WorldWideScience

Sample records for label-free electronic chip

  1. Lab-on-a-chip for label free biological semiconductor analysis of Staphylococcal Enterotoxin B

    NARCIS (Netherlands)

    Yang, Minghui; Sun, Steven; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2010-01-01

    We describe a new lab-on-a-chip (LOC) which utilizes a biological semiconductor (BSC) transducer for label free analysis of Staphylococcal Enterotoxin B (SEB) (or other biological interactions) directly and electronically. BSCs are new transducers based on electrical percolation through a multi-laye

  2. Chip-LC-MS for label-free profiling of human serum

    NARCIS (Netherlands)

    Horvatovich, Peter; Govorukhina, Natalia .; Reijmers, Theo H.; van der Zee, Ate G. J.; Suits, Frank; Bischoff, Rainer

    2007-01-01

    The discovery of biomarkers in easily accessible body fluids such as serum is one of the most challenging topics in proteomics requiring highly efficient separation and detection methodologies. Here, we present the application of a microfluidics-based LC-MS system (chip-LC-MS) to the label-free

  3. Label-free detection in a lab-on-a-chip with a three-dimensional Mach-Zehnder interferometer

    NARCIS (Netherlands)

    Crespi, A.; Gu, Y.; Ngamson, B.; Dongre, C.; Hoekstra, H.J.W.M.; Vlekkert, van den H.H.; Watts, P.; Pollnau, M.; Cerullo, G.; Osellame, R.

    2010-01-01

    A Mach-Zehnder refractive index sensor is inscribed in a microfluidic lab-on-a-chip by exploiting the unique three-dimensional capabilities of femtosecond laser fabrication. This enables high sensitivity and spatially resolved label-free detection of biomolecules.

  4. Optimizing integrated optical chips for label-free (bio-)chemical sensing.

    Science.gov (United States)

    Kunz, R E; Cottier, K

    2006-01-01

    Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.

  5. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  6. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands.......Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  7. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection.

    Science.gov (United States)

    Shen, Weizhi; Li, Mingzhu; Ye, Changqing; Jiang, Lei; Song, Yanlin

    2012-09-07

    Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.

  8. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.

    Science.gov (United States)

    Bougot-Robin, Kristelle; Li, Shunbo; Zhang, Yinghua; Hsing, I-Ming; Benisty, Henri; Wen, Weijia

    2012-10-21

    A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.

  9. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    Science.gov (United States)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  10. A low-cost, label-free DNA detection method in lab-on-chip format based on electrohydrodynamic instabilities, with application to long-range PCR.

    Science.gov (United States)

    Diakité, Mohamed Lemine Youba; Champ, Jerôme; Descroix, Stephanie; Malaquin, Laurent; Amblard, François; Viovy, Jean-Louis

    2012-11-21

    In order to evolve from a "chip in the lab" to a "lab on a chip" paradigm, there is still a strong demand for low-cost, portable detection technologies, notably for analytes at low concentrations. Here we report a new label-free DNA detection method with direct electronic read, and apply it to long-range PCR. This method uses a nonlinear electrohydrodynamic phenomenon: when subjected to high electric fields (typically above 100 V cm(-1)), suspensions of large polyelectrolytes, such as long DNA molecules, create "giant" dynamic concentration fluctuations. These fluctuations are associated with large conductivity inhomogeneities, and we use here a contact-mode local conductivity detector to detect these fluctuations. In order to decouple the detection electronics from the high voltage excitation one, an original "doubly symmetric" floating mode battery-operated detection scheme was developed. A wavelet analysis was then applied, to unravel from the chaotic character of the electohydrodynamic instabilities a scalar signal robustly reflecting the amplification of DNA. As a first proof of concept, we measured the products of the off-chip amplification of 10 kbp DNA from lambda phage DNA, achieving a sensitivity better than 100 fg DNA in the original 50 μl sample. This corresponds to the amplification products of less than 100 initial copies of target DNA. The companion enabling technologies developed to implement this new concept, i.e. the doubly symmetric contact conductivity detection and wavelet analysis, may also find various other applications in lab-on-chips.

  11. Label-free single cell analysis with a chip-based impedance flow cytometer

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Di Berardino, Marco; Tarnok, Attila

    2010-02-01

    For description of cellular phenotypes and physiological states new developments are needed. Axetris' impedance flow cytometer (IFC) (Leister) is a new promising label-free alternative to fluorescence-based flow cytometry (FCM). IFC measures single cells at various frequencies simultaneously. The frequencies used for signal acquisition range from 0.1 to 20 MHz. The impedance signal provides information about cell volume (4 MHz) and membrane capacitance (1-4 MHz). Our data indicate that IFC can be a valuable alternative to conventional FCM for various applications in the field of cell death and physiology. The work will be extended to address further potential applications of IFC in biotechnology and biomedical cell analysis, as well as in cell sorting.

  12. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    Science.gov (United States)

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-05-09

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Label-free electronic detection of bio-toxins using aligned carbon nanotubes.

    Science.gov (United States)

    Palaniappan, Al; Goh, W H; Fam, D W H; Rajaseger, G; Chan, C E Z; Hanson, B J; Moochhala, S M; Mhaisalkar, S G; Liedberg, B

    2013-05-15

    A facile route for sensitive label-free detection of bio-toxins using aligned single walled carbon nanotubes is described. This approach involves patterning of a catalyst on the surface of a quartz substrate using a sub-100 μm stripe-patterned polydimethylsiloxane stamp for aligned carbon nanotube generation followed by fabrication of field effect transistor (FET). Atomic force microscopy, field emission scanning electron microscopy and Raman spectroscopy are employed to characterize the synthesized nanotubes. Unlike previous reports, the adopted approach enables direct electronic detection of bio-toxins with sensitivities comparable to ELISA. As a proof of concept, the fabricated FET responds to nM concentration levels (with a LOD of ∼2 nM) of epsilon toxin produced by Clostridium perfringens and a prominent food toxin. This facile approach could be customized to detect other classes of toxins and biomarkers upon appropriate functionalization of the aligned carbon nanotubes. Finally, we demonstrate the use of the FET-platform for detection of toxin in more complex matrices such as orange juice.

  14. A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay.

    Science.gov (United States)

    Yin, Tsung-I; Zhao, Yunpeng; Horak, Josef; Bakirci, Huseyin; Liao, Hsin-Hao; Tsai, Hann-Huei; Juang, Ying-Zong; Urban, Gerald

    2013-03-07

    Cantilever sensors have been extensively explored as a promising technique for real-time and label-free analyses in biological systems. A major sensing principle utilized by state-of-the-art cantilever sensors is based on analyte-induced surface stress changes, which result in static bending of a cantilever. The sensor performance, however, suffers from the intrinsically small change in surface stress induced by analytes, especially for molecular recognition such as antigen-antibody binding. Through the contact angle change on a tailored solid surface, it is possible to convert a tiny surface stress into a capillary force-a much larger physical quantity needed for a practical sensor application. In this work, a micro-cantilever sensor based on contact angle analysis (CAMCS) was proposed to effectively enhance the sensitivity of a sensor in proportion to the square of the length to thickness ratio of the cantilever structure. CAMCS chips were fabricated using a standard complementary-metal-oxide-semiconductor (CMOS) process to demonstrate a 1250-fold enhancement in the sensitivity of surface stress to bioanalyte adsorption using a piezoresistive sensing method. A real-time and label-free troponin I (cTnI) immunoassay, which is now widely used in clinics and considered a gold standard for the early diagnosis and prognosis of cardiovascular disease, was performed to demonstrate cTnI detection levels as low as 1 pg mL(-1). The short detection time of this assay was within several minutes, which matches the detection time of commercially available instruments that are based on fluorescence-labeling techniques.

  15. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2015-02-15

    Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled and automated capabilities for high throughput analysis. This feature improves the repeatability, accuracy, and overall sensing performance (Fig. 1). The electrochemical activity of the fabricated microfluidic device is validated and demonstrated repeatable and reversible Nernstian characteristics. System design required detailed analysis of energy storage and dissipation as our sensing modeling involves diffusion-related electrochemical impedance spectroscopy. The effect of DNA hybridization on the calculated charge transfer resistance and the diffusional resistance components is evaluated. We demonstrate a specific device with an average cross-reactivity value of 27.5%. The device yields semilogarithmic dose response and enables a theoretical detection limit of 1 nM of complementary ssDNA target. This limit is lower than our previously reported non-valved device by 74% due to on-chip valve integration providing controlled and accurate assay capabilities.

  16. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  17. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor.

    Science.gov (United States)

    Magliulo, Maria; De Tullio, Donato; Vikholm-Lundin, Inger; Albers, Willem M; Munter, Tony; Manoli, Kyriaki; Palazzo, Gerardo; Torsi, Luisa

    2016-06-01

    In this contribution, we propose a label-free immunosensor, based on a novel type of electrolyte-gated field-effect transistor (EGOFET), for ultrasensitive detection of the C-reactive protein (CRP). The recognition layer of the biosensor is fabricated by physical adsorption of the anti-CRP monoclonal antibody onto a poly-3-hexyl thiophene (P3HT) organic semiconductor surface. A supplementary nonionic hydrophilic polymer is used as a blocking agent preventing nonspecific interactions and allowing a better orientation of the antibodies immobilized onto the P3HT surface. The whole biomolecule immobilization procedure does not require any pretreatment of the organic semiconductor surface, and the whole functionalization process is completed in less than 30 min. Surface plasmon resonance (SPR) measurements were performed to assess the amount of biomolecules physisorbed onto the P3HT and to evaluate the CRP binding proprieties of the deposited anti-CRP layer. A partial surface coverage of about 23 % of adsorbed antibody molecules was found to most efficiently sense the CRP. The electrical performance of the EGOFET immunosensor was comparable to that of a bare P3HT EGOFET device, and the obtained CRP calibration curve was linear over six orders of magnitude (from 4 pM to 2 μM). The relative standard deviation of the individual calibration points, measured on immunosensors fabricated on different chips, ranged between 1 and 14 %, and a detection limit of 2 pM (220 ng/L) was established. The novel electronic immunosensor is compatible with low-cost fabrication procedures and was successfully employed for the detection of the CRP biomarker in the clinically relevant matrix serum. Graphical abstract Schematic of the EGOFET immunosensor for CRP detection. The anti-CRP monoclonal antibody layer is physisorbed on the P3HT organic semiconductor and the CRP is directly measured by a label-free electronic EGOFET transducer.

  18. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants.

    Science.gov (United States)

    Liu, F; Nordin, A N; Li, F; Voiculescu, I

    2014-04-07

    This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.

  19. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching.

    Science.gov (United States)

    Li, Yijun; Wang, Cheng; Zhu, Yibo; Zhou, Xiaohong; Xiang, Yu; He, Miao; Zeng, Siyu

    2017-03-15

    This work presents a fully integrated graphene field-effect transistor (GFET) biosensor for the label-free detection of lead ions (Pb(2+)) in aqueous-media, which first implements the G-quadruplex structure-switching biosensing principle in graphene nanoelectronics. We experimentally illustrate the biomolecular interplay that G-rich DNA single-strands with one-end confined on graphene surface can specifically interact with Pb(2+) ions and switch into G-quadruplex structures. Since the structure-switching of electrically charged DNA strands can disrupt the charge distribution in the vicinity of graphene surface, the carrier equilibrium in graphene sheet might be altered, and manifested by the conductivity variation of GFET. The experimental data and theoretical analysis show that our devices are capable of the label-free and specific quantification of Pb(2+) with a detection limit down to 163.7ng/L. These results first verify the signaling principle competency of G-quadruplex structure-switching in graphene electronic biosensors. Combining with the advantages of the compact device structure and convenient electrical signal, a label-free GFET biosensor for Pb(2+) monitoring is enabled with promising application potential.

  20. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  1. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.

    Science.gov (United States)

    Seong-Jin Kim; Euisik Yoon

    2012-06-01

    We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.

  2. Direct label-free electrical immunodetection of transplant rejection protein biomarker in physiological buffer using floating gate AlGaN/GaN high electron mobility transistors.

    Science.gov (United States)

    Tulip, Fahmida S; Eteshola, Edward; Desai, Suchita; Mostafa, Salwa; Roopa, Subramanian; Evans, Boyd; Islam, Syed Kamrul

    2014-06-01

    Monokine induced by interferon gamma (MIG/CXCL9) is used as an immune biomarker for early monitoring of transplant or allograft rejection. This paper demonstrates a direct electrical, label-free detection method of recombinant human MIG with anti-MIG IgG molecules in physiologically relevant buffer environment. The sensor platform used is a biologically modified GaN-based high electron mobility transistor (HEMT) device. Biomolecular recognition capability was provided by using high affinity anti-MIG monoclonal antibody to form molecular affinity interface receptors on short N-hydroxysuccinimide-ester functionalized disulphide (DSP) self-assembled monolayers (SAMs) on the gold sensing gate of the HEMT device. A floating gate configuration has been adopted to eliminate the influences of external gate voltage. Preliminary test results with the proposed chemically treated GaN HEMT biosensor show that MIG can be detected for a wide range of concentration varying from 5 ng/mL to 500 ng/mL.

  3. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  4. Biopatterning for label-free detection.

    Science.gov (United States)

    Goddard, Julie M; Mandal, Sudeep; Nugen, Sam R; Baeumner, Antje J; Erickson, David

    2010-03-01

    We present a biopatterning technique suitable for applications which demand a high degree of surface cleanliness, such as immobilization of biological recognition elements onto label-free biosensors. In the case of label-free biosensing, the mechanism of signal transduction is based on surface bound matter, making them highly sensitive to surface contamination including residues left during the biopatterning process. In this communication we introduce a simple, rapid processing step that removes 98% of the residues that often remain after standard parylene lift-off patterning. Residue-free parylene biopatterning is combined with microfluidics to localize biomolecule immobilization onto the sensing region and to enable multiplexed biopatterning. We demonstrate the applicability of this method to multiplexed label-free detection platforms by patterning nucleic acid capture probes corresponding to the four different serotypes of Dengue virus onto parallel 1D photonic crystal resonator sensors. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to quantify surface cleanliness and uniformity. In addition to label-free biosensors, this technique is well suited to other nanobiotechnology patterning applications which demand a pristine, residue-free surface, such as immobilization of enzymes, antibodies, growth factors, or cell cultures.

  5. Ultra-sensitive label-free in-situ detection of dynamically driven self-assembly of 2D nanoplatelets on SOI chip

    CERN Document Server

    Hogan, Benjamin T; Brennan, Lorcan J; Younesy, Salma; Perova, Tatiana; Gunko, Yurii K; Craciun, Monica F; Baldycheva, Anna

    2016-01-01

    Fluid dispersed two-dimensional (2D) composite materials with dynamically tunable functional properties have recently emerged as a novel highly promising class of optoelectronic materials, opening up new routes not only for the emerging field of metamaterials but also to chip-scale multifunctional metadevices. However, in-situ monitoring and detection of the dynamic ordering of 2D nanoparticles on chip and during the device operation is still a huge challenge. Here we introduce a novel approach for on-chip, in-situ Raman characterisation of 2D-fluid composite materials incorporated into Si photonics chip. In this work the Raman signal for 2D nanoplatelets is selectively enhanced by Fabry-Perot resonator design of CMOS photonic-compatible microfluidic channels. This has then been extended to demonstrate the first in-situ Raman detection of the dynamics of individual 2D nanoplatelets, within a microfluidic channel. Our work paves the way for the first practicable realisation of 3D photonic microstructure shapin...

  6. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    Science.gov (United States)

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  7. Optimal design of label-free silicon “lab on a chip” biosensors

    Institute of Scientific and Technical Information of China (English)

    Yaping Zhang

    2013-01-01

    This paper reported the optimal design of label-free silicon on insulator (SOI)“lab on a chip”biosensors. These devices are designed on the basis of the evanescent field detection principles and interferometer technologies. The well-established silicon device process technology can be applied to fabricate and test these biosensor devices. In addition, these devices can be monolithically integrated with CMOS electronics and microfluidics. For these biosensor devices, multi-mode interferometer (MMI) was employed to combine many stand-alone biosensors to form chip-level biosensor arrays, which enable real-time and label-free monitoring and parallel detection of various analytes in multiple test samples. This sensing and detection technology features the highest detection sensitivity, which can detect analytes at extremely low concentrations instantaneously. This research can lead to innovative commercial development of the new generation of high sensitivity biosensors for a wide range of applications in many fields, such as environmental monitoring, food security control, medical and biological applications.

  8. N-doped TiO2 based visible light activated label-free photoelectrochemical biosensor for detection of Hg(2+) through quenching of photogenerated electrons.

    Science.gov (United States)

    Han, Qianqian; Wang, Kewei; Xu, Lijun; Yan, Xiang; Zhang, Kunchi; Chen, Xing; Wang, Qinglin; Zhang, Lan; Pei, Renjun

    2015-06-21

    A novel photoelectrochemical (PEC) biosensor was fabricated based on N-doped TiO2 for the detection of Hg(2+) through the quenching of photogenerated electrons. The N-doped TiO2 was synthesized by a sol-gel method with urea and tetrabutyl titanate as the N and Ti sources. Compared with the undoped TiO2, the N-doped TiO2 showed an enhanced photocurrent response under visible light (λ > 420 nm). The sensing surface was functionalized with 5'-amino-modified T-rich oligonucleotides. The photoelectrochemical biosensor bound Hg(2+) on the surface by a highly specific T-Hg(2+)-T recognition. Hg(2+) on the surface of the N-doped TiO2 film withdrew the photogenerated electrons and decreased the recorded current signal. The dynamic linear range for Hg(2+) has been determined to be as low as 2-6 μM.

  9. Electrochemical Label-Free Nucleotide Sensors.

    Science.gov (United States)

    Aoki, Hiroshi

    2015-12-01

    Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.

  10. Label-Free Biosensors for Cell Biology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2011-01-01

    Full Text Available Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.

  11. Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)

    Science.gov (United States)

    Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis

    2016-03-01

    Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.

  12. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2016-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  13. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2017-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  14. Label-free bead-based metallothionein electrochemical immunosensor.

    Science.gov (United States)

    Nejdl, Lukas; Nguyen, Hoai Viet; Richtera, Lukas; Krizkova, Sona; Guran, Roman; Masarik, Michal; Hynek, David; Heger, Zbynek; Lundberg, Karin; Erikson, Kristofer; Adam, Vojtech; Kizek, Rene

    2015-08-01

    A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.

  15. Multiplexed label-free optical biosensor for medical diagnostics.

    Science.gov (United States)

    Bottazzi, Barbara; Fornasari, Lucia; Frangolho, Ana; Giudicatti, Silvia; Mantovani, Alberto; Marabelli, Franco; Marchesini, Gerardo; Pellacani, Paola; Therisod, Rita; Valsesia, Andrea

    2014-01-01

    This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 μm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated.

  16. Label-free SnO2 nanowire FET biosensor for protein detection

    Science.gov (United States)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  17. Imaging label-free biosensor with microfluidic system

    Science.gov (United States)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  18. Label-free photoacoustic microscopy of cytochromes

    Science.gov (United States)

    Zhang, Chi; Zhang, Yu Shrike; Yao, Da-Kang; Xia, Younan; Wang, Lihong V.

    2013-02-01

    Photoacoustic microscopy (PAM) has achieved submicron lateral resolution in showing subcellular structures; however, relatively few endogenous subcellular contrasts have so far been imaged. Given that the hemeprotein, mostly cytochromes in general cells, is optically absorbing around the Soret peak (˜420 nm), we implemented label-free PAM of cytochromes in cytoplasm for the first time. By measuring the photoacoustic spectra of the oxidized and reduced states of fibroblast lysate and fitting the difference spectrum with three types of cytochromes, we found that the three cytochromes account for more than half the optical absorption in the cell lysate at 420 nm wavelength. Fixed fibroblasts on slides were imaged by PAM at 422 and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard staining histology. PAM was also applied to label-free histology of mouse ear sections by showing cytoplasms and nuclei of various cells. PAM of cytochromes in cytoplasm is expected to be a high-throughput, label-free technique for studying live cell functions, which cannot be accomplished by conventional histology.

  19. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    Science.gov (United States)

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques.

  20. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    Science.gov (United States)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi

  1. Whole-cell based label-free capacitive biosensor for rapid nanosize-dependent toxicity detection.

    Science.gov (United States)

    Qureshi, Anjum; Pandey, Ashish; Chouhan, Raghuraj S; Gurbuz, Yasar; Niazi, Javed H

    2015-05-15

    Despite intensive studies on examining the toxicity of nanomaterials (NMs), our current understanding on potential toxicity in relation to size and cellular responses has remained limited. In this work, we have developed a whole-cell based capacitive biosensor (WCB) to determine the biological toxicity of nanoparticles (NPs) using iron oxide (Fe3O4) NPs as models. This WCB chip comprised of an array of capacitor sensors made of gold interdigitated microelectrodes on which living Escherichia coli cells were immobilized. Cells-on-chip was then allowed to interact with different sizes of Fe3O4 NPs (5, 20 and 100 nm) and concentration-depended cellular-responses were measured in terms of change in dielectric properties (capacitance) as a function of applied AC frequency. The WCB response showed smaller-sized Fe3O4 NPs (5 nm) induced maximum change in surface capacitance because of their effective cellular interaction with E. coli cells-on-chip indicating that the cells suffered from severe cellular deformation, which was confirmed by scanning electron microscopic (SEM) examination. Further our results were validated through their cell viability and E. coli responses at the interface of cell-membrane and NPs as a proof-of-concept. WCB response showed a size-dependent shift in maximum response level from 2 µg/ml of 5 nm sized NPs to 4 µg/ml with NP-sizes greater than 20 nm. The developed WCB offered real-time, label-free and noninvasive detection of cellular responses against Fe3O4 NPs' toxicity with speed, simplicity and sensitivity that can be extended to toxicity screening of various other NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  3. Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics.

    Science.gov (United States)

    Zhang, Yi; Tang, Yunfang; Hsieh, Yi-Heui; Hsu, Chuen-Yuan; Xi, Jianzhong; Lin, Kuan-Jiuh; Jiang, Xingyu

    2012-09-07

    This work reports an integrated platform combining localized-surface plasmon resonance (LSPR) and microfluidic chips to carry out multiplexed and label-free protein analysis. We fabricated an optical bench to enable detection using only a laboratory UV-Vis spectrophotometer. This assay not only improves throughput, but also allows quantitative analysis.

  4. Photonic Biosensor Chips for Label-Free Detection

    DEFF Research Database (Denmark)

    Kristensen, Martin

    Optical fibers are ideal for transmission of light due to their low loss. This is less important for optical sensors where chemical compatibility, size and price are more important. These parameters can be optimized by using planar integrated optics and fabrication methods from the semiconductor ...

  5. Photonic Biosensor Chips for Label-Free Detection

    DEFF Research Database (Denmark)

    Kristensen, Martin

    Optical fibers are ideal for transmission of light due to their low loss. This is less important for optical sensors where chemical compatibility, size and price are more important. These parameters can be optimized by using planar integrated optics and fabrication methods from the semiconductor ...... industry with adaptations to satisfy the requirements of biosensors....

  6. Photonic crystal microcapsules for label-free multiplex detection.

    Science.gov (United States)

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  7. Deep Learning in Label-free Cell Classification

    National Research Council Canada - National Science Library

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    .... Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification...

  8. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  9. Label-free detection of small-molecule binding to a GPCR in the membrane environment.

    Science.gov (United States)

    Heym, Roland G; Hornberger, Wilfried B; Lakics, Viktor; Terstappen, Georg C

    2015-08-01

    Evaluation of drug-target interaction kinetics is becoming increasingly important during the drug-discovery process to investigate selectivity of a drug and predict in vivo target occupancy. To date, it remains challenging to obtain kinetic information for interactions between G-protein-coupled receptors (GPCRs) and small-molecule ligands in a label-free manner. Often GPCRs need to be solubilized or even stabilized by mutations which can be difficult and is time consuming. In addition, it is often unclear if the native conformation of the receptors is sustained. In this study, surface plasmon resonance (SPR) and surface acoustic wave (SAW) technologies have been used to detect ligand binding to the GPCR chemokine (C-X-C motif) receptor 4 (CXCR4) expressed in lipoparticles. We first evaluated different strategies to immobilize CXCR4-expressing lipoparticles. The highest small-molecule binding signal in SPR and SAW was achieved with a matrix-free carboxymethylated sensor chip coated with wheat germ agglutinin for lipoparticle capturing. Next, the binding kinetics of the anti-CXCR4 antibody 12G5 raised against a conformational epitope (k(on)=1.83×10(6)M(-1)s(-1), k(off)=2.79×10(-4) s(-1)) and the small molecule AMD3100 (k(on)=5.46×10(5)M(-1)s(-1), k(off)=1.01×10(-2)s(-1)) were assessed by SAW. Our kinetic and affinity data are consistent with previously published radioligand-binding experiments using cells and label-free experiments with solubilized CXCR4. This is the first study demonstrating label-free kinetic characterization of small-molecule binding to a GPCR in the membrane environment. The presented method holds the potential to greatly facilitate label-free assay development for GPRCs that can be expressed at high levels in lipoparticles.

  10. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing

    Science.gov (United States)

    Blanco, F. J.; Agirregabiria, M.; Berganzo, J.; Mayora, K.; Elizalde, J.; Calle, A.; Dominguez, C.; Lechuga, L. M.

    2006-05-01

    The fabrication, characterization and packaging of novel microfluidic-optical integrated biosensors for label-free biochemical detection is presented in this paper. The integrated device consists of a three-dimensional embedded microchannel network fabricated using enhanced CMOS compatible SU-8 multilevel polymer technology on top of a wafer containing Mach-Zehnder Interferometer (MZI) nanophotonic biosensor devices. PMMA housing provides connection to the macro-world and ensures robust leakage-free flow operation of the devices. This macro-microfluidic module can operate at pressure drops up to 1000 kPa. Fluid flow experiments have been performed in order to demonstrate the robustness of our microfluidic devices. The devices have been designed to operate under continuous flow. Steady-state flow rates ranging from 1 to 100 µl min-1 at pressure drops ranging from 10 to 500 kPa were measured in the laminar flow regime. Experimental results are in good agreement with laminar flow theory. The first interferometric sensing measurements are presented in order to demonstrate the functionality of these novel integrated devices for lab-on-a-chip and label-free biosensing applications. A bulk refractive index detection limit of 3.8 × 10-6 was obtained, close to the minimum detected up to now by label-free biosensor devices without microfluidic integration. As far as we know, this is the first time that a label-free biosensor device is integrated within a microfluidic network using a wafer-level CMOS compatible process technology.

  11. Diatom-based label-free optical biosensor for biomolecules.

    Science.gov (United States)

    Viji, S; Anbazhagi, M; Ponpandian, N; Mangalaraj, D; Jeyanthi, S; Santhanam, P; Devi, A Shenbaga; Viswanathan, C

    2014-10-01

    Diatoms are unicellular algae, which fabricates ornate biosilica shells called frustules that possess a surface rich in reactive silanol (Si-OH) groups. The intrinsic patterned porous structure of diatom frustules at nanoscale can be exploited in the effective detection of biomolecules. In this study, the frustules of a specific diatom Amphora sp. has been functionalized to detect bovine serum albumin (BSA). The functionalization of the diatom frustule substrate is achieved by using 3-aminopropyltriethoxysilane (APES). The field emission scanning electron microscopy (FESEM) results showed an ornately patterned surface of the frustule valve ordered at nanoscale. The Fourier transform infrared (FTIR) spectra confirmed the N-H bending and stretching of the amine group after amine functionalization. The emission peaks in the photoluminescence (PL) spectra of the amine-functionalized diatom biosilica selectively enhanced the intensity by a factor of ten when compared to that of a bare diatom biosilica. The result showed a significant quenching of PL intensity of BSA at around 445 nm due to the interaction of amine-functionalized diatom-BSA protein complex. The detection limit was found to be 3 × 10(-5) M of BSA protein. Hence, the study proves that the functionalized frustule of Amphora sp. is an effective quantitative analytical tool for optical label-free biosensing applications.

  12. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma.

    Science.gov (United States)

    Kirk, James T; Brault, Norman D; Baehr-Jones, Tom; Hochberg, Michael; Jiang, Shaoyi; Ratner, Daniel M

    2013-04-15

    A widely acknowledged goal in personalized medicine is to radically reduce the costs of highly parallelized, small fluid volume, point-of-care and home-based diagnostics. Recently, there has been a surge of interest in using complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonic circuits for biosensing, with the promise of producing chip-scale integrated devices containing thousands of orthogonal sensors, at minimal cost on a per-chip basis. A central challenge in biosensor translation is to engineer devices that are both sensitive and specific to a target analyte within unprocessed biological fluids. Despite advances in the sensitivity of silicon photonic biosensors, poor biological specificity at the sensor surface remains a significant factor limiting assay performance in complex media (i.e. whole blood, plasma, serum) due to the non-specific adsorption of proteins and other biomolecules. Here, we chemically modify the surface of silicon microring resonator biosensors for the label-free detection of an analyte in undiluted human plasma. This work highlights the first application of a non-fouling zwitterionic surface coating to enable silicon photonic-based label-free detection of a protein analyte at clinically relevant sensitivities in undiluted human plasma.

  13. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    Science.gov (United States)

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications.

  14. Label-free discrimination of membrane-translocating peptides on porous silicon microfluidic biosensors.

    Science.gov (United States)

    Li, Zhen; Luo, Qiaohui; Wu, Jianmin

    2016-11-01

    A label-free optical sensor was constructed by integrating electrochemically etched porous silicon (pSi) and supported phospholipid bilayers in a microfluidic chip. The translocation of peptides through the phospholipid bilayers could induce a red shift in effective optical thickness of the pSi layer, which could be monitored by reflective interferometric Fourier transform spectroscopy. By measuring the kinetic data of membrane translocating on the phospholipid bilayers/pSi chip, the relationship between the behavior of membrane-translocating peptides (MTPs) and translocating mechanism was established. With these optical data, MTPs with different action modes on the cell membrane can be correctly discriminated. The bio-functionalized microfluidic sensor will provide a reliable and cost-effective platform to study the transmembrane behavior of peptides, which is of great importance in the MTP screening and peptide function study.

  15. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer;

    is a Fluorescent In Situ Hybridization, which is laborious and involves use of expensive reagents [1]. Here we present a label free technique for detection of chromosome translocations. As a proof of concept detection of chromosome translocation between chromosome 3 (Chr3) and chromosome 9 (Chr9) was chosen....

  16. Label-free characterization of biomembranes: from structure to dynamics

    NARCIS (Netherlands)

    Mashaghi, A.; Mashaghi, S.; Reviakine, I.; Heeren, R.M.A.; Sandoghdarf, V.; Bonn, M.

    2013-01-01

    We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applyi

  17. Emerging applications of label-free optical biosensors

    Science.gov (United States)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  18. Label-free profiling of skeletal muscle using high-definition mass spectrometry

    Science.gov (United States)

    Burniston, Jatin G.; Connolly, Joanne; Kainulainen, Heikki; Britton, Steven L.; Koch, Lauren G.

    2014-01-01

    We report automated and time efficient (2 h per sample) profiling of muscle using ultra-performance liquid chromatography (LC) coupled directly with high-definition mass spectrometry (HDMSE). Soluble proteins extracted from rat gastrocnemius (n=10) were digested with trypsin and analysed in duplicate using a 90 min RPLC gradient. Protein identification and label-free quantitation were performed from HDMSE spectra analysed using TransOmics Informatics for Proteomics software. In total 1,514 proteins were identified. Of these, 811 had at least 3 unique peptides and were subsequently used to assess the dynamic range and precision of LC-HDMSE label-free profiling. Proteins analysed by LC-HDMSE encompass the entire complement of glycolytic, beta-oxidation and tricarboxylic acid enzymes. In addition, numerous components of the electron transport chain and protein kinases involved in skeletal muscle regulation were detected. The dynamic range of protein abundances spanned 4 orders of magnitude. The correlation between technical replicates of the 10 biological samples was R2 = 0.9961 ± 0.0036 (95 % CI = 0.9940 – 0.9992) and the technical coefficient of variation averaged 7.3 ± 6.7 % (95 % CI = 6.87 – 7.79 %). This represents the most sophisticated label-free profiling of skeletal muscle to date. PMID:25065561

  19. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    Science.gov (United States)

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-07

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

  20. Cytotoxicity and mitogenicity assays with real-time and label-free monitoring of human granulosa cells with an impedance-based signal processing technology intergrating micro-electronics and cell biology.

    Science.gov (United States)

    Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent

    2016-04-01

    A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing.

    Science.gov (United States)

    Zang, Faheng; Gerasopoulos, Konstantinos; Brown, Adam D; Culver, James N; Ghodssi, Reza

    2017-03-15

    A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP receptor layer on impedance sensor has been achieved using capillary action and surface evaporation from an open-channel capillary microfluidic system. VLPs create a dense and localized receptor monolayer on the impedance sensor using only 5 μL of VLP sample solution (0.2 mg/mL) in only 6 min at room temperature. The VLP-functionalized impedance sensor is capable of label-free detection of target antibodies down to 55 pM concentration within 5 min. These results highlight the significant potentials of an integrated microsystem for rapid and controlled receptor-transducer interface creation and the nanoscale VLP-based sensors for fast, accurate, and decentralized pathogen detection.

  2. Label-free detection of DNA on silicon surfaces using Brewster angle straddle interferometry (BASI)

    Science.gov (United States)

    Wang, Xiao; Rothberg, Lewis

    2012-02-01

    Label-free sensing of biomolecular interactions is of great importance for drug screening and a variety of clinical assays. Ultrasensitive detection of dsDNA on silicon substrates can be achieved using our new label-free sensing method - Brewster angle straddle interferometry (BASI) which exploits the removal of destructive interference to detect binding of target molecules on a silicon surface functionalized by probe molecules. By exploiting the fact that reflections of p-polarization undergo 180 degree phase shifts above the Brewster angle and none below it, we are able to use unprocessed silicon substrates with native oxide serving as the interference layer. Destructive interference in the geometry we use results in reflectivities ˜ 0.01%. Reflectivity from the chip is a quantitative measure of the amount of bound target molecules and can be imaged in real time in microarray format. We demonstrate detection of DNA intercalation on pyrene modified surfaces. The substrates are shown to exhibit excellent binding toward dsDNAs. This work provides an avenue for understanding the binding specificity of small molecule-DNA interactions that can be potentially helpful in developing anticancer agents.

  3. Microfluidic chip for high resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    2013-01-01

    A Microfluidic chip (100) for transmission electron microscopy has a monolithic body (101) with a front side (102) and a back side (103). The monolithic body (101) comprises an opening (104) on the back side (103) extending in a vertical direction from the back side (103) to a membrane (107...

