was passivated with PEG-silane. Biotinylated and fluorescently-tagged complementary ssDNA to the other end of the target ssDNA were labeled with commercial streptavidin-coated 350 nm superparamagnetic beads. Labeled ssDNA were found to assemble selectively onto the Au pads after mixing with the target ssDNA, indicating successful hybridization of the three ssDNA sequences. The presence of the assembled beads was successfully detected via the Hall sensor and confirmed using laser scanning confocal microscopy. This work was supported by NIH NIGMS GM079592.

  15. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  16. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  17. A label-free fluorescence turn-on sensor for rapid detection of cysteine.

    Science.gov (United States)

    Chen, Xia; Liu, Hongli; Wang, Chen; Hu, Hui; Wang, Yuhui; Zhou, Xiaodong; Hu, Jiming

    2015-06-01

    A Hg(2+)-mediated fluorescence turn-on sensor for cysteine (Cys) detection was developed using the nucleic acid minor groove binding dye DAPI. In this work, two fully complementary DNA sequences, a T-rich single-stranded molecule (ssDNA) and an A-rich single-stranded molecule, were employed to constitute consecutive "AT/TA" base pairs, which could strongly enhance the fluorescence of DAPI. In the absence of cysteine, Hg(2+) reacted with T-rich single-stranded DNA and "T-Hg(2+)-T" base pairs formed, this seriously disrupted consecutive AT base pairs. As a result, the fluorescence of DAPI was not increased efficiently. However, considering that cysteine binds strongly to Hg(2+), the structure of the "T-Hg(2+)-T" complexes was destroyed in the presence of cysteine, resulting in the re-formation of consecutive AT base pairs and increased DAPI fluorescence. Obviously, the amount of cysteine could be easily measured based on the enhancement of DAPI fluorescence, and it took only 20 min to complete the whole cysteine-sensing process. Therefore, a label-free fluorescent "turn-on" sensor for the rapid detection of cysteine was designed, and the detection limit of this sensor was as low as 2.4 nM, which was much lower than those of the most of the previously reported cysteine sensors.

  18. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems.

    Science.gov (United States)

    Chang, Hsiao-Kang; Ishikawa, Fumiaki N; Zhang, Rui; Datar, Ram; Cote, Richard J; Thompson, Mark E; Zhou, Chongwu

    2011-12-27

    Biomarker detection based on nanowire biosensors has attracted a significant amount of research effort in recent years. However, only very limited research work has been directed toward biomarker detection directly from physiological fluids mainly because of challenges caused by the complexity of media. This limitation significantly reduces the practical impact generated by the aforementioned nanobiosensors. In this study, we demonstrate an In(2)O(3) nanowire-based biosensing system that is capable of performing rapid, label-free, electrical detection of cancer biomarkers directly from human whole blood collected by a finger prick. Passivating the nanowire surface successfully blocked the signal induced by nonspecific binding when performing active measurement in whole blood. Passivated devices showed markedly smaller signals induced by nonspecific binding of proteins and other biomaterials in serum and higher sensitivity to target biomarkers than bare devices. The detection limit of passivated sensors for biomarkers in whole blood was similar to the detection limit for the same analyte in purified buffer solutions at the same ionic strength, suggesting minimal decrease in device performance in the complex media. We then demonstrated detection of multiple cancer biomarkers with high reliability at clinically meaningful concentrations from whole blood collected by a finger prick using this sensing system.

  19. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  20. A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Ya Yang

    2015-04-01

    Full Text Available In this study, we have developed a label-free immunosensor with the variation of resonance frequency (Δf of a quartz crystal microbalance (QCM as readout signal for ultrasensitive detection of Ketamine (KT. An optimized strategy for immobilization of KT antibody on the surface of the QCM chip was implemented via the self-assembly modification of 3-mercaptopropionic acid, and then activated with 1-ethyl-3- (3-dimethylaminoprophl carbodiimide and n-hydroxysuccinimide. The specific affinity between the antibody and the antigen ensured a selective response toward KT. The Δf linearly related to the concentration of KT in the range of 1 to 40 pg/mL, with a detection limit of 0.86 pg/mL (S/N = 3. The obtained immunosensor was applied to detect the KT in spiked human urine without any pretreatment but dilution with recoveries from 91.8% to 108%. The developed sensor is promising to perform the portable or on-spot KT detection in clinic or forensic cases.

  1. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.

    Science.gov (United States)

    Kandel, Mikhail E; Teng, Kai Wen; Selvin, Paul R; Popescu, Gabriel

    2017-01-24

    Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm(2), over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s(2) over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.

  2. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  3. Label-Free Detection of Ag+ Based on Gold Nanoparticles and Ag+-Specific DNA.

    Science.gov (United States)

    Pu, Wendan; Zhao, Zhao; Wu, Liping; Liu, Yue; Zhao, Huawen

    2015-08-01

    A sensitive label-free method was presented for the determination of silver ion (Ag+) in this paper. Cytosine-rich DNA (C-DNA) was used as Ag+ specific DNA. Without Ag+ in the solution, fluorescence of fluorescein (FAM) is quenched by C-DNA stabilized gold nanoparticles (AuNPs) in high salt environment. When Ag+ is present in the solution, however, Ag+-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs induced the C-DNA folding into a hairpin structure, which can not stabilize AuNPs in high salt environment, thus causing AuNPs aggregation. After centrifugation to remove the aggregated AuNPs, the quenching ability of the supernatant for FAM is decreased and the fluorescence intensity of solution increases with increasing the Ag+ concentration. Due to the highly specific interaction of the C-DNA towards Ag+ and the strong fluorescent quenching ability of AuNPs for FAM, the method has high selectivity and sensitivity for Ag+. Under the optimal conditions, the fluorescence intensity at 515 nm increased linearly with the concentration of Ag+ ranging from 15 nM to 700 nM, and the detection limit was determined as 6 nM based on 3 σ/slope. This method is simple, sensitive, and may be applied to other detection systems by selecting the appropriate DNA sequences.