  4. Antibody mimetic receptor proteins for label-free biosensors.

    Science.gov (United States)

    Raina, M; Sharma, R; Deacon, S E; Tiede, C; Tomlinson, D; Davies, A G; McPherson, M J; Wälti, C

    2015-02-07

    The development of high sensitivity biosensors, for example for clinical diagnostics, requires the identification of suitable receptor molecules which offer high stability, specificity and affinity, even when embedded into solid-state biosensor transducers. Here, we present an electrochemical biosensor employing small synthetic receptor proteins (Mw pM and 6.7 nM. These findings demonstrate that these non-antibody receptor proteins are excellent candidates for recognition molecules in label-free biosensors.

  5. Emerging applications of label-free optical biosensors

    Directory of Open Access Journals (Sweden)

    Zanchetta Giuliano

    2017-01-01

    Full Text Available Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  6. Deep Learning in Label-free Cell Classification

    Science.gov (United States)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  7. Deep Learning in Label-free Cell Classification.

    Science.gov (United States)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  8. Issues and Applications in Label-Free Quantitative Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xianyin Lai

    2013-01-01

    Full Text Available To address the challenges associated with differential expression proteomics, label-free mass spectrometric protein quantification methods have been developed as alternatives to array-based, gel-based, and stable isotope tag or label-based approaches. In this paper, we focus on the issues associated with label-free methods that rely on quantitation based on peptide ion peak area measurement. These issues include chromatographic alignment, peptide qualification for quantitation, and normalization. In addressing these issues, we present various approaches, assembled in a recently developed label-free quantitative mass spectrometry platform, that overcome these difficulties and enable comprehensive, accurate, and reproducible protein quantitation in highly complex protein mixtures from experiments with many sample groups. As examples of the utility of this approach, we present a variety of cases where the platform was applied successfully to assess differential protein expression or abundance in body fluids, in vitro nanotoxicology models, tissue proteomics in genetic knock-in mice, and cell membrane proteomics.

  9. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    Science.gov (United States)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2017-02-01

    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL-1, where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL-1 (R2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.

  10. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    Science.gov (United States)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2017-01-01

    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL−1, where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL−1 (R2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples. PMID:28198459

  11. Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2010-04-01

    Full Text Available Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications.

  12. Label-free classification of cultured cells through diffraction imaging.

    Science.gov (United States)

    Dong, Ke; Feng, Yuanming; Jacobs, Kenneth M; Lu, Jun Q; Brock, R Scott; Yang, Li V; Bertrand, Fred E; Farwell, Mary A; Hu, Xin-Hua

    2011-06-01

    Automated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for rapid classification among six types of cultured cells. Combined with numerical results we show that the method of diffraction imaging flow cytometry has the capacity as a platform for high-throughput and label-free classification of biological cells.

  13. Functionalized nanopipettes: toward label-free, single cell biosensors.

    Science.gov (United States)

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  14. Label-Free DNA Sequencing Using Millikan Detection

    OpenAIRE

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-01-01

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucl...

  15. Molybdenum carbide nanotubes: a novel multifunctional material for label-free electrochemical immunosensing.

    Science.gov (United States)

    Zhai, Qingfeng; Zhang, Xiaowei; Li, Jing; Wang, Erkang

    2016-08-18

    Herein, a multifunctional nanoarchitecture has been developed by integrating well-crystalline molybdenum carbide (Mo2C) nanotubes and an electrochemical indicator - thionin (TH). The Mo2C nanotubes were synthesized through the self-degradable template method and high-temperature calcination, and their structure and morphology were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Due to the high electrocatalytic properties, excellent conductivity and highly active surface area of Mo2C nanotubes, the Mo2C-based material was used as a nanocarrier to load TH molecules for the development of a label-free electrochemical immunosensor for α-fetoprotein (AFP) detection. The decorated TH probe on the Mo2C nanotubes not only acted as a bridging molecule to effectively capture and immobilize primary anti-AFP on the Mo2C nanotubes, but also acted as a signal indicator for the detection of AFP. The proposed immunosensor exhibited excellent selectivity (with a detection limit of 3 pg mL(-1)), high stability and good reproducibility by combining the unique structure and features of the Mo2C nanotubes. Furthermore, this sensing platform was finally used for the detection of AFP in human serum with satisfactory results. Therefore, the Mo2C nanotubes can be considered as a candidate carbon material for fabrication of simple, label-free and ultrasensitive electrochemical sensors, broadening the application of this material.

  16. Label-Free Aptasensors for the Detection of Mycotoxins

    Directory of Open Access Journals (Sweden)

    Amina Rhouati

    2016-12-01

    Full Text Available Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins.

  17. Label-free selection of RNA aptamers for metabolic engineering.

    Science.gov (United States)

    Hwang, Chuhern; Carothers, James M

    2016-08-15

    RNA aptamers can be assembled into genetic regulatory devices that sense and respond to levels of specific cellular metabolites and thus serve an integral part of designing dynamic control into engineered metabolic pathways. Here, we describe a practical method for generating specific and high affinity aptamers to enable the wider use of in vitro selection and a broader application of aptamers for metabolic engineering. Conventional selection methods involving either radioactive labeling of RNA or the use of label-free methods such as SPR to track aptamer enrichment require resources that are not widely accessible to research groups. We present a label-free selection method that uses small volume spectrophotometers to track RNA enrichment paired with previously characterized affinity chromatography methods. Borrowing techniques used in solid phase peptide synthesis, we present an approach for immobilizing a wide range of metabolites to an amino PEGA matrix. As an illustration, we detail laboratory techniques employed to generate aptamers that bind p-aminophenylalanine, a metabolic precursor for bio-based production of plastics and the pristinamycin family of antibiotics. We focused on the development of methods for ligand immobilization, selection via affinity chromatography, and nucleic acid quantification that can be performed with common laboratory equipment.

  18. Label-Free Aptasensors for the Detection of Mycotoxins.

    Science.gov (United States)

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-12-18

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins.

  19. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  20. Label-Free Aptasensors for the Detection of Mycotoxins

    Science.gov (United States)

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-01-01

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353

  1. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  2. Label-free disposable immunosensor for detection of atrazine.

    Science.gov (United States)

    Belkhamssa, Najet; Justino, Celine I L; Santos, Patrícia S M; Cardoso, Susana; Lopes, Isabel; Duarte, Armando C; Rocha-Santos, Teresa; Ksibi, Mohamed

    2016-01-01

    This work reports the construction of a fast, disposable, and label-free immunosensor for the determination of atrazine. The immunosensor is based on a field effect transistor (FET) where a network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel, constituting carbon nanotubes field effect transistors (CNTFETs). Anti-atrazine antibodies were adsorbed onto the SWCNTs and subsequently the SWCNTs were protected with Tween 20 to prevent the non-specific binding of bacteria or proteins. The principle of the immunoreaction consists in the direct adsorption of atrazine specific antibodies (anti-atrazine) to SWCNTs networks. After exposed to increasing concentrations of atrazine, the CNTFETs could be used as useful label-free platforms to detect atrazine. Under the optimal conditions, a limit of detection as low as 0.001 ng mL(-1) was obtained, which is lower than that of other methods for the atrazine detection, and in a working range between 0.001 and 10 ng mL(-1). The average recoveries obtained for real water samples spiked with atrazine varied from 87.3% to 108.0%. The results show that the constructed sensors display a high sensitivity and could be useful tools for detecting pesticides like atrazine at low concentrations. They could be also applied to the determination of atrazine in environmental aqueous samples, such as seawater and riverine water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2017-08-01

    Full Text Available In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2, to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication.

  4. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2011-03-01

    Full Text Available This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG antibody-antigen pair.

  5. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    Science.gov (United States)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  6. Electron Spin Resonance Measurement with Microinductor on Chip

    Directory of Open Access Journals (Sweden)

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  7. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex.

    Science.gov (United States)

    Wang, Sai; Liu, Jiahui; Wu, Yanxia; You, Yawen; He, Jingyi; Zhang, Jichuan; Zhang, Liqun; Dong, Yiyang

    2016-04-15

    Commercial natural rubber is traditionally supplied by Hevea brasiliensis, but now there is a big energy problem because of the limited resource and increasing demand. Intensive study of key rubber-related substances is urgently needed for further research of in vitro biosynthesis of natural rubber. Natural rubber is biosynthesized on the surface of rubber particles. A membrane protein called small rubber particle protein (SRPP) is a key protein associated closely with rubber biosynthesis; however, SRPP in different plants has been only qualitatively studied, and there are no quantitative reports so far. In this work, H. brasiliensis was chosen as a model plant. The microscopic distribution of SRPP on the rubber particles during the washing process was investigated by transmission electron microscopy-immunogold labeling. A label-free surface plasmon resonance (SPR) immunosensor was developed to quantify SRPP in H. brasiliensis for the first time. The immunosensor was then used to rapidly detect and analyze SRPP in dandelions and prickly lettuce latex samples. The label-free SPR immunosensor can be a desirable tool for rapid quantitation of the membrane protein SRPP, with excellent assay efficiency, high sensitivity, and high specificity. The method lays the foundation for further study of the functional relationship between SRPP and natural rubber content.

  8. Label-free aptasensor for platelet-derived growth factor (PDGF) protein

    Energy Technology Data Exchange (ETDEWEB)

    Degefa, Tesfaye Hailu [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kwak, Juhyoun [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)], E-mail: Juhyoun_Kwak@kaist.ac.kr

    2008-04-21

    A label-free aptasensor for platelet-derived growth factor (PDGF) protein is reported. The aptasensor uses mixed self-assembled monolayers (SAMs) composed of a thiol-modified PDGF binding aptamer and 6-mercaptohexanol (MCH) on a gold electrode. The SAMs were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) before and after binding of the protein using [Fe(CN){sub 6}]{sup 3-/4-}, a redox marker ion as an indicator for the formation of a protein-aptamer complex. The CVs at the PDGF modified electrode showed significant differences, such as changes in the peak currents and peak-to-peak separation, before and after binding of the target protein. The EIS spectra, in the form of Nyquist plots, were analyzed with a Randles circuit while the electron transfer resistance R{sub ct} was used to monitor the binding of the target protein. The results showed that, without any modification to the aptamer, the target protein can be recognized effectively at the PDGF binding aptamer SAMs at the electrode surface. Control experiments using non-binding oligonucleotides assembled at the electrode surfaces also confirmed the results and showed that there was no formation of an aptamer-protein complex. The DPV signal at the aptamer functionalized electrode showed a linearly decreased marker ion peak current in a protein concentrations range of 1-40 nM. Thus, label-free detection of PDGF protein at an aptamer modified electrode has been demonstrated.

  9. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin.

    Science.gov (United States)

    Peng, Hailong; Wang, Shenqi; Zhang, Zhong; Xiong, Hua; Li, Jinhua; Chen, Lingxin; Li, Yanbin

    2012-02-29

    A novel colorimetric sensor for the rapid and label-free detection of vanillin, based on the combination of photonic crystal and molecular imprinting technique, was developed. The sensing platform of molecularly imprinted photonic hydrogel (MIPH) was prepared by a noncovalent and self-assembly approach using vanillin as a template molecule. Morphology characterization by scanning electron microscope (SEM) showed that the MIPH possessed a highly ordered three-dimensional (3D) macroporous structure with nanocavities. The vanillin recognition events of the created nonocavities could be directly transferred into readable optical signals through a change in Bragg diffraction of the ordered macropores array of MIPH. The Bragg diffraction peak shifted from 451 to 486 nm when the concentration of the vanillin was increased from 10⁻¹² to 10⁻³ mol L⁻¹ within 60 s, whereas there were no obvious peak shifts for methyl and ethyl vanillin, indicating that the MIPH had high selectivity and rapid response for vanillin. The adsorption results showed that the hierarchical porous structure and homogeneous layers were formed in the MIPH with higher adsorption capacity. The application of such a label-free sensor with high selectivity, high sensitivity, high stability, and easy operation might offer a potential method for rapid real-time detection of trace vanillin.

  10. Spectroscopic Methods for Label-Free Optical Nanoscopy

    Science.gov (United States)

    Chandler, John E.

    It is becoming increasingly evident that the nanoscale organization and structure of macromolecules play a significant role in determining the function and properties of biological systems. To understand the relationships between biological structure and function at nanometer length scales, there is a need for methods which enable imaging of intact nanoscale biological structure. An ideal technique for these applications is sensitive to nanoscale structure below the resolution limit of conventional optical microscopy ( 200 nm), achieves label-free contrast, is non-perturbing to biological samples, is quantitative, is capable of molecular specificity, is high-throughput, and finally is simple, enabling widespread utilization. Existing techniques meet some of these criteria, but all have limitations. For example, super-resolution optical microscopy methods achieve molecular-specific nanoscale resolution well below the resolution limit of conventional optical microscopes, however, they rely on fluorescent labels often at high densities that can be toxic and can often require potentially damaging illumination intensities for imaging. As a result, there remains a need for label-free optical techniques to study the nanoscale structural properties of cells. To address this need, the development of instrumentation and algorithms for Partial Wave Spectroscopic (PWS) microscopy will be described. PWS is a spectroscopic, label-free, nanoscale sensitive microscope which, senses rather than resolves structure below the resolution limit of conventional microscopes ( 200nm). First, PWS has shown utility as a diagnostic screening tool for cancer due to nanoscale structural alterations that occur in cells as part of the earliest stages of carcinogenesis. Instrumentation and algorithms developed to enable high-throughput cancer screening applications will be described. Further enhancement of data acquisition and analysis speed will then be described through the development of new

  11. CEST theranostics: label-free MR imaging of anticancer drugs

    Science.gov (United States)

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  12. Label-free gold nanoparticles for the determination of neomycin

    Science.gov (United States)

    Apyari, Vladimir V.; Dmitrienko, Stanislava G.; Arkhipova, Viktoriya V.; Atnagulov, Aydar G.; Gorbunova, Mariya V.; Zolotov, Yury A.

    2013-11-01

    A new spectrophotometric method for the determination of neomycin has been developed. The method is based on aggregation of label-free gold nanoparticles leading to change in absorption spectra and color of the solution. Influence of different factors (the concentration of ethylenediaminetetraacetate (EDTA), pH, the concentrations of neomycin and the nanoparticles) on the aggregation and analytical performance of the method was investigated. EDTA plays an important role not only as a masking agent to eliminate interferences of metal cations but strongly affects the sensitivity of the nanoparticles relative to neomycin. The method allows to determine neomycin with detection limit of 28 ng mL-1. It was applied to analysis of eye- and ear-drops. The sample pretreatment is simply done by diluting the formulation with water.

  13. Label-free nonlinear optical imaging of mouse retina.

    Science.gov (United States)

    He, Sicong; Ye, Cong; Sun, Qiqi; Leung, Christopher K S; Qu, Jianan Y

    2015-03-01

    A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and nerve fibers in the ganglion cell and nerve fiber layers was achieved by capturing endogenous SRS and TPEF signals. In addition, the spectral and temporal analysis of TPEF images allowed visualization of different fluorescent components in the retinal pigment epithelium (RPE). Fluorophores with short TPEF lifetime, such as A2E, can be differentiated from other long-lifetime components in the RPE. The NLO imaging method would provide important information for investigation of retinal ganglion cell degeneration and holds the potential to study the biochemical processes of visual cycle in the RPE.

  14. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  15. NEMS Capacitive Sensors for Highly Sensitive, Label-Free Nucleic-Acid Analysis

    Science.gov (United States)

    Mannoor, Manu Sebastian; James, Teena; Ivanov, Dentcho V.; Beadling, Les; Braunlin, William

    A highly sensitive NEMS capacitive sensor with electrode separation in the order of Debye length is fabricated for label free DNA analysis. The use of nano-scale electrode separation provides better insight in to the target-probe interaction which was not previously attainable with macro or even micro scale devices. As the double layers from both the capacitive electrodes merge together and occupy a major fraction of the capacitive volume, the contribution from bulk sample resistance and noises due to electrode polarization effects are eliminated. The dielectric properties during hybridization reaction were measured using 10-mer nucleotide sequences. A 45-50% change in relative permittivity (capacitance) was observed due to DNA hybridization at 10Hz. Capacitive sensors with 30nm electrode separation were fabricated using standard silicon micro/nano technology and show promise for future electronic DNA arrays and high throughput screening of nucleic acid samples.

  16. Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications

    Science.gov (United States)

    Terracciano, Monica; Galstyan, Vardan; Rea, Ilaria; Casalino, Maurizio; De Stefano, Luca; Sbervegleri, Giorgio

    2017-10-01

    In this study, we have fabricated TiO2 nanotube arrays by the potentiostatic anodic oxidation of Ti foils in fluoride-containing electrolyte and explored them as versatile devices for biosensing applications. TiO2 nanotubes have been chemically modified in order to bind Protein A as a specific target analyte for the optical biosensing. The obtained structures have been characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle, fluorescence microscopy, spectroscopic reflectometry and photoluminescence. Investigations show that the prepared TiO2 nanotubes, 2.5 μm long and 75 nm thick, can be easily and efficiently bio-modified, and the obtained structures are strongly photoluminescent, thus suitable for the label-free biosensing applications in the range of μM, due to their peculiar optical properties.

  17. A label-free optical biosensor for serotyping "unknown" influenza viruses

    Science.gov (United States)

    Zhang, Hanyuan; Henry Dunand, Carole; Wilson, Patrick; Miller, Benjamin L.

    2016-05-01

    The ability to accurately classify influenza viruses is critical to understanding patterns of infection, vaccine efficacy, and to the process of developing new vaccines. Unfortunately, this task is hampered both by the virus' ability to undergo antigenic drift and shift (rendering it a "previously unknown" strain), and by technological limitations. In an effort to overcome these challenges, we have developed a label-free human monoclonal antibody array for flu serology, using a pattern recognition approach to assign virus serotype. The array is built on the Arrayed Imaging Reflectometry (AIR) platform. AIR relies on the creation of a near-perfect antireflective condition on the surface of a silicon chip. When this antireflective condition is perturbed because of binding to an antibody spot (or other immobilized probe molecule), binding may be sensitively and quantitatively detected as an increase in reflected light. We describe fabrication and characterization of the array, and preliminary testing with isolated influenza hemagglutinin. We anticipate that this approach may be extended to other viruses by expansion of the array.

  18. Ultrasensitive, label-free detection of cardiac biomarkers with optical SIS sensor.

    Science.gov (United States)

    Diware, Mangesh S; Cho, Hyun Mo; Chegal, Won; Cho, Yong Jai; Kim, Dong Soo; O, Sang Won; Kim, Kyeong-Suk; Paek, Se-Hwan

    2017-01-15

    Acute myocardial infarction (MI) is the leading cause of high mortality and morbidity rate worldwide, early and accurate diagnosis can increase the chances of survival. In this work, we report a simple, ultrasensitive, label-free, and high-throughput solution immersed silicon (SIS) immunosensor based on non-reflection condition (NRC) for p-polarized wave for early diagnosis of MI. SIS sensor chips are just a thin dielectric polymer layer on the silicon surface, which can be functionalized for specific application. At NRC, SIS sensors are extremely sensitive to the growing thickness of a bio-layer on the sensor surface while independent of refractive index change of the surrounding medium. Therefore, SIS signal is free from thermal noise, unlike surface plasmon resonance based sensor. Also, there is no need of reference signal which facilitates fast and accurate interaction measurement. Here, SIS technology is applied to tackle two issues in MI diagnosis: high sensitivity with the direct assay and the ability to measure in human serum. Myoglobin, creatine kinase-MB, and cardiac troponin I (cTnI) proteins were used as the MI biomarkers. We were able to measure over a broad concentration range with the detection limit of 5 and 10pg/ml for cTnI in PBS and blood serum, respectively. The response time is about 5min. This novel technique is a suitable candidate for cost effective point-of-care application.

  19. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.

    Science.gov (United States)

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-10-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles.

  20. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  1. A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Ya Yang

    2015-04-01

    Full Text Available In this study, we have developed a label-free immunosensor with the variation of resonance frequency (Δf of a quartz crystal microbalance (QCM as readout signal for ultrasensitive detection of Ketamine (KT. An optimized strategy for immobilization of KT antibody on the surface of the QCM chip was implemented via the self-assembly modification of 3-mercaptopropionic acid, and then activated with 1-ethyl-3- (3-dimethylaminoprophl carbodiimide and n-hydroxysuccinimide. The specific affinity between the antibody and the antigen ensured a selective response toward KT. The Δf linearly related to the concentration of KT in the range of 1 to 40 pg/mL, with a detection limit of 0.86 pg/mL (S/N = 3. The obtained immunosensor was applied to detect the KT in spiked human urine without any pretreatment but dilution with recoveries from 91.8% to 108%. The developed sensor is promising to perform the portable or on-spot KT detection in clinic or forensic cases.

  2. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food

    Science.gov (United States)

    Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos

    2016-03-01

    Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.

  3. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.

    Science.gov (United States)

    Agnarsson, Björn; Lundgren, Anders; Gunnarsson, Anders; Rabe, Michael; Kunze, Angelika; Mapar, Mokhtar; Simonsson, Lisa; Bally, Marta; Zhdanov, Vladimir P; Höök, Fredrik

    2015-12-22

    Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 nm gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.

  4. Label-free tissue scanner for colorectal cancer screening

    Science.gov (United States)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  5. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  6. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  7. Label-free structural photoacoustic tomography of intact mouse brain

    Science.gov (United States)

    Li, Lei; Xia, Jun; Li, Guo; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2015-03-01

    Capitalizing on endogenous hemoglobin contrast, photoacoustic computed tomography (PACT), a deep-tissue highresolution imaging modality, has drawn increasing interest in neuro-imaging. However, most existing studies are limited to functional imaging on the cortical surface, and the deep-brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep-brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can provide high-resolution label-free structural imaging through the entire mouse brain. With 100 μm in-plane resolution, we can clearly identify major structures of the brain, and the image quality is comparable to that of magnetic resonance microscopy. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome and lipid. The feasibility of imaging the structure of the brain in vivo has also been discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.

  8. Label-free screening of bio-molecular interactions.

    Science.gov (United States)

    Cooper, Matthew A

    2003-11-01

    The majority of techniques currently employed to interrogate a biomolecular interaction require some type of radio- or enzymatic- or fluorescent-labelling to report the binding event. However, there is an increasing awareness of novel techniques that do not require labelling of the ligand or the receptor, and that allow virtually any complex to be screened with minimal assay development. This review focuses on three major label-free screening platforms: surface plasmon resonance biosensors, acoustic biosensors, and calorimetric biosensors. Scientists in both academia and industry are using biosensors in areas that encompass almost all areas drug discovery, diagnostics, and the life sciences. The capabilities and advantages of each technique are compared and key applications involving small molecules, proteins, oligonucleotides, bacteriophage, viruses, bacteria, and cells are reviewed. The role of the interface between the biosensor surface (in the case of SPR and acoustic biosensors) and the chemical or biological systems to be studied is also covered with attention to the covalent and non-covalent coupling chemistries commonly employed.

  9. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    Directory of Open Access Journals (Sweden)

    Yue Zhuo

    2015-08-01

    Full Text Available We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  10. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  11. Label-Free Microcavity Biosensors: Steps towards Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Dragos Amarie

    2012-12-01

    Full Text Available Personalized medicine has the potential to improve our ability to maintain health and treat disease, while ameliorating continuously rising healthcare costs. Translation of basic research findings to clinical applications within regulatory compliance is required for personalized medicine to become the new foundation for practice of medicine. Deploying even a few of the thousands of potential diagnostic biomarkers identified each year as part of personalized treatment workflows requires clinically efficient biosensor technologies to monitor multiple biomarkers in patients in real time. This paper discusses a critical component of a regulatory system, a microcavity optical biosensor for label-free monitoring of biomolecular interactions at physiologically-relevant concentrations. While most current biosensor research focuses on improving sensitivity, this paper emphasizes other characteristics a biosensor technology requires to be practical in a clinical setting, presenting robust microcavity biosensors which are easy to manufacture and integrate with microfluidics into flexible and redesignable platforms making the microcavity biosensors deployable for continuous monitoring of biomarkers in body fluids in the clinic,  in dense 2D random arrays for high-throughput applications like drug-library screening in interactomics, and of the secretory behavior of single cells in the laboratory.

  12. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  13. Bioplasmonic calligraphy for multiplexed label-free biodetection.

    Science.gov (United States)

    Tian, Limei; Tadepalli, Sirimuvva; Park, Sang Hyun; Liu, Keng-Ku; Morrissey, Jeremiah J; Kharasch, Evan D; Naik, Rajesh R; Singamaneni, Srikanth

    2014-09-15

    Printable multi-marker biochips that enable simultaneous quantitative detection of multiple target biomarkers in point-of-care and resource-limited settings are a holy grail in the field of biodiagnostics. However, preserving the functionality of biomolecules, which are routinely employed as recognition elements, during conventional printing approaches remains challenging. In this article, we introduce a simple yet powerful approach, namely plasmonic calligraphy, for realizing multiplexed label-free bioassays. Plasmonic calligraphy involves a regular ballpoint pen filled with biofunctionalized gold nanorods as plasmonic ink for creating isolated test domains on paper substrates. Biofriendly plasmonic calligraphy approach serves as a facile method to miniaturize the test domain size to few mm(2), which significantly improves the sensitivity of the plasmonic biosensor compared to bioplasmonic paper fabricated using immersion approach. Furthermore, plasmonic calligraphy also serves as a simple and efficient means to isolate multiple test domains on a single test strip, which facilitates multiplexed biodetection and multi-marker biochips. Plasmonic calligraphy, which can be potentially automated by implementing with a robotic arm, serves as an alternate path forward to overcome the limitations of conventional ink-jet printing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Label-free DNA sequencing using Millikan detection.

    Science.gov (United States)

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-10-15

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.

  15. Label-free monitoring of individual DNA hybridization using SERS

    Science.gov (United States)

    Qi, Ji; Zeng, Jianbo; Zhao, Fusheng; Santos, Greggy M.; Lin, Steven Hsesheng; Raja, Balakrishnan; Strych, Ulrich; Willson, Richard C.; Shih, Wei-Chuan

    2015-03-01

    Sequence-specific detection of DNA hybridization at the single-molecule level has been instrumental and gradually become a ubiquitous tool in a wide variety of biological and biomedical applications such as clinical diagnostics, biosensors, and drug development. Label-free and amplification-free schemes are of particular interest because they could potentially provide in situ monitoring of individual hybridization events, which may lead to techniques for discriminating subtle variations due to single-base modification without stringency control or repetitive thermal cycling. Surface-enhanced Raman spectroscopy (SERS) has been widely used for molecular detection and identification by exploiting the localized surface plasmon resonance effect when the target molecules are near gold or silver nanostructures. However, effective and robust SERS assays have yet become a reality for trace detection. Recently, we have developed a SERS substrate by shaping nanoporous gold thin films into monolithic submicron disks, called nanoporous gold disks (NPGD). Here we demonstrate in situ monitoring of the same immobilized ssDNA molecules and their individual hybridization events.

  16. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    Science.gov (United States)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  17. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction.

    Science.gov (United States)

    Zhou, Jun; Xu, Mingdi; Tang, Dianping; Gao, Zhuangqiang; Tang, Juan; Chen, Guonan

    2012-12-28

    A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.

  18. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    Science.gov (United States)

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  19. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    Science.gov (United States)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  20. Fabrication of gold-deposited plasmonic crystal based on nanoimprint lithography for label-free biosensing application

    Science.gov (United States)

    Nishiguchi, Kiichi; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-08-01

    Here, we developed a highly sensitive label-free plasmonic crystal (PC). The PC is composed of two types of nanoperiodic metal structures, nanodiscs and nanohole arrays, fabricated simultaneously by nanoimprint lithography using a nanostructured polymer mold. The PC absorbed light at specific wavelengths based on localized surface plasmon resonance (LSPR). The strongly enhanced electric field was excited by the combined structures of nanodiscs and nanohole arrays; thus, highly sensitive biosensing was possible. The LSPR-based optical characteristics of the PC were analyzed by finite-difference time-domain simulation; the structure (metal layer thickness) was optimized to respond to changes in the surrounding refractive index with high sensitivity. PC-based biosensor chips were prepared by immobilizing anti-human immunoglobulin G, which was successfully detected in the 200 pg/mL to 200 ng/mL range. Our approach introduces an easy and rapid process allowing large-area fabrication of PCs, resulting in a highly sensitive label-free biosensor device.

  1. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  2. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending

    NARCIS (Netherlands)

    Van Den Ende, D.A.; Van De Wiel, H.J.; Kusters, R.H.L.; Sridhar, A.; Schram, J.F.M.; Cauwe, M.; Van Den Brand, J.

    2014-01-01

    Ultra-thin chips of less than 20 μm become flexible, allowing integration of silicon IC technology with highly flexible electronics such as food packaging sensor systems or healthcare and sport monitoring tags as wearable patches or even directly in clothing textile. The ultra-thin chips in these

  3. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending

    NARCIS (Netherlands)

    Van Den Ende, D.A.; Van De Wiel, H.J.; Kusters, R.H.L.; Sridhar, A.; Schram, J.F.M.; Cauwe, M.; Van Den Brand, J.

    2014-01-01

    Ultra-thin chips of less than 20 μm become flexible, allowing integration of silicon IC technology with highly flexible electronics such as food packaging sensor systems or healthcare and sport monitoring tags as wearable patches or even directly in clothing textile. The ultra-thin chips in these pr

  4. Multiplex PCR, amplicon size and hybridization efficiency on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez, Juan J; Morling, Niels

    2004-01-01

    We tested the SNP typing protocol developed for the NanoChip electronic microarray by analyzing the four Y chromosome loci SRY1532, SRY8299, TAT, and 92R7. Amplicons of different lengths containing the same locus were purified and addressed to the NanoChip array and fluorescently labelled reporter...

  5. Label-free detection and identification of waterborne parasites using a microfluidic multi-angle laser scattering system

    Science.gov (United States)

    Huang, Wei; Yang, Limei; Lei, Lei; Li, Feng

    2017-10-01

    A microfluidic-based multi-angle laser scattering (MALS) system capable of acquiring scattering patterns of a single particle is designed and demonstrated. The system includes a sheathless nozzle microfluidic glass chip, and an on-chip MALS unit being in alignment with the nozzle exit in the chip. The size and relative refractive indices (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.002 by comparing the experimental scattering patterns with theoretical ones. We measured scattering patterns of waterborne parasites i.e., Cryptosporidium parvum (C.parvum) and Giardia lamblia (G. lamblia), and some other representative species suspended in deionized water at a maximum flow rate of 12 μL/min, and a maximum of 3000 waterborne parasites can be identified within one minute with a mean accuracy higher than 96% by classification of distinctive scattering patterns using a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free detection of waterborne parasites and other biological contaminants.

  6. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes

    Science.gov (United States)

    Qi, Yingying; Li, Li; Li, Baoxin

    2009-09-01

    A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV-vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10 -13 to 4.5 × 10 -6 mol/L. The detection limit (3 σ) of this method has decreased to pico-molar level.

  7. Label-free isolation and enrichment of cells through contactless dielectrophoresis.

    Science.gov (United States)

    Elvington, Elizabeth S; Salmanzadeh, Alireza; Stremler, Mark A; Davalos, Rafael V

    2013-09-03

    Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process. cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles. Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing

  8. Label-free probing of genes by time-domain terahertz sensing

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, P Haring [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Brucherseifer, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Nagel, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Kurz, H [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Bosserhoff, A [Institut fuer Pathologie, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg (Germany); Buettner, R [Institut fuer Pathologie, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn (Germany)

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a free-space analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  9. Electrochemical Migration on Electronic Chip Resistors in Chloride Environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Electrochemical migration behavior of end terminals on ceramic chip resistors (CCRs) was studied using a novel experimental setup in varying sodium chloride concentrations from 0 to 1000 ppm. The chip resistor used for the investigation was 10-kΩ CCR size 0805 with end terminals made of 97Sn3Pb...

  10. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  11. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries.

    Science.gov (United States)

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Ocaña, Cristina; Marty, Jean-Louis

    2015-08-19

    Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15-2.5 ng/mL, with an acceptable recovery percentage (91-95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A.; Fouad, H.; Ansari, Z.A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-01-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera. PMID:26611737

  13. Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage.

    Science.gov (United States)

    Reta, Nekane; Michelmore, Andrew; Saint, Christopher; Prieto-Simón, Beatriz; Voelcker, Nicolas H

    2016-06-15

    A proof of concept for the label-free detection of bacteriophage MS2, a model indicator of microbiological contamination, is validated in this work as a porous silicon (pSi) membrane-based electrochemical biosensor. PSi membranes were used to afford nanochannel architectures. The sensing mechanism was based on the nanochannel blockage caused by MS2 binding to immobilized capture antibodies. This blockage was quantified by measuring the oxidation current of the electroactive species reaching the electrode surface, by means of differential pulse voltammetry (DPV). The immunosensor showed a limit of detection of 6 pfu/mL in buffer, allowing the detection of MS2 to levels commonly found in real-world applications, and proved to be unaffected by matrix effects when analyzing MS2 in reservoir water. This platform enables the straightforward, direct and sensitive detection of a broad range of target analytes and constitutes a promising approach towards the development of portable electronic point of sample analysis devices.

  14. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    Science.gov (United States)

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences.

  15. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  16. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection.

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A; Fouad, H; Ansari, Z A; Ansari, S G; Malhotra, Bansi D

    2015-11-27

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R(2)) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  17. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  18. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    Science.gov (United States)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  19. Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haixia; Zhang, Yong; Wu, Dan; Ma, Hongmin; Li, Xiaojing; Li, Yan; Wang, Huan; Li, He; Du, Bin [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2013-04-03

    Highlights: ► The immunosensor is designed to determine breast cancer susceptibility gene. ► Mesoporous carbon nanospheres (MCN) have great adsorption capacity. ► MCN could enhance the electroactivity of toluidine blue. ► Room temperature ionic liquid should increase the electrochemical signal. -- Abstract: In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF{sub 4} could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF{sub 4} could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL{sup −1} with a low detection limit of 3.97 pg mL{sup −1}. The immunosensor exhibits high sensitivity, good selectivity and stability.

  20. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    Science.gov (United States)

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.