  4. Label-free interaction analysis as a tool to demonstrate biosimilarity of therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Sinha-Datta U

    2015-09-01

    Full Text Available Uma Sinha-Datta, Srijit Khan, Dhananjay WadgaonkarFast Trak, GE Healthcare Life Science, John F Welch Technology Centre, Bangalore, IndiaAbstract: In the biosimilar eon, where various analytical platforms are needed to show biosimilarity, we demonstrate the use of surface plasmon resonance biosensor as a label-free interaction analysis tool to compare two therapeutic monoclonal antibodies (mAb1-i and mAb2-i with their biosimilars (mAb1-B and mAb2-B1, B2, B3 based on kinetics, affinity, and thermal stability studies. We calculate active analyte concentration using Biacore systems' calibration-free concentration analysis method and demonstrate its importance for kinetic evaluation. The kinetic constants (ka and kd and affinity constant (KD of the mAbs for binding to specific antigens were evaluated. It was found that the biosimilars were very similar to their innovator with respect to binding to its antigen demonstrating functional similarity. To further confirm biosimilarity to the originator molecules, we conducted a thermal stability analysis of both mAbs using differential scanning calorimetry. This analysis showed good structural similarity in between innovator antibodies and biosimilars, with major Tm as 84.1°C (mAb1 and 72.8°C (mAb2, demonstrating structural similarity.Keywords: surface plasmon resonance, Biacore, kinetics, low level of ligand immobilization, calibration-free concentration analysis, bivalent analytes, active concentration

  5. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    Science.gov (United States)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  6. Label-free, turn-on fluorescent sensor for trypsin activity assay and inhibitor screening.

    Science.gov (United States)

    Zhang, Lufeng; Qin, Haiyan; Cui, Wanwan; Zhou, Yang; Du, Jianxiu

    2016-12-01

    The development of new detection methods for proteases activity assay is important in clinical diagnostics and drug development. In this work, a simple, label-free, and turn-on fluorescent sensor was fabricated for trypsin, a protease produced in the pancreas. Cytochrome c, a natural substance of trypsin, could be selectively cleaved by trypsin into heme-peptide fragment. The produced heme-peptide fragment exhibited an intensive catalytic role on the H2O2-mediated the oxidation of thiamine to form strong fluorescent thiochrome. The fluorescence intensity was closely dependent on the amount of trypsin presented. The procedure allowed the measurement of trypsin over the range of 0.5-20.0μg/mL with a detection limit of 0.125μg/mL. The sensor showed better precision with a relative standard deviation of 1.6% for the measurement of 1.0μg/mL trypsin solution (n=11). This sensing system was applied to screen the inhibitor of trypsin, the IC50 values were calculated to be 12.71ng/mL for the trypsin inhibitor from soybean and 2.0μg/mL for benzamidine hydrochloride, respectively, demonstrating its potential application in drug development and related diseases treatment.

  7. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    Science.gov (United States)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  8. Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.

    Science.gov (United States)

    Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M

    2017-01-01

    The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.

  9. Sensitive and label-free detection of miRNA-145 by triplex formation.

    Science.gov (United States)

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  10. Label-free electrochemical monitoring of protein addressing through electroactivated "click" chemistry on gold electrodes.

    Science.gov (United States)

    Meini, Nadir; Ripert, Micaël; Chaix, Carole; Farre, Carole; De Crozals, Gabriel; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2014-05-01

    In this work, using electrochemical impedance spectroscopy (EIS), we have, for the first time, label-free monitored protein immobilization on a gold surface through a strategy of electroaddressing, compatible with the production of microarrays for multi-detection. This functionalization is achieved via the alkyne/azide cycloaddition, better known as the "click" reaction. The electroaddressing was applied to a polythiol hexynyl derivative previously grafted onto the gold surface. This compound consists of two dithiol phosphate groups and a hexynyl function and was synthesized through a supported synthesis approach, from a dithiol reagent, phosphoramidite (DTPA), and a hexynyl phosphoramidite. Next, an azide-PEG3-biotin derivative was grafted onto the modified gold surface by electro-chronocoulometry. The "click" reaction was controlled by electrochemical impedance spectroscopy, showing the change in impedance only when the electroaddressing was performed at -300 mV. No effect on the EIS signal was observed when a positive potential was applied, confirming the specificity of the electroactivation. Biotin-modified electrodes were used to fix streptavidin and the immobilization was monitored using EIS. Fluorescent streptavidin-functionalized silica nanoparticles were also specifically grafted onto the biotinylated gold surface in order to confirm the "click" reaction using fluorescence microscopy. The obtained streptavidin platform was used to detect the surface coverage by biotinylated human serum albumin (HSA). The lowest detectable concentration is 10 pg/mL, and surface saturation is obtained with concentrations higher than 100 ng/mL.

  11. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  12. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment.

  13. Biconically Tapered Fiber Optic Probes for Rapid Label-Free Immunoassays

    Directory of Open Access Journals (Sweden)

    John Miller

    2015-04-01

    Full Text Available We report use of U-shaped biconically tapered optical fibers (BTOF as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G-antigen (rabbit anti-mouse IgG reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  14. Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haixia; Zhang, Yong; Wu, Dan; Ma, Hongmin; Li, Xiaojing; Li, Yan; Wang, Huan; Li, He; Du, Bin [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2013-04-03

    Highlights: ► The immunosensor is designed to determine breast cancer susceptibility gene. ► Mesoporous carbon nanospheres (MCN) have great adsorption capacity. ► MCN could enhance the electroactivity of toluidine blue. ► Room temperature ionic liquid should increase the electrochemical signal. -- Abstract: In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF{sub 4} could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF{sub 4} could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL{sup −1} with a low detection limit of 3.97 pg mL{sup −1}. The immunosensor exhibits high sensitivity, good selectivity and stability.

  15. Label-Free Acetylcholine Image Sensor Based on Charge Transfer Technology for Biological Phenomenon Tracking

    Science.gov (United States)

    Takenaga, Shoko; Tamai, Yui; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2012-02-01

    A 32 ×32 charge-transfer enzyme-type acetylcholine (ACh) image sensor array was produced for label-free tracking of images of ACh distribution and its performance in repeatable measurements without enzyme deactivation was examined. The proposed sensor was based on a charge-transfer-type pH image sensor, which was modified using an enzyme membrane (acetylcholine esterase, AChE) for each pixel. The ACh image sensor detected hydrogen ions generated by the ACh-AChE reaction. A polyion complex membrane composed of poly(L-lysine) and poly(4-styrenesulfonate) was used to immobilize the enzyme on the sensor. The improved uniformity and adhesion of the polyion complex membrane were evaluated in this study. As a result, temporal and spatial fluctuations of the ACh image sensor were successfully minimized using this approach. The sensitivity of the sensor was 4.2 mV/mM, and its detection limit was 20 µM. In five repeated measurements, the repeatability was 8.8%.

  16. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Science.gov (United States)

    Paesen, Rik; Gyselaers, Wilfried; Stinissen, Piet

    2016-01-01

    In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin. PMID:27746820

  17. Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2011-07-01

    Full Text Available Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM and the film bulk acoustic resonator (FBAR, calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

  18. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.

    Science.gov (United States)

    Al Balushi, Ahmed A; Kotnala, Abhay; Wheaton, Skyler; Gelfand, Ryan M; Rajashekara, Yashaswini; Gordon, Reuven

    2015-07-21

    Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers. More recently, nanoaperture optical tweezers have been used to probe the low-frequency (in the single digit wavenumber range) Raman active modes of single nanoparticles and proteins. Here we review recent developments in the field of nanoaperture optical tweezers and how they have been applied to protein-antibody interactions, protein-small molecule interactions including single molecule binding kinetics, and protein-DNA interactions. In addition, recent works on the integration of nanoaperture optical tweezers at the tip of optical fiber and in microfluidic environments are presented.

  19. Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice.

    Science.gov (United States)

    Jia, Yali; Wang, Ruikang K

    2010-12-15

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of monitoring dynamic meningeal microcirculations, preferably decoupled from cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ∼2 mm, with an unprecedented imaging sensitivity to blood flow at ∼4 μm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within the meninges and cortex in mice with the cranium left intact. Using a thrombotic mouse model, we show that the OMAG can yield longitudinal measurements of meningeal vascular responses to the insult and can decouple these responses from those in the cortex, giving valuable information regarding the localized hemodynamics along with the dynamic formation of thrombotic event. The results indicate that OMAG can be a useful tool to study therapeutic strategies in preclinical animal models in order to mitigate various pathologies that are mainly related to the meningeal circulations.

  20. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    Science.gov (United States)

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Mueller matrix microscopy for label-free histopathology examinations (Conference Presentation)

    Science.gov (United States)

    Lv, Donghong; He, Honghui; Zhou, Jialing; Ma, Hui

    2017-03-01

    In clinical medicine, a pathologist often needs to examine cells or thin slices of tissues to identify abnormalities that are markers or precursors of diseases. Various chemical and immunohistochemical staining techniques have been developed to selectively label certain components to bring up the contrasts of specific microstructures. It is well known that a Mueller matrix contains rich information on the microstructure and optical properties of a sample. Using proper data analysis techniques, Mueller matrix images can also be transformed into new polarization parameters sensitive only to specific microstructural features. These new polarization parameters can selectively enhance the contrast of specific features in images of unstained pathological slide to help identify abnormalities. In recent studies, we set up a modulus design Mueller matrix microscope by adding polarization optics components into the optical path of a commercial transmission microscope. We take multiple measurements of the unstained pathological slide at different polar and azimuth angles, then derive an intrinsic Mueller matrix (IMM) which represents only the microstructural characters of the sample without the interference by the sample orientation. Such orientation-independent IMM images preserve to the maximum extent the pathological information of the tissue samples. Using Mueller matrix decomposition and transformation techniques, we demonstrate in preliminary tests that we are able to selectively enhance different characteristic features in different cancer tissues. With the fast advances in big-data analysis techniques, it is expected that label-free Mueller matrix microscopy is a potentially powerful tool for the histopathologists to identify characteristic features in complex tissue samples.