  1. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    Directory of Open Access Journals (Sweden)

    Hung V. Trinh

    2013-01-01

    Full Text Available Both isobaric tags for relative and absolute quantitation (iTRAQ and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or label-free methods were used, and the resulting samples were analyzed by liquid chromatography (LC and tandem mass spectrometry (MS/MS. To reduce a possible bias from quantitation software, we applied several software packages for each procedure. ProteinPilot and Scaffold Q+ software were used for iTRAQ-labeled samples, while Progenesis LC-MS and ProgenesisF-T2PQ/T3PQ were employed for label-free analyses. R2 correlation coefficients correlated well between two software packages applied to the same datasets with values between 0.48 and 0.78 for iTRAQ-label-based quantitations and 0.5 and 0.86 for label-free quantitations. Analyses of label-free samples showed higher levels of protein up- or downregulation in comparison to iTRAQ-labeled samples. The concentration differences were further evaluated by Western blotting for four downregulated proteins. These data suggested that the label-free method was more accurate than the iTRAQ method.

  2. Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo- and biosensing.

    Science.gov (United States)

    Gu, Cheng; Huang, Ning; Gao, Jia; Xu, Fei; Xu, Yanhong; Jiang, Donglin

    2014-05-05

    Conjugated microporous polymers (CMPs), in which rigid building blocks form robust networks, are usually synthesized as insoluble and unprocessable powders. We developed a methodology using electropolymerization for the synthesis of thin CMP films. The thickness of these films is synthetically controllable, ranging from nanometers to micrometers, and they are obtained on substrates or as freestanding films. The CMP films combine a number of striking physical properties, including high porosity, extended π conjugation, facilitated exciton delocalization, and high-rate electron transfer. We explored the CMP films as versatile platforms for highly sensitive and label-free chemo- and biosensing of electron-rich and electron-poor arenes, metal ions, dopamine, and hypochloroic acid, featuring rapid response, excellent selectivity, and robust reusability.

  3. Progress of new label-free techniques for biosensors: a review.

    Science.gov (United States)

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  4. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection.

    Science.gov (United States)

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-11-19

    In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN)6](3-/4-). Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10fM-100nM) and a detection limit on the order of 0.90fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  5. Improved electrochemical performances of polyaniline nanotubes-poly-L-lysine composite for label-free impedance detection of DNA hybridization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A sensitive label-free DNA hybridization biosensing platform was fabricated based on the synergistic effect of polyaniline nanotubes (PANInt) and poly-L-lysine (pLys).The composite of pLys and PANInt was coated onto the carbon paste electrode (CPE) to form a uniform and very stable nanocomposite membrane.The pLys in the composite film not only acts as a membrane to retain good electron transfer capability of PANInt even at physiological pH,but also possesses fine biocompatibility for bio-analytes.DNA probes with negatively charged phosphate groups were readily linked to the positively charged pLys surface due to the strong electrostatic affinity.The synergistic effect of PANInt and pLys could significantly enhance the sensitivity of DNA hybridization recognition.The phosphinothricin acetyltransferase (PAT) gene fragment from transgenic corn and the polymerase chain reaction amplification of the terminator of nopaline synthase gene from the real sample of a kind of transgenic soybean were detected by this DNA electrochemical biosensor via label-free impedance method.This stable composite gives convenient permselectivity properties as a transducer material for the design of modern electrochemical impedance biosensor using [Fe(CN)6]3-/4as an indicator.

  6. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6mb00290k Click here for additional data file.

    Science.gov (United States)

    Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C.; McNeilly, Tom N.; Weidt, Stefan K.; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P. David

    2016-01-01

    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously. PMID:27412694

  7. Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging

    Science.gov (United States)

    Chen, Shengyi; Deng, Tao; Wang, Tongzhou; Wang, Jia; Li, Xin; Li, Qiang; Huang, Guoliang

    2012-01-01

    This work presents a visualization method for the high-throughput monitoring of antibody-polypeptide binding by integrating a microarray chip with surface plasmon resonance imaging (SPRi). A prism-coupled SPRi system with smart images processing software and a 5×5 polypeptide microarray was developed. The modeling analysis was performed to optimize the system and the materials of prism and chip, looking for the optimal incident wavelength and angle of incidence for dynamic SPRi detection in solution. The system can dynamically monitor 25 tunnels of biomolecule interactions in solution without secondary tag reactants. In addition, this system can determine the specific profile of antibody-polypeptide binding in each tunnel and yield a visual three-dimensional histogram of dynamic combinations in all microarray tunnels. Furthermore, the detection limit of the label-free antibody-polypeptide binding reached 1 pg/μL in a one-step binding test, and an ultrasensitive detection of 10 fg/μL was obtained using three-step cascade binding. Using the peptide microarray, the amount of sample and reagents used was reduced to 80 nL per tunnel, and 20×20 tunnels of biomolecule interactions could be analyzed in parallel in a 7 mm×7 mm microreaction cells. This device and method offer a potential platform for high-throughput and label-free dynamic monitoring multiple biomolecule interactions for drug discovery and basic biomedical research.

  8. A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces.

    Science.gov (United States)

    Block, Ian D; Mathias, Patrick C; Ganesh, Nikhil; Jones, Sarah I; Dorvel, Brian R; Chaudhery, Vikram; Vodkin, Lila O; Bashir, Rashid; Cunningham, Brian T

    2009-07-20

    We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface. This technique is applied to a DNA microarray where label-free quantification of immobilized capture DNA enables improved quality control and subsequent enhanced fluorescence detection of dye-tagged hybridized DNA yields 3x more genes to be detected versus commercially available microarray substrates.

  9. Label-free imaging through nonlinear optical signals

    Directory of Open Access Journals (Sweden)

    Ling Tong

    2011-06-01

    Full Text Available Strong intrinsic nonlinear optical (NLO signals not only make nanostructures promising agents for bio-imaging, but also advance NLO microscopy for the study of interactions between nanomaterials and live cells. Single beam modalities such as multiphoton luminescence, second harmonic generation, and third harmonic generation provide a simple way to probe many types of nanostructures. As for more advanced modalities, photothermal heterodyne imaging provides improved detection sensitivity for smaller objects, and transient absorption microscopy provides structural information to distinguish metal from semiconducting carbon nanotubes, and eumelanin from pheomelanin. The four-wave mixing signal achieves chemical selectivity in the presence of either vibrational or electronic resonance, as used in coherent Raman scattering imaging of molecules and in electronically resonance enhanced four-wave mixing imaging of nanostructures.

  10. Practical steady-state temperature prediction of active embedded chips into high density electronic board

    Science.gov (United States)

    Monier-Vinard, Eric; Rogie, Brice; Nguyen, Nhat-Minh; Laraqi, Najib; Bissuel, Valentin; Daniel, Olivier

    2016-09-01

    Printed Wiring Board die embedding technology is an innovative packaging alternative to address a very high degree of integration by stacking multiple core layers housing active chips. Nevertheless this increases the thermal management challenges by concentrating heat dissipation at the heart of the substrate and exacerbates the need of adequate cooling. In order to allow the electronic designers to early analyse the limits of the in-layer power dissipation, depending on the chip location inside the board, various analytical thermal modelling approaches were investigated. Therefore the buried active chips can be represented using surface or volumetric heating sources according with the expected accuracy. Moreover the current work describes the comparison of the volumetric heating source analytical model with the state-of-art numerical detailed models of several embedded chips configurations, and debates about the need or not to simulate in full details the embedded chips as well as the surrounding layers and micro-via structures of the substrate. The results highlight that the thermal behaviour predictions of the analytical model are found to be within ±5% of relative error and so demonstrate their relevance to model an embedded chip and its neighbouring heating chips or components. Further this predictive model proves to be in good agreement with an experimental characterization performed on a thermal test vehicle. To summarize, the developed analytical approach promotes several practical solutions to achieve a more efficient design and to early identify the potential issues of board cooling.

  11. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microarrays of 20-base oligonucleotide with different concentrations are detected before and after hybridization by the oblique-incidence reflectivity difference (OI-RD) method. The experimental results prove that OI-RD is a label-free method which can not only distinguish the concentration difference of oligonucleotides before and after the hybridization but also detect the hybridization of short oligonucleotides. At present the OI-RD method can detect 0.39 μmol/L 20-base oligonucleotide or less. These results suggest that the OI-RD method is a promising and potential technique for label-free detection of biological microarrays.

  12. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry

    Directory of Open Access Journals (Sweden)

    Bertrand Fabre

    2014-09-01

    Full Text Available Protein complexes are the main molecular machines that support all major cellular pathways and their in-depth characterization are essential to understand their functions. Determining the stoichiometry of the different subunits of a protein complex still remains challenging. Recently, many label-free quantitative proteomic approaches have been developed to study the composition of protein complexes. It is therefore of great interest to evaluate these different methods in a stoichiometry oriented objective. Here we compare the ability of four absolute quantitative label-free methods currently used in proteomic studies to determine the stoichiometry of a well-characterized protein complex, the 26S proteasome.

  13. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  14. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Bocsi, Jozsef; Di Berardino, Marco; Tarnok, Attila

    2012-11-07

    Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.

  15. Measurements of the effects of wine maceration with oak chips using an electronic tongue.

    Science.gov (United States)

    Rudnitskaya, Alisa; Schmidtke, Leigh M; Reis, Ana; Domingues, M Rosario M; Delgadillo, Ivonne; Debus, Bruno; Kirsanov, Dmitry; Legin, Andrey

    2017-08-15

    The use of oak products as a cheaper alternative to expensive wood barrels was recently permitted in Europe, which led to a continuous increase in the use of oak chips and staves in winemaking. The feasibility of the potentiometric electronic tongue as a tool for monitoring the effects of wine maceration with oak chips was evaluated. Four types of commercially available oak chips subjected to different thermal treatments and washing procedures and their mixture were studied. Ethanolic extracts of the chips were analysed using electrospray mass spectrometry and 28 phenolic and furanic compounds were identified. The electronic tongue comprising 22 potentiometric chemical sensors could distinguish artificial wine solutions and Cabernet Sauvignon wine macerated with different types of oak chips, quantify total and non-flavonoid phenolic content, as well as the concentrations of added oak chips. Using measurements at two pH levels, 3.2 and 6.5, improved the accuracy of quantification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  17. A high-throughput label-free nanoparticle analyser

    Science.gov (United States)

    Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M.; Ruoslahti, Erkki; Cleland, Andrew N.

    2011-05-01

    Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10-6 l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.

  18. Label-free volumetric optical imaging of intact murine brains

    Science.gov (United States)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.

    2017-04-01

    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  19. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rupesh K. [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Hayat, Akhtar [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore 54000 (Pakistan); Catanante, Gaëlle; Ocaña, Cristina [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France); Marty, Jean-Louis, E-mail: jlmarty@univ-perp.fr [IMAGES, Université De Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860 (France)

    2015-08-19

    Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15–2.5 ng/mL, with an acceptable recovery percentage (91–95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. - Highlights: • Simple and facile method to detect OTA. • The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL. • The first report on OTA detection in cocoa beans using impedimetric aptasensor.

  20. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds

    Science.gov (United States)

    Kunstar, Aliz; Leferink, Anne M.; Okagbare, Paul I.; Morris, Michael D.; Roessler, Blake J.; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A.; Moroni, Lorenzo; van Apeldoorn, Aart A.

    2013-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm−1 which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs. PMID:23825118

  1. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  2. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds.

    Science.gov (United States)

    Kunstar, Aliz; Leferink, Anne M; Okagbare, Paul I; Morris, Michael D; Roessler, Blake J; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A; Moroni, Lorenzo; van Apeldoorn, Aart A

    2013-09-06

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm(-1) which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.

  3. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  4. A microwave chip-based beam splitter for low-energy guided electrons

    OpenAIRE

    Hammer, Jakob; Thomas, Sebastian; Weber, Philipp; Hommelhoff, Peter

    2014-01-01

    We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5\\,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3\\,$eV, in excellent agreement with particle tr...

  5. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  6. Label-free protein detection using a microfluidic Coulter-counter device

    DEFF Research Database (Denmark)

    Rodriguez-Trujíllo, Romén; Ajine, Mohammad Akram; Orzan, A.;

    2014-01-01

    A new method for measuring specific protein concentrations in solutions has been developed. The technique makes use of the Coulter effect for detecting and sizing of micro-scaled objects suspended in a buffer fluid. The method is completely label-free as it is only based on the electrical readout...

  7. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis

    NARCIS (Netherlands)

    De, Arpita; Nieuwkasteele, van Jan; Carlen, Edwin T.; Berg, van den Albert

    2013-01-01

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection syste

  8. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Chan, Leo L; Cunningham, Brian T

    2007-04-20

    A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.

  9. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  10. Free-solution, label-free molecular interactions studied by back-scattering interferometry

    DEFF Research Database (Denmark)

    Bornhop, D.J.; Latham, J.C.; Kussrow, A.

    2007-01-01

    Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules...

  11. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  12. High throughput label-free platform for statistical bio-molecular sensing

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, En-Te; Chen, Ching-Hsiu

    2011-01-01

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing...

  13. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  14. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    Science.gov (United States)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  15. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element

    Directory of Open Access Journals (Sweden)

    Özlem Ertekin

    2016-08-01

    Full Text Available This study introduces the use of an IgA isotype aflatoxin (AF specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide/N-hydroxy succinimide (EDC/NHS method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1.

  16. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    Science.gov (United States)

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  17. Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective.

    Science.gov (United States)

    Helmerhorst, Erik; Chandler, David J; Nussio, Matt; Mamotte, Cyril D

    2012-11-01

    Radioactive, chromogenic, fluorescent and other labels have long provided the basis of detection systems for biomolecular interactions including immunoassays and receptor binding studies. However there has been unprecedented growth in a number of powerful label free biosensor technologies over the last decade. While largely at the proof-of-concept stage in terms of clinical applications, the development of more accessible platforms may see surface plasmon resonance (SPR) emerge as one of the most powerful optical detection platforms for the real-time monitoring of biomolecular interactions in a label-free environment.In this review, we provide an overview of SPR principles and current and future capabilities in a diagnostic context, including its application for monitoring a wide range of molecular markers of disease. The advantages and pitfalls of using SPR to study biomolecular interactions are discussed, with particular emphasis on its potential to differentiate subspecies of analytes and the inherent ability for quantitation through calibration-free concentration analysis (CFCA). In addition, recent advances in multiplex applications, high throughput arrays, miniaturisation, and enhancements using noble metal nanoparticles that promise unprecedented sensitivity to the level of single molecule detection, are discussed.In summary, while SPR is not a new technique, technological advances may see SPR quickly emerge as a highly powerful technology, enabling rapid and routine analysis of molecular interactions for a diverse range of targets, including those with clinical applicability. As the technology produces data quickly, in real-time and in a label-free environment, it may well have a significant presence in future developments in lab-on-a-chip technologies including point-of-care devices and personalised medicine.

  18. Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils

    DEFF Research Database (Denmark)

    Christensen, Hanna B; Gloriam, David E; Pedersen, Daniel Sejer

    2017-01-01

    INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors...

  19. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Directory of Open Access Journals (Sweden)

    Wenfeng Liang

    Full Text Available Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell sample from red blood cells (RBCs with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for

  20. A Raman Flow Cytometer: An Innovative Microfluidic Approach for Continuous Label-Free Analysis of Cells via Raman Spectroscopy

    KAUST Repository

    De Grazia, Antonio

    2015-05-05

    In this work a Raman flow cytometer is presented. It is a whole new microfluidic device that takes advantage of basic principles of Raman spectroscopy and fluorescent flow cytometry mixed together in a system of particularly shaped channels. These are indeed composed by specific shape and sizes – thanks to which cells can flow one-by-one – and a trap by means of which cells are trapped in order to perform Raman analysis on single ones in a constant and passive way. In this sense the microfluidic device promotes a fast method to look for single cells in a whole multicellular sample. It is a label-free analysis and this means that, on the contrary of what happens with fluorescent flow cytometry, the sample does not need to undergo any particular time-consuming pretreatment before being analyzed. Moreover it gives a complete information about the biochemical content of the sample thanks to the involvement of Raman spectroscopy as method of analysis. Many thought about a device like this, but eventually it is the first one being designed, fabricated and tested. The materials involved in the production of the Raman flow cytometer are chosen wisely. In particular the chip – the most important component of the device – is multilayered, being composed by a slide of calcium fluoride (which gives a negligible signal in Raman analyses), a photosensitive resist containing a pattern with channels and another slide of calcium fluoride in order for the channels to be sealed on both sides. The chip is, in turn, connected to gaskets and external frames. Several fabrication processes are followed to ultimately get the complete Raman flow cytometer and experiments on red blood cells demonstrate its validity in this field.

  1. SU-8 cantilever chip interconnection

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Janting, Jakob; Schultz, Peter;

    2006-01-01

    the electrodes on the SU-8 chip to a printed circuit board. Here, we present two different methods of electrically connecting an SU-8 chip, which contains a microfluidic network and free-hanging mechanical parts. The tested electrical interconnection techniques are flip chip bonding using underfill or flip chip...... bonding using an anisotropic conductive film (ACF). These are both widely used in the Si industry and might also be used for the large scale interconnection of SU-8 chips. The SU-8 chip, to which the interconnections are made, has a microfluidic channel with integrated micrometer-sized cantilevers...... that can be used for label-free biochemical detection. All the bonding tests are compared with results obtained using similar Si chips. It is found that it is significantly more complicated to interconnect SU-8 than Si cantilever chips primarily due to the softness of SU-8....

  2. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors.

    Science.gov (United States)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A; Gemmill, Robert M; Simon, George R; Chin, Steve H; Chen, Ray T

    2013-05-15

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ∼11μm(2). Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform.

  3. Pump-probe microscopy of respiratory chain pigments: towards non-fluorescent label-free metabolic imaging

    Science.gov (United States)

    Domingue, Scott R.; Chicco, Adam J.; Bartels, Randy A.; Wilson, Jesse W.

    2017-02-01

    Current label-free metabolic microscopy techniques are limited to obtaining contrast from fluorescent molecules NAD(P)H and FAD+, and are unable to determine redox state along the mitochondrial respiratory chain itself. The respiratory chain electron carriers do not fluoresce, but some are heme proteins that have redox-dependent absorption spectra. The most prominent of these, cytochrome c, has been extensively characterized by transient absorption spectroscopy, which suggests that pump-probe measurements in the vicinity of 450 - 600 nm can provide strong contrast between its redox states. Motivated by the success of pump-probe microscopy targeting another heme protein, hemoglobin, we seek to extend the technique to the cytochromes, with the ultimate goal of dissecting respiratory chain function of individual cells in live tissue. To that end, we have developed a new optical system producing ultrafast, visible, independently-tunable pulse pairs via sum-frequency generation of nonlinearly broadened pulses in periodically-poled lithium niobate. The system is pumped by a homebuilt fiber-based oscillator/amplifier emitting 1060 nm pulses at 1.3 W (63 MHz repetition rate), and produces tunable pulses in the vicinity of 488 and 532 nm. Pump-probe spectroscopy of cytochrome c with this source reveals differences in excited-state absorption relaxation times between redox states. Though redox contrast is weak with this setup, we argue that this can be improved with a resonant galvo-scanning microscope. Moreover, pump-probe images were acquired of brown adipose tissue (which contains dense mitochondria), demonstrating label-free contrast from excited-state absorption in respiratory chain hemes.

  4. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    Science.gov (United States)

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH2) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN)6(3-/4-) redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10(5)cells/mL and 1.0×10(5)-6.0×10(6) cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analytical thermal modelling of multilayered active embedded chips into high density electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2013-01-01

    Full Text Available The recent Printed Wiring Board embedding technology is an attractive packaging alternative that allows a very high degree of miniaturization by stacking multiple layers of embedded chips. This disruptive technology will further increase the thermal management challenges by concentrating heat dissipation at the heart of the organic substrate structure. In order to allow the electronic designer to early analyze the limits of the power dissipation, depending on the embedded chip location inside the board, as well as the thermal interactions with other buried chips or surface mounted electronic components, an analytical thermal modelling approach was established. The presented work describes the comparison of the analytical model results with the numerical models of various embedded chips configurations. The thermal behaviour predictions of the analytical model, found to be within ±10% of relative error, demonstrate its relevance for modelling high density electronic board. Besides the approach promotes a practical solution to study the potential gain to conduct a part of heat flow from the components towards a set of localized cooled board pads.

  6. Microwave Chip-Based Beam Splitter for Low-Energy Guided Electrons.

    Science.gov (United States)

    Hammer, Jakob; Thomas, Sebastian; Weber, Philipp; Hommelhoff, Peter

    2015-06-26

    We present a novel beam splitter for low-energy electrons using a micro-structured guiding potential created above the surface of a planar microwave chip. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double well, thereby generating two separated output beams with 5 mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to 3 eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.

  7. Artificial intelligence in label-free microscopy biological cell classification by time stretch

    CERN Document Server

    Mahjoubfar, Ata; Jalali, Bahram

    2017-01-01

    This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intell...

  8. Large-scale plasmonic microarrays for label-free high-throughput screening.

    Science.gov (United States)

    Chang, Tsung-Yao; Huang, Min; Yanik, Ahmet Ali; Tsai, Hsin-Yu; Shi, Peng; Aksu, Serap; Yanik, Mehmet Fatih; Altug, Hatice

    2011-11-07

    Microarrays allowing simultaneous analysis of thousands of parameters can significantly accelerate screening of large libraries of pharmaceutical compounds and biomolecular interactions. For large-scale studies on diverse biomedical samples, reliable, label-free, and high-content microarrays are needed. In this work, using large-area plasmonic nanohole arrays, we demonstrate for the first time a large-scale label-free microarray technology with over one million sensors on a single microscope slide. A dual-color filter imaging method is introduced to dramatically increase the accuracy, reliability, and signal-to-noise ratio of the sensors in a highly multiplexed manner. We used our technology to quantitatively measure protein-protein interactions. Our platform, which is highly compatible with the current microarray scanning systems can enable a powerful screening technology and facilitate diagnosis and treatment of diseases.

  9. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    Science.gov (United States)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  10. Label-free identification of individual bacteria using Fourier transform light scattering

    CERN Document Server

    Jo, YoungJu; Kim, Min-hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun

    2015-01-01

    Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

  11. Label-Free Discrimination of Cells Undergoing Apoptosis by Hyperspectral Confocual Reflectance Imaging

    Science.gov (United States)

    Bertani, F. R.; Botti, E.; Costanzo, A.; Ferrari, L.; Mussi, V.; D'Alessandro, M.; Selci, S.

    2013-12-01

    Among the optical techniques used for exploring the properties of cells and tissues, those based on hyperspectral label-free analysis are particularly interesting due to their non-invasive character and their ability to fast collect a huge number of information on the different sample constituents and their spatial distribution. Here we present results obtained with a novel hyperspectral reflectance confocal microscope of label-free discrimination of cells undergoing apoptosis. Our data, analyzed by means of a powerful statistical method, enable to obtain information on the biological status at a single cell level through the local measurement of reflectivity. Furthermore, an optical model of the local dielectric response gives an additional insight of the parameters linking the optical responsivity to the biological status.

  12. Advance ultra sensitive multi-layered nano plasmonic devices for label free biosensing targeting immunodiagnostics

    Science.gov (United States)

    Sharma, Divya; Dwivedi, R. P.

    2016-09-01

    The rapid advancement in technology has envisaged and drafted the use of optical bio-sensing units into label free and multiplexed bio-sensing, exploring the surface plasmon polaritons, which has turned into a gold standard on the commercial basis, but they are bulky and find difficulty in scaling up for the throughput detection. The integration of plasmonic crystals with microfluidics on the bio-sensing frontier offers a multi-level validation of results with the ease of real-time detection and imaging and holds a great promise to develop ultra-sensitive, fast, portable device for the point-of-care diagnostics. The paper describes the fast, low cost approach of designing and simulating label free biosensor using open source MEEP and other software tools targeting Immunodiagnostics.

  13. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    Science.gov (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  14. Improving Probe Immobilization for Label-Free Capacitive Detection of DNA Hybridization on Microfabricated Gold Electrodes

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2008-02-01

    Full Text Available Alternative approaches to labeled optical detection for DNA arrays are actively investigated for low-cost point-of-care applications. In this domain, label-free capacitive detection is one of the most intensely studied techniques. It is based on the idea to detect the Helmholtz ion layer displacements when molecular recognition occurs at the electrodes/solution interface. The sensing layer is usually prepared by using thiols terminated DNA single-strength oligonucleotide probes on top of the sensor electrodes. However, published data shows evident time drift, which greatly complicates signal conditioning and processing and ultimately increases the uncertainty in DNA recognition sensing. The aim of this work is to show that newly developed ethylene-glycol functionalized alkanethiols greatly reduce time drift, thereby significantly improving capacitance based label-free detection of DNA.

  15. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  16. Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kenzo Maehashi

    2009-07-01

    Full Text Available Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs. In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs. Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  17. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    Science.gov (United States)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  18. Label-Free Proteome Profiling of Carbapenem-Resistant Klebsiella pneumoniae LC-MS/MS

    Science.gov (United States)

    2016-12-12

    the sub-MIC doses of antibiotics was performed by using label-free quantitative mass spectrometry. Sample Processing Protocol The pellets were...were cleaned up with Stage-Tip prior to 1D-LC-MS/MS. 1 µg of tryptic digest was loaded in each LC-MS/MS analysis. Data Processing Protocol Raw data ...Taxonomy 272620) combined with common contaminants proteins. Data files (12 Pride.XML files) KP-DC-Bio1: Doxycycline- treated Klebsiella pneumoniae

  19. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays

    OpenAIRE

    Cunningham, Brian T.

    2010-01-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic material...

  20. Microfluidics-integrated cascaded double-microring resonators for label-free biosensing

    Science.gov (United States)

    Chen, Yangqing; Yu, Fang; Yang, Chang; Li, Mingyu; Tang, Longhua; Song, Jinyan; He, Jian-Jun

    2014-11-01

    A highly-sensitive optical waveguide biosensor integrated with microfluidic channels based on silicon-on-insulator (SOI) was investigated in this paper. Experimental results of the label-free detection exhibits this novel biosensor with the superior reliability for quantitative and kinetic measurement of the interaction between biological molecules, dramatically improving the sensitivity due to the Vernier effect induced by cascaded double-microring resonators.

  1. Novel image processing method study for a label-free optical biosensor

    Science.gov (United States)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  2. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    Science.gov (United States)

    2016-10-01

    regions in injured eyes 4) Measure TRPM7 and cellular/apoptosis biomarkers in retinas 5) Measure neuronal death and cell-specific biomarker in retinas...modal label-free imaging system and calibrating our system to measure blood oxygen levels in the eye . The reported problems with our coherent anti...now ready to test human hemoglobin with our CARS system. 3) Detect and map hypoxic regions in injured eyes In Quarter 1-2: We optimized our

  3. Label-free optical quantification of structural alterations in Alzheimer's disease

    CERN Document Server

    Lee, Moosung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2016-01-01

    We present a quantitative label-free imaging of mouse whole brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer's disease.

  4. Optical tweezers for free-solution label-free single bio-molecule studies

    Science.gov (United States)

    Kotnala, Abhay; Al-Balushi, Ahmed A.; Gordon, Reuven

    2014-09-01

    Nanoaperture based trapping has developed as a significant tool among the various optical tweezer systems for trapping of very small particles down to the single nanometer range. The double nanohole aperture based trap provides a method for efficient, highly-sensitive, label-free, low-cost, free-solution single molecule trapping and detection. We use the double nanohole tweezer to understand biomolecular phenomena like protein unfolding, binding, structural conformation of DNA, protein-DNA interactions, and protein small molecule interactions.

  5. A multicenter study benchmarks software tools for label-free proteome quantification.

    Science.gov (United States)

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  6. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay.

    Science.gov (United States)

    Yang, Yan; Hu, Weihua

    2017-05-01

    Photoelectrochemical (PEC) detection is a promising method for label-free immunoassay by reporting the specific biological recognition events with electrical signals. However, it is challenging to rationally incorporate immunosensing components with a photocurrent conversion interface, which generally necessitates multistep fabrication and careful tailoring of various components such as photoactive material and biological probe. For high detection reliability and reproducibility, it is highly desirable to rationally construct an efficient PEC interface with architecture as simple as possible. In this work, a novel yet simple PEC immunosensor based on bio-inspired polydopamine (PDA) thin film-coated zinc oxide (ZnO) nanorods was reported. In this PEC immunosensor, the PDA thin film serves simultaneously as a unique sensitizer for charge separation as well as a functional layer for probe antibody attachment. The photocurrent on this electrode under illumination decreases upon the immunoreaction on the surface, possibly due to the blocking effect of formed immunocomplexes on the access of reducing reagent to the photoelectrode, thus offering a simple and reliable platform for PEC label-free immunoassay. By using an antibody-antigen pair as a model, successful label-free immunoassay was achieved with a detection limit of 10pgmL(-1) and a dynamic range from 100pgmL(-1) to 500ngmL(-1). This work demonstrates intriguing electro-optical property and bioconjugation activity of PDA film and may pave the way toward advanced PEC immunoassays.

  7. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  8. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    Science.gov (United States)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  9. Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Tsai Sheng-Ta

    2012-11-01

    Full Text Available Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.

  10. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    Science.gov (United States)

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  11. In situ label-free cell viability assessment of nucleus pulposus tissue.

    Science.gov (United States)

    Dittmar, Roman; van Dijk, Bart G M; van Zandvoort, Marc A M J; Ito, Keita

    2014-04-01

    Regenerative medicine approaches aiming at treating degenerating intervertebral discs, a major cause of back pain, are increasingly tested in ex-vivo disc explant models mimicking in-vivo conditions. For assessing the efficacy of regenerative therapies, cell viability is commonly measured requiring specific labels to stain cells. Here, we demonstrate and evaluate how cellular auto-fluorescence can be utilized to non-invasively assess viability in disc tissue in-situ using label-free two-photon microscopy. Live and dead bovine disc cells (0% and 100% cell viability) from the nucleus pulposus were seeded into collagen gels and auto-fluorescence was characterized. Subsequently, nucleus pulposus explants were cultured for 6 days in media with different glucose supplementation (0, 0.25, 0.5, and 1 g/L) to induce different degrees of cell death. Then, samples were split and viability was assessed using label-free two-photon microscopy and conventional staining. Results show that live and dead nucleus pulposus cells systematically emit auto-fluorescent light with distinct characteristics. Cell viability values obtained with label-free microscopy did not significantly differ from those acquired with staining. In summary, monitoring auto-fluorescence facilitates accurate cell viability assessment in nucleus tissue requiring no additional dyes. Thus, this technique may be suitable for pre-clinical testing of regenerative therapies in nucleus pulposus cultures. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:545-550, 2014.

  12. Reproducible E. coli detection based on label-free SERS and mapping.

    Science.gov (United States)

    Yang, Danting; Zhou, Haibo; Haisch, Christoph; Niessner, Reinhard; Ying, Yibin

    2016-01-01

    The biosensing for rapid detection of bacteria based on surface-enhanced Raman scattering (SERS) has been widely explored for recent years. It is still a challenge to achieve a high sensitive, reproducible label free detection method for bacteria. In this work, a label-free SERS detection method of Escherichia coli based on incubation with silver colloid was reported. Optimized incubation conditions including shaking speed, time and temperature were used to help construct a rapid SERS method for E. coli analysis. It was found that the enhancement of the Raman signal of E. coli could be achieved to 1.8×10(4) cps (counts per second) with high reproducibility. Three strains of E. coli DSM 1116/498/5695 could be successfully discriminated using such SERS method combining discriminant analysis. Finally, the lowest concentration of E. coli at 1×10(5) cell/mL can be detected by SERS mapping. Thus, our detection method offers higher sensitivity and reproducibility compared to previously reported label free simple-mixing methods, opening an avenue for developing various SERS-based biosensor.

  13. Suitability of Cell-Based Label-Free Detection for Cytotoxicity Screening of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Claudia Meindl

    2013-01-01

    Full Text Available Cytotoxicity testing of nanoparticles (NPs by conventional screening assays is often complicated by interference. Carbon nanotubes (CNTs are particularly difficult to assess. To test the suitability of cell-based label-free techniques for this application, a panel of CNTs with different diameters and surface functionalizations was assessed by impedance-based technique (xCELLigence RTCA and automated microscopy (Cell-IQ compared to formazan bioreduction (MTS assay. For validation of the label-free systems different concentrations of ethanol and of amine (AMI polystyrene NPs were used. CNTs were evaluated in various cell lines, but only endothelial EAhy926 cells and L929 and V79 fibroblasts could be evaluated in all systems. Polystyrene particles obtained similar results in all assays. All systems identified thin (20 nm CNTs, but detection by xCELLigence system was less sensitive to CNT-induced cytotoxicity. Despite advantages, such as continuous monitoring and more detailed analysis of cytotoxic effects, label-free techniques cannot be generally recommended for cytotoxicity screening of NPs.

  14. A new strategy for label-free electrochemical immunoassay based on “gate-effect” of β-cyclodextrin modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Huan [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Li, Jianping, E-mail: likianping@263.net [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Zhang, Yun; Pan, Hongcheng [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Xu, Guobao, E-mail: guobaoxu@ciac.ac.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-05

    A novel label-free electrochemical immunoassay was developed for prostate-specific antigen (PSA) detection via using β-cyclodextrin (β-CD) assembled layer created gates for the electron transfer of probe. To construct the sensor, a gold electrode was self-assembled with monoclonal anti-PSA antibody labeled 6-mercapto-β-cyclodextrin. Interspaces among β-CD molecules in the layer were automatically formed on gold electrode, which act as the channel of the electron transfer of [Fe(CN){sub 6}]{sup 3−/4−} probe. When PSA bind with anti-PSA, it can block these channels on the electrode surface due to their steric hindrance effect, resulting in the decrease in redox current of the probe. Through such a gate-controlled effect, ultra trace amount of PSA may make the currents change greatly after the immunoreaction, which enhanced the signal-to-noise ratio to achieve the amplification effect. By evaluating the logarithm of PSA concentrations, the immunosensor had a good linear response to the current changes with a detection limit of 0.3 pg/mL (S/N = 3) when PSA concentration ranged from 1.0 pg/mL to 1.0 ng/mL. The label-free immunosensor exhibited satisfactory performances in sensitivity, repeatability as well as specificity. - Highlights: • A label-free PSA immunoassay was developed based on “gate-effect” amplification. • Interspaces among β-CD assembled for [Fe(CN){sub 6}]{sup 3−/4−} electron transfer were controlled by the immunoreaction. • Higher sensitivity was achieved with time and cost saving principle.

  15. Label-free Electrochemiluminescent Immunosensor for Detection of Prostate Specific Antigen based on Aminated Graphene Quantum Dots and Carboxyl Graphene Quantum Dots

    OpenAIRE

    Dan Wu; Yixin Liu; Yaoguang Wang; Lihua Hu; Hongmin Ma; Guoqin Wang; Qin Wei

    2016-01-01

    Prostate-specific antigen (PSA) was used as the model, an ultrasensitive label-free electrochemiluminescent immunosensor was developed based on graphene quantum dots. Au/Ag-rGO was sythsized and used as electrode material to load a great deal of graphene quantum dots due to the large surface area and excellent electron conductivity. After aminated graphene quantum dots and acarboxyl graphene quantum dots were modified onto the electrode, the ECL intensity was much high using K2S2O8 as coreact...