  2. Identification of Novel GPR55 Modulators Using Cell-Impedance-Based Label-Free Technology.

    Science.gov (United States)

    Morales, Paula; Whyte, Lauren S; Chicharro, Roberto; Gómez-Cañas, María; Pazos, M Ruth; Goya, Pilar; Irving, Andrew J; Fernández-Ruiz, Javier; Ross, Ruth A; Jagerovic, Nadine

    2016-03-10

    The orphan G protein-coupled receptor GPR55 has been proposed as a novel receptor of the endocannabinoid system. However, the validity of this categorization is still under debate mainly because of the lack of potent and selective agonists and antagonists of GPR55. Binding assays are not yet available for GPR55 screening, and discrepancies in GPR55 mediated signaling pathways have been reported. In this context, we have designed and synthesized novel GPR55 ligands based on a chromenopyrazole scaffold. Appraisal of GPR55 activity was accomplished using a label-free cell-impedance-based assay in hGPR55-HEK293 cells. The real-time impedance responses provided an integrative assessment of the cellular consequence to GPR55 stimulation taking into account the different possible signaling pathways. Potent GPR55 partial agonists (14b, 18b, 19b, 20b, and 21-24) have been identified; one of them (14b) being selective versus classical cannabinoid receptors. Upon antagonist treatment, chromenopyrazoles 21-24 inhibited lysophosphatidylinositol (LPI) effect. One of these GPR55 antagonists (21) is fully selective versus classic cannabinoid receptors. Compared to LPI, the predicted physicochemical parameters of the new compounds suggest a clear pharmacokinetic improvement.

  3. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    Science.gov (United States)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  4. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy.

    Science.gov (United States)

    Liang, Gang; Man, Yan; Jin, Xinxin; Pan, Ligang; Liu, Xinhui

    2016-09-14

    A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.

  5. Label-free impedimetric immunoassay for trace levels of polychlorinated biphenyls in insulating oil.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Sasaki, Kazuhiro; Namiki, Yukie; Matsumoto, Norio; Watanabe, Yoshitomo; Ohmura, Naoya; Matsue, Tomokazu

    2014-03-18

    A rapid, ultrasensitive, and practical label-free impedimetric immunoassay for measuring trace levels of total polychlorinated biphenyls (PCBs) in insulating oil was developed. First, we developed a novel monoclonal antibody (RU6F9) for PCBs by using a designed immunogen and characterized its binding affinity for a commercial mixtures of PCBs and its main congeners. A micro comblike gold electrode was fabricated, and the antibody was covalently immobilized on the electrode through a self-assembled monolayer formed by dithiobis-N-succinimidyl propionate. The antigen-binding event on the surface of the functionalized electrode was determined as the change in charge transfer resistance by using electrochemical impedance spectroscopy. The resulting impedimetric immunoassay in aqueous solution achieved a wide determination range (0.01-10 μg/L) and a low detection limit (LOD) of 0.001 μg/L, which was 100-fold more sensitive than a conventional flow-based immunoassay for PCBs. By combining the impedimetric immunoassay with a cleanup procedure for insulating oil utilizing a multilayer cleanup column followed by DMSO partitioning, an LOD of 0.052 mg/kg-oil was achieved, which satisfied the Japanese regulation criterion of 0.5 mg/kg-oil. Finally, the immunoassay was employed to determine total PCB levels in actual used insulating oils (n = 33) sampled from a used transformer containing trace levels of PCBs, and the results agreed well with the Japanese official method (HRGC/HRMS).

  6. Label-free quantification of Tacrolimus in biological samples by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Menotta, Michele, E-mail: michele.menotta@uniurb.it [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Biagiotti, Sara [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Streppa, Laura [Physics Laboratory, CNRS-ENS, UMR 5672, Lyon (France); Cell and Molecular Biology Laboratory, CNRS-ENS Lyon, UMR 5239, IFR128, Lyon (France); Rossi, Luigia; Magnani, Mauro [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy)

    2015-07-16

    Highlights: • Tacrolimus is a potent immunosuppressant drug that has to be continually monitored. • We present an atomic force microscope approach for quantification of Tacrolimus in blood samples. • Detection and quantification have been successfully achieved. - Abstract: In the present paper we describe an atomic force microscopy (AFM)-based method for the quantitative analysis of FK506 (Tacrolimus) in whole blood (WB) samples. Current reference methods used to quantify this immunosuppressive drug are based on mass spectrometry. In addition, an immunoenzymatic assay (ELISA) has been developed and is widely used in clinic, even though it shows a small but consistent overestimation of the actual drug concentration when compared with the mass spectrometry method. The AFM biosensor presented herein utilises the endogen drug receptor, FKBP12, to quantify Tacrolimus levels. The biosensor was first assayed to detect the free drug in solution, and subsequently used for the detection of Tacrolimus in blood samples. The sensor was suitable to generate a dose–response curve in the full range of clinical drug monitoring. A comparison with the clinically tested ELISA assay is also reported.

  7. Clustering with position-specific constraints on variance: Applying redescending M-estimators to label-free LC-MS data analysis

    Directory of Open Access Journals (Sweden)

    Mani D R

    2011-08-01

    Full Text Available Abstract Background Clustering is a widely applicable pattern recognition method for discovering groups of similar observations in data. While there are a large variety of clustering algorithms, very few of these can enforce constraints on the variation of attributes for data points included in a given cluster. In particular, a clustering algorithm that can limit variation within a cluster according to that cluster's position (centroid location can produce effective and optimal results in many important applications ranging from clustering of silicon pixels or calorimeter cells in high-energy physics to label-free liquid chromatography based mass spectrometry (LC-MS data analysis in proteomics and metabolomics. Results We present MEDEA (M-Estimator with DEterministic Annealing, an M-estimator based, new unsupervised algorithm that is designed to enforce position-specific constraints on variance during the clustering process. The utility of MEDEA is demonstrated by applying it to the problem of "peak matching"--identifying the common LC-MS peaks across multiple samples--in proteomic biomarker discovery. Using real-life datasets, we show that MEDEA not only outperforms current state-of-the-art model-based clustering methods, but also results in an implementation that is significantly more efficient, and hence applicable to much larger LC-MS data sets. Conclusions MEDEA is an effective and efficient solution to the problem of peak matching in label-free LC-MS data. The program implementing the MEDEA algorithm, including datasets, clustering results, and supplementary information is available from the author website at http://www.hephy.at/user/fru/medea/.