  16. Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz

    Science.gov (United States)

    Matheoud, Alessandro V.; Gualco, Gabriele; Jeong, Minki; Zivkovic, Ivica; Brugger, Jürgen; Rønnow, Henrik M.; Anders, Jens; Boero, Giovanni

    2017-05-01

    We report on the design and characterization of single-chip electron spin resonance (ESR) detectors operating at 50 GHz, 92 GHz, and 146 GHz. The core of the single-chip ESR detectors is an integrated LC-oscillator, formed by a single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide semiconductor field effect transistors used as negative resistance network. On the same chip, a second, nominally identical, LC-oscillator together with a mixer and an output buffer are also integrated. Thanks to the slightly asymmetric capacitance of the mixer inputs, a signal at a few hundreds of MHz is obtained at the output of the mixer. The mixer is used for frequency down-conversion, with the aim to obtain an output signal at a frequency easily manageable off-chip. The coil diameters are 120 μm, 70 μm, and 45 μm for the U-band, W-band, and the D-band oscillators, respectively. The experimental frequency noises at 100 kHz offset from the carrier are 90 Hz/Hz1/2, 300 Hz/Hz1/2, and 700 Hz/Hz1/2 at 300 K, respectively. The ESR spectra are obtained by measuring the frequency variations of the single-chip oscillators as a function of the applied magnetic field. The experimental spin sensitivities, as measured with a sample of α,γ-bisdiphenylene-β-phenylallyl (BDPA)/benzene complex, are 1 × 108 spins/Hz1/2, 4 × 107 spins/Hz1/2, 2 × 107 spins/Hz1/2 at 300 K, respectively. We also show the possibility to perform experiments up to 360 GHz by means of the higher harmonics in the microwave field produced by the integrated single-chip LC-oscillators.

  17. Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, Michael

    2007-11-11

    As military electronics tend to become lighter, smaller, thinner, and lower cost, the use of flip chip technology is becoming more common place to meet system requirements, yet survive environments. This paper explores the development of an optical flip chip application and details the selection/qualification of the substrate. The selected assembly consists of a procured 1x12 Vertical Cavity Surface Emitting Laser (VCSEL) die, having 80um diameter eutectic AuSn solder bumps at 250um pitch and flip chip bonded to a .006” thick 99.6% alumina substrate with .006” diameter thru holes and metallized with 500Å WTi, under minimum 2.0-3.0μm (80-120μ”) thin film deposited Au. An 8 run, 3 factor, 2 level Full Factorial Design of Experiments (DOE) was completed on procured detector arrays and procured ceramic substrates using the Suss Microtec FC150. The optimum settings for the peak temperature, peak time and final die z-height were selected using the ANOVA results and interaction plots. Additional studies were completed to qualify in-house produced substrates. An epoxy glob-top encapsulant was selected to dissipate stress on the flip chip solder joints and to enhance thermal shock performance.

  18. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  19. Label-free optical characterization methods for detecting amine silanization-driven gold nanoparticle self-assembly.

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2011-09-06

    Fluorescence lifetime correlation spectroscopy (FLCS) is presented as a single-step label-free detection method for probing the amine silanization-driven spontaneous 3D self-assembly of freestanding gold nanoparticles (GNPs) in solution. Unlike the conventional methods of studying self-assembly, for example, UV-vis spectroscopy and electron microscopy, FLCS utilizes the intrinsic gold fluorescence. The significance of this approach is to amalgamate the measurement of optical and hydrodynamic size properties simultaneously to achieve a more coherent description of the self-assembly pathway. GNP self-assembly has two-stage kinetics. Electrostatic interaction drives the initial amine silanization, and this is followed by siloxane bond formation between hydrolyzed ethoxy groups of GNP-attached APTES, resulting in the formation of micrometer-sized superstructures. The self-assembly has resulted in a 5-fold increase in the fluorescence lifetime (FL), and the FLCS study has shown an 8- to 10-fold increase in the diffusion coefficient using the pure diffusion model. This result is consistent with the transmission electron microscopy (TEM) observation, which shows a few hundred fold increase in the diameter due to assembly formation by the GNPs.

  20. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    Science.gov (United States)

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  1. Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

    Directory of Open Access Journals (Sweden)

    Yun-ah Han

    2013-03-01

    Full Text Available The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV, full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1 the PWV can be measured by the reflection peak measurement instruments, (2 the grating pitch and duty can be manufactured using conventional lithography systems, and (3 the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU−1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.

  2. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.

    Science.gov (United States)

    Tran, Nhu Hoa Thi; Kim, Jisoo; Phan, Thang Bach; Khym, Sungwon; Ju, Heongkyu

    2017-09-07

    We demonstrated modulation of the waveguide mode mismatch via liquid cladding of the controllable refractive index for label-free quantitative detection of concentration of chemical or biological substances. A multimode optical fiber with its core exposed was used as the sensor head with the suitable chemical modification of its surface. Injected analyte liquid itself formed the liquid cladding for the waveguide. We found that modulation of the concentration of analyte injected enables a degree of the waveguide mode mismatch to be controlled, resulting in sensitive change in optical power transmission, which was utilized for its real-time quantitative assay. We applied the device to quantitating concentration of glycerol and bovine serum albumin (BSA) solutions. We obtained experimentally the limit of detection (LOD) of glycerol concentration, 0.001% (volume ratio), corresponding to the resolvable index resolution of ∼1.02 × 10(-6) RIU (refractive index unit). The presented sensors also exhibited reasonably good reproducibility. In BSA detection, the sensor device response was sensitive to change in the refractive indices not only of liquid bulk but also of layers just above the sensing surface with higher sensitivity, providing the LOD experimentally as ∼3.7 ng/mL (mass coverage of ∼30 pg/mm(2)). A theoretical model was also presented to invoke both mode mismatch modulation and evanescent field absorption for understanding of the transmission change, offering a theoretical background for designing the sensor head structure for a given analyte. Interestingly, the device sensing length played little role in the important sensor characteristics such as sensitivity, unlike most of the waveguide-based sensors. This unraveled the possibility of realizing a highly simple structured label-free sensor for point-of-care testing in a real-time manner via an optical waveguide with liquid cladding. This required neither metal nor dielectric coating but still produced

  3. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunxia Luan

    2015-12-01

    Full Text Available A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA was developed using a cationic polymer and gold nanoparticles (AuNPs. The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  4. CSI-FID: high throughput label-free detection of DNA binding molecules.

    Science.gov (United States)

    Hauschild, Karl E; Stover, James S; Boger, Dale L; Ansari, Aseem Z

    2009-07-15

    Determining the sequence specifity of DNA binding molecules is a non-trivial task. Here we describe the development of a platform for assaying the sequence specificity of DNA ligands using label free detection on high density DNA microarrays. This is achieved by combining Cognate Site Identification (CSI) with Fluorescence Intercalation Displacement (FID) to create CSI-FID. We use the well-studied small molecule DNA ligand netropsin to develop this high throughput platform. Analysis of the DNA binding properties of protein- and small molecule-based libraries with CSI-FID will advance the development of genome-anchored molecules for therapeutic purposes.

  5. Comparison of serum fractionation methods by data independent label-free proteomics

    Directory of Open Access Journals (Sweden)

    D. Baiwir

    2015-12-01

    Full Text Available Off-line sample prefractionations applied prior to biomarker discovery proteomics are options to enable more protein identifications and detect low-abundance proteins. This work compared five commercial methods efficiency to raw serum analysis using label-free proteomics. The variability of the protein quantities determined for each process was similar to the unprefractionated serum. A 49% increase in protein identifications and 12.2% of reliable quantification were obtained. A 61 times lower limit of protein quantitation was reached compared to protein concentrations observed in raw serum. The concentrations of detected proteins were confronted to estimated reference values.

  6. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  7. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    Science.gov (United States)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  8. Physical characterization of hematopoietic stem cells using multidirectional label-free light scatterings.

    Science.gov (United States)

    Shahin, Hesam; Gupta, Manisha; Janowska-Wieczorek, Anna; Rozmus, Wojciech; Tsui, Ying Y

    2016-12-12

    An experimental setup capable of measuring simultaneous 2D scattered light angular distribution from two directions to study cell morphology without the use of bio-labels was developed. Experiments with hematopoietic stem cells (CD34+ cells) show good agreement with detailed numerical simulations of light scattering. Numerical simulations and computer models of cells are used to identify physical features of cells with the largest scattering cross sections. This allows for determination of size, geometry of the nucleus and distribution of mitochondria in hematopoietic stem cells by means of our label-free method.

  9. Label-free optical quantification of structural alterations in Alzheimer’s disease

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, Jaehwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, Yongkeun

    2016-08-01

    We present a wide-field quantitative label-free imaging of mouse brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved by using the modified the scattering-phase theorem, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer’s disease.

  10. Label-free discrimination of normal and fibroadenomal breast tissues using second harmonic generation imaging.

    Science.gov (United States)

    Zheng, Liqin; Zhuo, Shuangmu; Chen, Gang; Zhu, Xiaoqin; Jiang, Xingshan; Yan, Jun; Chen, Jianxin; Xie, Shusen

    2011-01-01

    Early detection of fibroadenoma (FA) is critical for preventing subsequent breast cancer. In this work, we show that label-free second harmonic generation (SHG) imaging is feasible and effective in quantitatively differentiating the fibroadenomal tissue from normal breast tissue. With the advent of the clinical portability of miniature SHG microscopy, we believe that the technique has great potential in offering a noninvasive in vivo imaging tool for early detection of FA and monitoring the treatment responses of FA in clinics. Copyright © 2011 Wiley Periodicals, Inc.

  11. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  12. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    Science.gov (United States)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  13. High-contrast grating resonators for label-free detection of disease biomarkers

    Science.gov (United States)

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-06-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.

  14. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles.

    Science.gov (United States)

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang

    2015-12-10

    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  15. Label-free single molecule imaging with numerical aperture-shaped interferometric scattering microscopy

    CERN Document Server

    Cole, Daniel; Weigel, Alexander; Kukura, P

    2016-01-01

    Our ability to optically interrogate nanoscopic objects is controlled by the difference between their extinction cross sections and the diffraction limited area to which light can be confined in the far field. We show that a partially transmissive spatial mask placed near the back focal plane of a high numerical aperture microscope objective enhances the extinction contrast of a scatterer near an interface by approximately $T^{-1/2}$, where T is the transmissivity of the mask. Numerical aperture based differentiation of background from scattered light represents a general approach to increasing extinction contrast and enables routine label free imaging down to the single molecule level.

  16. Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy

    Science.gov (United States)

    Wu, Xiaojun; E, Yiwen; Xu, Xinlong; Wang, Li

    2012-07-01

    We demonstrated the feasibility of applying terahertz time-domain spectroscopy (THz-TDS) to monitor the molecular reactions in aqueous solutions of anticancer drug oxaliplatin with λ-DNA and macrophages DNA. The reaction time dependent refractive index and absorption coefficient were extracted and analyzed. The reaction half-decaying time of about 4.0 h for λ-DNA and 12.9 h for M-DNA was established. The results suggest that the THz-TDS detection could be an effective label-free technique to sense the molecular reaction in aqueous solutions and could be very useful in biology, medicine, and pharmacy industry.

  17. Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease

    Science.gov (United States)

    Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu

    2015-06-01

    A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.

  18. Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine

    Science.gov (United States)

    Sanles-Sobrido, Marcos; Rodríguez-Lorenzo, Laura; Lorenzo-Abalde, Silvia; González-Fernández, África; Correa-Duarte, Miguel A.; Alvarez-Puebla, Ramón A.; Liz-Marzán, Luis M.

    2009-09-01

    Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or in biological fluids.Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also

  19. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    Science.gov (United States)

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  20. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine

    Science.gov (United States)

    Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan

    2015-02-01

    A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.

  1. Label-free optical detection of cells grown in 3D silicon microstructures.

    Science.gov (United States)

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  2. Nanogap biosensors for electrical and label-free detection of biomolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kyu Kim, Sang; Cho, Hyunmin; Park, Hye-Jung; Kwon, Dohyoung; Min Lee, Jeong; Hyun Chung, Bong, E-mail: chungbh@kribb.re.k [BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, PO Box 115, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2009-11-11

    We demonstrate nanogap biosensors for electrical and label-free detection of biomolecular interactions. Parallel fabrication of nanometer distance gaps has been achieved using a silicon anisotropic wet etching technique on a silicon-on-insulator (SOI) wafer with a finely controllable silicon device layer. Since silicon anisotropic wet etching resulted in a trapezoid-shaped structure whose end became narrower during the etching, the nanogap structure was simply fabricated on the device layer of a SOI wafer. The nanogap devices were individually addressable and a gap size of less than 60 nm was obtained. We demonstrate that the nanogap biosensors can electrically detect biomolecular interactions such as biotin/streptavidin and antigen/antibody pairs. The nanogap devices show a current increase when the proteins are bound to the surface. The current increases proportionally depending upon the concentrations of the molecules in the range of 100 fg ml{sup -1}-100 ng ml{sup -1} at 1 V bias. It is expected that the nanogap developed here could be a highly sensitive biosensor platform for label-free detection of biomolecular interactions.

  3. Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics

    Science.gov (United States)

    Sohn, Lydia L.

    2013-03-01

    Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine

  4. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity.

    Science.gov (United States)

    Du, Jiao; Xu, Qinfeng; Lu, Xiaoquan; Zhang, Chun-yang

    2014-08-19

    Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring of the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. With the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simpler, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.

  5. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy

    Science.gov (United States)

    Witte, Stefan; Negrean, Adrian; Lodder, Johannes C.; de Kock, Christiaan P. J.; Testa Silva, Guilherme; Mansvelder, Huibert D.; Louise Groot, Marie

    2011-01-01

    The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain. PMID:21444784

  6. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis.

    Science.gov (United States)

    De, Arpita; van Nieuwkasteele, Jan; Carlen, Edwin T; van den Berg, Albert

    2013-06-07

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection system that eliminates erroneous sensor responses from sample switching due to flow rate fluctuations and provides precise sample volumes down to 10 nl. Biochemical sensing is demonstrated with real-time 15-mer DNA-PNA (peptide nucleic acid) duplex hybridization measurements from different sample concentrations in a low ionic strength, and the equilibrium dissociation constant KD ≈ 140 nM has been extracted from the experimental data using the first order Langmuir binding model. Chemical sensing is demonstrated with pH measurements from different injected samples in flow that have sensitivities consistent with the gate-oxide materials. A differential sensor measurement configuration results in a 30× reduction in sensor drift. The integrated label-free analysis platform is suitable for a wide range of small volume chemical and biochemical analyses.

  7. Label-free detection of C-reactive protein using an electrochemical DNA immunoassay

    Directory of Open Access Journals (Sweden)

    Temsiri Songjaroen

    2016-05-01

    Full Text Available A label-free electrochemical immunoassay that combines DNA-directed immobilization (DDI with electrochemical impedance spectroscopy (EIS on microwire sensors is reported for the detection of C-reactive protein (CRP. CRP is an acute-phase protein that is strongly correlated with systemic inflammation. Since inflammation plays a role in pathogenesis of cardiovascular diseases, CRP can be used to predict the likelihood of coronary events. To demonstrate the new chemistry, 25-μm Au electrodes were modified with single strand DNA (ssDNA and exposed to a solution containing complementary ssDNA conjugated to monoclonal anti-CRP. The charge-transfer resistance of the [Fe(CN6]3−/4− redox couple was used to determine the CRP concentration after binding. A stepwise increase in the charge transfer resistance was observed using EIS for each modification step, ssDNA, ssDNA-anti-CRP hybridization and the final CRP capture. Cyclic voltammetry (CV was used to verify the EIS results, and showed an increase in peak potential splitting in a similar stepwise manner for each modification step. Finally, fluorescence microscopy was used to confirm the DNA hybridization and CRP binding. Standard addition of CRP revealed that EIS could be used to detect CRP at clinically relevant levels in serum samples. This new form of electrochemical DNA immunoassay (eDI has significant potential as a simple, label-free sensor for proteins in microfluidic devices.

  8. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.

    Science.gov (United States)

    Barrios, C A; Zhenhe, C; Navarro-Villoslada, F; López-Romero, D; Moreno-Bondi, M C

    2011-01-15

    Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.

  9. A Label-Free Biosensing Platform Using a PLL Circuit and Biotin-Streptavidin Binding System.

    Science.gov (United States)

    Yunseog Hong; Hee-Jo Lee; Sang-Gyu Kim; Byung-Hyun Kim; Gi-Ho Yun; Jong-Gwan Yook

    2015-06-01

    This paper proposes a novel RF biosensor that utilizes a frequency synthesizer associated with a microstrip open-loop resonator for label-free biomolecular detection. The RF biosensor consists mainly of a resonance-assisted transducer and a phase locked loop (PLL) circuit. In this work, the performance of the RF biosensor is validated using the well-known biotin-streptavidin binding system. When biotin is bound to streptavidin, the input impedance of the resonator is varied, resulting in a change in the oscillation frequency. The concentration of the streptavidin is ultimately detected by a voltage signal of the PLL's loop filter with simple measurement equipment. According to the experimental results, the RF biosensor has revealed excellent sensitivity ( ~ 61 kHz/ngml(-1)) and a low detection limit ( ~ 1 ng/ml), as well as a rapid response. These results demonstrate that the RF biosensor can be an effective sensing platform for label-free detection in a biomolecular binding system.

  10. Ultrasensitive Sensing Material Based on Opal Photonic Crystal for Label-Free Monitoring of Transferrin.

    Science.gov (United States)

    Wu, Enqi; Peng, Yuan; Zhang, Xihao; Bai, Jialei; Song, Yanqiu; He, Houluo; Fan, Longxing; Qu, Xiaochen; Gao, Zhixian; Liu, Ying; Ning, Baoan

    2017-02-22

    A new opal photonic crystal (PC) sensing material, allowing label-free detection of transferrin (TRF), is proposed in the current study. This photonic crystal was prepared via a vertical convective self-assembly method with monodisperse microspheres polymerized by methyl methacrylate (MMA) and 3-acrylamidophenylboronic acid (AAPBA). FTIR, TG, and DLS were used to characterize the components and particle size of the monodisperse microspheres. SEM was used to observe the morphology of the PC. The diffraction peak intensity decreases as the TRF concentration increase. This was due to the combination of TRF to the boronic acid group of the photonic crystal. After condition optimization, a standard curve was obtained and the linear range of TRF concentration was from 2 × 10(-3) ng/mL to 200 ng/mL. Measurement of TRF concentration in simulated urine sample was also investigated using the sensing material. The results indicated that the PC provided a cheap, label-free, and easy-to-use alternative for TRF determination in clinical diagnostics.

  11. Label-free detection of cardiac troponin I with a photonic crystal biosensor.

    Science.gov (United States)

    Zhang, Bailin; Morales, Andres W; Peterson, Ralph; Tang, Liang; Ye, Jing Yong

    2014-08-15

    A biosensor has been developed with a photonic crystal structure used in a total-internal-reflection (PC-TIR) configuration for label-free detection of a cardiac biomarker: Troponin I (cTnI). In contrast to a conventional optical microcavity that has a closed structure with its cavity layer sandwiched between two high-reflection surfaces, the PC-TIR configuration creates a unique open microcavity, which allows its cavity layer (sensing layer) to be easily functionalized and directly exposed to analyte molecules for bioassays. In this study, a PC-TIR sensor has been used for the label-free measurements of cardiac biomarkers by monitoring the changes in the resonant condition of the cavity due to biomolecular binding processes. Antibodies against cTnI are immobilized on the sensor surface for specific detection of cTnI with a wide range of concentrations. Detection limit of cTnI with a concentration as low as 0.1ngmL(-1) has been achieved.

  12. Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction.

    Science.gov (United States)

    Hiep, Ha Minh; Kerman, Kagan; Endo, Tatsuro; Saito, Masato; Tamiya, Eiichi

    2010-02-19

    In this report, Au-coated nanostructured biochip with functionalized thiolated primers on its surface is developed for label-free and real-time optical detection of polymerase chain reaction (PCR). A PCR chamber of 150 microm in thickness containing Au-coated nanostructured substrate in the bottom layer was bordered with SU-8 100 walls. After immobilization of 5'-thiolated primers on the surface, simultaneous DNA amplification and detection were performed without any labeled molecules via the relative reflected intensity (RRI) of Au-coated nanostructured substrate. When human genomic DNA at several concentrations of 0.2, 0.5 and 1 ng microL(-1) was included in the initial DNA samples, the increases in the RRI peak values were clearly observed with the increasing PCR cycle numbers. We found that the starting point of the optical signal, which was divergent from the background in our PCR biochip, was around 3-4 cycles, much lower than that of the fluorescent real-time PCR analysis (around 23-25 cycles). Our proposed PCR device using Au-coated nanostructured substrate holds noteworthy promise for rapid, label-free and real-time DNA detection for point-of-care testing (POCT) applications.

  13. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  14. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Steffen Dietzel

    Full Text Available Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.

  15. Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography

    Science.gov (United States)

    Leitgeb, Rainer A.; Szkulmowski, Maciej; Blatter, Cedric; Wojtkowski, Maciej

    Information about tissue perfusion and the vascular structure is certainly most important for assessment of tissue state or personal health and the diagnosis of any pathological conditions. It is therefore of key medical interest to have tools available for both quantitative blood flow assessment as well as qualitative vascular imaging. The strength of optical techniques is the unprecedented level of detail even for small capillary structures or microaneurysms and the possibility to combine different techniques for additional tissue spectroscopy giving insight into tissue metabolism. There is an immediate diagnostic and pharmacological demand for high-resolution, label-free, tissue angiography and flow assessment that in addition allow for precise depth gating of flow information. The most promising candidate is Doppler optical coherence tomography (DOCT) being noncontact, label free, and without employing hazardous radiation. DOCT provides fully quantitative volumetric information about blood flow together with the vascular and structural anatomy. Besides flow quantification, analysis of OCT signal fluctuations allows to contrast moving scatterers in tissue such as red blood cells from static tissue. This allows for non-invasive optical angiography and yields high resolution even for smallest capillaries. Because of the huge potential of DOCT and lable-free optical angiography for diagnosis, the last years saw a rapid increase of publications in this field with many different approaches. The present chapter gives an overview over existing Doppler OCT approaches and angiography techniques. It furthermore discusses limitations and noise issues, and gives examples for angiography in the eye and the skin.

  16. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells.

    Science.gov (United States)

    Qi, Dandan; Feng, Jingwen; Yang, Chengwen; Jin, Changrong; Sa, Yu; Feng, Yuanming

    2016-10-01

    Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.

  17. Novel optical approaches for label-free quantification of nano-cytotoxic effects

    Science.gov (United States)

    Mues, Sarah; Antunovic, Jan; Ketelhut, Steffi; Kemper, Björn; Schnekenburger, Jürgen

    2016-03-01

    Commonly used cytotoxicity assays to determine the formation of reactive oxygen species, cell viability or cell death are often affected by applied nanomaterials, which lead to false-positive or false-negative results. Thus, novel nanomaterial toxicity testing strategies that allow for high nanomaterial doses to determine Low Effect Levels (LOEL) even of low toxic materials are of high interest. We demonstrate novel approaches to quantify cytotoxic effects with new parameter sets such as cellular refractive index, volume, density and dry mass that are obtained by digital holographic microscopy (DHM). Furthermore, we correlate results obtained from spherical (NM 300) and rod shaped (NM 302) silver nanomaterials with established cell viability and cell death assays. Moreover, in a label-free flow cytometry configuration, cell-nanoparticle-interaction-kinetics were determined by side scatter signal analysis. We demonstrate that silver spheres show a higher cytotoxicity than silver rods and found that this effect correlates with a decrease of the intracellular refractive index and a decreased temporal development of dry mass and cell covered surface area indicating reduced cell viability and increased cell death. Results from side scatter analysis suggest a dose-dependent uptake kinetics of both materials that correlates with cytotoxicity data of the established assays. Taken together, our results demonstrate DHM and flow cytometry as promising novel label-free tools for nanomaterial toxicity and cell particle interaction studies.

  18. Label-free fluorescence detection of melamine with a truncated aptamer.

    Science.gov (United States)

    Gu, Chunmei; Xiang, Yu; Guo, Hongli; Shi, Hanchang

    2016-07-21

    The 2008 Chinese milk scandal caused by the adulteration of melamine encouraged the public to pay attention to melamine detection in milk products and other food stuffs. To allow simple and rapid detection of melamine, we previously isolated an 88 nt melamine aptamer (called Rd29C33) using the structure-switching SELEX. However, this 88 nt oligonucleotide is costly to synthesize, and may also complicate the rational design of biosensors for melamine detection. To overcome this obstacle, we truncated Rd29C33 at several sites, and a 34 nt Rd29C33-T7 melamine aptamer was finally found to show comparable binding affinity and better selectivity to melamine compared to the original 88 nt Rd29C33. Furthermore, a label-free bioassay method for melamine detection was designed by using Rd29C33-T7 and thiazole orange (TO). The addition of melamine to a mixture of Rd29C33-T7 and TO caused the release of TO from Rd29C33-T7, resulting in a decrease of the fluorescence intensity of the solution. A detection limit of 0.12 μM for melamine was achieved using this label-free method. Good recovery ranging from 82.6% to 97.2% for melamine detection in whole milk samples suggested the promise of this bioassay method for application in monitoring melamine in real food stuffs.

  19. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance.

    Science.gov (United States)

    Martínez-Rivas, Adrián; Chinestra, Patrick; Favre, Gilles; Pinaud, Sébastien; Séverac, Childérick; Faye, Jean-Charles; Vieu, Christophe

    2010-09-07

    We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv)-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM) to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane) (<2 nm thick) and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.

  20. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  1. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  2. Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods.

    Science.gov (United States)

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Dorssaeler, Alain Van; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-03-01

    This data article describes a controlled, spiked proteomic dataset for which the "ground truth" of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It can be used to objectively evaluate bioinformatic pipelines for label-free quantitative analysis, and their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. More specifically, it can be useful for tuning software tools parameters, but also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. The raw MS files can be downloaded from ProteomeXchange with identifier PXD001819. Starting from some raw files of this dataset, we also provide here some processed data obtained through various bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, to exemplify the use of such data in the context of software benchmarking, as discussed in details in the accompanying manuscript [1]. The experimental design used here for data processing takes advantage of the different spike levels introduced in the samples composing the dataset, and processed data are merged in a single file to facilitate the evaluation and illustration of software tools results for the detection of variant proteins with different absolute expression levels and fold change values.

  3. Design Low Crosstalk Ring-Slot Array Structure for Label-Free Multiplexed Sensing

    Directory of Open Access Journals (Sweden)

    Lijun Huang

    2014-08-01

    Full Text Available We theoretically demonstrate a low crosstalk ring-slot array structure used for label-free multiplexed sensing. The proposed sensors array is based on an array of three ring-slot and input/output line defect coupling waveguides. Each ring-slot cavity has slightly different cavity spacing and different resonant frequency. Results obtained using two dimensional finite-difference time-domain (2D-FDTD simulation indicate that the resonant frequencies of each sensor unit in response to the refractive index variations are independent. The refractive index sensitivity is 134 ~ 145.5 nm/RIU (refractive index unit and the Q factors more than 104 can be achieved. The calculated detect limit lower than 1.13 × 10−4 RIU is obtained. In addition, an extremely small crosstalk lower than −25.8 dB is achieved among the array of three ring-slot cavities. The results demonstrate that this multiplexed sensor array is a promising platform for integrated optical devices and enables highly parallel label-free detection.

  4. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  5. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-07-01

    Full Text Available Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  6. Label-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays

    Science.gov (United States)

    Li, Yifen; Syed, Lateef; Liu, Jianwei; Hua, Duy H.; Li, Jun

    2012-01-01

    We demonstrate the feasibility of a label-free electrochemical method to detect the kinetics of phosphorylation and dephosphorylation of surface-attached peptides catalyzed by kinase and phosphatase, respectively. The peptides with a sequence specific to c-Src tyrosine kinase and protein tyrosine phosphatase 1B (PTP1B) were first validated with ELISA-based protein tyrosine kinase assay and then functionalized on vertically aligned carbon nanofiber (VACNF) nanoelectrode arrays (NEAs). Real-time electrochemical impedance spectroscopy (REIS) measurements showed reversible impedance changes upon the addition of c-Src kinase and PTP1B phosphatase. Only a small and unreliable impedance variation was observed during the peptide phosphorylation, but a large and fast impedance decrease was observed during the peptide dephosphorylation at different PTP1B concentrations. The REIS data of dephosphorylation displayed a well-defined exponential decay following the Michaelis-Menten heterogeneous enzymatic model with a specific constant, kcat/Km, of (2.1 ± 0.1) × 107 M−1 s−1. Consistent values of the specific constant was measured at PTP1B concentration varying from 1.2 to 2.4 nM with the corresponding electrochemical signal decay constant varying from 38.5 to 19.1 s. This electrochemical method can be potentially used as a label-free method for profiling enzyme activities in fast reactions. PMID:22935373

  7. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Science.gov (United States)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  8. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007 (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Khare, Shashi [National Centre for Disease Control, Sham Nath Marg, Delhi 110054 (India); Mulchandani, Ashok [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States); Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-11-24

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.

  9. A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination.

    Science.gov (United States)

    Liu, Yong; Yan, Kai; Okoth, Otieno Kevin; Zhang, Jingdong

    2015-12-15

    A photoelectrochemical (PEC) sensing platform for chloramphenicol (CAP) detection was constructed using nitrogen-doped graphene quantum dots (N-GQDs) as transducer species and label-free aptamer as biological recognition element. N-GQDs, synthesized via a facile one-step hydrothermal method, were explored to achieve highly efficient photon-to-electricity conversion under visible light irradiation. The obtained N-GQDs were characterized by transmission electron microscopy (TEM), which displayed a narrow size distribution with a mean diameter of 2.14 nm. The X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectroscopic (FT-IR) analysis confirmed that nitrogen was successfully doped in GQDs. The UV-visible absorption spectra indicated that nitrogen doping obviously enhanced the absorption of GQDs in visible light region. As a result, the PEC activity of GQDs was promoted by nitrogen doping. Additionally, the π-conjugated structure of N-GQDs provided an excellent platform for aptamer immobilization via π-π stacking interaction. Such an aptamer/N-GQDs based sensor showed a linear PEC response to CAP concentration in the range of 10-250 nM with a detection limit (3 S/N) of 3.1 nM. The developed PEC aptasensor exhibited high sensitivity and selectivity, good reproducibility and high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Application on Gold Nanoparticles-Dotted 4-Nitrophenylazo Graphene in a Label-Free Impedimetric Deoxynivalenol Immunosensor

    Directory of Open Access Journals (Sweden)

    Christopher Edozie Sunday

    2015-02-01

    Full Text Available In this paper, we report a new concept to construct a label-free electrochemical inhibition-based immunosensor for the detection of the mycotoxin deoxynivalenol (DON in cereal samples. The electrochemical impedance spectroscopy of tris(bipyridine ruthenium (II chloride was used as a marker enhanced with gold nanoparticles-dotted 4-nitrophenylazo functionalized graphene (AuNp/G/PhNO2 nanocatalyst mediated in Nafion on a glassy carbon electrode. Under the optimized conditions, the formation of immunocomplexes inhibited electron flow and increased the charge transfer resistance of the sensing interface linearly. The change in impedance was proportional to DON concentrations in the range of 6–30 ng/mL with a sensitivity and detection limit of 32.14 ΩL/ng and 0.3 µg/mL, respectively, which compares favorably with the ELISA result. The proposed sensor had a stability of 80.3%, good precision and selectivity in DON standard solution containing different interfering agents, indicating promising application prospect for this strategy in designing impedimetric, electrochemiluminescent, voltammetric or amperometric sensors.

  11. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jin-Bao [School of Pharmacy, Weifang Medical University, Weifang 261053 (China); Tang, Ying [Affiliated Hospital of Weifang Medical University, Weifang 261041 (China); Yang, Hong-Ming, E-mail: yanghongming2006@sohu.com [School of Pharmacy, Weifang Medical University, Weifang 261053 (China)

    2015-02-15

    Highlights: • An efficient signal amplification strategy for label-free EIA is proposed. • Divalent biotinylated AP and monovalent biotinylated ZZ were prepared via Avitag–BirA system. • The above site-specific biotinylated fusion proteins form complex via SA–biotin interaction. • The mechanism relies on the ZZ–Avi-B/SA/AP–(Avi-B){sub 2} complex. • The analytical signals are enhanced (32-fold) by the proposed strategy. - Abstract: Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag–BirA system. Through the high streptavidin (SA)–biotin interaction, the divalent biotinylated APs were clustered in the SA–biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ–AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable

  12. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  13. Micro-Radiography Using an Electron Linac Source and Ram Memory Chip Detectors

    Science.gov (United States)

    1990-06-01

    fr puNk elea;Otaw PONL J~ALLA~olU~fllde6 June 1990on (Izn ABSTRACT Radiography using a pulsed electron (LINAC) source and a semiconductor memory chip...a variety of shapes (circular holes, slits, etc.). The exceptional resolution of the system (owing to the extremely small size of individual bits in...Insights Inc. (5). These physical layouts appear in figs 1 and 2. It is from these layouts that an estimation of the pixel size for each device can

  14. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers.

    Science.gov (United States)

    Labas, Valérie; Grasseau, Isabelle; Cahier, Karine; Gargaros, Audrey; Harichaux, Grégoire; Teixeira-Gomes, Ana-Paula; Alves, Sabine; Bourin, Marie; Gérard, Nadine; Blesbois, Elisabeth

    2014-12-01

    Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus) and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC-MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC) and extracted ion chromatograms (XIC) methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ) and seminal plasma (SP). We also show differential analyses of chicken semen (SPZ and corresponding SP) from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  15. OCT-based label-free in vivo lymphangiography within human skin and areola

    Science.gov (United States)

    Baran, Utku; Qin, Wan; Qi, Xiaoli; Kalkan, Goknur; Wang, Ruikang K.

    2016-02-01

    Due to the limitations of current imaging techniques, visualization of lymphatic capillaries within tissue in vivo has been challenging. Here, we present a label-free high resolution optical coherence tomography (OCT) based lymphangiography (OLAG) within human skin in vivo. OLAG enables rapid (~seconds) mapping of lymphatic networks, along with blood vessel networks, over 8 mm x 8 mm of human skin and 5 mm x 5 mm of human areola. Moreover, lymphatic system’s response to inflammation within human skin is monitored throughout an acne lesion development over 7 days. The demonstrated results promise OLAG as a revolutionary tool in the clinical research and treatment of patients with pathologic conditions such as cancer, diabetes, and autoimmune diseases.