  8. Clustering with position-specific constraints on variance: applying redescending M-estimators to label-free LC-MS data analysis.

    Science.gov (United States)

    Frühwirth, Rudolf; Mani, D R; Pyne, Saumyadipta

    2011-08-31

    Clustering is a widely applicable pattern recognition method for discovering groups of similar observations in data. While there are a large variety of clustering algorithms, very few of these can enforce constraints on the variation of attributes for data points included in a given cluster. In particular, a clustering algorithm that can limit variation within a cluster according to that cluster's position (centroid location) can produce effective and optimal results in many important applications ranging from clustering of silicon pixels or calorimeter cells in high-energy physics to label-free liquid chromatography based mass spectrometry (LC-MS) data analysis in proteomics and metabolomics. We present MEDEA (M-Estimator with DEterministic Annealing), an M-estimator based, new unsupervised algorithm that is designed to enforce position-specific constraints on variance during the clustering process. The utility of MEDEA is demonstrated by applying it to the problem of "peak matching"--identifying the common LC-MS peaks across multiple samples--in proteomic biomarker discovery. Using real-life datasets, we show that MEDEA not only outperforms current state-of-the-art model-based clustering methods, but also results in an implementation that is significantly more efficient, and hence applicable to much larger LC-MS data sets. MEDEA is an effective and efficient solution to the problem of peak matching in label-free LC-MS data. The program implementing the MEDEA algorithm, including datasets, clustering results, and supplementary information is available from the author website at http://www.hephy.at/user/fru/medea/.

  9. Label-free detection and identification of protein ligands captured by receptors in a polymerized planar lipid bilayer using MALDI-TOF MS.

    Science.gov (United States)

    Liang, Boying; Ju, Yue; Joubert, James R; Kaleta, Erin J; Lopez, Rodrigo; Jones, Ian W; Hall, Henry K; Ratnayaka, Saliya N; Wysocki, Vicki H; Saavedra, S Scott

    2015-04-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) coupled with affinity capture is a well-established method to extract biological analytes from complex samples followed by label-free detection and identification. Many bioanalytes of interest bind to membrane-associated receptors; however, the matrices and high-vacuum conditions inherent to MALDI-TOF MS make it largely incompatible with the use of artificial lipid membranes with incorporated receptors as platforms for detection of captured proteins and peptides. Here we show that cross-linking polymerization of a planar supported lipid bilayer (PSLB) provides the stability needed for MALDI-TOF MS analysis of proteins captured by receptors embedded in the membrane. PSLBs composed of poly(bis-sorbylphosphatidylcholine) (poly(bis-SorbPC)) and doped with the ganglioside receptors GM1 and GD1a were used for affinity capture of the B subunits of cholera toxin, heat-labile enterotoxin, and pertussis toxin. The three toxins were captured simultaneously, then detected and identified by MS on the basis of differences in their molecular weights. Poly(bis-SorbPC) PSLBs are inherently resistant to nonspecific protein adsorption, which allowed selective toxin detection to be achieved in complex matrices (bovine serum and shrimp extract). Using GM1-cholera toxin subunit B as a model receptor-ligand pair, we estimated the minimal detectable concentration of toxin to be 4 nM. On-plate tryptic digestion of bound cholera toxin subunit B followed by MS/MS analysis of digested peptides was performed successfully, demonstrating the feasibility of using the PSLB-based affinity capture platform for identification of unknown, membrane-associated proteins. Overall, this work demonstrates that combining a poly(lipid) affinity capture platform with MALDI-TOF MS detection is a viable approach for capture and proteomic characterization of membrane-associated proteins in a label-free manner.

  10. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry.

    Science.gov (United States)

    Collins, Ben C; Hunter, Christie L; Liu, Yansheng; Schilling, Birgit; Rosenberger, George; Bader, Samuel L; Chan, Daniel W; Gibson, Bradford W; Gingras, Anne-Claude; Held, Jason M; Hirayama-Kurogi, Mio; Hou, Guixue; Krisp, Christoph; Larsen, Brett; Lin, Liang; Liu, Siqi; Molloy, Mark P; Moritz, Robert L; Ohtsuki, Sumio; Schlapbach, Ralph; Selevsek, Nathalie; Thomas, Stefani N; Tzeng, Shin-Cheng; Zhang, Hui; Aebersold, Ruedi

    2017-08-21

    Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.

  11. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    Science.gov (United States)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  12. Label-free isolation and enrichment of cells through contactless dielectrophoresis.

    Science.gov (United States)

    Elvington, Elizabeth S; Salmanzadeh, Alireza; Stremler, Mark A; Davalos, Rafael V

    2013-09-03

    Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process. cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles. Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing

  13. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds

    Science.gov (United States)

    Kunstar, Aliz; Leferink, Anne M.; Okagbare, Paul I.; Morris, Michael D.; Roessler, Blake J.; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A.; Moroni, Lorenzo; van Apeldoorn, Aart A.

    2013-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm−1 which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs. PMID:23825118

  14. Optimizing integrated optical chips for label-free (bio-)chemical sensing.

    Science.gov (United States)

    Kunz, R E; Cottier, K

    2006-01-01

    Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.

  15. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  16. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke.

    Science.gov (United States)

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter Cm; Bulte, Jeff W M; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion.

  17. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds.