  16. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

    Science.gov (United States)

    Wang, Han-Wei; Le, Thuc T; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  17. High throughput label-free platform for statistical bio-molecular sensing.

    Science.gov (United States)

    Bosco, Filippo G; Hwu, En-Te; Chen, Ching-Hsiu; Keller, Stephan; Bache, Michael; Jakobsen, Mogens H; Hwang, Ing-Shouh; Boisen, Anja

    2011-07-21

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing cantilever based sensors. These sensors have often been acclaimed to facilitate highly parallelized operation. Unfortunately, so far no concept has been presented which offers large datasets as well as easy liquid sample handling. We use optics and mechanics from a DVD player to handle liquid samples and to read-out cantilever deflection and resonant frequency. Also, surface roughness is measured. When combined with cantilever deflection the roughness is discovered to hold valuable additional information on specific and unspecific binding events. In a few minutes, 30 liquid samples can be analyzed in parallel, each by 24 cantilever-based sensors. The approach was used to detect the binding of streptavidin and antibodies.

  18. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  19. Limitations of Label-Free Sensors in Serum Based Molecular Diagnostics

    CERN Document Server

    Varma, Manoj M

    2015-01-01

    Immunoassay formats applicable for clinical or point-of-care diagnostics fall into two broad classes. One which uses labeled secondary antibodies for signal transduction and the other which does not require the use of any labels. Comparison of the limits of detection (LoD) reported by these two sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Further, a vast majority of commercial tests and recent examples of technology translations are based on labeled assay formats. In light of this data, it is argued that extension of traditional labeled approaches and enhancing their functionality may have better clinical impact than the development of newer label-free techniques.

  20. Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA.

    Science.gov (United States)

    Haring, Alexander P; Cesewski, Ellen; Johnson, Blake N

    2017-01-01

    This chapter reviews the design, fabrication, characterization, and application of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The sensor transduction mechanism, sensing principle, and mode of operation are discussed. Bio-recognition strategies and surface functionalization methods for detection of DNA and RNA are discussed with a focus on self-assembly-based approaches. Methods for the verification of biosensor response via secondary binding assays, reversible binding assays, and the integration of complementary transduction mechanisms are presented. Sensing applications for medical diagnostics, food safety, and environmental monitoring are provided. PEMC sensor technology provides a robust platform for the real-time, label-free detection of DNA and RNA in complex matrices over nanomolar (nM) to attomolar (aM) concentration ranges.

  1. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    Science.gov (United States)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  2. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers.

    Science.gov (United States)

    Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

    2010-08-30

    There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical biosensors based on applying the analyte onto a surface-functionalized photonic crystal slab and performing a transmission measurement with two crossed polarization filters. This dark-field approach allows for efficient background suppression as only the photonic crystal guided-mode resonances interacting with the functionalized surface experience significant polarization rotation. We present a compact biosensor demonstrator using a low-cost light emitting diode and a simple photodiode capable of detecting the binding kinetics of a 2.5 nM solution of the protein streptavidin on a biotin-functionalized photonic crystal surface.

  3. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    Science.gov (United States)

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid.

  4. Label-Free Vapor Selectivity in Poly(p-Phenylene Oxide) Photonic Crystal Sensors.

    Science.gov (United States)

    Lova, Paola; Bastianini, Chiara; Giusto, Paolo; Patrini, Maddalena; Rizzo, Paola; Guerra, Gaetano; Iodice, Mario; Soci, Cesare; Comoretto, Davide

    2016-11-23

    The lack of sensors for low cost, extensive, and continuous detection of vapor pollutants is a serious concern for health and safety in industrialized urban areas. Colorimetric sensors, such as distributed Bragg reflectors made of polymers, could achieve this task thanks to their low cost and easy signal transduction but are typically affected by low vapor permeability and lack of selectivity without chemical labeling. Here we demonstrate all-polymer Bragg multilayers for label-free selective detection of organic volatile compounds. The system exploits the ability of amorphous poly(p-phenylene oxide), PPO, to uptake large amount of guest molecules and to form cocrystalline phases with distinct optical properties. Bragg stacks embedding PPO active layers show selective colorimetric response to vapors of carbon tetrachloride and aromatic homologues, which can be revealed by the naked eye.

  5. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays.

    Science.gov (United States)

    Cunningham, Brian T

    2010-04-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described.

  6. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    Directory of Open Access Journals (Sweden)

    PingAn Hu

    2010-05-01

    Full Text Available Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  7. Analytical modeling of label free biosensor using charge plasma based gate underlap dielectric modulated MOSFET

    Science.gov (United States)

    Chanda, Manash; Das, Rahul; Kundu, Atanu; Sarkar, Chandan K.

    2017-04-01

    In this paper charge plasma based dielectric modulated four gated MOSFET (CP-GUDM-MOSFET) has been proposed for the efficacy of label free electrical detection of the biomolecules. To achieve low thermal budgeting, charge-plasma concept is employed using appropriate metal work function electrodes. Extensive simulations have been done using the Sentaurus TCAD to validate the proposed architecture. An analytical modeling has also been done on surface potential and drain current to consolidate the feasibility of the structure. Significant improvements in the on current (ION) and threshold voltage have been observed in presence of the charged biomolecules. The performance of proposed structure is found to be sensitive to gate-oxide thickness variations. High sensitivity of the proposed CP-GUDM-MOSFET based biosensor with low thermal budgeting scheme; simple structure and its compatibility with the existing CMOS processes make it an exciting alternative to the conventional FET-based biosensors.

  8. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  9. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging.

    Science.gov (United States)

    Yang, Yaliang; Li, Fuhai; Gao, Liang; Wang, Zhiyong; Thrall, Michael J; Shen, Steven S; Wong, Kelvin K; Wong, Stephen T C

    2011-08-01

    We present a label-free, chemically-selective, quantitative imaging strategy to identify breast cancer and differentiate its subtypes using coherent anti-Stokes Raman scattering (CARS) microscopy. Human normal breast tissue, benign proliferative, as well as in situ and invasive carcinomas, were imaged ex vivo. Simply by visualizing cellular and tissue features appearing on CARS images, cancerous lesions can be readily separated from normal tissue and benign proliferative lesion. To further distinguish cancer subtypes, quantitative disease-related features, describing the geometry and distribution of cancer cell nuclei, were extracted and applied to a computerized classification system. The results show that in situ carcinoma was successfully distinguished from invasive carcinoma, while invasive ductal carcinoma (IDC) and invasive lobular carcinoma were also distinguished from each other. Furthermore, 80% of intermediate-grade IDC and 85% of high-grade IDC were correctly distinguished from each other. The proposed quantitative CARS imaging method has the potential to enable rapid diagnosis of breast cancer.

  10. Label-free colorimetric estimation of proteins using nanoparticles of silver

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Shrivastava; Debabrata Dash

    2010-01-01

    Metallic nanoparticles have received considerable attention in bioassays and diagnostics due to their unique surface plasmon resonance (SPR) properties. Gold nanoparticles have been employed for the development of SPR-based colorimetric bioassays. In the present report we have described a sensitive colorimetric approach for estimation of proteins, within a detection limit of 10~80 μg/mL, using unmodified silver nanoparticles. Besides the common advantages of colorimetric assay such as simplicity, high sensitivity, and low cost, our method has a label-free design and provides an important and attractive alternative to classical sensing probes and systems. The present work will contribute to the development of nanotechnology-based diagnostic tools.

  11. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    Science.gov (United States)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  12. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Directory of Open Access Journals (Sweden)

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  13. A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans.

    Science.gov (United States)

    Malvano, Francesca; Albanese, Donatella; Pilloton, Roberto; Di Matteo, Marisa

    2016-12-01

    In this work the development and optimization of an impedimetric label free immunosensor for the detection of Ochratoxin A (OTA) is reported. Two antibody immobilization methods (oriented and not oriented) were compared highlighting a lower limit of detection (5pg/ml) for the not oriented immobilization but a closer linear range in contrast to oriented anti-OTA immunosensors which showed linearity in the range of 0.01-5ng/mL OTA. The analysis of the Atomic Force Microscopy (AFM) images showed two different nanostructures indicating that the use of oriented immobilization created a more ordered and highly dense antibody surface. Finally the oriented immunosensor was used to quantify OTA in spiked cocoa bean samples and the results were compared with those registered with competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2μg/kg that represents the lower acceptable limit of OTA established by European legislation for the common food products.

  14. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  15. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers

    Science.gov (United States)

    Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il

    2013-07-01

    In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.

  16. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  17. Label Free Detection of CD4+ and CD8+ T Cells Using the Optofluidic Ring Resonator

    Directory of Open Access Journals (Sweden)

    John T. Gohring

    2010-06-01

    Full Text Available We have demonstrated label free detection of CD4+ and CD8+ T-Lymphocyte whole cells and CD4+ T-Lymphocyte cell lysis using the optofluidic ring resonator (OFRR sensor. The OFRR sensing platform incorporates microfluidics and photonics in a setup that utilizes small sample volume and achieves a fast detection time. In this work, white blood cells were isolated from healthy blood and the concentrations were adjusted to match T-Lymphocyte levels of individuals infected with HIV. Detection was accomplished by immobilizing CD4 and CD8 antibodies on the inner surface of the OFRR. Sensing results show excellent detection of CD4+ and CD8+ T-Lymphocyte cells at medically significant concentrations with a detection time of approximately 30 minutes. This work will lead to a rapid and low-cost sensing device that can provide a CD4 and CD8 count as a measure of HIV progression.

  18. Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer.

    Science.gov (United States)

    Soler, Maria; Estevez, M-Carmen; Villar-Vazquez, Roi; Casal, J Ignacio; Lechuga, Laura M

    2016-08-03

    Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and reproducibility, achieving limits of detection around 1 nM (150-160 ng mL(-1)). A preliminary evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the achievement of a sensitive diagnostic tool for early detection of colorectal cancer.

  19. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    CERN Document Server

    Alfinito, Eleonora; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2016-01-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors, with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer thrombin-binding aptamer (TBA), has been widely explored concerning both its structure, which was resolved with different techniques, and its function, especially about the possibility of using it as the active part of biosensors. This paper proposes a microscopic model of the electrical properties of TBA and the aptamer-thrombin complex, combining information from both structure and function. The novelty consists in describing both the aptamer alone and the complex as an impedance network, thus going deeper inside the issues...

  20. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.

    Science.gov (United States)

    Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin

    2016-05-15

    Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability.

  1. Label-free nanopore proximity bioassay for platelet-derived growth factor detection.

    Science.gov (United States)

    Zhang, Ling; Zhang, Kaixiang; Liu, Guangchao; Liu, Mengjia; Liu, Yang; Li, Jinghong

    2015-06-02

    Rapid and sensitive detection of biomarkers with ultralow concentrations remains a great challenge in disease diagnostics. Herein, we present a label-free α-hemolysin (α-HL) nanopore proximity bioassay for protein biomarker detection by a binding-induced DNA strand displacement strategy. In this bioassay, an individual target protein, platelet-derived growth factor B-chain (PDGF-BB), was selectively recognized by two oligonucleotide affinity ligands in which an output DNA was released and translocated through α-HL nanopore with a spikelike short current block. The frequency of the current block events had a linear relationship with the concentration of PDGF-BB with a wide linear dynamic range of 5 orders of magnitude and a detection limit at 500 fM. The selectivity and anti-interference capability of this bioassay show great potential for biomarker detection in bioanalytical chemistry.

  2. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Ferrara

    2015-04-01

    Full Text Available A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH and Raman spectroscopy (RS. DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

  3. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics.

    Science.gov (United States)

    Distler, Ute; Kuharev, Jörg; Tenzer, Stefan

    2014-12-01

    Mass spectrometry-based proteomics greatly benefited from recent improvements in instrument performance and the development of bioinformatics solutions facilitating the high-throughput quantification of proteins in complex biological samples. In addition to quantification approaches using stable isotope labeling, label-free quantification has emerged as the method of choice for many laboratories. Over the last years, data-independent acquisition approaches have gained increasing popularity. The integration of ion mobility separation into commercial instruments enabled researchers to achieve deep proteome coverage from limiting sample amounts. Additionally, ion mobility provides a new dimension of separation for the quantitative assessment of complex proteomes, facilitating precise label-free quantification even of highly complex samples. The present work provides a thorough overview of the combination of ion mobility and data-independent acquisition-based label-free quantification LC-MS and its applications in biomedical research.

  4. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    Science.gov (United States)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  5. Large area, label-free imaging of extracellular matrix using telecentricity

    Science.gov (United States)

    Visbal Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.

    2017-02-01

    Subtle alterations in stromal tissue structures and organizations within the extracellular matrix (ECM) have been observed in several types of tissue abnormalities, including early skin cancer and wounds. Current microscopic imaging methods often lack the ability to accurately determine the extent of malignancy over a large area, due to their limited field of view. In this research we focus on the development of simple mesoscopic (i.e. between microscopic and macroscopic) biomedical imaging device for non-invasive assessment of ECM alterations over a large, heterogeneous area. In our technology development, a telecentric lens, commonly used in machine vision systems but rarely used in biomedical imaging, serves as a key platform to visualize alterations in tissue microenvironments in a label-free manner over a clinically relevant area. In general, telecentric imaging represents a simple, alternative method for reducing unwanted scattering or diffuse light caused by the highly anisotropic scattering properties of biological tissue. In particular, under telecentric imaging the light intensity backscattered from biological tissue is mainly sensitive to the scattering anisotropy factor, possibly associated with the ECM. We demonstrate the inherent advantages of combining telecentric lens systems with hyperspectral imaging for providing optical information of tissue scattering in biological tissue of murine models, as well as light absorption of hemoglobin in blood vessel tissue phantoms. Thus, we envision that telecentric imaging could potentially serve for simple site-specific, tissue-based assessment of stromal alterations over a clinically relevant field of view in a label-free manner, for studying diseases associated with disruption of homeostasis in ECM.

  6. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  7. Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry.

    Science.gov (United States)

    Sun, Shuwen; Slaney, Thomas R; Kennedy, Robert T

    2012-07-03

    Droplet-based microfluidics is an attractive platform for screening and optimizing chemical reactions. Using this approach, it is possible to reliably manipulate nanoliter volume samples and perform operations such as reagent addition with high precision, automation, and throughput. Most studies using droplet microfluidics have relied on optical techniques to detect the reaction; however, this requires engineering color or fluorescence change into the reaction being studied. In this work, we couple electrospray ionization mass spectrometry (ESI-MS) to nanoliter scale segmented flow reactions to enable direct (label-free) analysis of reaction products. The system is applied to a screen of inhibitors for cathepsin B. In this approach, solutions of test compounds (including three known inhibitors) are arranged as an array of nanoliter droplets in a tube segmented by perfluorodecalin. The samples are pumped through a series of tees to add enzyme, substrate (peptides), and quenchant. The resulting reaction mixtures are then infused into a metal-coated, fused silica ESI emitter for MS analysis. The system has potential for high-throughput as reagent addition steps are performed at 0.7 s per sample and ESI-MS at up to 1.2 s per sample. Carryover is inconsequential in the ESI emitter and between 2 and 9% per reagent addition depending on the tee utilized. The assay was reliable with a Z-factor of ~0.8. The method required 0.8 pmol of test compound, 1.6 pmol of substrate, and 5 fmol of enzyme per reaction. Segmented flow ESI-MS allows direct, label free screening of reactions at good throughput and ultralow sample consumption.

  8. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Noori, Abolhassan

    2012-04-21

    A novel label-free electrochemical DNA hybridization biosensor using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified screen printed electrode (CD/PNAANI/CNT/SPE) has been developed. The proposed DNA hybridization biosensor relies on the intrinsic oxidation signals of guanine (G) and adenine (A) from single-stranded DNA entered into the cyclodextrin (CD) cavity. Due to the binding of G and A bases to complementary cytosine and thymine bases in dsDNA, the signals obtained for ssDNA were much higher than that of dsDNA. The synergistic effect of the multi-walled carbon nanotubes provides a significantly enhanced voltammetric signal, and the CD encapsulation effect makes anodic peaks of G and A shift to less positive potentials than that at the bare SPE. The peak heights of G and A signals are dependent on both the number of the respective bases in oligonucleotides and the concentration of the target DNA sequences. Hybridization of complementary strands was monitored through the measurements of oxidation signal of purine bases, which enabled the detection of target sequences from 0.01 to 1.02 nmol μl(-1) with the detection limit of target DNA as low as 5.0 pmol μl(-1) (S/N = 3). Implementation of label-free and homogeneous electrochemical hybridization detection constitutes an important step toward low-cost, simple, highly sensitive and accurate DNA assay. Discrimination between complementary, noncomplementary, and two-base mismatch targets was easily accomplished using the proposed electrode.

  9. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Science.gov (United States)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  10. Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors

    OpenAIRE

    Duval, Daphné; Lechuga, Laura M.

    2013-01-01

    We review the most important achievements published in 2012 in the field of lab-on-a-chip (LOC) and optical biosensors. We will specially focus on optical label-free biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on manuscripts demonstrating bioanalytical applications. © 2009-2012 IEEE.

  11. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs.

  12. Cool Timepix – Electronic noise of the Timepix readout chip down to −125 °C

    Energy Technology Data Exchange (ETDEWEB)

    Schön, R., E-mail: rolfs@nikhef.nl; Alfonsi, M.; Bakel, N. van; Beuzekom, M. van; Koffeman, E.

    2015-01-21

    The Timepix readout chip with its 65k pixels on a sensitive area of 14 mm×14 mm provides a fine spatial resolution for particle tracking or medical imaging. We explore the operation of Timepix in a dual-phase xenon environment (around −110 °C). Used in dual-phase xenon time projection chambers, e.g. for dark matter search experiments, the readout must have a sufficiently low detection limit for small energy deposits. We measured the electronic pixel noise of three bare Timepix chips. For the first time Timepix readout chips were cooled to temperatures as low as −125 °C. In this work, we present the results of analysing noise transition curves recorded while applying a well-defined charge to the pixel's input. The electronic noise reduces to an average of 99e{sup −}, a reduction of 23% compared to operation at room temperature.

  13. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2016-08-17

    In this work, we report a novel label-free fluorescence “turn off-on” biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS{sub 2} quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS{sub 2} QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS{sub 2} QDs surface were interacted with the amino groups (−NH{sub 2}), carboxyl groups (−COOH) and hydroxyl groups (−OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively “turned on”. Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I{sub 0} (I and I{sub 0} were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2–192.5 nmol L{sup −1}, And the detection limit could be down to 0.08 nmol L{sup −1}. Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. - Graphical abstract: A label-free fluorescence biosensor for highly sensitive detection of lectin based on the integration of carboxymethyl chitosan, CuInS{sub 2} quantum dots and gold nanoparticles. - Highlights: • A label-free near-infrared fluorescence “turn off-on” biosensor for detection of lectin was established. • The highly sensitive biosensor was based on the

  14. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    Science.gov (United States)

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  15. Label free detection of white spot syndrome virus using lead magnesium niobate-lead titanate piezoelectric microcantilever sensors.

    Science.gov (United States)

    Capobianco, Joseph A; Shih, Wei-Heng; Leu, Jiann-Horng; Lo, Grace Chu-Fang; Shih, Wan Y

    2010-11-15

    We have investigated rapid, label free detection of white spot syndrome virus (WSSV) using the first longitudinal extension resonance peak of five lead-magnesium niobate-lead titanate (PMN-PT) piezoelectric microcantilever sensors (PEMS) 1050-700 μm long and 850-485 μm wide constructed from 8 μm thick PMN-PT freestanding films. The PMN-PT PEMS were encapsulated with a 3-mercaptopropyltrimethoxysilane (MPS) insulation layer and further coated with anti-VP28 and anti-VP664 antibodies to target the WSSV virions and nucleocapsids, respectively. By inserting the antibody coated PEMS in a flowing virion or nucleocapsid suspension, label free detection of the virions and nucleocapsids were respectively achieved by monitoring the PEMS resonance frequency shift. We showed that positive label free detection of both the virion and the nucleocapsid could be achieved at a concentration of 100virions(nucleocapsids)/ml or 10 virions(nucleocapsids)/100 μl, comparable to the detection sensitivity of polymerase chain reaction (PCR). However, in contrast to PCR, PEMS detection was label free, in situ and rapid (less than 30 min), potentially requiring minimal or no sample preparation.

  16. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, K-J.; Fallnich, C.

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression wh

  17. A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics

    DEFF Research Database (Denmark)

    Eberl, H.C.; Mann, M.; Spruijt, C.G.;

    2013-01-01

    . Here we describe a sensitive, label-free histone peptide pull-down technology with extracts of different mouse tissues. Applying this workflow to the classical activating and repressive epigenetic marks on histone H3, H3K4me3, and H3K9me3, we identified known and putative readers in extracts from brain...

  18. Universal chitosan-assisted synthesis of Ag-including heterostructured nanocrystals for label-free in situ SERS monitoring.

    Science.gov (United States)

    Cai, Kai; Xiao, Xiaoyan; Zhang, Huan; Lu, Zhicheng; Liu, Jiawei; Li, Qin; Liu, Chen; Foda, Mohamed F; Han, Heyou

    2015-12-07

    A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.

  19. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes

    DEFF Research Database (Denmark)

    Boonyasit, Yuwadee; Heiskanen, Arto; Chailapakul, Orawan

    2015-01-01

    We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Du...

  20. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  1. Detection of label-free cancer biomarkers using nickel nanoislands and quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Adrián Martínez-Rivas

    2010-09-01

    Full Text Available Adrián Martínez-Rivas1,2, Patrick Chinestra3,4, Gilles Favre3,4, Sébastien Pinaud1, Childérick Séverac1,2, Jean-Charles Faye3,4, Christophe Vieu1,21LAAS-CNRS; Université de Toulouse, Toulouse, France; 2Université de Toulouse, UPS, INSA, INP, ISAE; LAAS; Toulouse, France; 3INSERM U563, Université de Toulouse, CPTP, “Signalisation Cellulaire, GTPase Rho et cancers”, Toulouse, France; 4Institut Claudius Regaud, Biology Department, Toulouse, FranceAbstract: We present a technique for the label-free detection and recognition of cancer biomarkers using metal nanoislands intended to be integrated in a novel type of nanobiosensor. His-tagged (scFv-F7N1N2 is the antibody fragment which is directly immobilized, by coordinative bonds, onto ~5 nm nickel islands, then deposited on the surface of a quartz crystal of a quartz crystal microbalance (QCM to validate the technique. Biomarker GTPase RhoA was investigated because it has been found to be overexpressed in various tumors and because we have recently isolated and characterized a new conformational scFv which selectively recognizes the active form of RhoA. We implemented a surface chemistry involving an antibiofouling coating of polyethylene glycol silane (PEG-silane (<2 nm thick and Ni nanoislands to reach a label-free detection of the active antigen conformation of RhoA, at various concentrations. The methodology proposed here proves the viability of the concept by using Ni nanoislands as an anchoring surface layer enabling the detection of a specific conformation of a protein, identified as a potential cancer biomarker. Hence, this novel methodology can be transferred to a nanobiosensor to detect, at lower time consumption and with high sensitivity, specific biomolecules.Keywords: nickel nanoislands, cancer biomarkers, quartz crystal microbalance, PEG-silane, RhoA protein, nanobiosensor

  2. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.

    Science.gov (United States)

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Van Dorssaeler, Alain; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-01-30

    Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have progressed tremendously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive way to analyze differential protein expression in complex biological samples. However, the computational processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different software packages developed in recent years. This experimental design allowed to finely assess their performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset has been deposited to the ProteomeXchange repository with the identifier PXD001819 and can be used to benchmark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the quantitative metrics from raw MS data, or evaluate downstream statistical methods. Bioinformatic pipelines for label-free quantitative analysis must be objectively evaluated in their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. This can be done through the use of complex spiked samples, for which the "ground truth" of variant proteins is known, allowing a statistical evaluation of the performances of the data processing workflow. We provide here such a controlled standard dataset and used it to evaluate the performances of several label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in

  3. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21.

    Science.gov (United States)

    Rafiee-Pour, Hossain-Ali; Behpour, Mohsen; Keshavarz, Mahin

    2016-03-15

    Small noncoding microRNAs (miRNAs) have emerged as ideal noninvasive biomarkers for early-phase cancer detection. In this report, a label-free and simple electrochemical miRNA biosensor is developed based on employing methylene blue (MB) as a redox indicator. The successfully immobilization of the single strand DNA (ss-DNA) probe and hybridization with the target miRNA sequence were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) technique was used to record the oxidation peak current of MB under optimal condition and an increase in the peak current was observed after hybridization. By employing this strategy, miRNA can detect in a range from 0.1 to 500.0 pM with a relatively low detection limit of 84.3 fM. The electrochemical response of MB on ss-DNA and duplex of miRNA/DNA was characterized by CV and chronocoulometry method. The linear relation between the redox peak currents (Ip) and scan rate (ν) indicates that the electron transfer (ET) between MB and the electrode surface was mediated by the miRNA/DNA π-stacked duplex. The value of surface coverage (Γ) was calculated that indicated increase amount of MB on the surface of modified electrode after hybridization event and revealed the adsorption of MB at modified electrode is monolayer. Also, the electron transfer rate constants (ks) of MB were estimated. The results of kinetic analysis were confirmed by chronocoulometry method. The discrimination ability of miRNA biosensor even against a noncomplementary target was also studied. Consequently, this strategy will be valuable for sensitive, selective and label-free detection of miRNA.

  4. Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch.

    Science.gov (United States)

    Berggren, Magnus; Simon, Daniel T; Nilsson, David; Dyreklev, Peter; Norberg, Petronella; Nordlinder, Staffan; Ersman, Peter Andersson; Gustafsson, Göran; Wikner, J Jacob; Hederén, Jan; Hentzell, Hans

    2016-03-09

    Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud".

  5. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    Science.gov (United States)

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.

  6. Integrated biochip for label-free and real-time detection of DNA amplification by contactless impedance measurements based on interdigitated electrodes.

    Science.gov (United States)

    Fang, Xinxin; Jin, Qinghui; Jing, Fengxiang; Zhang, Huanqian; Zhang, Feng; Mao, Hongju; Xu, Baojian; Zhao, Jianlong

    2013-06-15

    Here, we introduce an integrated biochip which offers accurate thermal control and sensitive electrochemical detection of DNA amplification in real-time. The biochip includes a 10-μl microchamber, a temperature sensor, a heater, and a contactless impedance biosensor. A pair of interdigitated electrodes is employed as the impedance biosensor and the products of the amplification are determined directly through tracing the impedance change, without using any labels, redox indicators, or probes. Real-time monitoring of strand-displacement amplification and rolling circle amplification was successfully performed on the biochip and a detection limit of 1 nM was achieved. Amplification starting at an initial concentration of 10 nM could be discriminated from that starting at 1 nM started concentration as well as from the negative control. Since an insulation layer covers the electrodes, the electrodes are spared from erosion, hydrolysis and bubble formation on the surface, thus, ensuring a long lifetime and a high reusability of the sensor. In comparison to bench-top apparatus, our chip shows good efficiency, sensitivity, accuracy, and versatility. Our system requires only simple equipments and simple skills, and can easily be miniaturized into a micro-scale system. The system will then be suitable for a handheld portable device, which can be applied in remote areas. It covers merits such as low cost, low-power consumption, rapid response, real-time monitoring, label-free detection, and high-throughput detection.

  7. A systematic evaluation of normalization methods in quantitative label-free proteomics.

    Science.gov (United States)

    Välikangas, Tommi; Suomi, Tomi; Elo, Laura L

    2016-10-02

    To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization method is a pivotal task for the reliability of the downstream analysis and results. Many normalization methods commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study, several popular and widely used normalization methods representing different strategies in normalization are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The normalization methods are evaluated in terms of their ability to reduce variation between technical replicates, their effect on differential expression analysis and their effect on the estimation of logarithmic fold changes. Additionally, we examined whether normalizing the whole data globally or in segments for the differential expression analysis has an effect on the performance of the normalization methods. We found that variance stabilization normalization (Vsn) reduced variation the most between technical replicates in all examined data sets. Vsn also performed consistently well in the differential expression analysis. Linear regression normalization and local regression normalization performed also systematically well. Finally, we discuss the choice of a normalization method and some qualities of a suitable normalization method in the light of the results of our evaluation.

  8. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2014-12-01

    Full Text Available Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC–MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC and extracted ion chromatograms (XIC methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ and seminal plasma (SP. We also show differential analyses of chicken semen (SPZ and corresponding SP from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  9. Label-free characterization of articular cartilage in osteoarthritis model mice by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa

    2017-02-01

    Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this study, we generated an animal OA model surgically induced by knee joint instability, and the femurs were harvested at two weeks after the surgery. We performed Raman spectroscopic analysis for the articular cartilage of distal femurs in OA side and unaffected side in each mouse. In the result, there is no gross findings in the surface of the articular cartilage in OA. On the other hand, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The major finding of this study is that the relative intensity of phosphate band (960 cm-1) increases in the degenerative cartilage. This may be the result of exposure of subchondral bone due to thinning of the cartilage layer. In conclusion, Raman spectroscopic technique is sufficient to characterize articular cartilage in OA as a pilot study for Raman application in cartilage degeneration and regeneration using animal models and human subjects.

  10. Label-free identification of white blood cell using optical diffraction tomography (Conference Presentation)

    Science.gov (United States)

    Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun

    2016-03-01

    White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.

  11. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  12. Photo-imprint Photoacoustic Microscopy for Three-dimensional Label-free Sub-diffraction Imaging

    Science.gov (United States)

    Yao, Junjie; Wang, Lidai; Li, Chiye; Zhang, Chi; Wang, Lihong V.

    2014-01-01

    Sub-diffraction optical microscopy allows the imaging of cellular and subcellular structures with resolution finer than the diffraction limit. Here, combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, we demonstrate a simple method for sub-diffraction photoacoustic imaging of both fluorescent and non-fluorescent samples. Our method is based on a double-excitation process, where the first excitation pulse partially and inhomogeneously bleaches the molecules in the diffraction-limited excitation volume, thus biasing the signal contributions from a second excitation pulse striking the same region. The differential signal between the two excitations preserves the signal contribution mostly from the center of the excitation volume, and dramatically sharpens the lateral resolution. Moreover, due to the nonlinear nature of the signal, our method offers inherent optical sectioning capability, which is lacking in conventional photoacoustic microscopy. By scanning the excitation beam, we performed three-dimensional sub-diffraction imaging of varied fluorescent and non-fluorescent species. As any molecules have absorption, this technique has the potential to enable label-free sub-diffraction imaging, and can be transferred to other optical imaging modalities or combined with other sub-diffraction methods. PMID:24483902

  13. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    Science.gov (United States)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  14. Temporal proteomic analysis and label-free quantification of viral proteins of an invertebrate iridovirus.

    Science.gov (United States)

    İnce, İkbal Agah; Boeren, Sjef; van Oers, Monique M; Vlak, Just M

    2015-01-01

    Invertebrate iridescent virus 6 (IIV-6) is a nucleocytoplasmic virus with a ~212 kb linear dsDNA genome that encodes 215 putative ORFs. The IIV-6 virion-associated proteins consist of at least 54 virally encoded proteins. One of our previous findings showed that most of these proteins are encoded by genes from the early transcriptional class. This indicated that these structural proteins may not only function in the formation of the virion, but also in the initial stage of viral infection. In the current study, we followed the protein expression profile of IIV-6 over time in Drosophila S2 cells by label-free quantification using a proteomic approach. A total of 95 virally encoded proteins were detected in infected cells, of which 37 were virion proteins. The expressed IIV-6 virion proteins could be categorized into three main clusters based on their expression profiles: proteins with stably low expression levels during infection, proteins with exponentially increasing expression levels during infection and proteins that were initially highly abundant, but showed slightly reduced levels after 48 h post-infection. We thus provided novel information on the kinetics of virion and infected cell-specific protein levels that assists in our understanding of gene regulation in this lesser-known DNA virus model.

  15. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  16. Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae

    Science.gov (United States)

    Panja, Chiranjit; Setty, Rakesh K. S.; Vaidyanathan, Gopal; Ghosh, Sanjay

    2016-01-01

    Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin. PMID:26881076

  17. A universal label-free biosensing platform based on opto-fluidic ring resonators

    Science.gov (United States)

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong

    2009-02-01

    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  18. A simple and sensitive approach for ochratoxin A detection using a label-free fluorescent aptasensor.

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lv

    Full Text Available Ochratoxin A(OTA is found to be one of the predominant contaminating mycotoxins in a wide variety of food commodities. To avoid the risk of OTA consumption, the detection and quantitation of OTA level are of great significance. Based on the fact that ssDNA aptamer has the ability to form a double-strand structure with its complementary sequence, a simple and rapid aptamer-based label-free approach for highly sensitive and selective fluorescence detection of OTA was developed by using ultra-sensitive double-strand DNA specific dyes PicoGreen. The results showed that as low as 1 ng/mL of OTA could be detected with a dynamic range of more than 5 orders of magnitude which satisfies the requirements for OTA maximum residue limit in various food regulated by European Commission. With the specificity of aptamer, the assay exhibited high selectivity for OTA against two other analogues (N-acetyl-l-phenylalanine and zearalenone. We also tested the aptasensor practicability using real sample of 1% beer spiked with a series of concentration of OTA and the results show good tolerance to matrix effect. All detections could be achieved in less than 30 min, which provides a simple, quick and sensitive detection method for OTA screening in food safety and could be easily extend to other small molecular chemical compounds detection which aptamer has been selected.