    Science.gov (United States)

    Kunstar, Aliz; Leferink, Anne M; Okagbare, Paul I; Morris, Michael D; Roessler, Blake J; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A; Moroni, Lorenzo; van Apeldoorn, Aart A

    2013-09-06

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm(-1) which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.

  18. New function of exonuclease and highly sensitive label-free colorimetric DNA detection.

    Science.gov (United States)

    Li, Hongbo; Wang, Suqin; Wu, Zaisheng; Xu, Jianguo; Shen, Guoli; Yu, Ruqin

    2016-03-15

    Enzymatic manipulation and modulation of nucleic acids are a central part of cellular function, protection, and reproduction, while rapid and accurate detection of ultralow amount of nucleic acids remains a major challenge in molecular biology research and clinic diagnosis of genetic diseases. Herein, we reported that exonuclease III can degrade the G-quadruplex structure, indicating the new exonuclease's function. Basing on the function of exonuclease III, a novel G-quadruplex-hemin DNAzyme-based colorimetric detection of tumor suppressor gene p53 was successfully developed. Although only one oligonucleotide probe was involved, the sensing strategy could suppress the optical background and achieve an efficient G-quadruplex-hemin DNAzyme-based signal amplification. Specifically, a label-free functional nucleic acid probe (called THzyme probe) was designed via introducing target DNA probe-contained hairpin structure into G-quadruplex DNAzyme. Even if this probe can fold into G-quadruplex structure in the presence of hemin very different from the double-stranded DNA, it is easily degraded by exonuclease III. Thus, no change in UV-vis absorption intensity is detected in the absence of target DNA. However, the hybridization of target DNA can protect the integrity and catalytic activity of THzyme probe, producing the DNAzyme-amplified colorimetric signal. As a result, the p53 gene was able to be detected down to 1.0 pM (final concentration in the signal-generating solution: 50.0 fM) and mismatched target DNAs were easily distinguished. It is expected that this simple sensing methodology for DNA detection can find its utility in point-of-care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Whole-cell based label-free capacitive biosensor for rapid nanosize-dependent toxicity detection.

    Science.gov (United States)

    Qureshi, Anjum; Pandey, Ashish; Chouhan, Raghuraj S; Gurbuz, Yasar; Niazi, Javed H

    2015-05-15

    Despite intensive studies on examining the toxicity of nanomaterials (NMs), our current understanding on potential toxicity in relation to size and cellular responses has remained limited. In this work, we have developed a whole-cell based capacitive biosensor (WCB) to determine the biological toxicity of nanoparticles (NPs) using iron oxide (Fe3O4) NPs as models. This WCB chip comprised of an array of capacitor sensors made of gold interdigitated microelectrodes on which living Escherichia coli cells were immobilized. Cells-on-chip was then allowed to interact with different sizes of Fe3O4 NPs (5, 20 and 100 nm) and concentration-depended cellular-responses were measured in terms of change in dielectric properties (capacitance) as a function of applied AC frequency. The WCB response showed smaller-sized Fe3O4 NPs (5 nm) induced maximum change in surface capacitance because of their effective cellular interaction with E. coli cells-on-chip indicating that the cells suffered from severe cellular deformation, which was confirmed by scanning electron microscopic (SEM) examination. Further our results were validated through their cell viability and E. coli responses at the interface of cell-membrane and NPs as a proof-of-concept. WCB response showed a size-dependent shift in maximum response level from 2 µg/ml of 5 nm sized NPs to 4 µg/ml with NP-sizes greater than 20 nm. The developed WCB offered real-time, label-free and noninvasive detection of cellular responses against Fe3O4 NPs' toxicity with speed, simplicity and sensitivity that can be extended to toxicity screening of various other NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Fu Weiling

    2011-06-01

    Full Text Available Abstract Background Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. Methods In this study, we developed a single-stranded DNA (ssDNA amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens. Results We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P 2 values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P Conclusions Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.

  1. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke

    Science.gov (United States)

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter CM; Bulte, Jeff W.M.; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion. PMID:27446492

  2. Sample preparation for quantitation of tritium by accelerator mass spectrometry.

    Science.gov (United States)

    Chiarappa-Zucca, Marina L; Dingley, Karen H; Roberts, Mark L; Velsko, Carol A; Love, Adam H

    2002-12-15

    The capability to prepare samples accurately and reproducibly for analysis of tritium (3H) content by accelerator mass spectrometry (AMS) greatly facilitates isotopic tracer studies in which attomole levels of 3H can be measured in milligram-sized samples. A method has been developed to convert the hydrogen of organic samples to a solid, titanium hydride, which can be analyzed by AMS. Using a two-step process, the sample is first oxidized to carbon dioxide and water. In the second step, the water is transferred within a heated manifold into a quartz tube, reduced to hydrogen gas using zinc, and reacted with titanium powder. The 3H/1H ratio of the titanium hydride is measured by AMS and normalized to standards whose ratios were determined by decay counting to calculate the amount of 3H in the original sample. Water, organic compounds, and biological samples with 3H activities measured by liquid scintillation counting were utilized to develop and validate the method. The 3H/1H ratios were quantified in samples that spanned 5 orders of magnitude, from 10(-10) to 10(-15), with a detection limit of 3.0 x 10(-15), which is equivalent to 0.02 dpm tritium/mg of material. Samples smaller than 2 mg were analyzed following addition of 2 mg of a tritium-free-hydrogen carrier. Preparation of organic standards containing both 14C and 3H in 2-mg organic samples demonstrated that this sample preparation methodology can also be applied to quantify both of these isotopes from a single sample.