  19. A Biocatalytic Nanomaterial for the Label-Free Detection of Virus-Like Particles.

    Science.gov (United States)

    Sykora, Sabine; Correro, M Rita; Moridi, Negar; Belliot, Gaël; Pothier, Pierre; Dudal, Yves; Corvini, Philippe F-X; Shahgaldian, Patrick

    2017-06-01

    The design of nanomaterials that are capable of specific and sensitive biomolecular recognition is an on-going challenge in the chemical and biochemical sciences. A number of sophisticated artificial systems have been designed to specifically recognize a variety of targets. However, methods based on natural biomolecular detection systems using antibodies are often superior. Besides greater affinity and selectivity, antibodies can be easily coupled to enzymatic systems that act as signal amplifiers, thus permitting impressively low detection limits. The possibility to translate this concept to artificial recognition systems remains limited due to design incompatibilities. Here we describe the synthesis of a synthetic nanomaterial capable of specific biomolecular detection by using an internal biocatalytic colorimetric detection and amplification system. The design of this nanomaterial relies on the ability to accurately grow hybrid protein-organosilica layers at the surface of silica nanoparticles. The method allows for label-free detection and quantification of targets at picomolar concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    Science.gov (United States)

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  1. Study on a Luminol-based Electrochemiluminescent Sensor for Label-Free DNA Sensing

    Directory of Open Access Journals (Sweden)

    Yi-Feng Tu

    2010-10-01

    Full Text Available Automatic, inexpensive, simple and sensitive methods for DNA sensing and quantification are highly desirable for biomedical research. The rapid development of both the fundamentals and applications of electrochemiluminescence (ECL over the past years has demonstrated its potential for analytical and bio-analytical chemistry. This paper reports the quenching effect of DNA on the ECL of luminol and the further development of a DNA sensing device. With the pre-functionalization by a composite of carbon nano-tubes (CNTs and Au nanoparticles (AuNPs, the sensor provides a novel and valuable label-free approach for DNA sensing. Here the ECL intensity was remarkably decreased when more than 1.0 × 10−12 molar of DNA were adsorbed on the sensor. Linearity of the DNA amount with the reciprocal of ECL intensity was observed. A saturated sensor caused a 92.8% quenching effect. The research also proposes the mechanism for the quenching effect which could be attributed to the interaction between luminol and DNA and the elimination of reactive oxygen species (ROSs by DNA.

  2. [Review on label-free optical bio-sensing technology based on whisper-gallery-mode].

    Science.gov (United States)

    Jiang, Jun-feng; Liu, Tie-gen; Li, Hai-wei; Hui, Rong-qing; Liu, Kuni; Zhang, Yi-mo

    2010-11-01

    Optical biosensors are becoming an important tool for drug research and life science, and the label-free optical biosensor based on whisper-gallery-mode (WGM) is reviewed in the present paper. The WGM-based sensors are categorized into three types according to the microcavity structure. The biosensor using microsphere got extensive research because of high quality factor, and its response to protein, virus, and bacteria had been studied. The models based on single photon resonant state and perturbation theory were established. The biosensor using microdisk was proposed early since it can make use of mature lithography technology; however, the quality factor was increased greatly only after the thermal reflow process was introduced and single molecule measurement was then realized. The biosensor using microring has simpler mode structure and materials such as polymer, silicon nitride and silicon-on-insulator had been used for sensor fabrication. As a 3-dimension expansion, sensor using microtube can combine the optical channel and fluidic channel, which attracting more and more attention.

  3. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization.

    Science.gov (United States)

    Liu, Xu; Wei, Min; Xu, Ensheng; Yang, Haitang; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-05-15

    Telomerase has become one of the most typical tumor marker because it is closely related to cancers. In this paper, a simple label-free electrochemical detection of telomerase activity by using methylene blue (MB) as a G-quadruplex binding probe was proposed, avoiding commonly used complex label procedures, nano-probe synthesis, complicated electrode modification, probe immobilization or signal amplification. In the presence of telomerase substrate (TS) primer, the binding of MB on primer was weak. When repeats of (TTAGGG) were extended on the TS primer under the action of telomerase, they formed multiple G-quadruplexes with the help of K(+). As a result, a large amount of MB bounded to multiple G-quadruplexes because they have more strong interaction with G-quadruplexes than TS primer. As a result, the diffusion current of MB decreased sharply, which was strongly dependent on the telomerase activity. The DPV current change has a linear correlation with the logarithm of HeLa cell number in the range of 10-10,000 cells, with the detection limit of 3 cells. The high sensitivity was due to the formed multiple G-quadruplexes. Using indium tin oxide (ITO) as working electrode without modification ensured the good reproducibility of the method. The method was also simple, rapid, and has been successfully applied in the telomerase activity detection in urine with good selectivity and reproducibility, which is significant for cancer diagnosis, anticancer drugs screening, and cancer therapy evaluation.

  4. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    Science.gov (United States)

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  5. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor

    Directory of Open Access Journals (Sweden)

    Bailin Zhang

    2013-01-01

    Full Text Available The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  6. Label-free three-dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  7. Label-free three dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  8. Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli.

    Science.gov (United States)

    Ma, Fen; Rehman, Abdul; Liu, Haiying; Zhang, Jingtuo; Zhu, Shilei; Zeng, Xiangqun

    2015-02-03

    In this report, a new polythiophene interface is fabricated containing fused quinone moieties which are then glycosylated to form a carbohydrate platform for bacterial detection. Very importantly, this interface can be used for label-free and reagentless detection, both by electrochemical and Quartz Crystal Microbalance (QCM) transducers and by using the direct pili-mannose binding as well as Concanavalin A (Con A) mediated lipopolysaccharides (LPS)-mannose binding. The conductive polymer's unique collective properties are very sensitive to very minor perturbations, which result in significant changes of electrical conductivity and providing amplified sensitivity and improved limits of detection (i.e., 25 cell/mL for electrochemical sensor and 50 cells/mL for QCM sensor), a widened logarithmic range of detection (i.e., 3-7 for pili-mannose binding and 2-8 for Con A mediated binding), high specificity and selectivity, and an extraordinary reliability by a mechanism of internal validation. With these analytical performances, the described biosensor is envisaged for being capable of differentiating Gram-negative bacterial strain and species, for many important applications.

  9. Label-free genetic and proteomic marker detection within a single flowcell assay.

    Science.gov (United States)

    Kastl, Katja F; Lowe, Christopher R; Norman, Carl E

    2010-12-15

    No one technique for multiplexing 100+ label-free measurements in a single well or flowcell has yet gained wide acceptance, probably because the added complexity introduced by the multiplexing element is seen to outweigh any possible cost advantage, or the multiplexing scheme itself is not flexible enough to accommodate the desired combinations of immobilization conditions and target/analyte molecules. Here, we demonstrate a simple yet highly versatile technology which uses microparticles, each bearing both an identifier code and an optical grating, to permit the inclusion of diverse molecules such as protein A, IgG and DNA, on chemically diverse -OH, -NH(2) and -COOH-terminated surfaces, within a single flowcell assay. Binding of avidin is used to reveal the presence of the immobilized biotinylated species, and to compare directly the binding of similar molecules on dissimilar surfaces, and vice-versa. Though we report the results of a 26-plex assay here, the technique itself has scope for increased throughput up to the level of hundreds of molecular species. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Label-Free Classification of Bax/Bak Expressing vs. Double-Knockout Cells.

    Science.gov (United States)

    Naser, Mohammad; Graham, Michelle T; Pierre, Kamau; Boustany, Nada N

    2016-11-01

    We combine optical scatter imaging with principal component analysis (PCA) to classify apoptosis-competent Bax/Bak-expressing, and apoptosis resistant Bax/Bak-null immortalized baby mouse kidney cells. We apply PCA to 100 stacks each containing 236 dark-field cell images filtered with an optically implemented Gabor filter with period between 0.3 and 2.9 μm. Each stack yields an "eigencell" image corresponding to the first principal component obtained at one of the 100 Gabor filter periods used. At each filter period, each cell image is multiplied by (projected onto) the eigencell image. A Feature Matrix consisting of 236 × 100 scalar values is thus constructed with significantly reduced dimension compared to the initial dataset. Utilizing this Feature Matrix, we implement a supervised linear discriminant analysis and classify successfully the Bax/Bak-expressing and Bax/Bak-null cells with 94.7% accuracy and an area under the curve (AUC) of 0.993. Applying a feature selection algorithm further reveals that the Gabor filter period ranges most significant for the classification correspond to both large (likely nuclear) features as well as small sized features (likely organelles present in the cytoplasm). Our results suggest that cells with a genetic defect in their apoptosis pathway can be differentiated from their normal counterparts by label-free multi-parametric optical scatter data.

  11. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  12. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Roberta Galli

    Full Text Available Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments.

  13. Label-free imaging of rat spinal cords based on multiphoton microscopy

    Science.gov (United States)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  14. Label-free detection of sex determining region Y (SRY) via capacitive biosensor

    KAUST Repository

    Sivashankar, Shilpa

    2016-10-20

    In this work, we present for the first time, the use of a simple fractal capacitive biosensor for the quantification and detection of sex-determining region Y (SRY) genes. This section of genetic code, which is found on the Y chromosome, finds importance for study as it causes fetuses to develop characteristics of male sex-like gonads when a mutation occurs. It is also an important genetic code in men, and disorders involving the SRY gene can cause infertility and sexual malfunction that lead to a variety of gene mutational disorders. We have therefore designed silicon-based, label-free fractal capacitive biosensors to quantify various proteins and genes. We take advantage of a good dielectric material, Parylene C for enhancing the performance of the sensors. We have integrated these sensors with a simple microchannel for easy handling of fluids on the detection area. The read-out value of an Agilent LCR meter used to measure capacitance of the sensor at a frequency of 1 MHz determined gene specificity and gene quantification. These data revealed that the capacitance measurement of the capacitive biosensor for the SRY gene depended on both the target and the concentration of DNA. The experimental outcomes in the present study can be used to detect DNA and its variations in crucial fields that have a great impact on our daily lives, such as clinical and veterinary diagnostics, industrial and environmental testing and forensic sciences.

  15. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  16. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform

    Science.gov (United States)

    Baaske, Martin D.; Foreman, Matthew R.; Vollmer, Frank

    2014-11-01

    Biosensing relies on the detection of molecules and their specific interactions. It is therefore highly desirable to develop transducers exhibiting ultimate detection limits. Microcavities are an exemplary candidate technology for demonstrating such a capability in the optical domain and in a label-free fashion. Additional sensitivity gains, achievable by exploiting plasmon resonances, promise biosensing down to the single-molecule level. Here, we introduce a biosensing platform using optical microcavity-based sensors that exhibits single-molecule sensitivity and is selective to specific single binding events. Whispering gallery modes in glass microspheres are used to leverage plasmonic enhancements in gold nanorods for the specific detection of nucleic acid hybridization, down to single 8-mer oligonucleotides. Detection of single intercalating small molecules confirms the observation of single-molecule hybridization. Matched and mismatched strands are discriminated by their interaction kinetics. Our platform allows us to monitor specific molecular interactions transiently, hence mitigating the need for high binding affinity and avoiding permanent binding of target molecules to the receptors. Sensor lifetime is therefore increased, allowing interaction kinetics to be statistically analysed.

  17. Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber

    CERN Document Server

    Mazhorova, Anna; Ng, Andy; Chinnappan, Raja; Zourob, Mohammed; Skorobogatiy, Maksim

    2011-01-01

    We propose for the first time an E. coli bacteria sensor based on the evanescent field of the fundamental mode of a suspended-core terahertz fiber. The sensor is capable of E. coli detection at concentrations in the range of 104-109 cfu/ml. The polyethylene fiber features a 150 {\\mu}m core suspended by three deeply sub-wavelength bridges in the center of a 5.1 mm-diameter cladding tube. The fiber core is biofunctionalized with T4 bacteriophages which bind and eventually destroy (lyse) their bacterial target. Using environmental SEM we demonstrate that E. coli is first captured by the phages on the fiber surface. After 25 minutes, most of the bacteria is infected by phages and then destroyed with ~1{\\mu}m-size fragments remaining bound to the fiber surface. The bacteria-binding and subsequent lysis unambiguously correlate with a strong increase of the fiber absorption. This signal allows the detection and quantification of bacteria concentration. Presented bacteria detection method is label-free and it does no...

  18. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    Science.gov (United States)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  19. Label-free detection of DNA hybridization using InAs μ-Hall sensors

    Science.gov (United States)

    Aledealat, Khaled; Hira, S.; Chen, K.; Strouse, G. F.; Chase, P. B.; Xiong, P.; von Molnar, S.; Mihajlovic, G.; Field, M.; Sullivan, G.

    2010-03-01

    We present results on label-free detection of DNA hybridization using InAs μ-Hall sensors. The μ-Hall sensor consisted of six 1-μm Hall crosses defined on an InAs quantum well substrate. The sensor was then covered with sputter-deposited SiO2 and Au pads were patterned on top of some of the Hall crosses. Thiolated ssDNA strands that are complementary to one end of the target ssDNA were assembled on the Au pads and the rest of the device platform was passivated with PEG-silane. Biotinylated and fluorescently-tagged complementary ssDNA to the other end of the target ssDNA were labeled with commercial streptavidin-coated 350 nm superparamagnetic beads. Labeled ssDNA were found to assemble selectively onto the Au pads after mixing with the target ssDNA, indicating successful hybridization of the three ssDNA sequences. The presence of the assembled beads was successfully detected via the Hall sensor and confirmed using laser scanning confocal microscopy. This work was supported by NIH NIGMS GM079592.

  20. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  1. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  2. A label-free fluorescence turn-on sensor for rapid detection of cysteine.

    Science.gov (United States)

    Chen, Xia; Liu, Hongli; Wang, Chen; Hu, Hui; Wang, Yuhui; Zhou, Xiaodong; Hu, Jiming

    2015-06-01

    A Hg(2+)-mediated fluorescence turn-on sensor for cysteine (Cys) detection was developed using the nucleic acid minor groove binding dye DAPI. In this work, two fully complementary DNA sequences, a T-rich single-stranded molecule (ssDNA) and an A-rich single-stranded molecule, were employed to constitute consecutive "AT/TA" base pairs, which could strongly enhance the fluorescence of DAPI. In the absence of cysteine, Hg(2+) reacted with T-rich single-stranded DNA and "T-Hg(2+)-T" base pairs formed, this seriously disrupted consecutive AT base pairs. As a result, the fluorescence of DAPI was not increased efficiently. However, considering that cysteine binds strongly to Hg(2+), the structure of the "T-Hg(2+)-T" complexes was destroyed in the presence of cysteine, resulting in the re-formation of consecutive AT base pairs and increased DAPI fluorescence. Obviously, the amount of cysteine could be easily measured based on the enhancement of DAPI fluorescence, and it took only 20 min to complete the whole cysteine-sensing process. Therefore, a label-free fluorescent "turn-on" sensor for the rapid detection of cysteine was designed, and the detection limit of this sensor was as low as 2.4 nM, which was much lower than those of the most of the previously reported cysteine sensors.

  3. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection.

    Science.gov (United States)

    Kravets, V G; Schedin, F; Jalil, R; Britnell, L; Gorbachev, R V; Ansell, D; Thackray, B; Novoselov, K S; Geim, A K; Kabashin, A V; Grigorenko, A N

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create 'twisted' photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm(-2) and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  4. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A.

    Science.gov (United States)

    Malvano, Francesca; Albanese, Donatella; Crescitelli, Alessio; Pilloton, Roberto; Esposito, Emanuela

    2016-06-30

    An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE) for quantitative determination of Ochratoxin A (OTA) has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs), the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  5. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Francesca Malvano

    2016-06-01

    Full Text Available An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE for quantitative determination of Ochratoxin A (OTA has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs, the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  6. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems.

    Science.gov (United States)

    Chang, Hsiao-Kang; Ishikawa, Fumiaki N; Zhang, Rui; Datar, Ram; Cote, Richard J; Thompson, Mark E; Zhou, Chongwu

    2011-12-27

    Biomarker detection based on nanowire biosensors has attracted a significant amount of research effort in recent years. However, only very limited research work has been directed toward biomarker detection directly from physiological fluids mainly because of challenges caused by the complexity of media. This limitation significantly reduces the practical impact generated by the aforementioned nanobiosensors. In this study, we demonstrate an In(2)O(3) nanowire-based biosensing system that is capable of performing rapid, label-free, electrical detection of cancer biomarkers directly from human whole blood collected by a finger prick. Passivating the nanowire surface successfully blocked the signal induced by nonspecific binding when performing active measurement in whole blood. Passivated devices showed markedly smaller signals induced by nonspecific binding of proteins and other biomaterials in serum and higher sensitivity to target biomarkers than bare devices. The detection limit of passivated sensors for biomarkers in whole blood was similar to the detection limit for the same analyte in purified buffer solutions at the same ionic strength, suggesting minimal decrease in device performance in the complex media. We then demonstrated detection of multiple cancer biomarkers with high reliability at clinically meaningful concentrations from whole blood collected by a finger prick using this sensing system.

  7. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.

    Science.gov (United States)

    Kandel, Mikhail E; Teng, Kai Wen; Selvin, Paul R; Popescu, Gabriel

    2017-01-24

    Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm(2), over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s(2) over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.

  8. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  9. Label-Free Detection of Ag+ Based on Gold Nanoparticles and Ag+-Specific DNA.

    Science.gov (United States)

    Pu, Wendan; Zhao, Zhao; Wu, Liping; Liu, Yue; Zhao, Huawen

    2015-08-01

    A sensitive label-free method was presented for the determination of silver ion (Ag+) in this paper. Cytosine-rich DNA (C-DNA) was used as Ag+ specific DNA. Without Ag+ in the solution, fluorescence of fluorescein (FAM) is quenched by C-DNA stabilized gold nanoparticles (AuNPs) in high salt environment. When Ag+ is present in the solution, however, Ag+-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs induced the C-DNA folding into a hairpin structure, which can not stabilize AuNPs in high salt environment, thus causing AuNPs aggregation. After centrifugation to remove the aggregated AuNPs, the quenching ability of the supernatant for FAM is decreased and the fluorescence intensity of solution increases with increasing the Ag+ concentration. Due to the highly specific interaction of the C-DNA towards Ag+ and the strong fluorescent quenching ability of AuNPs for FAM, the method has high selectivity and sensitivity for Ag+. Under the optimal conditions, the fluorescence intensity at 515 nm increased linearly with the concentration of Ag+ ranging from 15 nM to 700 nM, and the detection limit was determined as 6 nM based on 3 σ/slope. This method is simple, sensitive, and may be applied to other detection systems by selecting the appropriate DNA sequences.

  10. Label-free interaction analysis as a tool to demonstrate biosimilarity of therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Sinha-Datta U

    2015-09-01

    Full Text Available Uma Sinha-Datta, Srijit Khan, Dhananjay WadgaonkarFast Trak, GE Healthcare Life Science, John F Welch Technology Centre, Bangalore, IndiaAbstract: In the biosimilar eon, where various analytical platforms are needed to show biosimilarity, we demonstrate the use of surface plasmon resonance biosensor as a label-free interaction analysis tool to compare two therapeutic monoclonal antibodies (mAb1-i and mAb2-i with their biosimilars (mAb1-B and mAb2-B1, B2, B3 based on kinetics, affinity, and thermal stability studies. We calculate active analyte concentration using Biacore systems' calibration-free concentration analysis method and demonstrate its importance for kinetic evaluation. The kinetic constants (ka and kd and affinity constant (KD of the mAbs for binding to specific antigens were evaluated. It was found that the biosimilars were very similar to their innovator with respect to binding to its antigen demonstrating functional similarity. To further confirm biosimilarity to the originator molecules, we conducted a thermal stability analysis of both mAbs using differential scanning calorimetry. This analysis showed good structural similarity in between innovator antibodies and biosimilars, with major Tm as 84.1°C (mAb1 and 72.8°C (mAb2, demonstrating structural similarity.Keywords: surface plasmon resonance, Biacore, kinetics, low level of ligand immobilization, calibration-free concentration analysis, bivalent analytes, active concentration

  11. Label-free, turn-on fluorescent sensor for trypsin activity assay and inhibitor screening.

    Science.gov (United States)

    Zhang, Lufeng; Qin, Haiyan; Cui, Wanwan; Zhou, Yang; Du, Jianxiu

    2016-12-01

    The development of new detection methods for proteases activity assay is important in clinical diagnostics and drug development. In this work, a simple, label-free, and turn-on fluorescent sensor was fabricated for trypsin, a protease produced in the pancreas. Cytochrome c, a natural substance of trypsin, could be selectively cleaved by trypsin into heme-peptide fragment. The produced heme-peptide fragment exhibited an intensive catalytic role on the H2O2-mediated the oxidation of thiamine to form strong fluorescent thiochrome. The fluorescence intensity was closely dependent on the amount of trypsin presented. The procedure allowed the measurement of trypsin over the range of 0.5-20.0μg/mL with a detection limit of 0.125μg/mL. The sensor showed better precision with a relative standard deviation of 1.6% for the measurement of 1.0μg/mL trypsin solution (n=11). This sensing system was applied to screen the inhibitor of trypsin, the IC50 values were calculated to be 12.71ng/mL for the trypsin inhibitor from soybean and 2.0μg/mL for benzamidine hydrochloride, respectively, demonstrating its potential application in drug development and related diseases treatment.

  12. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice.

    Science.gov (United States)

    Miao, Hong; Wang, Lan; Zhuo, Yan; Zhou, Zinan; Yang, Xiaoming

    2016-12-15

    A facile-green strategy to synthesize carbon dots (CDs) with a quantum yield (QY) of nearly 13.9% has been built up, while tomato juice served as the carbon source. Interestingly, not only the precursor of CDs and the whole synthesis procedure were environmental-friendly, but this type of CDs also exhibited multiple advantages including high fluorescent QY, excellent photostability, non-toxicity and satisfactory stability. Significantly, a label-free sensitive assay for detecting carcinoembryonic antigen (CEA) in a continuous and recyclable way has been proposed on the basis of adsorption and desorption of aptamers by the surface of CDs through a competitive mechanism. To be specific, the richness of carboxyl groups of the CDs enabled strong adsorption of ssDNA to the surface of CDs through π-π stacking interactions, resulting in the effective fluorescence quenching by forming CDs-aptamer complexes. The stronger binding affinity between CEA and CEA-aptamer than the π-π stacking interactions has been taken advantage to achieve immediate recovery of the fluorescence of CDs once CEA was introduced. Thereby, quantitative evaluation of CEA concentration in a broad range from 1ngmL(-1) to 0.5ngmL(-1) with the detection limit of 0.3ngmL(-1) was realized in this way. This strategy can be applied in a recyclable way, broadening the sensing application of CDs with biocompatibility. Besides, the CDs were used for cell imaging, potentiating them towards diverse purposes.

  13. Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.

    Science.gov (United States)

    Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M

    2017-01-01

    The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.

  14. Sensitive and label-free detection of miRNA-145 by triplex formation.

    Science.gov (United States)

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  15. Label-free electrochemical monitoring of protein addressing through electroactivated "click" chemistry on gold electrodes.

    Science.gov (United States)

    Meini, Nadir; Ripert, Micaël; Chaix, Carole; Farre, Carole; De Crozals, Gabriel; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2014-05-01

    In this work, using electrochemical impedance spectroscopy (EIS), we have, for the first time, label-free monitored protein immobilization on a gold surface through a strategy of electroaddressing, compatible with the production of microarrays for multi-detection. This functionalization is achieved via the alkyne/azide cycloaddition, better known as the "click" reaction. The electroaddressing was applied to a polythiol hexynyl derivative previously grafted onto the gold surface. This compound consists of two dithiol phosphate groups and a hexynyl function and was synthesized through a supported synthesis approach, from a dithiol reagent, phosphoramidite (DTPA), and a hexynyl phosphoramidite. Next, an azide-PEG3-biotin derivative was grafted onto the modified gold surface by electro-chronocoulometry. The "click" reaction was controlled by electrochemical impedance spectroscopy, showing the change in impedance only when the electroaddressing was performed at -300 mV. No effect on the EIS signal was observed when a positive potential was applied, confirming the specificity of the electroactivation. Biotin-modified electrodes were used to fix streptavidin and the immobilization was monitored using EIS. Fluorescent streptavidin-functionalized silica nanoparticles were also specifically grafted onto the biotinylated gold surface in order to confirm the "click" reaction using fluorescence microscopy. The obtained streptavidin platform was used to detect the surface coverage by biotinylated human serum albumin (HSA). The lowest detectable concentration is 10 pg/mL, and surface saturation is obtained with concentrations higher than 100 ng/mL.

  16. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  17. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment.

  18. Biconically Tapered Fiber Optic Probes for Rapid Label-Free Immunoassays

    Directory of Open Access Journals (Sweden)

    John Miller

    2015-04-01

    Full Text Available We report use of U-shaped biconically tapered optical fibers (BTOF as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G-antigen (rabbit anti-mouse IgG reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  19. Label-Free Acetylcholine Image Sensor Based on Charge Transfer Technology for Biological Phenomenon Tracking

    Science.gov (United States)

    Takenaga, Shoko; Tamai, Yui; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2012-02-01

    A 32 ×32 charge-transfer enzyme-type acetylcholine (ACh) image sensor array was produced for label-free tracking of images of ACh distribution and its performance in repeatable measurements without enzyme deactivation was examined. The proposed sensor was based on a charge-transfer-type pH image sensor, which was modified using an enzyme membrane (acetylcholine esterase, AChE) for each pixel. The ACh image sensor detected hydrogen ions generated by the ACh-AChE reaction. A polyion complex membrane composed of poly(L-lysine) and poly(4-styrenesulfonate) was used to immobilize the enzyme on the sensor. The improved uniformity and adhesion of the polyion complex membrane were evaluated in this study. As a result, temporal and spatial fluctuations of the ACh image sensor were successfully minimized using this approach. The sensitivity of the sensor was 4.2 mV/mM, and its detection limit was 20 µM. In five repeated measurements, the repeatability was 8.8%.

  20. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Science.gov (United States)

    Paesen, Rik; Gyselaers, Wilfried; Stinissen, Piet

    2016-01-01

    In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin. PMID:27746820

  1. Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2011-07-01

    Full Text Available Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM and the film bulk acoustic resonator (FBAR, calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

  2. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.

    Science.gov (United States)

    Al Balushi, Ahmed A; Kotnala, Abhay; Wheaton, Skyler; Gelfand, Ryan M; Rajashekara, Yashaswini; Gordon, Reuven

    2015-07-21

    Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers. More recently, nanoaperture optical tweezers have been used to probe the low-frequency (in the single digit wavenumber range) Raman active modes of single nanoparticles and proteins. Here we review recent developments in the field of nanoaperture optical tweezers and how they have been applied to protein-antibody interactions, protein-small molecule interactions including single molecule binding kinetics, and protein-DNA interactions. In addition, recent works on the integration of nanoaperture optical tweezers at the tip of optical fiber and in microfluidic environments are presented.

  3. A distributed national network for label-free rapid identification of emerging pathogens

    Science.gov (United States)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  4. Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice.

    Science.gov (United States)

    Jia, Yali; Wang, Ruikang K

    2010-12-15

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of monitoring dynamic meningeal microcirculations, preferably decoupled from cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ∼2 mm, with an unprecedented imaging sensitivity to blood flow at ∼4 μm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within the meninges and cortex in mice with the cranium left intact. Using a thrombotic mouse model, we show that the OMAG can yield longitudinal measurements of meningeal vascular responses to the insult and can decouple these responses from those in the cortex, giving valuable information regarding the localized hemodynamics along with the dynamic formation of thrombotic event. The results indicate that OMAG can be a useful tool to study therapeutic strategies in preclinical animal models in order to mitigate various pathologies that are mainly related to the meningeal circulations.

  5. Ultrasensitive and label-free molecular level detection enabled by light phase control in magnetoplasmonic nanoantennas

    Science.gov (United States)

    Maccaferri, Nicolò; Gregorczyk, Keith; de Oliveira, Thales V. A. G.; Kataja, Mikko; van Dijken, Sebastiaan; Pirzadeh, Zhaleh; Dmitriev, Alexandre; Åkerman, Johan; Knez, Mato; Vavassori, Paolo

    2015-01-01

    Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single molecule sensing, arising from intrinsically nanoscopic sensing volume, and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared torecently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (i.e., without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of ~0.8 ag per nanoantenna of polyamide-6.6 (n=1.51), which is representative for a large variety of polymers, peptides and proteins. PMID:25639190

  6. Mueller matrix microscopy for label-free histopathology examinations (Conference Presentation)

    Science.gov (United States)

    Lv, Donghong; He, Honghui; Zhou, Jialing; Ma, Hui

    2017-03-01

    In clinical medicine, a pathologist often needs to examine cells or thin slices of tissues to identify abnormalities that are markers or precursors of diseases. Various chemical and immunohistochemical staining techniques have been developed to selectively label certain components to bring up the contrasts of specific microstructures. It is well known that a Mueller matrix contains rich information on the microstructure and optical properties of a sample. Using proper data analysis techniques, Mueller matrix images can also be transformed into new polarization parameters sensitive only to specific microstructural features. These new polarization parameters can selectively enhance the contrast of specific features in images of unstained pathological slide to help identify abnormalities. In recent studies, we set up a modulus design Mueller matrix microscope by adding polarization optics components into the optical path of a commercial transmission microscope. We take multiple measurements of the unstained pathological slide at different polar and azimuth angles, then derive an intrinsic Mueller matrix (IMM) which represents only the microstructural characters of the sample without the interference by the sample orientation. Such orientation-independent IMM images preserve to the maximum extent the pathological information of the tissue samples. Using Mueller matrix decomposition and transformation techniques, we demonstrate in preliminary tests that we are able to selectively enhance different characteristic features in different cancer tissues. With the fast advances in big-data analysis techniques, it is expected that label-free Mueller matrix microscopy is a potentially powerful tool for the histopathologists to identify characteristic features in complex tissue samples.

  7. Identification of Novel GPR55 Modulators Using Cell-Impedance-Based Label-Free Technology.

    Science.gov (United States)

    Morales, Paula; Whyte, Lauren S; Chicharro, Roberto; Gómez-Cañas, María; Pazos, M Ruth; Goya, Pilar; Irving, Andrew J; Fernández-Ruiz, Javier; Ross, Ruth A; Jagerovic, Nadine

    2016-03-10

    The orphan G protein-coupled receptor GPR55 has been proposed as a novel receptor of the endocannabinoid system. However, the validity of this categorization is still under debate mainly because of the lack of potent and selective agonists and antagonists of GPR55. Binding assays are not yet available for GPR55 screening, and discrepancies in GPR55 mediated signaling pathways have been reported. In this context, we have designed and synthesized novel GPR55 ligands based on a chromenopyrazole scaffold. Appraisal of GPR55 activity was accomplished using a label-free cell-impedance-based assay in hGPR55-HEK293 cells. The real-time impedance responses provided an integrative assessment of the cellular consequence to GPR55 stimulation taking into account the different possible signaling pathways. Potent GPR55 partial agonists (14b, 18b, 19b, 20b, and 21-24) have been identified; one of them (14b) being selective versus classical cannabinoid receptors. Upon antagonist treatment, chromenopyrazoles 21-24 inhibited lysophosphatidylinositol (LPI) effect. One of these GPR55 antagonists (21) is fully selective versus classic cannabinoid receptors. Compared to LPI, the predicted physicochemical parameters of the new compounds suggest a clear pharmacokinetic improvement.

  8. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    Science.gov (United States)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  9. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy.

    Science.gov (United States)

    Liang, Gang; Man, Yan; Jin, Xinxin; Pan, Ligang; Liu, Xinhui

    2016-09-14

    A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.

  10. Label-free impedimetric immunoassay for trace levels of polychlorinated biphenyls in insulating oil.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Sasaki, Kazuhiro; Namiki, Yukie; Matsumoto, Norio; Watanabe, Yoshitomo; Ohmura, Naoya; Matsue, Tomokazu

    2014-03-18

    A rapid, ultrasensitive, and practical label-free impedimetric immunoassay for measuring trace levels of total polychlorinated biphenyls (PCBs) in insulating oil was developed. First, we developed a novel monoclonal antibody (RU6F9) for PCBs by using a designed immunogen and characterized its binding affinity for a commercial mixtures of PCBs and its main congeners. A micro comblike gold electrode was fabricated, and the antibody was covalently immobilized on the electrode through a self-assembled monolayer formed by dithiobis-N-succinimidyl propionate. The antigen-binding event on the surface of the functionalized electrode was determined as the change in charge transfer resistance by using electrochemical impedance spectroscopy. The resulting impedimetric immunoassay in aqueous solution achieved a wide determination range (0.01-10 μg/L) and a low detection limit (LOD) of 0.001 μg/L, which was 100-fold more sensitive than a conventional flow-based immunoassay for PCBs. By combining the impedimetric immunoassay with a cleanup procedure for insulating oil utilizing a multilayer cleanup column followed by DMSO partitioning, an LOD of 0.052 mg/kg-oil was achieved, which satisfied the Japanese regulation criterion of 0.5 mg/kg-oil. Finally, the immunoassay was employed to determine total PCB levels in actual used insulating oils (n = 33) sampled from a used transformer containing trace levels of PCBs, and the results agreed well with the Japanese official method (HRGC/HRMS).

  11. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Alan Ludwiszewski

    2009-06-29

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  12. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liyuan; Shan, Jiao; Feng, Feng; Ma, Zhanfang, E-mail: mazhanfang@cnu.edu.cn

    2016-03-10

    A novel electrochemical redox-active nanocomposite was synthesized by a one-pot method using N,N′-diphenyl-p-phenylediamine as monomer, and HAuCl{sub 4} and K{sub 2}PtCl{sub 4} as co-oxidizing agents. The as-prepared poly(N,N′-diphenyl-p-phenylediamine)-Au/Pt exhibited admirable electrochemical redox activity at 0.15 V, excellent H{sub 2}O{sub 2} electrocatalytic ability and favorable electron transfer ability. Based on these, the evaluation of the composite as sensing substrate for label-free electrochemical immunosensing to the sensitive detection of carbohydrate antigen 199 was described. This technique proved to be a prospective detection tool with a wide liner range from 0.001 U mL{sup −1} to 40 U mL{sup −1}, and a low detection limit of 2.3 × 10{sup −4} U mL{sup −1} (S/N = 3). In addition, this method was used for the analysis of human serum sample, and good agreement was obtained between the values and those of enzyme-linked immunosorbent assay, implying the potential application in clinical research. Importantly, the strategy of the present substrate could be extended to other polymer-based nanocomposites such as polypyrrole derivatives or polythiophene derivatives, and this could be of great significance for the electrochemical immunoassay. - Highlights: • A novel electrochemical redox composite PPPD-Au/Pt was synthesized by one-pot method. • PPPD-Au/Pt was used as sensing substrate for label-free electrochemical immunosensor. • The immunosensor showed wide detection range and ultralow detection limit for the detection of CA199.

  13. Synthesis and sensing integration: A novel enzymatic reaction modulated Nanoclusters Beacon (NCB) "Illumination" strategy for label-free biosensing and logic gate operation.

    Science.gov (United States)

    Hong, Lu; Zhou, Fu; Wang, Guangfeng; Zhang, Xiaojun

    2016-12-15

    A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A brief review on mixed convection heat transfer in channel flow with vortex generator for electronic chip cooling

    Directory of Open Access Journals (Sweden)

    S K Mandal

    2016-06-01

    Full Text Available In an effort to increase processor speeds, 3D IC architecture is being aggressively pursued by researchers and chip manufacturers. This architecture allows extremely high level of integration with enhanced electrical performance and expanded functionality, and facilitates realization of VLSI and ULSI technologies. However, utilizing the third dimension to provide additional device layers poses thermal challenges due to the increased heat dissipation and complex electrical interconnects among different layers. The conflicting needs of the cooling system requiring larger flow passage dimensions to limit the pressure drop, and the IC architecture necessitating short interconnect distances to reduce signal latency warrant paradigm shifts in both of their design approach. Additional considerations include the effects due to temperature non-uniformity, localized hot spots, complex fluidic connections, and mechanical design. This paper reviews the advances in electronic chip cooling in the last decade and provides a vision for code signing integrated cooling systems. For various heat fluxes on each side of a chip acting as discrete heat source, the current single-phase cooling technology is projected to provide adequate cooling, albeit with high pressure drops. Effectively mitigating the high temperatures surrounding local hot spots remains a challenging issue. Various forms of tabulators above the chips, different geometric arrangements of the chips positioned top and bottom wall of the duct serves very well in the heat augmentation technique with better performance

  15. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.

    Science.gov (United States)

    Almassalha, Luay M; Bauer, Greta M; Chandler, John E; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K; Subramanian, Hariharan; Chandel, Navdeep S; Szleifer, Igal; Backman, Vadim

    2016-10-18

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.

  16. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke.

    Science.gov (United States)

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter Cm; Bulte, Jeff W M; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion.

  17. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina.

    Directory of Open Access Journals (Sweden)

    Paula K Yu

    Full Text Available Radial peripapillary capillaries (RPCs comprise a unique network of capillary beds within the retinal nerve fibre layer (RNFL and play a critical role in satisfying the nutritional requirements of retinal ganglion cell (RGC axons. Understanding the topographical and morphological characteristics of these networks through in vivo techniques may improve our understanding about the role of RPCs in RGC axonal health and disease. This study utilizes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT, for quantitatively studying RPC networks in the human retina. Six different retinal eccentricities from 16 healthy eyes were imaged using svOCT. The same eccentricities were histologically imaged in 9 healthy donor eyes with a confocal scanning laser microscope. Donor eyes were subject to perfusion-based labeling techniques prior to retinal dissection, flat mounting and visualization with the microscope. Capillary density and diameter measurements from each eccentricity in svOCT and histological images were compared. Data from svOCT images were also analysed to determine if there was a correlation between RNFL thickness and RPC density. The results are as follows: (1 The morphological characteristics of RPC networks on svOCT images are comparable to histological images; (2 With the exception of the nasal peripapillary region, there were no significant differences in RPC density measurements between svOCT and histological images; (3 Capillary diameter measurements were significantly greater in svOCT images compared to histology; (4 There is a positive correlation between RPC density and RNFL thickness. The findings in this study suggest that svOCT is a reliable modality for analyzing RPC networks in the human retina. It may therefore be a valuable tool for aiding our understanding about vasculogenic mechanisms that are involved in RGC axonopathies. Further work is required to explore the

  18. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina.

    Science.gov (United States)

    Yu, Paula K; Balaratnasingam, Chandrakumar; Xu, Jing; Morgan, William H; Mammo, Zaid; Han, Sherry; Mackenzie, Paul; Merkur, Andrew; Kirker, Andrew; Albiani, David; Sarunic, Marinko V; Yu, Dao-Yi

    2015-01-01

    Radial peripapillary capillaries (RPCs) comprise a unique network of capillary beds within the retinal nerve fibre layer (RNFL) and play a critical role in satisfying the nutritional requirements of retinal ganglion cell (RGC) axons. Understanding the topographical and morphological characteristics of these networks through in vivo techniques may improve our understanding about the role of RPCs in RGC axonal health and disease. This study utilizes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT), for quantitatively studying RPC networks in the human retina. Six different retinal eccentricities from 16 healthy eyes were imaged using svOCT. The same eccentricities were histologically imaged in 9 healthy donor eyes with a confocal scanning laser microscope. Donor eyes were subject to perfusion-based labeling techniques prior to retinal dissection, flat mounting and visualization with the microscope. Capillary density and diameter measurements from each eccentricity in svOCT and histological images were compared. Data from svOCT images were also analysed to determine if there was a correlation between RNFL thickness and RPC density. The results are as follows: (1) The morphological characteristics of RPC networks on svOCT images are comparable to histological images; (2) With the exception of the nasal peripapillary region, there were no significant differences in RPC density measurements between svOCT and histological images; (3) Capillary diameter measurements were significantly greater in svOCT images compared to histology; (4) There is a positive correlation between RPC density and RNFL thickness. The findings in this study suggest that svOCT is a reliable modality for analyzing RPC networks in the human retina. It may therefore be a valuable tool for aiding our understanding about vasculogenic mechanisms that are involved in RGC axonopathies. Further work is required to explore the reason for

  19. New function of exonuclease and highly sensitive label-free colorimetric DNA detection.

    Science.gov (United States)

    Li, Hongbo; Wang, Suqin; Wu, Zaisheng; Xu, Jianguo; Shen, Guoli; Yu, Ruqin

    2016-03-15

    Enzymatic manipulation and modulation of nucleic acids are a central part of cellular function, protection, and reproduction, while rapid and accurate detection of ultralow amount of nucleic acids remains a major challenge in molecular biology research and clinic diagnosis of genetic diseases. Herein, we reported that exonuclease III can degrade the G-quadruplex structure, indicating the new exonuclease's function. Basing on the function of exonuclease III, a novel G-quadruplex-hemin DNAzyme-based colorimetric detection of tumor suppressor gene p53 was successfully developed. Although only one oligonucleotide probe was involved, the sensing strategy could suppress the optical background and achieve an efficient G-quadruplex-hemin DNAzyme-based signal amplification. Specifically, a label-free functional nucleic acid probe (called THzyme probe) was designed via introducing target DNA probe-contained hairpin structure into G-quadruplex DNAzyme. Even if this probe can fold into G-quadruplex structure in the presence of hemin very different from the double-stranded DNA, it is easily degraded by exonuclease III. Thus, no change in UV-vis absorption intensity is detected in the absence of target DNA. However, the hybridization of target DNA can protect the integrity and catalytic activity of THzyme probe, producing the DNAzyme-amplified colorimetric signal. As a result, the p53 gene was able to be detected down to 1.0 pM (final concentration in the signal-generating solution: 50.0 fM) and mismatched target DNAs were easily distinguished. It is expected that this simple sensing methodology for DNA detection can find its utility in point-of-care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis.

  1. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Fu Weiling

    2011-06-01

    Full Text Available Abstract Background Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. Methods In this study, we developed a single-stranded DNA (ssDNA amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens. Results We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P 2 values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P Conclusions Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.

  2. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke

    Science.gov (United States)

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter CM; Bulte, Jeff W.M.; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion. PMID:27446492

  3. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    . The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate...

  4. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    Science.gov (United States)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a

  5. High-sensitivity label-free optical fiber optrodes based on the excitation of Bloch surface waves

    Science.gov (United States)

    Scaravilli, M.; Castaldi, G.; Cusano, A.; Galdi, V.

    2016-05-01

    In this study, the possibility to excite Bloch surface waves (BSWs) on the tip of a single-mode optical fiber is explored for the first time. In particular, we first show the possibility to achieve an on-tip excitation of BSWs, with optimized characteristic of the arising resonances, via an "all-fiber" grating-coupled configuration. Furthermore, envisioning novel high-performance fiber tip nanoprobes for label-free biosensing, we introduce an ad hoc design aimed at maximizing the refractive-index sensitivity. Numerical results indicate that the estimated sensitivities are comparable with those exhibited by current plasmonic lab-on-tip bio-probes, but are accompanied by a higher spectral selectivity. Therefore, this preliminary work paves the way to the development of new classes of miniaturized surface-wave optical fiber devices for low-detection-limit label-free chemical and biological sensing.

  6. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics.

    Science.gov (United States)

    Strzelecka, Dominika; Holman, Stephen W; Eyers, Claire E

    2015-11-30

    Dimethyl sulfoxide (DMSO) has been advocated as a beneficial additive to electrospray solvents for peptide analysis due to the improved ionisation efficiency conferred. Previous reports have shown that the resultant improvements in peptide ion signal intensities are non-uniform. As a result, it was hypothesised that inclusion of DMSO in electrospray solvents could be detrimental to the outcome of intensity-based label-free absolute quantification approaches, specifically the top 3 method. The effect of DMSO as a mobile phase additive in top 3 label-free quantification was therefore evaluated. We show that inclusion of DMSO enhances data quality, improving the precision and number of proteins quantified, with no significant change to the quantification values observed in its absence.

  7. Immobilization of zebrafish larvae on a chip-based device for environmental scanning electron microscopy (ESEM) imaging

    Science.gov (United States)

    Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-12-01

    Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Laser microsurgery on zebrafish larvae combined with Scanning Electron Microscopy (SEM) imaging can in particular provide accelerated insights into the tissue regeneration phenomena. Conventional SEM exposes, however, specimens to high vacuum environments, and often requires laborintensive and time-consuming pretreatments and manual positioning. Moreover, there are virtually no technologies available that can quickly immobilize the zebrafish larvae for high definition SEM imaging. This work describes the proof-of-concept design and validation of a microfluidic chip-based system for immobilizing zebrafish larvae and it's interfacing with Environmental Scanning Electron Microscope (ESEM) imaging. The Lab-on-a-Chip (LOC) device was fabricated using a high-speed infrared laser micromachining and consists of a reservoir with multiple semispherical microwells, which hold the yolk of zebrafish larvae, and drain channels that allow removing excess of medium during SEM imaging. Paper filter is used to actuate the chip and immobilization of the larvae by gentle suction that occurs during water drainage. The trapping region allows multiple specimens to be positioned on the chip. The device is then inserted directly inside the ESEM and imaged in a near 100% humidity atmosphere. This facilitates ESEM imaging of untreated biological samples.

  8. Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry.

    Science.gov (United States)

    Vogel, Marc; Suess, Beatrix

    2016-01-01

    Isothermal titration calorimetry (ITC) is a powerful label-free technique to determine the binding constant as well as thermodynamic parameters of a binding reaction and is therefore well suited for the analysis of small molecule-RNA aptamer interaction. We will introduce you to the method and present a protocol for sample preparation and the calorimetric measurement. A detailed note section will point out useful tips and pitfalls.

  9. A dual-channel detection of mercuric ions using a label free G-quadruplex-based DNAzyme molecule.

    Science.gov (United States)

    Ma, Long; Liu, Haiyan; Wu, Guanrong; Sun, Nana; Meng, Lingpei; Li, Yuyin; Liu, Zhenxing; Diao, Aipo

    2016-06-20

    We have constructed a 'turn-off' and label free bio-sensor using a DNAzyme molecule. This facile bio-sensor is capable of selective detection of mercuric ions with a high sensitivity and satisfactory dynamic range. More importantly, it is able to generate both fluorescent and colourimetric signals for detection. This dual-channel bio-sensor is expected to afford high detection confidence and overcome false-positive readout especially when assaying complex biological samples.

  10. Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    OpenAIRE

    Grass, Kai; Holm, Christian; Slater, Gary W.

    2009-01-01

    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that t...

  11. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  12. Studies towards the development of label-free AC impedimetric immunosensors for healthcare and food quality control

    OpenAIRE

    Tsekenis, Georgios

    2008-01-01

    This thesis describes work focused towards the fabrication and characterisation of immunosensor platforms for the label-free detection of analytes of importance in the health and food industries. Due to their low unit cost and ease of fabrication, the immunosensor market has significantly increased recently, resulting in a constant demand for new immunosensor applications. Within this thesis, therefore, a novel fabrication protocol is reported towards the production of immunose...

  13. Protein analysis of atrial fibrosis via label-free proteomics in chronic atrial fibrillation patients with mitral valve disease.

    Directory of Open Access Journals (Sweden)

    Peide Zhang

    Full Text Available BACKGROUND: Atrial fibrosis, as a hallmark of atrial structure remodeling, plays an important role in maintenance of chronic atrial fibrillation, but interrelationship of atrial fibrosis and atrial fibrillation is uncertain. Label-free proteomics can implement high throughput screening for finding and analyzing pivotal proteins related to the disease.. Therefore, we used label-free proteomics to explore and analyze differentially proteins in chronic atrial fibrillation patients with mitral valve disease. METHODS: Left and right atrial appendages obtained from patients with mitral valve disease were both in chronic atrial fibrillation (CAF, AF≥6 months, n = 6 and in sinus rhythm (SR, n = 6. One part of the sample was used for histological analysis and fibrosis quantification; other part were analyzed by label-free proteomic combining liquid chromatography with mass spectrometry (LC-MS, we utilized bioinformatics analysis to identify differential proteins. RESULTS: Degree of atrial fibrosis was higher in CAF patients than that of SR patients. 223 differential proteins were detected between two groups. These proteins mainly had vital functions such as cell proliferation, stress response, focal adhesion apoptosis. We evaluated that serine/threonine protein kinase N2 (PKN2, dermatopontin (DP, S100 calcium binding protein B (S100B, protein tyrosine kinase 2 (PTK2 and discoidin domain receptor tyrosine kinase 2 (DDR2 played important roles in fibrotic process related to atrial fibrillation. CONCLUSION: The study presented differential proteins responsible for atrial fibrosis in chronic atrial fibrillation patients through label-free proteomic analysis. We assessed some vital proteins including their characters and roles. These findings may open up new realm for mechanism research of atrial fibrillation.

  14. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging.

    Science.gov (United States)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S

    2015-11-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated.

  15. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei

    2012-12-01

    Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study.

    Directory of Open Access Journals (Sweden)

    Juho Pirhonen

    Full Text Available Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD. We tested whether second-harmonic generation (SHG and coherent anti-Stokes Raman scattering (CARS microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD.We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0-4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals.We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III.This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.

  17. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor.

    Science.gov (United States)

    Lu, Taofeng; Ma, Qin; Yan, Wenzhuo; Wang, Yuanzhi; Zhang, Yuanyuan; Zhao, Lili; Chen, Hongyan

    2018-01-01

    Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in ducks. This study investigated a novel aptamer-based, label-free aptasensor detection of MDPV. In this study, we developed an ssDNA aptamer using the filtration partition and lambda exonuclease method with an affinity-based monitor and counter-screening process. After 15 rounds of SELEX (systematic evolution of ligands by exponential enrichment), the ssDNA aptamer Apt-10, which specifically bound to MDPV with high affinity (Kd = 467nM) was successfully screened, and the aptamer was also found to be good specific to MDPV. The selected Apt-10 aptamer can be used to distinguish MDPV and goose parvovirus (GPV). Three-dimensional structural analysis of the Apt-10 aptamer indicated that it folded into a compact stem-loop motif, which was related to its high affinity. Finally, a label-free detection method based on unmodified gold nanoparticles and Apt-10 aptamer was developed for MDPV determination. The concentration of Apt-10 aptamer at 5μM was optimal for MDPV determination in the label-free aptasensor. Excellent linearity was acquired and the lowest detection limit was 1.5 or 3 EID50 (50% egg infection dose) of MDPV, respectively, depending upon spectrophotometry or the naked eye were used. These results show the potential of the aptamer for the rapid detection of MDPV and antiviral research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    Science.gov (United States)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution

  19. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  20. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and our partner, Draper Laboratory, propose to develop an on orbit immuno-based, label-free, white blood cell counting system for...

  1. Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides.

    Science.gov (United States)

    Kim, Wansun; Lee, Jae-Chul; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk; Choi, Samjin

    2016-05-17

    We introduce a surface-enhanced Raman scattering (SERS)-functionalized, gold nanoparticle (GNP)-deposited paper strip capable of label-free biofluid sensing for the early detection of infectious eye diseases. The GNP biosensing paper strip was fabricated by the direct synthesis and deposition of GNPs on wax-divided hydrophilic areas of a permeable porous substrate through a facile, power-free synthesizable, and highly reproducible successive ionic layer absorption and reaction (SILAR) technique. To maximize localized surface plasmon resonance-generated SERS activity, the concentration of the reactive solution and number of SILAR cycles were optimized by controlling the size and gap distance of GNPs and verified by computational modeling with geometrical hypotheses of Gaussian-estimated metallic nanoparticles. The responses of our SERS-functionalized GNP paper strip to Raman intensities exhibited an enhancement factor of 7.8 × 10(8), high reproducibility (relative standard deviation of 7.5%), and 1 pM 2-naphthalenethiol highly sensitive detection limit with a correlation coefficient of 0.99, achieved by optimized SILAR conditions including a 10/10 mM/mM HAuCl4/NaBH4 concentration and six SILAR cycles. The SERS-functionalized GNP paper is supported by a multivariate statistics-preprocessed machine learning-judged bioclassification system to provide excellent label-free chemical structure sensitivity for identifying infectious keratoconjunctivitis. The power-free synthesizable fabrication, label-free, rapid analysis, and high sensitivity feature of the SILAR-fabricated SERS-functionalized GNP biosensing paper strip makes it an excellent alternative in point-of-care applications for the early detection of various infectious diseases.

  2. Intra-operative label-free multimodal multiphoton imaging of breast cancer margins and microenvironment (Conference Presentation)

    Science.gov (United States)

    Sun, Yi; You, Sixian; Tu, Haohua; Spillman, Darold R.; Marjanovic, Marina; Chaney, Eric J.; Liu, George Z.; Ray, Partha S.; Higham, Anna; Boppart, Stephen A.

    2017-02-01

    Label-free multi-photon imaging has been a powerful tool for studying tissue microstructures and biochemical distributions, particularly for investigating tumors and their microenvironments. However, it remains challenging for traditional bench-top multi-photon microscope systems to conduct ex vivo tumor tissue imaging in the operating room due to their bulky setups and laser sources. In this study, we designed, built, and clinically demonstrated a portable multi-modal nonlinear label-free microscope system that combined four modalities, including two- and three- photon fluorescence for studying the distributions of FAD and NADH, and second and third harmonic generation, respectively, for collagen fiber structures and the distribution of micro-vesicles found in tumors and the microenvironment. Optical realignments and switching between modalities were motorized for more rapid and efficient imaging and for a light-tight enclosure, reducing ambient light noise to only 5% within the brightly lit operating room. Using up to 20 mW of laser power after a 20x objective, this system can acquire multi-modal sets of images over 600 μm × 600 μm at an acquisition rate of 60 seconds using galvo-mirror scanning. This portable microscope system was demonstrated in the operating room for imaging fresh, resected, unstained breast tissue specimens, and for assessing tumor margins and the tumor microenvironment. This real-time label-free nonlinear imaging system has the potential to uniquely characterize breast cancer margins and the microenvironment of tumors to intraoperatively identify structural, functional, and molecular changes that could indicate the aggressiveness of the tumor.

  3. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  4. Method of Stamping Surface-Enhance Raman Spectroscopy for Label-Free, Multiplexed, Molecular Sensing and Imaging

    Science.gov (United States)

    Shih, Wei-Chuan (Inventor)

    2017-01-01

    The present disclosure relates the use of a stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates to produce a label-free, multiplexed molecular sensing and imaging technique. A NPGD SERS substrate is stamped onto a surface containing one or more target molecules, followed by SERS measurement of the target molecules located between the surface and SERS substrate. The target molecules may be deposited on the surface, which may be a carrier substrate such as polydimethylsiloxane (PDMS).

  5. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism.

    Science.gov (United States)

    Arnold, S; Shopova, S I; Holler, S

    2010-01-04

    Thermo-optic and reactive mechanisms for label-free sensing of bio-particles are compared theoretically for Whispering Gallery Mode (WGM) resonators (sphere, toroid) formed from silica and stimulated into a first order equatorial mode. Although it has been expected that a thermo-optic mechanism should "greatly enhance" wavelength shift signals [A.M. Armani et al, Science 317, 783-787 (2007)] accompanying protein binding on a silica WGM cavity having high Q (10(8)), for a combination of wavelength (680 nm), drive power (1 mW), and cavity size (43 microm radius), our calculations find no such enhancement. The possible reasons for this disparity are discussed.

  6. Comparative Label-free LC-MS/MS Analysis of Colorectal Adenocarcinoma and Metastatic Cells Treated with 5-Fluorouracil

    OpenAIRE

    Bauer, Kerry M.; Lambert, Paul A.; Hummon, Amanda B.

    2012-01-01

    A label-free mass spectrometric strategy was used to examine the effect of 5-fluorouracil (5-FU) on the primary and metastatic colon carcinoma cell lines, SW480 and SW620, with and without treatment. 5-FU is the most common chemotherapeutic treatment for colon cancer. Pooled biological replicates were analyzed by nanoLC-MS/MS and protein quantification was determined via spectral counting. Phenotypic and proteomic changes were evident and often similar in both cell lines. The SW620 cells were...

  7. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    Science.gov (United States)

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10(-8) RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm(-2) , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL(-1) range.

  8. Quinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection

    Directory of Open Access Journals (Sweden)

    Minh-Chau Pham

    2013-01-01

    Full Text Available Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

  9. A microfluidic-based electrochemical biochip for label-free DNA hybridization analysis.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Gordonov, Tanya; Bentley, William E; Ghodssi, Reza

    2014-09-10

    Miniaturization of analytical benchtop procedures into the micro-scale provides significant advantages in regards to reaction time, cost, and integration of pre-processing steps. Utilizing these devices towards the analysis of DNA hybridization events is important because it offers a technology for real time assessment of biomarkers at the point-of-care for various diseases. However, when the device footprint decreases the dominance of various physical phenomena increases. These phenomena influence the fabrication precision and operation reliability of the device. Therefore, there is a great need to accurately fabricate and operate these devices in a reproducible manner in order to improve the overall performance. Here, we describe the protocols and the methods used for the fabrication and the operation of a microfluidic-based electrochemical biochip for accurate analysis of DNA hybridization events. The biochip is composed of two parts: a microfluidic chip with three parallel micro-channels made of polydimethylsiloxane (PDMS), and a 3 x 3 arrayed electrochemical micro-chip. The DNA hybridization events are detected using electrochemical impedance spectroscopy (EIS) analysis. The EIS analysis enables monitoring variations of the properties of the electrochemical system that are dominant at these length scales. With the ability to monitor changes of both charge transfer and diffusional resistance with the biosensor, we demonstrate the selectivity to complementary ssDNA targets, a calculated detection limit of 3.8 nM, and a 13% cross-reactivity with other non-complementary ssDNA following 20 min of incubation. This methodology can improve the performance of miniaturized devices by elucidating on the behavior of diffusion at the micro-scale regime and by enabling the study of DNA hybridization events.

  10. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.

    Science.gov (United States)

    Yesiloz, Gurkan; Boybay, Muhammed Said; Ren, Carolyn L

    2015-10-21

    This study reports a microwave-microfluidics integrated approach capable of performing droplet detection at high-throughput as well as content sensing of individual droplets without chemical or physical intrusion. The sensing system consists of a custom microwave circuitry and a spiral-shaped microwave resonator that is integrated with microfluidic chips where droplets are generated. The microwave circuitry is very cost effective by using off-the-shelf components only. It eliminates the need for bulky benchtop equipment, and provides a compact, rapid and sensitive tool compatible for Lab-on-a-Chip (LOC) platforms. To evaluate the resonator's sensing capability, it was first applied to differentiate between single-phase fluids which are aqueous solutions with different concentrations of glucose and potassium chloride respectively by measuring its reflection coefficient as a function of frequency. The minimum concentration assessed was 0.001 g ml(-1) for potassium chloride and 0.01 g ml(-1) for glucose. In the droplet detection experiments, it is demonstrated that the microwave sensor is able to detect droplets generated at as high throughput as 3.33 kHz. Around two million droplets were counted over a period of ten minutes without any missing. For droplet sensing experiments, pairs of droplets that were encapsulated with biological materials were generated alternatively in a double T-junction configuration and clearly identified by the microwave sensor. The sensed biological materials include fetal bovine serum, penicillin antibiotic mixture, milk (2% mf) and d-(+)-glucose. This system has significant advantages over optical detection methods in terms of its cost, size and compatibility with LOC settings and also presents significant improvements over other electrical-based detection techniques in terms of its sensitivity and throughput.

  11. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline

    Science.gov (United States)

    Park, Ki Soo; Oh, Seung Soo; Soh, H. Tom; Park, Hyun Gyu

    2014-08-01

    A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to the cytosine nucleobase is prevented. Consequently, fluorescent silver nanoclusters are not formed causing a significant reduction of the fluorescence signal. By employing this new sensor, theophylline can be highly selectively detected at a concentration as low as 1.8 μM. Finally, the diagnostic capability and practical application of this sensor were demonstrated by its use in detecting theophylline in human blood serum.A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to

  12. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di; Zhuo, Ming [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang, Xiaoai [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Xu, Cheng; Jiang, Jie [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Gao, Fu [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Wan, Qing, E-mail: wanqing7686@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Li, Qiuhong, E-mail: liqiuhong2004@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang, Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2013-04-22

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V{sub T}) and field-effect mobility. The changes of I{sub D}–V{sub G} curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10{sup −9} g mL{sup −1} to 5 × 10{sup −6} g mL{sup −1} with a detection limit of 0.8 × 10{sup −10} g mL{sup −1}. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs

  13. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    Science.gov (United States)

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  14. Rapid and label-free identification of normal spermatozoa based on image analysis and micro-Raman spectroscopy.

    Science.gov (United States)

    Huang, Zufang; Chen, Guannan; Chen, Xiwen; Wang, Jing; Chen, Jinhua; Lu, Peng; Chen, Rong

    2014-09-01

    Semen analysis is performed for evaluation of fertility disorders, however it is susceptible to subjectivity of investigators, and lacking of objective criterion for sperm cell quality remains a problem. There is an ongoing debate on which criteria should be employed to define normal spermatozoa. Here, the aim of our study is to evaluate the possibility of label-free and rapid identification of normal sperm cell through the use of image analysis combined with micro-Raman spectroscopy. By using a smooth-surfaced and hydrophobic substrate, spermatozoa smear was rapidly prepared for microscopic imaging and acrosome area can be clearly visualized without any extra stains; then a self-written image analysis program was utilized to segment sperm head and acrosome area and automatically calculates morphological indices. Most important, intensity ratio of 1055 cm(-1) to 1095 cm(-1) from the obtained Raman spectra is found to indicate a potential biomarker for assessing the sperm DNA integrity. Our preliminary study demonstrates that micro-Raman spectroscopy combined with image analysis can be a potentially useful tool for rapid and label-free identification of normal sperm cell by providing both morphological and biochemical information. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Description of an Advantageous Optical Label-Free Biosensing Interferometric Read-Out Method to Measure Biological Species

    Directory of Open Access Journals (Sweden)

    Miguel Holgado

    2014-02-01

    Full Text Available In this article we report a new, simple, and reliable optical read-out detection method able to assess Rotavirus present in human sera as well as in the viral pollution sources. It is based on the interference of two interferometers used as biophotonic transducers. The method significantly improves the optical label-free biosensing response measuring both, the concentration of the AgR and its corresponding size. Two different immunoassays were carried out: Bovine Serum Albumin (BSA, and the recognition by its antibody (anti-BSA; and Rotavirus (AgR and the recognition by its antibody (anti-AgR. In the cases studied, and using as model interferometer a simple Fabry-Perot transducer, we demonstrate a biosensing enhancement of two orders of magnitude in the Limit of Detection (LoD. In fact, this read-out optical method may have significant implications to enhance other optical label-free photonic transducers reported in the scientific literature.

  16. Label-free chemical imaging of live Euglena gracilis by high-speed SRS spectral microscopy (Conference Presentation)

    Science.gov (United States)

    Wakisaka, Yoshifumi; Suzuki, Yuta; Tokunaga, Kyoya; Hirose, Misa; Domon, Ryota; Akaho, Rina; Kuroshima, Mai; Tsumura, Norimichi; Shimobaba, Tomoyoshi; Iwata, Osamu; Suzuki, Kengo; Nakashima, Ayaka; Goda, Keisuke; Ozeki, Yasuyuki

    2016-03-01

    Microbes, especially microalgae, have recently been of great interest for developing novel biofuels, drugs, and biomaterials. Imaging-based screening of live cells can provide high selectivity and is attractive for efficient bio-production from microalgae. Although conventional cellular screening techniques use cell labeling, labeling of microbes is still under development and can interfere with their cellular functions. Furthermore, since live microbes move and change their shapes rapidly, a high-speed imaging technique is required to suppress motion artifacts. Stimulated Raman scattering (SRS) microscopy allows for label-free and high-speed spectral imaging, which helps us visualize chemical components inside biological cells and tissues. Here we demonstrate high-speed SRS imaging, with temporal resolution of 0.14 seconds, of intracellular distributions of lipid, polysaccharide, and chlorophyll concentrations in rapidly moving Euglena gracilis, a unicellular phytoflagellate. Furthermore, we show that our method allows us to analyze the amount of chemical components inside each living cell. Our results indicate that SRS imaging may be applied to label-free screening of living microbes based on chemical information.

  17. Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing.

    Science.gov (United States)

    Hu, Yuwei; Hua, Shucheng; Li, Fenghua; Jiang, Yuanyuan; Bai, Xiaoxue; Li, Dan; Niu, Li

    2011-07-15

    Sensitive electrochemical impedance assay of DNA hybridization by using a novel graphene sheets platform was achieved. The graphene sheets were firstly functionalized with 3,4,9,10-perylene tetracarboxylic acid (PTCA). PTCA molecules separated graphene sheets efficiently and introduced more negatively-charged -COOH sites, both of which were beneficial to the decoration of graphene with gold nanoparticles. Then amine-terminated ionic liquid (NH₂-IL) was applied to the reduction of HAuCl₄ to gold nanoparticles. The green-synthesized gold nanoparticles, with the mean diameter of 3 nm, dispersed uniformly on graphene sheets and its outer layer was positively charged imidazole termini. Due to the presence of large graphene sheets and NH₂-IL protected gold nanoparticles, DNA probes could be immobilized via electrostatic interaction and adsorption effect. Electrochemical impedance value increased after DNA probes immobilization and hybridization, which was adopted as the signal for label-free DNA hybridization detection. Unlike previously anchoring DNA to gold nanoparticles, this label-free method was simple and noninvasive. The conserved sequence of the pol gene of human immunodeficiency virus 1 was satisfactorily detected via this strategy.

  18. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    Science.gov (United States)

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  19. Aptamer biosensors for label-free colorimetric detection of human IgE based on polydiacetylene (PDA) supramolecules.

    Science.gov (United States)

    Kim, Jun Pyo; Park, Cheol Hee; Sim, Sang Jun

    2011-05-01

    In this study, we demonstrate an aptamer-based biosensor (apta-biosensor) using PDA liposomes for label-free detection of allergy diagnosis by hIgE detection. In order to detect the target hIgE, the surface of PDA liposome were functionalized with hIgE antibody and anti-hIgE aptamer as a receptor, and the target hIgE onto the receptors was detected by the change of fluorescence signal. The hIgE antibody-modified PDA liposome biosensor had a serious problem that the immune reaction between receptor and target could not powerfully affect the change of florescence signal on PDA liposome. In order to solve this problem, the anti-hIgE aptamer which was far smaller than whole antibody was introduced as the receptor for the PDA liposome system. An aptamer-based PDA liposome biosensor was able to measure a quantity of target protein with various concentrations and at this time the detection limit was 141 ng/mL of the hIgE concentration. These results enabled diagnosis of allergy disease by an aptamer-based PDA liposome biosensor because real allergic patients showed high concentration of hIgE in serum (greater than 290 ng/mL). Therefore, we suggest that aptamer-modified PDA supramolecules as promising candidates for development of label-free colorimetric biosensors.

  20. Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free integrative pharmacology on-target.

    Directory of Open Access Journals (Sweden)

    Megan Morse

    Full Text Available Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs.

  1. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  2. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection.

    Science.gov (United States)

    Yang, Yuying; Liu, Qing; Liu, Yan; Cui, Jianjian; Liu, Hui; Wang, Ping; Li, Yueyun; Chen, Lei; Zhao, Zengdian; Dong, Yunhui

    2017-04-15

    A novel and ultrasensitive label-free electrochemical immunosensor was fabricated for quantitative detection of carcino-embryonic antigen (CEA). The nitrogen-doped graphene quantum dots (N-GQDs) supported PtPd bimetallic nanoparticles (PtPd/N-GQDs) were synthesized by a simple and green hydrothermal procedure. Subsequently, PtPd/N-GQDs functionalized Au nanoparticles (PtPd/N-GQDs@Au) were prepared successfully via a self-assembly approach. Because of the synergetic effect present in PtPd/N-GQDs@Au, this novel nanocomposites has shown excellent electrocatalytic activity towards hydrogen peroxide (H2O2) reduction. Featuring good biocompatibility, excellent conductivity and large surface area, PtPd/N-GQDs@Au was applied as transducing materials to efficiently conjugate capture antibodies and amplify electrochemical signal. Under the optimal conditions, the proposed immunosensor was used for the detection of CEA with wide dynamic range in the range from 5 fg/mL to 50ng/mL with a low detection limit of 2fg/mL (S/N=3). Furthermore, this label-free immunosensor possesses high sensitivity, special selectivity and long-term stability, which shows promising application in bioassay analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Label-free detection of 3-nitro-l-tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor.

    Science.gov (United States)

    Ng, Siu Pang; Qiu, Guangyu; Ding, Ning; Lu, Xiaoqing; Wu, Chi-Man Lawrence

    2017-03-15

    3-nitro-l-tyrosine (3-NT) is believed to be a biomarker of neurodegenerative diseases and metal doped graphene possess exceptionally high binding energy of 3-NT with metal-nitro chemisorption. Here we report a novel label-free detection scheme of 3-NT via nickel-doped graphene (NDG) as the functionalized receptor on our phase detecting localized surface plasmon resonance (LSPR) biosensor. When compared with reported 3-NT immunoassay with enzyme-linked immunosorbent assay (ELISA), our NDG-LSPR platform offers two advantages i.e. 1) label-free and 2) capture of 3-NT by direct chemisorption. Our limit of detection for 3-NT in PBS was found to be 0.13pg/ml and the linear dynamic range of response was from 0.5pg/ml to 1ng/ml, i.e. four orders of magnitude. The specificity of our NDG receptor to 3-NT was also verified with l-tyrosine of equivalent concentrations in PBS and diluted human serum, for which the NDG receptor shows negligible responses. In addition, the adsorption of 3-NT and l-tyrosine to the NDG receptor were also investigated by atomic force microscopy and further verified by surface enhanced Raman spectroscopy. Therefore, our NDG-LSPR biosensor competes favorably against ELISA and we believe it should be an attractive and economical solution to early diagnostic of 3-NT related disorders for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates

    Directory of Open Access Journals (Sweden)

    Yannick eCharretier

    2015-02-01

    Full Text Available Both acquired and intrinsic mechanisms play a crucial role in Pseudomonas aeruginosa antibiotic resistance. Many clinically relevant resistance mechanisms result from changes in gene expression, namely multidrug efflux pump overproduction, AmpC beta-lactamase induction or derepression, and inactivation or repression of the carbapenem-specific porin OprD. Changes in gene expression are usually assessed using reverse-transcription quantitative real-time PCR (RT-qPCR assays. Here, we evaluated label-free Selected Reaction Monitoring (SRM-based mass spectrometry to directly quantify proteins involved in antibiotic resistance. We evaluated the label-free SRM using a defined set of P. aeruginosa isolates with known resistance mechanisms and compared it against RT-qPCR. Referring to efflux systems, we found a more robust relative quantification of antibiotic resistance mechanisms by SRM than RT-qPCR. The SRM-based approach was applied to a set of clinical P. aeruginosa isolates to detect antibiotic resistance proteins. This multiplexed SRM-based approach is a rapid and reliable method for the simultaneous detection and quantification of resistance mechanisms and we demonstrate its relevance for antibiotic resistance prediction.

  5. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis.

    Science.gov (United States)

    Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto

    2017-08-21

    The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.

  6. Toward a Noninvasive, Label-Free Screening Method for Determining Spore Inoculum Quality of Penicillium chrysogenum Using Raman Spectroscopy.

    Science.gov (United States)

    Wieland, Karin; Kuligowski, Julia; Ehgartner, Daniela; Ramer, Georg; Koch, Cosima; Ofner, Johannes; Herwig, Christoph; Lendl, Bernhard

    2017-01-01

    We report on a label-free, noninvasive method for determination of spore inoculum quality of Penicillium chrysogenum prior to cultivation/germination. Raman microspectroscopy providing direct, molecule-specific information was used to extract information on the viability state of spores sampled directly from the spore inoculum. Based on the recorded Raman spectra, a supervised classification method was established for classification between living and dead spores and thus determining spore inoculum quality for optimized process control. A fast and simple sample preparation method consisting of one single dilution step was employed to eliminate interfering signals from the matrix and to achieve isolation of single spores on the sample carrier (CaF2). Aiming to avoid any influence of the killing procedure in the Raman spectrum of the spore, spores were considered naturally dead after more than one year of storage time. Fluorescence staining was used as reference method. A partial least squares discriminant analysis classifier was trained with Raman spectra of 258 living and dead spores (178 spectra for calibration, 80 spectra for validation). The classifier showed good performance when being applied to a 1 µL droplet taken from a 1:1 mixture of living and dead spores. Of 135 recorded spectra, 51% were assigned to living spores while 49% were identified as dead spores by the classifier. The results obtained in this work are a fundamental step towards developing an automated, label-free, and noninvasive screening method for assessing spore inoculum quality.

  7. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    Science.gov (United States)

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bioaerosol analysis based on a label-free microarray readout method using surface-enhanced Raman scattering.

    Science.gov (United States)

    Schwarzmeier, Kathrin; Knauer, Maria; Ivleva, Natalia P; Niessner, Reinhard; Haisch, Christoph

    2013-06-01

    Bacterial contamination of indoor air is a serious threat to human health. Pathogenic germs can be transferred from the liquid to the aerosol phase, for instance, when water is sprayed in the air, such as in shower rooms, air conditioners, or fountains. Existing analytical methods for biological indoor air-quality assessment and contamination monitoring are mostly time consuming as they generally require a cultivation step. The need for a rapid, sensitive, and selective detection method for bioaerosols is evident. Our approach is based on the combination of a commercial wet particle sampler (Coriolis μ, Bertin Technologies, France) and a label-free microarray readout based on surface-enhanced Raman scattering (SERS) for detection, which was established in our laboratories. Heat-inactivated Escherichia coli bacteria were used as test microorganisms. An E. coli suspension was sprayed into the chamber by a jet air nebulizer. The resulting bioaerosol was dried, neutralized, and then collected by a Coriolis μ sampler. The bacteria collected were detected by a recently developed microarray readout system, based on label-free SERS detection. A special data evaluation procedure was applied in order to fully exploit the selectivity of the detection scheme, resulting in a detection limit of 144 particles per cubic centimeter.

  9. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    Science.gov (United States)

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine.

  10. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Nan; Wang, Quanbo; Lei, Jianping; Liu, Lin; Ju, Huangxian

    2015-01-01

    The design of a label-free aptamer for separation of recognition sequence from signal reporter is significant to ensure the high-efficiency affinity between aptamer and target. This work develops a label-free triple-helix aptamer (THA) as sensing platform for "signal-on" fluorescent detection of thrombin. THA was composed of aptamer sequence and help DNA 1 (H1), which contained the complementary sequence of hexachloro-fluorescein (HEX) labeled help DNA 2 (H2). The specific recognition event between aptamer and thrombin triggered the dismission of THA to release H1. The released H1 then reacted with the signal probe of H2/graphene oxide (GO) nanocomposite to form H1-H2 duplex, leading to the fluorescence recovery of H2 due to the detachment of H1-H2 duplex from the surface of GO. With employment of THA as a signal transducer and GO as a "superquencher", this method shows a sensitive response to thrombin with a wide concentration range from 5 to 1200 nM. The limit of detection is 1.8 nM (S/N=3) with excellent selectivity. Considering the universality of THA, the proposed aptasensor would provide a platform for homogeneous fluorescent detection of a wide range of analytes.

  11. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.

    Science.gov (United States)

    Holt, Tom G; Choi, Bernard K; Geoghagen, Neil S; Jensen, Kristian K; Luo, Qi; LaMarr, William A; Makara, Gergely M; Malkowitz, Lorraine; Ozbal, Can C; Xiong, Yusheng; Dufresne, Claude; Luo, Ming-Juan

    2009-10-01

    Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity. The in vitro assay used HTMS to quantify the unlabeled product of the CBS reaction, cystathionine. Cystathionine HTMS analyses were carried out with a throughput of 7 s per sample and quantitation over a linear range of 80-10,000 nM. A compound library of 25,559 samples (or 80 384-well plates) was screened as singlets using the HTMS assay in a period of 8 days. With a hit rate of 0.32%, the actives showed a 90% confirmation rate. The in vitro assay was applied to secondary screens in more complex matrices with no additional analytical development. Our results show that the HTMS method was useful for screening samples containing serum, for cell-based assays, and for liver explants. The novel extension of the in vitro analytical method, without modification, to secondary assays resulted in a significant and advantageous economy of development time for the drug discovery project.

  12. Graphene-Assisted Label-Free Homogeneous Electrochemical Biosensing Strategy based on Aptamer-Switched Bidirectional DNA Polymerization.

    Science.gov (United States)

    Wang, Wenxiao; Ge, Lei; Sun, Ximei; Hou, Ting; Li, Feng

    2015-12-30

    In this contribution, taking the discrimination ability of graphene over single-stranded (ss) DNA/double-stranded (ds) DNA in combination with the electrochemical impedance transducer, we developed a novel label-free homogeneous electrochemical biosensor using graphene-modified glassy carbon electrode (GCE) as the sensing platform. To convert the specific aptamer-target recognition into ultrasensitive electrochemical signal output, a novel aptamer-switched bidirectional DNA polymerization (BDP) strategy, capable of both target recycling and exponential signal amplification, was compatibly developed in this study. In this strategy, all the designed DNA structures could be adsorbed on the graphene/GCE and, thus, serve as the electrochemical impedance signal reporter, while the target acts as a trigger of this BDP reaction, in which these designed DNA structures are bound together and, then, converted to long dsDNA duplex. The distinct difference in electrochemical impedance spectroscopy between the designed structures and generated long dsDNA duplex on the graphene/GCE allows label-free and homogeneous detection of target down to femto-gram level. The target can be displaced from aptamer through the polymerization to initiate the next recognition-polymerization cycle. Herein, the design and signaling principle of aptamer-switched BDP amplification system were elucidated, and the working conditions were optimized. This method not only provides a universal platform for electrochemical biosensing but also shows great potential in biological process researches and clinic diagnostics.

  13. Trifunctional fluorescent unnatural nucleoside: Label free detection of T-T/C-C base mismatches, abasic site and bulge DNA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Pradhan, Manoj Kumar; Talukdar, Sangita

    2017-08-01

    The detection and targeting of both the mismatched and abasic DNA is highly important which would ultimately help in designing new diagnostics and chemotherapeutics. Furthermore, sensing and targeting the bulge sequence with a fluorescent probe would be useful to study the role of bulges in nucleic acid function or could have significant therapeutic potential. Thus, detection of specific bulges by small fluorescent molecules is an attractive research area since the past several years. Many attempts have been made to prepare such compounds. We report herein a label free strategy for the detection of pyrimidine base mismatches (T/T and C/C), sensing of abasic site, and pyrimidine base bulge DNA using an unnatural tetrazolylpyrene nucleoside ((TPy)B(Do)) as a bare fluorescent probe. The H-bonding/hydrophobic force mediated interactions allow the sensing of all three deformed DNA via an enhancement of fluorescence signal using our simple "Just-Mix and Read" strategy. The binding of the probe to all the three deformed DNA duplexes is accompanied by an increase in the thermal melting stability of the deformed DNAs. That the probe binds efficiently to the minor groove near the deformed site was evident from spectroscopic studies. All the spectral evidences open up a multitude of possibilities for using our probe, tetrazolylpyrene nucleoside, as an efficient fluorescent light-up bio-probe for label free DNA detection. Copyright © 2017. Published by Elsevier B.V.

  14. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal

    Science.gov (United States)

    Ducourthial, Guillaume; Leclerc, Pierre; Mansuryan, Tigran; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Batrin, Renaud; Vever-Bizet, Christine; Bourg-Heckly, Geneviève; Thiberville, Luc; Druilhe, Anne; Kudlinski, Alexandre; Louradour, Frédéric

    2015-12-01

    We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.

  15. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles.

    Science.gov (United States)

    Xu, Li-Jia; Zong, Cheng; Zheng, Xiao-Shan; Hu, Pei; Feng, Jia-Min; Ren, Bin

    2014-02-18

    Proteins perform vital functional and structural duties in living systems, and the in-depth investigation of protein in its native state is one of the most important challenges in the postgenomic era. Surface-enhanced Raman spectroscopy (SERS) can provide the intrinsic fingerprint information of samples with ultrahigh sensitivity but suffers from the reproducibility and reliability issues. In this paper, we proposed an iodide-modified Ag nanoparticles method (Ag IMNPs) for label-free detection of proteins. The silver nanoparticles provide the huge enhancement to boost the Raman signal of proteins, and the coated iodide layer offers a barrier to prevent the direct interaction between the proteins and the metal surface, helping to keep the native structures of proteins. With this method, highly reproducible and high-quality SERS signals of five typical proteins (lysozyme, avidin, bovine serum albumin, cytochrome c, and hemoglobin) have been obtained, and the SERS features of the proteins without chromophore were almost identical to the respective normal Raman spectra. This unique feature allows the qualitative identification of them by simply taking the intensity ratio of the Raman peaks of tryptophan to phenylalanine residues. We further demonstrated that the method can also be used for label-free multiplex analysis of protein mixture as well as to study the dynamic process of protein damage stimulated by hydrogen peroxide. This method proves to be very promising for further applications in proteomics and biomedical research.

  16. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    Science.gov (United States)

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-02-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 ‑ 2.0 × 108 cells mL‑1), a low limit of detection (79 cells mL‑1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  17. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library.

    Science.gov (United States)

    Han, Lei; Liu, Pei; Petrenko, Valery A; Liu, Aihua

    2016-02-24

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  18. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance.

    Science.gov (United States)

    Stratton, Dan; Lange, Sigrun; Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel; Inal, Jameel

    2014-10-24

    Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36×10(6)MVs, was calculated to be 23ng. We therefore estimated the mass of an MV to be 0.24pg. With the deposition on the QCM-D of 3.5×10(7)MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235pg per MV.

  19. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199.

    Science.gov (United States)

    Wang, Liyuan; Shan, Jiao; Feng, Feng; Ma, Zhanfang

    2016-03-10

    A novel electrochemical redox-active nanocomposite was synthesized by a one-pot method using N,N'-diphenyl-p-phenylediamine as monomer, and HAuCl4 and K2PtCl4 as co-oxidizing agents. The as-prepared poly(N,N'-diphenyl-p-phenylediamine)-Au/Pt exhibited admirable electrochemical redox activity at 0.15 V, excellent H2O2 electrocatalytic ability and favorable electron transfer ability. Based on these, the evaluation of the composite as sensing substrate for label-free electrochemical immunosensing to the sensitive detection of carbohydrate antigen 199 was described. This technique proved to be a prospective detection tool with a wide liner range from 0.001 U mL(-1) to 40 U mL(-1), and a low detection limit of 2.3 × 10(-4) U mL(-1) (S/N = 3). In addition, this method was used for the analysis of human serum sample, and good agreement was obtained between the values and those of enzyme-linked immunosorbent assay, implying the potential application in clinical research. Importantly, the strategy of the present substrate could be extended to other polymer-based nanocomposites such as polypyrrole derivatives or polythiophene derivatives, and this could be of great significance for the electrochemical immunoassay.

  20. Core-Shell Structure of Gold Nanoparticles with Inositol Hexaphosphate Nanohybrids for Label-Free and Rapid Detection by SERS Nanotechnology

    Directory of Open Access Journals (Sweden)

    Andreas H. H. Mevold

    2015-01-01

    Full Text Available Gold nanoparticles bound with inositol hexaphosphate (IP6 (AuNPs/IP6 were prepared by in situ reduction of various concentrations of IP6 (0~320 µM through modified Frens method for surface-enhanced Raman scattering (SERS detection. The resultant AuNPs/IP6 were subject to characterization including UV/Vis spectroscopy, transmission electron microscopy (TEM, dynamic light scattering (DLS, zeta potential, and X-ray photoelectron spectroscopy (XPS. The results showed that AuNPs with 65 µM of IP6 would result in a core AuNPs-shell (IP6 layer structure, which exhibited the strongest SERS signal, due to the “hot spot effect” generated from the 1-2 nm interparticle gaps of AuNPs/IP6 nanohybrids (ionic interaction of IP6 and Au+. Furthermore, the reaction kinetics of Au and IP6 were also investigated in this work. Higher concentration of IP6 (190 and 260 µM will make AuNPs become irregularly shaped, because IP6 is a basic salt and served as a pH mediator. The morphology and distribution of AuNPs were greatly improved by addition of 65 µM of IP6. This novel AuNPs/IP6 nanohybrid showed great stability and Raman enhancement. It is promising in the application of rapid and label-free biological detection of bacteria or tumor cells.

  1. Label-free Electrochemiluminescent Immunosensor for Detection of Prostate Specific Antigen based on Aminated Graphene Quantum Dots and Carboxyl Graphene Quantum Dots.

    Science.gov (United States)

    Wu, Dan; Liu, Yixin; Wang, Yaoguang; Hu, Lihua; Ma, Hongmin; Wang, Guoqin; Wei, Qin

    2016-02-04

    Prostate-specific antigen (PSA) was used as the model, an ultrasensitive label-free electrochemiluminescent immunosensor was developed based on graphene quantum dots. Au/Ag-rGO was sythsized and used as electrode material to load a great deal of graphene quantum dots due to the large surface area and excellent electron conductivity. After aminated graphene quantum dots and acarboxyl graphene quantum dots were modified onto the electrode, the ECL intensity was much high using K2S2O8 as coreactant. Then, antibody of PSA was immobilized on the surface of modified electrode surface through the adsorption of Au/Ag toward proteins, leading to the decrease of the ECL intensity. As proven by ECL spectra test and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the ECL intensity decreased linearly with the logarithm of PSA concentration in the range of 1 pg/mL ~ 10 ng/mL. The detection limit achieved is 0.29 pg/mL. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results. Due to excellent stability, high sensitivity, acceptable repeatability and selectivity, the immunosensor has promising applications in disease and drug analysis.

  2. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I.

    Science.gov (United States)

    Liu, Guozhen; Qi, Meng; Zhang, Yin; Cao, Chaomin; Goldys, Ewa M

    2016-02-25

    A stable label-free amperometric immunosensor is presented based on gold nanoparticles and graphene oxide nanocomposites for detection of cardiac troponin-I in the early diagnosis of myocardial infarction. For designing of the sensing platform, firstly the nanocomposites based on GO and AuNPs were prepared and anchored on electrode surfaces. The formed nanocomposites provided a platform with big surface area for loading anti-cTnI capture antibody, and worked as a bridge for fast electron transfer subsequently increased the sensitivity. Moreover, the linkages between AuNP, GO, and electrodes were based on covalent bonding by aryldiazonium salt coupling chemistry, which favors the stability of the sensing interface. Finally, the anti-cTnI detection antibody was immobilized on GO tailored with ferrocene molecules, functioning as the signal reporter for the detection of cTnI. The modification process was monitored using electrochemistry, SEM, XPS. The herein immunosensor demonstrates a good selectivity and high sensitivity against human-cTnI, and is capable of detecting cTnI at concentrations as low as 0.05 ng mL(-1), which is 100 times lower than that possible by conventional methods. It is potential to design the portable sensing platform based on AuNPs and GO nanocomposites for future point-of-care diagnostics.

  3. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    Science.gov (United States)

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method.

  4. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  5. Chip, Chip, Hooray!

    Science.gov (United States)

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  6. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  7. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

    Science.gov (United States)

    Geissler, David; Belder, Detlev

    2015-12-01

    One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    Science.gov (United States)

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  9. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    Science.gov (United States)

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  10. Monolithic Chip System with a Microfluidic Channel for In Situ Electron Microscopy of Liquids

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew; Mølhave, Kristian

    2014-01-01

    sandwiched microchips with thin membranes. We report on a new microfabricated chip system based on a monolithic design that enables membrane geometry on the scale of a few micrometers. The design is intended to reduce membrane deflection when the system is under pressure, a micro fluidic channel for improved...

  11. Photonic flash soldering of thin chips and SMD components on foils for flexible electronics

    NARCIS (Netherlands)

    Ende, D.A. van den; Hendriks, R.; Cauchois, R.; Kusters, R.H.L.; Cauwe, M.; Groen, W.A.; Brand, J. van den

    2014-01-01

    Ultrathin bare die chips and small-size surface mount device components were successfully soldered using a novel roll-to-roll compatible soldering technology. A high-power xenon light flash was used to successfully solder the components to copper tracks on polyimide (PI) and polyethylene terephthala

  12. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  13. ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin “CJ”

    2009-01-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

  14. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis

    Science.gov (United States)

    Lei, Cheng; Ito, Takuro; Ugawa, Masashi; Nozawa, Taisuke; Iwata, Osamu; Maki, Masanori; Okada, Genki; Kobayashi, Hirofumi; Sun, Xinlei; Tiamsak, Pimsiri; Tsumura, Norimichi; Suzuki, Kengo; Di Carlo, Dino; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    We demonstrate high-throughput label-free single-cell image cytometry and image-based classification of Euglena gracilis (a microalgal species) under different culture conditions. We perform it with our high-throughput optofluidic image cytometer composed of a time-stretch microscope with 780-nm resolution and 75-Hz line rate, and an inertial-focusing microfluidic device. By analyzing a large number of single-cell images from the image cytometer, we identify differences in morphological and intracellular phenotypes between E. gracilis cell groups and statistically classify them under various culture conditions including nitrogen deficiency for lipid induction. Our method holds promise for real-time evaluation of culture techniques for E. gracilis and possibly other microalgae in a non-invasive manner. PMID:27446699

  15. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    Science.gov (United States)

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  16. Multimodal CARS and SHG microscopy for label-free detection of collagen produced by hDFs in fibrin gel

    CERN Document Server

    Mortati, Leonardo; Sassi, Maria Paola

    2011-01-01

    Label-free combined CARS and SHG microscopy techniques are used as powerful tool to follow the cells behavior in cell-scaffold construct for regeneration of tissues. Imaging of histological section of hDFs seeded in fibrin gel scaffold and imaging of collagen produced by hDFs in a time course experiment at different culture days (0, 7, 21, 42) is performed. A study on the limit of collagen detection of the imaging system is reported using sample prepared with different collagen concentrations. The results show that also the small amount of collagen produced by hDFs after few hours of incubation in fibrin gel is detected. Co-localization of hDFs and collagen is also reported in function of the culture days.

  17. A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves

    Directory of Open Access Journals (Sweden)

    Maria Alvaro

    2013-02-01

    Full Text Available A one-dimensional photonic crystal (1DPC based on a planar stack of dielectric layers is used as an optical transducer for biosensing, upon the coupling of TE-polarized Bloch Surface Waves (BSW. The structure is tailored with a polymeric layer providing a chemical functionality facilitating the covalent binding of orienting proteins needed for a subsequent grafting of antibodies in an immunoassay detection scheme. The polymeric layer is impregnated with Cy3 dye, in such a way that the photonic structure can exhibit an emissive behavior. The BSW-coupled fluorescence shift is used as a means for detecting refractive index variations occurring at the 1DPC surface, according to a label-free concept. The proposed working principle is successfully demonstrated in real-time tracking of protein G covalent binding on the 1DPC surface within a fluidic cell.

  18. Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Maureen McKeague

    2014-08-01

    Full Text Available Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA. Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding, were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM.

  19. A fluorescent one-dimensional photonic crystal for label-free biosensing based on BLOCH surface waves.

    Science.gov (United States)

    Frascella, Francesca; Ricciardi, Serena; Rivolo, Paola; Moi, Valeria; Giorgis, Fabrizio; Descrovi, Emiliano; Michelotti, Francesco; Munzert, Peter; Danz, Norbert; Napione, Lucia; Alvaro, Maria; Bussolino, Federico

    2013-02-05

    A one-dimensional photonic crystal (1DPC) based on a planar stack of dielectric layers is used as an optical transducer for biosensing, upon the coupling of TE-polarized Bloch Surface Waves (BSW). The structure is tailored with a polymeric layer providing a chemical functionality facilitating the covalent binding of orienting proteins needed for a subsequent grafting of antibodies in an immunoassay detection scheme. The polymeric layer is impregnated with Cy3 dye, in such a way that the photonic structure can exhibit an emissive behavior. The BSW-coupled fluorescence shift is used as a means for detecting refractive index variations occurring at the 1DPC surface, according to a label-free concept. The proposed working principle is successfully demonstrated in real-time tracking of protein G covalent binding on the 1DPC surface within a fluidic cell.

  20. A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing

    Directory of Open Access Journals (Sweden)

    Alexandre François

    2015-01-01

    Full Text Available The platform presented here was devised to address the unmet need for real time label-free in vivo sensing by bringing together a refractive index transduction mechanism based on Whispering Gallery Modes (WGM in dye doped microspheres and Microstructured Optical Fibers. In addition to providing remote excitation and collection of the WGM signal, the fiber provides significant practical advantages such as an easy manipulation of the microresonator and the use of this sensor in a dip sensing architecture, alleviating the need for a complex microfluidic interface. Here, we present the first demonstration of the use of this approach for biological sensing and evaluate its limitation in a sensing configuration deprived of liquid flow which is most likely to occur in an in vivo setting. We also demonstrate the ability of this sensing platform to be operated above its lasing threshold, enabling enhanced device performance.

  1. Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells

    Science.gov (United States)

    Pascut, Flavius C.; Goh, Huey T.; George, Vinoj; Denning, Chris; Notingher, Ioan

    2011-04-01

    Raman micro-spectroscopy (RMS) has been recently proposed for label-free phenotypic identification of human embryonic stem cells (hESC)-derived cardiomyocytes. However, the methods used for measuring the Raman spectra led to acquisition times of minutes per cell, which is prohibitive for rapid cell sorting applications. In this study we evaluated two measurement strategies that could reduce the measurement time by a factor of more than 100. We show that sampling individual cells with a laser beam focused to a line could eliminate the need of cell raster scanning and achieve high prediction accuracies (>95% specificity and >96% sensitivity) with acquisition times ~5 seconds per cell. However, the use of commercially-available higher power lasers could potentially lead to sorting speeds of ~10 cells per s. This would start to progress RMS to the field of cell sorting for applications such as enrichment and purification of hESC-derived cardiomyocytes.

  2. Label-free detection of DNA single-base mismatches using a simple reflectance-based optical technique.

    Science.gov (United States)

    Nava, G; Ceccarello, E; Giavazzi, F; Salina, M; Damin, F; Chiari, M; Buscaglia, M; Bellini, T; Zanchetta, G

    2016-05-21

    Rapid and quantitative detection of the binding of nucleic acids to surface-immobilized probes remains a challenge in many biomedical applications. We investigated the hybridization of a set of fully complementary and defected 12-base long DNA oligomers by using the Reflective Phantom Interface (RPI), a recently developed multiplexed label-free detection technique. Based on the simple measurement of reflected light intensity, this technology enables to quantify the hybridization directly as it occurs on the surface with a sensitivity of 10 pg mm(-2). We found a strong effect of single-base mismatches and of their location on hybridization kinetics and equilibrium binding. In line with previous studies, we found that DNA-DNA binding is weaker on a surface than in the bulk. Our data indicate that this effect is a consequence of weak nonspecific binding of the probes to the surface.

  3. Non-destructive label-free continuous monitoring of in vitro chondrogenesis via electrical conductivity and its anisotropy.

    Science.gov (United States)

    Oh, Tong In; Kim, Changhwan; Karki, Bishal; Son, Youngsook; Lee, EunAh; Woo, Eung Je

    2015-02-01

    Non-destructive label-free continuous monitoring of in vitro tissue culture is an unmet demand in tissue engineering. Noting that different compositions of cartilage lead to different electrical tissue properties, we propose a new method to measure the electrical conductivity and its anisotropy during in vitro chondrogenesis. We used a conductivity tensor probe with 17 electrodes and a bio-impedance spectroscopy (BIS) device to measure the conductivity values and the anisotropy ratios at the bottom and top surfaces of the tissue samples during the culture period of 6 weeks. Clearly distinguishing glycosaminoglycans (GAGs), collagen, and also various mixtures of them, the measured conductivity value and the estimated tissue anisotropy provide diagnostic information of the depth-dependent tissue structure and compositions. Continuously monitoring the individual tissue during the entire chondrogenesis process without any adverse effect, the proposed method may significantly increase the productivity of cartilage tissue engineering.

  4. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    Science.gov (United States)

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine.

  5. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  6. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    Science.gov (United States)

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development.

  7. Label-free molecular beacons-based cascade amplification DNA machine for sensitive detection of telomerase activity.

    Science.gov (United States)

    Li, Kan; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-05-15

    Sensitive detection of telomerase activity is critical to cancer diagnosis, screening of anticancer drugs and evaluation of cancer therapy. Herein, a label-free molecular beacons-based DNA machine was developed for sensitive detection of telomerase activity. The DNA machine consisted of T7 exonuclease (T7 Exo), label-free recognition molecular beacon (RMB) and signal molecular beacon (SMB) with projecting 5'-terminuses, which can protect RMB and SMB from being digested by T7 Exo. Firstly, telomerase elongated telomerase substrate (TS) primer, generating a telomerase elongation production (TEP) with tandem repeats (TTAGGG)n. Next, TEP activated the DNA machine by hybridizing with RMB, unfolding RMB with a recessed 5'-terminus, making RMB deprotection from T7 Exo. Then T7 Exo-assisted cycling cleavage was incurred, releasing intact TEP and numerous DNA fragments (trigger DNA), which got recycling I. Subsequently, trigger DNA specifically opened SMB and was recycled by T7 Exo, liberating multiple G-quadruplex (G4) structures, which got recycling II. Finally, TEP and the liberative G4 structures strongly interacted with N-methyl-mesoporphyrin IX (NMM), yielding a significantly enhanced fluorescence together. In this way, per telomerase-mediated elongation event was efficiently converted into the greatly amplified fluorescence signals. Telomerase activity in crude HeLa cells extracts equivalent to 50 cells/mL was successfully measured with a linear range from 50 cells/mL to 2000 cells/mL. Besides, the strategy was also successfully used to assay the inhibition effect of a telomerase-inhibiting drug, demonstrating the strategy holds the potential to screen telomerase inhibitors.

  8. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients

    Science.gov (United States)

    Fei, Baowei; Lu, Guolan; Wang, Xu; Zhang, Hongzheng; Little, James V.; Patel, Mihir R.; Griffith, Christopher C.; El-Diery, Mark W.; Chen, Amy Y.

    2017-08-01

    A label-free, hyperspectral imaging (HSI) approach has been proposed for tumor margin assessment. HSI data, i.e., hypercube (x,y,λ), consist of a series of high-resolution images of the same field of view that are acquired at different wavelengths. Every pixel on an HSI image has an optical spectrum. In this pilot clinical study, a pipeline of a machine-learning-based quantification method for HSI data was implemented and evaluated in patient specimens. Spectral features from HSI data were used for the classification of cancer and normal tissue. Surgical tissue specimens were collected from 16 human patients who underwent head and neck (H&N) cancer surgery. HSI, autofluorescence images, and fluorescence images with 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) and proflavine were acquired from each specimen. Digitized histologic slides were examined by an H&N pathologist. The HSI and classification method were able to distinguish between cancer and normal tissue from the oral cavity with an average accuracy of 90%±8%, sensitivity of 89%±9%, and specificity of 91%±6%. For tissue specimens from the thyroid, the method achieved an average accuracy of 94%±6%, sensitivity of 94%±6%, and specificity of 95%±6%. HSI outperformed autofluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study demonstrated the feasibility of label-free, HSI for tumor margin assessment in surgical tissue specimens of H&N cancer patients. Further development of the HSI technology is warranted for its application in image-guided surgery.

  9. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    Science.gov (United States)

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without

  10. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  11. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests.

  12. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  13. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  14. Label-free Detection of Protein Released during Platelet Activation by CNT-Enhanced Love Mode SAW Sensors.

    Science.gov (United States)

    Wu, Huiyan; Zu, Hongfei; Wang, Qing-Ming; Zhao, Gangyi; Wang, Jamesu H-C

    2014-09-01

    Platelet-rich plasma (PRP) has been applied in a series of clinical treatments. PRP contains high-concentrated platelets, which, when activated, could secret a variety of growth factors and cytokines, to promote and/or enhance healing of injured tissues. Non-activated platelets suspension could be prepared by an isolation method of centrifugation and washing currently. However, it is not clear whether platelets, if any, are already activated during this process and there is no simple method to monitor their activation accordingly. Shear-Horizontal Surface Acoustic Wave sensors (SH-SAW, Love Mode) are promising in fundamental biology as well as biomedical engineering, detecting cell behaviors in liquid in a non-invasive, simple and quantitative manner. In this study, Love mode sensors are adopted for the label-free detection of protein secreted by platelets. Carbon nanotube (CNT) is reported as an advisable platform of both non-specific protein adsorption and specific protein binding. For further improvement of Love mode sensor performance, novel CNT -coated parylene-C film is prepared on its surface as both the acoustic-wave-guiding layer and bio-interface layer. The S21 loss curves of Love mode sensors were recorded and the corresponding resonance frequencies were extracted. The results showed that the CNT-enhanced sensor possessed an increased resonance frequency shift when compared to normal sensor with single parylene-C film under identical collagen concentrations. Then, the modified sensor is used for label-free detection of protein released by various concentrations of platelets. The results revealed high sensitivity and consistency, indicating the potential of CNT-enhanced Love mode sensors in cell-based applications.

  15. Detecting and identifying DNA via the THz backbone frequency using a metamaterial-based label-free biosensor

    Science.gov (United States)

    Mirzaei, Sahar; Green, Nicolas G.; Rotaru, Mihai; Pu, Suan Hui

    2017-02-01

    In genetic diagnostics, laboratory-based equipment generally uses analytical techniques requiring complicated and expensive fluorescent labelling of target DNA molecules. Intense research effort into, and commercial development of, Point-of-Care diagnostics and Personalized Healthcare are driving the development of simple, fast and cost-effective detection methods. One potential label-free DNA detection method uses Terahertz (THz) spectroscopy of the natural responses of DNA in metamaterial structures, which are engineered to have properties that are impossible to obtain in natural materials. This paper presents a study of the development of metamaterials based on asymmetric X-shaped resonator inclusions as a functional sensor for DNA. Gold X-shaped resonator structures with dimensions of 90/85 μm were demonstrated to produce trapped mode resonant frequency in the correct range for DNA detection. Realistic substrate materials in the form of 375 μm thick quartz were investigated, demonstrating that the non-transparent nature of the material resulted in the production of standing waves, affecting the system response, as well as requiring a reduction in scale of the resonator of 85%. As a result, the effect of introducing etched windows in the substrate material were investigated, demonstrating that increased window size significantly reduces the effect of the substrate on the system response. The device design showed a good selectivity when RNA samples were introduced to the model, demonstrating the potential for this design of device in the development of sensors capable of performing cheap and simple genetic analysis of DNA, giving label-free detection at high sensitivity.

  16. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

    OpenAIRE

    2014-01-01

    In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in pol...

  17. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    CERN Document Server

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  18. Label-free and pH-sensitive colorimetric materials for the sensing of urea

    Science.gov (United States)

    Li, Lu; Long, Yue; Gao, Jin-Ming; Song, Kai; Yang, Guoqiang

    2016-02-01

    This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker.This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker. Electronic supplementary information (ESI) available: Materials and chemicals, characterization, experimental details, and SEM images. See DOI: 10.1039/c5nr07690k

  19. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1.

    Science.gov (United States)

    Guo, Di; Zhuo, Ming; Zhang, Xiaoai; Xu, Cheng; Jiang, Jie; Gao, Fu; Wan, Qing; Li, Qiuhong; Wang, Taihong

    2013-04-22

    As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (VT) and field-effect mobility. The changes of ID-VG curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5×10(-9) g mL(-1) to 5×10(-6) g mL(-1) with a detection limit of 0.8×10(-10) g mL(-1). Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the development of label-free biosensors.

  20. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Dan [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Lange, Sigrun [University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom); Inal, Jameel, E-mail: j.inal@londonmet.ac.uk [Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London (United Kingdom)

    2014-10-24

    Highlights: • Microvesiculating cells record loss of mass on a Quartz Crystal Microbalance. • Using the Quartz Crystal Microbalance microvesicles are measured at 0.24 pg. • The QCM-D reveals loss in viscoelastic properties in microvesiculating cells. - Abstract: Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60 min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250 nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7 min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20 Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36 × 10{sup 6} MVs, was calculated to be 23 ng. We therefore estimated the mass of an MV to be 0.24 pg. With the deposition on the QCM-D of 3.5 × 10{sup 7} MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235 pg per MV.