  3. Quantitative interpretation of tracks for determination of body mass.

    Directory of Open Access Journals (Sweden)

    Tom Schanz

    Full Text Available To better understand the biology of extinct animals, experimentation with extant animals and innovative numerical approaches have grown in recent years. This research project uses principles of soil mechanics and a neoichnological field experiment with an African elephant to derive a novel concept for calculating the mass (i.e., the weight of an animal from its footprints. We used the elephant's footprint geometry (i.e., vertical displacements, diameter in combination with soil mechanical analyses (i.e., soil classification, soil parameter determination in the laboratory, Finite Element Analysis (FEA and gait analysis for the back analysis of the elephant's weight from a single footprint. In doing so we validated the first component of a methodology for calculating the weight of extinct dinosaurs. The field experiment was conducted under known boundary conditions at the Zoological Gardens Wuppertal with a female African elephant. The weight of the elephant was measured and the walking area was prepared with sediment in advance. Then the elephant was walked across the test area, leaving a trackway behind. Footprint geometry was obtained by laser scanning. To estimate the dynamic component involved in footprint formation, the velocity the foot reaches when touching the subsoil was determined by the Digital Image Correlation (DIC technique. Soil parameters were identified by performing experiments on the soil in the laboratory. FEA was then used for the backcalculation of the elephant's weight. With this study, we demonstrate the adaptability of using footprint geometry in combination with theoretical considerations of loading of the subsoil during a walk and soil mechanical methods for prediction of trackmakers weight.

  4. Quantitative interpretation of tracks for determination of body mass.

    Science.gov (United States)

    Schanz, Tom; Lins, Yvonne; Viefhaus, Hanna; Barciaga, Thomas; Läbe, Sashima; Preuschoft, Holger; Witzel, Ulrich; Sander, P Martin

    2013-01-01

    To better understand the biology of extinct animals, experimentation with extant animals and innovative numerical approaches have grown in recent years. This research project uses principles of soil mechanics and a neoichnological field experiment with an African elephant to derive a novel concept for calculating the mass (i.e., the weight) of an animal from its footprints. We used the elephant's footprint geometry (i.e., vertical displacements, diameter) in combination with soil mechanical analyses (i.e., soil classification, soil parameter determination in the laboratory, Finite Element Analysis (FEA) and gait analysis) for the back analysis of the elephant's weight from a single footprint. In doing so we validated the first component of a methodology for calculating the weight of extinct dinosaurs. The field experiment was conducted under known boundary conditions at the Zoological Gardens Wuppertal with a female African elephant. The weight of the elephant was measured and the walking area was prepared with sediment in advance. Then the elephant was walked across the test area, leaving a trackway behind. Footprint geometry was obtained by laser scanning. To estimate the dynamic component involved in footprint formation, the velocity the foot reaches when touching the subsoil was determined by the Digital Image Correlation (DIC) technique. Soil parameters were identified by performing experiments on the soil in the laboratory. FEA was then used for the backcalculation of the elephant's weight. With this study, we demonstrate the adaptability of using footprint geometry in combination with theoretical considerations of loading of the subsoil during a walk and soil mechanical methods for prediction of trackmakers weight.

  5. High-sensitivity label-free optical fiber optrodes based on the excitation of Bloch surface waves

    Science.gov (United States)

    Scaravilli, M.; Castaldi, G.; Cusano, A.; Galdi, V.

    2016-05-01

    In this study, the possibility to excite Bloch surface waves (BSWs) on the tip of a single-mode optical fiber is explored for the first time. In particular, we first show the possibility to achieve an on-tip excitation of BSWs, with optimized characteristic of the arising resonances, via an "all-fiber" grating-coupled configuration. Furthermore, envisioning novel high-performance fiber tip nanoprobes for label-free biosensing, we introduce an ad hoc design aimed at maximizing the refractive-index sensitivity. Numerical results indicate that the estimated sensitivities are comparable with those exhibited by current plasmonic lab-on-tip bio-probes, but are accompanied by a higher spectral selectivity. Therefore, this preliminary work paves the way to the development of new classes of miniaturized surface-wave optical fiber devices for low-detection-limit label-free chemical and biological sensing.

  6. Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry.

    Science.gov (United States)

    Vogel, Marc; Suess, Beatrix

    2016-01-01

    Isothermal titration calorimetry (ITC) is a powerful label-free technique to determine the binding constant as well as thermodynamic parameters of a binding reaction and is therefore well suited for the analysis of small molecule-RNA aptamer interaction. We will introduce you to the method and present a protocol for sample preparation and the calorimetric measurement. A detailed note section will point out useful tips and pitfalls.

  7. A dual-channel detection of mercuric ions using a label free G-quadruplex-based DNAzyme molecule.

    Science.gov (United States)

    Ma, Long; Liu, Haiyan; Wu, Guanrong; Sun, Nana; Meng, Lingpei; Li, Yuyin; Liu, Zhenxing; Diao, Aipo

    2016-06-20

    We have constructed a 'turn-off' and label free bio-sensor using a DNAzyme molecule. This facile bio-sensor is capable of selective detection of mercuric ions with a high sensitivity and satisfactory dynamic range. More importantly, it is able to generate both fluorescent and colourimetric signals for detection. This dual-channel bio-sensor is expected to afford high detection confidence and overcome false-positive readout especially when assaying complex biological samples.

  8. Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    OpenAIRE

    Grass, Kai; Holm, Christian; Slater, Gary W.

    2009-01-01

    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that t...

  9. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  10. Studies towards the development of label-free AC impedimetric immunosensors for healthcare and food quality control

    OpenAIRE

    Tsekenis, Georgios

    2008-01-01

    This thesis describes work focused towards the fabrication and characterisation of immunosensor platforms for the label-free detection of analytes of importance in the health and food industries. Due to their low unit cost and ease of fabrication, the immunosensor market has significantly increased recently, resulting in a constant demand for new immunosensor applications. Within this thesis, therefore, a novel fabrication protocol is reported towards the production of immunose...

  11. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  12. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  13. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging.

    Science.gov (United States)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S

    2015-11-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated.

  14. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor.

    Science.gov (United States)

    Lu, Taofeng; Ma, Qin; Yan, Wenzhuo; Wang, Yuanzhi; Zhang, Yuanyuan; Zhao, Lili; Chen, Hongyan

    2018-01-01

    Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in ducks. This study investigated a novel aptamer-based, label-free aptasensor detection of MDPV. In this study, we developed an ssDNA aptamer using the filtration partition and lambda exonuclease method with an affinity-based monitor and counter-screening process. After 15 rounds of SELEX (systematic evolution of ligands by exponential enrichment), the ssDNA aptamer Apt-10, which specifically bound to MDPV with high affinity (Kd = 467nM) was successfully screened, and the aptamer was also found to be good specific to MDPV. The selected Apt-10 aptamer can be used to distinguish MDPV and goose parvovirus (GPV). Three-dimensional structural analysis of the Apt-10 aptamer indicated that it folded into a compact stem-loop motif, which was related to its high affinity. Finally, a label-free detection method based on unmodified gold nanoparticles and Apt-10 aptamer was developed for MDPV determination. The concentration of Apt-10 aptamer at 5μM was optimal for MDPV determination in the label-free aptasensor. Excellent linearity was acquired and the lowest detection limit was 1.5 or 3 EID50 (50% egg infection dose) of MDPV, respectively, depending upon spectrophotometry or the naked eye were used. These results show the potential of the aptamer for the rapid detection of MDPV and antiviral research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Accurate Quantitation of Dystrophin Protein in Human Skeletal Muscle Using Mass Spectrometry

    OpenAIRE

    Brown, Kristy J; Marathi, Ramya; Fiorillo, Alyson A; Ciccimaro, Eugene F.; Sharma, Seema; Rowlands, David S.; Rayavarapu, Sree; Nagaraju, Kanneboyina; Eric P. Hoffman; Hathout, Yetrib

    2012-01-01

    Quantitation of human dystrophin protein in muscle biopsies is a clinically relevant endpoint for both diagnosis and response to dystrophin-replacement therapies for dystrophinopathies. A robust and accurate assay would enable the use of dystrophin as a surrogate biomarker, particularly in exploratory Phase 2 trials. Currently available methods to quantitate dystrophin rely on immunoblot or immunohistochemistry methods that are not considered robust. Here we present a mass spectrometry based ...

  16. A Computational Strategy to Analyze Label-Free Temporal Bottom-up Proteomics Data

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiuxia; Callister, Stephen J.; Manes, Nathan P.; Adkins, Joshua N.; Alexandridis, Roxana A.; Zeng, Xiaohua; Roh, Jung Hyeob; Smith, William E.; Donohue, Timothy J.; Kaplan, Samuel; Smith, Richard D.; Lipton, Mary S.

    2008-07-01

    Motivation: Biological systems are in a continual state of flux, which necessitates an understanding of the dynamic nature of protein abundances. The study of protein abundance dynamics has become feasible with recent improvements in mass spectrometry-based quantitative proteomics. However, a number of challenges still re-main related to how best to extract biological information from dy-namic proteomics data; for example, challenges related to extrane-ous variability, missing abundance values, and the identification of significant temporal patterns. Results: This article describes a strategy that addresses the afore-mentioned issues for the analysis of temporal bottom-up proteomics data. The core strategy for the data analysis algorithms and subse-quent data interpretation was formulated to take advantage of the temporal properties of the data. The analysis procedure presented herein was applied to data from a Rhodobacter sphaeroides 2.4.1 time-course study. The results were in close agreement with existing knowledge about R. sphaeroides, therefore demonstrating the utility of this analytical strategy.

  17. Oxidized fatty acid analysis by charge-switch derivatization, selected reaction monitoring, and accurate mass quantitation.

    Science.gov (United States)

    Liu, Xinping; Moon, Sung Ho; Mancuso, David J; Jenkins, Christopher M; Guan, Shaoping; Sims, Harold F; Gross, Richard W

    2013-11-01

    A highly sensitive, specific, and robust method for the analysis of oxidized metabolites of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions, thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA, and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted in a 10- to 30-fold increase in ionization efficiency. Improved quantitation was accompanied by decreased false positive interferences through accurate mass measurements of diagnostic product ions during SRM transitions by ratiometric comparisons with stable isotope internal standards. The limits of quantitation were between 0.05 and 6.0pg, with a dynamic range of 3 to 4 orders of magnitude (correlation coefficient r(2)>0.99). This approach was used to quantitate the levels of representative fatty acid metabolites from wild-type (WT) and iPLA2γ(-/-) mouse liver identifying the role of iPLA2γ in hepatic lipid second messenger production. Collectively, these results demonstrate the utility of high mass accuracy product ion analysis in conjunction with charge-switch derivatization for the highly specific quantitation of diminutive amounts of LA, AA, and DHA metabolites in biologic systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    Science.gov (United States)

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  19. Standard addition strip for quantitative electrostatic spray ionization mass spectrometry analysis: determination of caffeine in drinks.

    Science.gov (United States)

    Tobolkina, Elena; Qiao, Liang; Roussel, Christophe; Girault, Hubert H

    2014-12-01

    Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionization mass spectrometry (ESTASI-MS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography.

  20. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    Science.gov (United States)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution