WorldWideScience

Sample records for l-arginine methyl ester

  1. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    Science.gov (United States)

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment

  2. Efeito do lipopolissacarídio bacteriano sobre o esvaziamento gástrico de ratos: avaliação do pré-tratamento com Nw-nitro-L-arginine methyl ester (L-NAME The effect of bacterial lipopolysaccharide on the gastric emptying of rats: a pretreatment evaluation using Nw-nitro-L-arginine methyl ester (L-NAME

    Directory of Open Access Journals (Sweden)

    Edgard Ferro Collares

    2006-09-01

    Full Text Available RACIONAL: Há evidências de que o óxido nítrico participa do mecanismo de retardo do esvaziamento gástrico determinado pelo lipopolissacarídio bacteriano. OBJETIVO: Avaliar o efeito do pré-tratamento com Nw-nitro-L-arginine methyl ester, um inibidor competitivo das óxido nítrico-sintetases, sobre o fenômeno. MATERIAL E MÉTODOS: Utilizaram-se ratos, Wistar, machos, SPF ("specific-pathogen free", adultos, adaptados às condições do laboratório, que após 24 horas de jejum alimentar foram pré-tratados endovenosamente com veículo (salina ou Nw-nitro-L-arginine methyl ester nas doses de 0,5, 1, 2,5 e 5 mg/kg. No tratamento, administrou-se endovenosamente veículo (salina ou lipopolissacarídio (50 µg/kg. O intervalo entre o pré-tratamento e o tratamento foi de 10 minutos, e entre este e a avaliação do esvaziamento gástrico foi de 60 minutos. O esvaziamento gástrico foi avaliado indiretamente através da determinação da retenção gástrica da solução salina marcada com fenol vermelho 10 minutos após administração por via orogástrica. RESULTADOS: Entre os animais pré-tratados com veículo, o tratamento com lipopolissacarídio determinou elevação significativa da retenção gástrica (média = 57% em relação aos tratados com veículo (38,1%. O pré-tratamento com as diferentes doses de Nw-nitro-L-arginine methyl ester não modificou a retenção gástrica nos animais controles do tratamento. O pré-tratamento com Nw-nitro-L-arginine methyl ester com a dose de 1 mg/kg determinou redução discreta, mas significativa, na retenção gástrica (52% nos animais tratados com lipopolissacarídio, em relação ao observado naqueles com pré-tratamento e tratamento com veículo (35,9%. Nos animais pré-tratados com 2,5 e 5 mg/kg de Nw-nitro-L-arginine methyl ester e tratados com lipopolissacarídio, houve aumento significante da retenção gástrica (74,7% e 80,5%, respectivamente em relação aos seus controles pr

  3. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  4. The protective effect of NG-nitro-L-arginine methyl ester and insulin on nitric oxide inhibition and pathology in experimental diabetic rat liver

    International Nuclear Information System (INIS)

    Ozden, H.; Guven, G.; Tekin, N.; Akyuz, F.; Gurer, F.; Kucuk, F.; Ustuner, Mehmet C.; Yaylak, F.

    2009-01-01

    Objective was to determine on protective role of NG-nitro-L-arginine methyl ester (L-NAME) and insulin on the liver in streptoozotocin (STZ) induced diabetic rats. This study was performed in the Department of Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey in 2007. Forty male Wistar albino rats were divided into 5 groups. These were untreated, diabetic control, STZ+insulin, STZ+L-NAME and STZ+insulin+L-NAME induced groups. The STZ was intraperitonally injected into 3 groups and includes insulin, L-NAME and their joint administrations as protective agents. The blood glucose and nitric oxide (NO) levels were determined. The tissue samples were obtained at the end of the fourth week. The liver tissue distortions were evaluated using hematoxylin and eosin staining. The serum glucose level was significantly higher in diabetic control (p=0.000), than the untreated group. The focal pseudo lobular structures without vena centralis increased portal fibrillary necrosis and bile duct stenosis with voagulation necrosis of the peripheral hepatocytes were more observed in diabetic group than the protective agent groups. In addition, insulin and L-NAME lead to hepatocyte regeneration and minimal mononuclear cell infiltration was noted. NG-nitro-L-arginine methyl ester inhibits NO level in STZ+L-NAME induced group. NG-nitro-L-arginine methyl ester either alone or with insulin combination significantly attenuates the liver morphological disarrangements in STZ induced diabetic rats. (author)

  5. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe...... stimulated the release of insulin. The effect of L-leucine OMe was maximal at 5 mmol/liter. Whereas the Km for glucose-stimulated insulin release was unaffected by 1 mmol/liter L-leucine OMe, the maximal release of D-glucose was increased by the amino acid derivative that appeared more effective than L......-leucine. L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells...

  6. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  7. Effect of aliskiren, telmisartan and torsemide on cardiac dysfunction in l-nitro arginine methyl ester (l-NAME induced hypertension in rats

    Directory of Open Access Journals (Sweden)

    Sawsan A. Sadek

    2015-11-01

    Full Text Available Comparative study of cardio protective effect of aliskiren, telmisartan, and torsemide was carried out on l-nitro arginine methyl ester (l-NAME induced hypertension in rats. The three drugs were given daily for 8 weeks simultaneously with l-NAME, with a control group for each drug and l-NAME. The degree of protection was assessed by measurement of systolic blood pressure and heart rate of animals every two weeks. At the end of the experimental period blood sampling was carried out for estimation of the level of NO2−/NO3−. After which animals were sacrificed for heart dissection to detect collagen types I and III gene expression. Histopathological study was done to evaluate the extension of collagen deposits. The study revealed that the three drugs decreased blood pressure significantly compared to l-NAME. There was no significant difference between aliskiren and telmisartan in all measurements, but there was significant decrease in measurements of both aliskiren and telmisartan treated groups compared to torsemide starting from 4th week. There were insignificant changes in pulse rate values between the three l-NAME treated groups through the experiment. The three drugs significantly increased NO compared to l-NAME. Collagen I and III gene expression was significantly decreased by the three drugs but the highest percentage of inhibition was with telmisartan compared to l-NAME. Comparing the percentage inhibition of cardiac fibrosis, there was insignificant difference between telmisartan and torsemide treated groups while both were superior to aliskiren. In conclusion, further experimental studies are required to elucidate the potential cardioprotective mechanisms of aliskiren, telmisartan and torsemide, and assess their efficacy in treatment of heart failure.

  8. Effects of Nitric Oxide Production Inhibitor Named, NG-Nitro-L-Arginine Methyl Ester (L-NAME, on Rat Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    E Arfaei

    2010-04-01

    Full Text Available Introduction & Objectives: Recently, the findings of some studies have shown that, nitric oxide (NO probably has an important role in differentiation of mesenchymal stem cells to osteoblasts. The aim of the present investigation was to study the effects of nitric oxide production inhibitor named, NG-nitro-L-arginine methyl ester (L-NAME, on rat mesenchymal stem cells differentiation to osteoblasts in vitro. Materials & Methods: This was an experimental study conducted at Hamedan University of Medical Sciences in 2009, in which rat bone marrow stem cells were isolated in an aseptic condition and cultured in vitro. After third passage, the cells were cultured in osteogenic differentiation medium. To study the effects of L-NAME on osteogenic differentiation, the L-NAME was added to the culture medium at a concentration of 125, 250, and 500 μM in some culture plates. During the culture procedure, the media were replaced with fresh ones, with a three days interval. After 28 days of culturing the mineralized matrix was stained using Alizarian red staining method. The gathered data were analyzed by SPSS software version 12 using one way ANOVA. Results: The findings of this study showed that in the presence of L-NAME, differentiation of bone marrow mesenchymal stem cells to osteoblasts was disordered and matrix mineralization significantly decreased in a dose dependent manner. Conclusion: This study revealed that, inhibition of nitric oxide production using L-NAME can prevent the differentiation of rat bone marrow mesenchymal stem cells to osteoblast. The results imply that NO is an important constituent in differentiation of mesenchymal stem cell to osteoblasts.

  9. Synthesis and Analysis of Methacryloyl-L-Alanine Methyl Ester using fourier Transform Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Tri Darwinto

    2008-01-01

    Methacryloyl-L-alanine methyl ester was synthesized by reacting methacrylic acid with L-alanine methyl ester hydrochloride in triethylamine at temperature of 90 o C. Hydrogel polymer of poly(methacryloyl-L-alanine methyl ester) was much used for diagnosis and therapy of vascular tumor. The molecular structure methacryloyl-L-alanine methyl ester analyzed by fourier transform nuclear magnetic resonance (FT-NMR) for analyzing of carbon atom ( 13 C) using Distortionless Enhancement by Polarization Transfer (DEPT) measurement mode with coupling as well as without coupling from proton atom ( 1 H). Molecular structure analysis result showed that DEPT FT-NMR measurement mode with coupling as well as without coupling from 1 H was very fast, exact and accurate method for molecular analysis of organic compound especially methacryloyl-L-alanine methyl ester. (author)

  10. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation

    Directory of Open Access Journals (Sweden)

    Amal Abdussalam Ali A. Hmaid

    2018-03-01

    Full Text Available Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C or cold (4 ± 1 °C and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (Nω-nitro-l-arginine methyl ester·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis. Keywords: Cardiomyocyte, Cardiac hypertrophy, l-Arginine, l-NAME, Myocardium

  11. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation.

    Science.gov (United States)

    Hmaid, Amal Abdussalam Ali A; Markelic, Milica; Otasevic, Vesna; Masovic, Sava; Jankovic, Aleksandra; Korac, Bato; Korac, Aleksandra

    2018-03-01

    Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO) plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C) or cold (4 ± 1 °C) and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (N ω -nitro-l-arginine methyl ester)·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis.

  12. Antiviral and Virucidal Activities of N-Cocoyl-L-Arginine Ethyl Ester

    Directory of Open Access Journals (Sweden)

    Hisashi Yamasaki

    2011-01-01

    Full Text Available Various amino acid-derived compounds, for example, Nα-Cocoyl-L-arginine ethyl ester (CAE, alkyloxyhydroxylpropylarginine, arginine cocoate, and cocoyl glycine potassium salt (Amilite, were examined for their virucidal activities against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, influenza A virus (IAV, and poliovirus type 1 (PV-1 in comparison to benzalkonium chloride (BKC and sodium dodecylsulfate (SDS as a cationic and anionic control detergent and also to other commercially available disinfectants. While these amino acid-derived compounds were all effective against HSV-1 and HSV-2, CAE and Amilite were the most effective. These two compounds were, however, not as effective against IAV, another enveloped virus, as against HSV. Cytotoxicity of CAE was weak; at 0.012%, only 5% of the cells were killed under the conditions, in which 100% cells were killed by either SDS or BKC. In addition to these direct virucidal effects, CAE inhibited the virus growth in the HSV-1- or PV-1-infected cells even at 0.01%. These results suggest a potential application of CAE as a therapeutic or preventive medicine against HSV superficial infection at body surface.

  13. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    Science.gov (United States)

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta.

    Science.gov (United States)

    Wong, Emily S W; Man, Ricky Y K; Ng, Kwok F J; Leung, Susan W S; Vanhoutte, Paul M

    2018-03-01

    The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of

  15. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  16. Stimulation of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine uptake in Chinese hamster ovary (CHO-K1) cells by tyrosine esters

    Energy Technology Data Exchange (ETDEWEB)

    Shikano, Naoto [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato; Sagara, Jun-ichi; Nakajima, Syuichi [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kobayashi, Masato [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan); Baba, Takeshi; Yamaguchi, Naoto; Iwamura, Yukio; Kubota, Nobuo [Department of Radiological Sciences, Center for Medical Sciences and Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Ibaraki (Japan); Kawai, Keiichi [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, Kanazawa, Ishikawa (Japan)

    2010-02-15

    Introduction: Transport of the amino acid analog {sup 123}I-3-iodo-{alpha}-methyl-L-tyrosine, which is used in clinical SPECT imaging, occurs mainly via L-type amino acid transporter type 1 (LAT1; an amino acid exchanger). As LAT1 is highly expressed in actively proliferating tumors, we made a preliminary investigation of the effects of amino acid esters on enhancement of {sup 125}I-3-iodo-{alpha}-methyl-L-tyrosine (IMT) uptake via LAT1 in Chinese hamster ovary (CHO-K1) cells. Methods: Because the sequence of the CHO-K1 LAT1 gene is not available, we confirmed LAT1 expression through IMT (18.5 kBq) uptake mechanisms using specific inhibitors. L-Gly, L-Ser, L-Leu, L-Phe, L-Met, L-Tyr, D-Tyr, L-Val and L-Lys ethyl/methyl esters were tested in combination with IMT. Time-course studies over a 3-h period were conducted, and the concentration dependence of L-Tyr ethyl and methyl esters (0.001 to 10 mM) in combination with IMT was also examined. For a proof of de-esterification of L- and D-Tyr ethyl and methyl esters in the cells (by enzymatic attack or other cause), the concentration of L- and D-Tyr was analyzed by high-performance liquid chromatography of the esters in phosphate buffer (pH 7.4) and cell homogenates at 37 deg. C or under ice-cold conditions. Results: Inhibition tests suggested that LAT1 is involved in IMT uptake by CHO-K1 cells. Co-administration of 1 mM of L-Tyr ethyl or methyl ester with IMT produced the greatest enhancement. The de-esterification reaction was stereo selective and temperature dependent in the homogenate. De-esterification kinetics were very fast in the homogenate and very slow in the phosphate buffer. Conclusions: The L-Tyr ethyl or methyl esters were the most effective enhancers of IMT uptake into CHO-K1 cells and acted by trans-stimulation of the amino acid exchange function of LAT1. This result suggests that de-esterification in the cells may be caused by enzymatic attack. We will use IMT and L-Tyr ethyl or methyl esters to examine

  17. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    Science.gov (United States)

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  18. The effects of bupivacaine, L-nitro-L-arginine-methyl ester, and phenylephrine on cardiovascular adaptations to asphyxia in the preterm fetal lamb.

    Science.gov (United States)

    Santos, A C; Yun, E M; Bobby, P D; Noble, G; Arthur, G R; Finster, M

    1997-12-01

    The preterm fetal lamb that is exposed to clinically relevant plasma concentrations of lidocaine loses its cardiovascular adaptations to asphyxia, and its condition deteriorates further. Nitric oxide (NO) is an important regulator of vascular tone, and local anesthetics are known to inhibit endothelium-dependent vasodilation. The purpose of the present study was to determine whether the adverse effects of lidocaine noted in the preterm fetal lamb also occur with bupivacaine and whether the inhibition of NO results in effects similar to those of bupivacaine. Thirty-two chronically prepared pregnant sheep were studied at 117-119 days' gestation. Maternal and fetal blood pressure, heart rate, and acid-base state were evaluated. Fetal organ blood flows were determined using 15-microM diameter dye-labeled microspheres. After a control period, mild to moderate asphyxia (fetal PaO2 15 mm Hg) was induced by partial umbilical cord occlusion and maintained throughout the experiment. Ewes in Group I (n = 13) were given a two-step intravenous infusion of bupivacaine for 180 min. Fetuses in Group II (n = 12) received an intravenous injection of L-nitro-L-arginine-methyl ester (L-NAME) (25 mg/kg), and measurements were taken 10 and 30 min after the injection. A third group (Group III) of fetuses (n = 7) were given an intravenous infusion of phenylephrine to mimic the blood pressure increases noted in L-NAME-treated fetuses. At 90 min of stable asphyxia, there was a significant decrease in fetal PaO2 and pHa and an increase in PaCO2 and mean arterial blood pressure. There was also an increase in blood flow to the adrenals, myocardium, and cerebral cortex, whereas blood flow to the placenta decreased. Administration of bupivacaine during asphyxia did not affect the changes in mean arterial blood pressure and acid-base state but did abolish the increases in blood flows to the myocardium and cerebral cortex. Injection of L-NAME to the asphyxiated fetus resulted in an increase in

  19. Arginine affects appetite via nitric oxide in ducks.

    Science.gov (United States)

    Wang, C; Hou, S S; Huang, W; Xu, T S; Rong, G H; Xie, M

    2014-08-01

    The objective of the study was to investigate the mechanism by which arginine regulates feed intake in Pekin ducks. In experiment 1, one hundred forty-four 1-d-old male Pekin ducks were randomly allotted to 3 dietary treatments with 6 replicate pens of 8 birds per pen. Birds in each group were fed a corn-corn gluten meal diet containing 0.65, 0.95, and 1.45% arginine. Ducks fed the diet containing 0.65% arginine had lower feed intake and plasma nitric oxide level (P ducks were allotted to 1 of 2 treatments. After 2 h fasting, birds in the 2 groups were intraperitoneally administrated saline and l-NG-nitro-arginine methyl ester HCl (L-NAME) for 3 d, respectively. Feed intake (P study implied that arginine modifies feeding behavior possibly through controlling endogenous synthesis of nitric oxide in Pekin ducks. © Poultry Science Association Inc.

  20. Time-dependent alterations in serum NO concentration after oral administration of L-arginine, L-NAME, and allopurinol in intestinal ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Amalia E Yanni

    2008-04-01

    Full Text Available Amalia E Yanni1, Eleutherios Margaritis2, Nikolaos Liarakos2, Alkisti Pantopoulou2, Maria Poulakou2, Maria Kostakis2, Despoina Perrea2, Alkis Kostakis31Department of Science of Dietetics and Nutrition, Harokopio University of Athens, Athens, Greece, 2Laboratory of Experimental Surgery and Surgical Research, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece, 32nd Department of Propedeutic Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, GreeceObjective: To study the effect of oral administration of a nitric oxide (NO donor L-arginine (L-Arg, a NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME and an inhibitor of xanthine oxidase, allopurinol (Allo, on serum NO concentration and catalase activity after intestinal ischemia/reperfusion (I/R in rats.Methods: Male Wistar rats received per os L-Arg (800 mg/kg or L-NAME (50 mg/kg or Allo (100 mg/kg 24 hrs, 12 hrs and 1 hr before underwent 1 hr occlusion of superior mesenteric artery followed by 1 hr of reperfusion (L-Arg(IR1, L-NAME(IR1 and Allo(IR1 respectively or 1 hr occlusion followed by 8 hrs of reperfusion (L-Arg(IR8, L-NAME(IR8 and Allo(IR8 respectively. There was one group underwent 1 hr occlusion (I, a group underwent 1 hr occlusion followed by 1 hr reperfusion (IR1, a group subjected to 1 hr occlusion followed by 8 hrs of reperfusion (IR8 and a last group that served as control (C. Serum NO concentration and catalase activity were measured.Results: After 1 hr of reperfusion serum NO concentration was elevated in IR1 and L-Arg(IR1 groups compared with group C but not in L-NAME(IR1 and Allo(IR1 group. Catalase activity was enhanced in L-NAME(IR1 group. Interestingly, serum NO concentration was increased after 8 hrs of reperfusion in all groups (IR8, L-Arg(IR8, L-NAME(IR8 and Allo(IR8 compared with control while catalase activity did not show significant difference in any group.Conclusions: The results of the

  1. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  2. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    (controls) and with prior N(G)-nitro-L-arginine methyl ester (L-NAME) infusion (4 mg/kg, intravenously). Samples from the interstitial fluid were obtained at rest, during exercise and after exercise with the microdialysis technique. Interstitial adenosine in controls increased (p0.05) to controls. The 6......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p......We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without...

  3. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  4. Effect of methylation on the side-chain pKa value of arginine.

    Science.gov (United States)

    Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W

    2016-02-01

    Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition. © 2015 The Protein Society.

  5. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the “L-arginine paradox”

    International Nuclear Information System (INIS)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung

    2011-01-01

    Highlights: ► Our findings provide a possible solution to the “L-arginine paradox”. ► Extracellular L-arginine concentration is the major determinant of NO production. ► Cellular L-arginine action is limited by cellular ARG transport, not the K m of NOS. ► We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of 15 N 4 -ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, 15 N 4 -ARG, dimethylarginines, and L-citrulline by an LC–MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by 15 N-nitrite or estimated 15 N 3 -citrulline concentrations when 15 N 4 -ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced 15 N 4 -ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by 15 N-nitrite, total nitrite and 15 N 3 -citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the “L-arginine paradox” should not consider intracellular ARG

  6. Modulators of arginine metabolism support cancer immunosurveillance

    Directory of Open Access Journals (Sweden)

    Freschi Massimo

    2009-01-01

    Full Text Available Abstract Background Tumor-associated accrual of myeloid derived suppressor cells (MDSC in the blood, lymphoid organs and tumor tissues may lead to perturbation of the arginine metabolism and impairment of the endogenous antitumor immunity. The objective of this study was to evaluate whether accumulation of MDSC occurred in Th2 prone BALB/c and Th1 biased C57BL/6 mice bearing the C26GM colon carcinoma and RMA T lymphoma, respectively, and to investigate whether N(G nitro-L-arginine methyl ester (L-NAME and sildenafil, both modulators of the arginine metabolism, restored antitumor immunity. Results We report here that MDSC accumulate in the spleen and blood of mice irrespective of the mouse and tumor model used. Treatment of tumor-bearing mice with either the phosphodiesterase-5 inhibitor sildenafil or the nitric-oxide synthase (NOS inhibitor L-NAME significantly restrained tumor growth and expanded the tumor-specific immune response. Conclusion Our data emphasize the role of MDSC in modulating the endogenous tumor-specific immune response and underline the anti-neoplastic therapeutic potential of arginine metabolism modulators.

  7. Blockade of the Naloxone-induced Aversion in Morphine-conditioned Wistar Rats by L-Arginine Intra-central Amygdala

    Directory of Open Access Journals (Sweden)

    Mahnaz Rahimpour

    2011-03-01

    Full Text Available AbstractObjective(sSingle injection of naloxone, a selective antagonist of morphine, prior to the drug conditioning testing was used to investigate on morphine dependence.Materials and MethodsConditioning to morphine (2.5-10 mg/kg, s.c. was established in adult male Wistar rats (weighing 200-250 g using an unbiased procedure. Nitric oxide agents were microinjected into the central amygdala prior to naloxone-paired place conditioning testing.ResultsThe results showed that morphine produced a significant dose-dependent place preference in animals. Naloxone (0.1-0.4 mg/kg, i.p. injections pre-testing of the response to morphine (7.5 mg/kg, s.c. caused a significant aversion at the higher doses (0.4 mg/kg, i.p.. This response was reversed by microinjection of L-arginine (0.3-3 µg/rat, intra-central amygdala prior to naloxone on the day of the testing. The response to L-arginine was blocked by pre-injection of NG-nitro-L-arginine methyl ester (L-NAME (intra-central amygdala.ConclusionA single injection of naloxone on the test day of morphine place conditioning may simply reveal the occurrence of morphine dependence in rats, and that the nitric oxide in the central amygdala most likely plays a key role in this phenomenon.

  8. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  9. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Science.gov (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  10. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    Directory of Open Access Journals (Sweden)

    Hüseyin Ilgü

    2018-03-01

    Full Text Available The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg, agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5, an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  11. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  12. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soyoung; Mohan, Srinidi [Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Fung, Ho-Leung, E-mail: hlfung@buffalo.edu [Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside

  13. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  14. Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters

    KAUST Repository

    Yue, Huifeng

    2018-01-03

    An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.

  15. Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters

    KAUST Repository

    Yue, Huifeng; Zhu, Chen; Rueping, Magnus

    2018-01-01

    An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.

  16. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    Science.gov (United States)

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  17. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  18. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Kang, Misun [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Rho, Jaerang, E-mail: jrrho@cnu.ac.kr [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); GRAST, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of)

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  19. Effect of temperature stress on protein methyl esters

    International Nuclear Information System (INIS)

    Welch, W.; Kracaw, K.

    1986-01-01

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with [methyl- 3 H]methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released [ 3 H]methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress

  20. PRmePRed: A protein arginine methylation prediction tool.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    Full Text Available Protein methylation is an important Post-Translational Modification (PTMs of proteins. Arginine methylation carries out and regulates several important biological functions, including gene regulation and signal transduction. Experimental identification of arginine methylation site is a daunting task as it is costly as well as time and labour intensive. Hence reliable prediction tools play an important task in rapid screening and identification of possible methylation sites in proteomes. Our preliminary assessment using the available prediction methods on collected data yielded unimpressive results. This motivated us to perform a comprehensive data analysis and appraisal of features relevant in the context of biological significance, that led to the development of a prediction tool PRmePRed with better performance. The PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity, 83.77% specificity, and Matthew's correlation coefficient of 66.20% in 10-fold cross-validation. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/.

  1. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    Science.gov (United States)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  2. 21 CFR 573.640 - Methyl esters of higher fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl esters of higher fatty acids. 573.640... ANIMALS Food Additive Listing § 573.640 Methyl esters of higher fatty acids. The food additive methyl esters of higher fatty acids may be safely used in animal feeds in accordance with the following...

  3. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil...

  4. Multiple Arginine Residues Are Methylated in Drosophila Mre11 and Required for Survival Following Ionizing Radiation.

    Science.gov (United States)

    Yuan, Qing; Tian, Ran; Zhao, Haiying; Li, Lijuan; Bi, Xiaolin

    2018-05-31

    Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation. Copyright © 2018 Yuan et al.

  5. Synthesis of the arginine labelled by {sup 15}N on the amidine group; Synthese de l'arginine marquee par {sup 15}N dans le groupe amidine

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Clement, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1955-07-01

    For some biologic studies, it was necessarily to have (+) arginine marked by nitrogen 15 in the amidine group. This report describes the synthesis of the labelled arginine. The first step is the synthesis of the methyl-isourated hydro-chlorate, the intermediate reactive, from the ClNH{sub 4} isotope. The arginine is obtained from the ornithine which we previously blocked the amino group as cupric complex. The mean yield in arginine reaches 30%, based on the ammonium chloride uses. (M.B.) [French] Pour certaines etudes biologiques, il etait indispensable de disposer de (+) arginine marquee par l'azote 15 dans le groupement amidine. Ce rapport decrit la synthese de l'ariginine marquee. La premiere etape est la synthese du chlorhydrate de methylisouree, intermediaire reactif, a partir du ClNH{sub 4} isotopique. L'obtention de l'arginine est obtenue a partir de l'ornithine dont on a prealablement bloque le groupe amino sous forme de complexe cuivrique. Le rendement global moyen en arginine atteint 30 %, base sur le chlorure d'ammonium utilise. (M.B.)

  6. Synthesis of Dipeptide Benzoylalanylglycine Methyl Ester and Corrosion Inhibitor Evaluation by Tafel Equation

    International Nuclear Information System (INIS)

    Abdurrahman, J.; Wahyuningrum, D.; Achmad, S.; Bundjali, B.

    2011-01-01

    Corrosion is one of the major problems in petroleum mining and processing industry. The pipelines used to transport crude oil from reservoir to the processing installation were made from carbon steel that is susceptible towards corrosion. One of the best methods to prevent corrosion that occurred at the inner parts of carbon steel pipelines is to use organic corrosion inhibitor. One of the potent organic corrosion inhibitors is amino acids derivatives. In this study, dipeptide compound namely benzoylalanylglycine methyl ester and benzoylalanylglycine have been synthesized. The structure elucidation of the products was performed by IR, MS and NMR spectroscopy. The determination of corrosion inhibition activity utilized the Tafel method. The corrosion inhibition efficiency of glycine methyl ester, benzoyl alanine, dipeptide benzoylalanylglycine methyl ester and dipeptide benzoylalanylglycine were 63.34 %, 35.86 %, 68.40 % and 27.72 %, respectively. These results showed that the formation of dipeptide benzoylalanylglycine methyl ester, derived from carboxylic protected glycine and amine protected alanine, increased the corrosion inhibition activity due to the loss of acidity center in the structure of glycine and L-alanine that would induce the corrosive environment towards carbon steel. (author)

  7. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  8. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions a...

  9. Synthesis of [11C]-labelled methyl esters: transesterification of enol esters versus BF3 etherate catalysed esterification - a comparative study

    International Nuclear Information System (INIS)

    Ackermann, U.; Falzon, C.; Issa, W.; Tochon-Danguy, H.J.; Sachinidis, J.I.; Blanc, P.; White, J.; Scott, A.M.

    2005-01-01

    An important issue in Positron Emission Tomography (PET) is the development of labelling techniques to incorporate positron emitting radionuclides into biologically active compounds. When labelling with 11C, the short 20 minutes half-life of the radionuclide significantly limits the number of synthetic protocols available to the radiochemist. C-l synthons such as [HCJ-methyl iodide (1) or methyl triflate (2) are readily available and are frequently used as alkylating agents for the preparation of radiopharmaceuticals. However, the use of these alkylating agents often makes it necessary to introduce protecting groups in order to prevent labelling at unwanted sites on the molecule. Since the removal of protecting groups is a time-consuming process, a more direct synthesis strategy is desirable. This has prompted us to investigate the esterification of carboxylic acids using [1 lC]-mcthanol and BF3 etherate as Lewis acid catalyst. Our results have demonstrated that the reaction conditions necessary to promote the esterification can cleave functional groups such as ethers. We have therefore shifted our attention towards the irreversible transesterification of enol esters using [HCl-methanol and a tin catalyst as an alternative strategy to [HC]-methyl ester formation. We have prepared a series of 5 aromatic ethoxy vinyl esters bearing various functional groups. The transesterification (radiolabelling) was carried out in DMSO at 150 Degrees C for 7 minutes in the presence of [HQMeOH and 1.3-dichlo-rotetrabutyldistannoxane as catalyst. We have found that the transesterification of enol esters is a mild and efficient labelling method for the formation of [HCl-methyl esters. The reaction proceeds smoothly and leaves functional groups intact. It requires only one synthesis step compared to two steps for the conventional method, and gives a radiochemical yields of 25%

  10. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar

    DEFF Research Database (Denmark)

    Eriksson, André H; Elm, Peter L; Begtrup, Mikael

    2005-01-01

    -tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown......The aim of the present study was to improve the synthetic pathway of bioreversible dipeptide derivatives as well as evaluate the potential of using l-Glu-Sar as a pro-moiety for delivering three newly synthesised nucleoside and pyrimidine l-Glu-Sar derivatives. l-Glu(trans-2-thymine-1-yl...

  11. Chemical modifications of Sterculia foetida L. oil to branched ester derivatives

    NARCIS (Netherlands)

    Manurung, Robert; Daniel, Louis; van de Bovenkamp, Hendrik H.; Buntara, Teddy; Maemunah, Siti; Kraai, Gerard; Makertihartha, I. G. B. N.; Broekhuis, Antonius A.; Heeres, Hero J.

    An experimental study to modify Sterculia foetida L. oil (STO) or the corresponding methyl esters (STO FAME) to branched ester derivatives is reported. The transformations involve conversion of the cyclopropene rings in the fatty acid chains of STO through various catalytic as well as stoichiometric

  12. The effect of L-NAME on intra- and inter-nephron synchronization

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A. N.; Pavlova, O. N.

    2009-01-01

    to what extent these phenomena are reflected in the overall blood flow to the kidney and how they are affected by intravenous administration of nitro-l-arginine-methyl-ester (L-NAME), a potent NO synthesis inhibitor. Wavelet analysis is applied to detect rhythmic activity at the level of the renal artery...

  13. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  14. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  15. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  16. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  17. Production of Methyl Laurate from Coconut Cream through Fractionation of Methyl Ester

    Directory of Open Access Journals (Sweden)

    Johnner P. Sitompul

    2015-10-01

    Full Text Available This paper concerns the production of methyl laurate from coconut cream through fractionation of methyl esters. Coconut oil was produced by wet processing of coconut cream. The esters were prepared by reacting coconut oil and methanol using homogeneous catalyst KOH in a batch reactor, followed by fractionation of fatty acid methyl esters (FAME at various reduced pressures applying differential batch vacuum distillation. Experimental data were compared with simulation of a batch distillation employing the simple Raoult’s model and modified Raoult’s model of phase equilibria. Activity coefficients (γi were determined by optimization to refine the models. The modified Rault’s model with activity coefficients gave better agreement with the experimental data, giving the value of γi between 0,56-0,73. For a given boiling temperature, lower operating pressure produced higher purity of C10 and C12 FAME for respective distillates.

  18. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    Science.gov (United States)

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Plasma l-citrulline concentrations in l-arginine-supplemented healthy dogs.

    Science.gov (United States)

    Flynn, K M; Kellihan, H B; Trepanier, L A

    2017-08-01

    To determine whether oral l-arginine increases plasma [l-citrulline] in dogs. Eleven healthy staff-owned dogs were used in this study. Dogs (n = 3) were given l-arginine (50mg/kg PO q8h) for 7 days, and plasma [l-arginine] and [l-citrulline] were analyzed by high performance liquid chromatography at baseline (BL), steady state trough, and 0.5, 1, 1.5, 2, 4, 6, and 8 h after final dosing on day 7. Eleven dogs were then treated with 100mg/kg l-arginine PO q8h for 7 days, and [l-arginine] and [l-citrulline] were measured at BL, steady state trough, and at peak 4 hrs after dosing (T4 hrs). - Plasma [l-arginine] and [l-citrulline] peaked at T4 hrs on the 50mg/kg dosage. Target outcome, modeled after human study results, of a doubling of [l-arginine] and a 25-30% increase in [l-citrulline] from BL were not reached. After the 100mg/kg dosage, plasma [l-arginine] increased from a BL median of 160.1 μM (range, 100.2-231.4 μM) to a peak of 417.4 μM (206.5-807.3 μM) at T4 hrs, and plasma [l-citrulline] increased from a BL median of 87.8 μM (59.1-117.1 μM) to peak of 102.2 μM (47.4-192.6 μM) at T4 hrs. Ten of eleven dogs showed a doubling of plasma [l-arginine] and 4/11 dogs achieved 25-30% or greater increases in plasma [l-citrulline]. No adverse effects on heart rate or blood pressure were noted. - Oral l-arginine dosage of 100mg/kg q8h doubles plasma [l-arginine] in healthy dogs, but conversion to l-citrulline is quite variable. Further evaluation of this dosage regimen in dogs with pulmonary hypertension is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Anti-aging effects of l-arginine

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Gad

    2010-07-01

    Full Text Available l-Arginine is one of the most metabolically versatile amino acids. In addition to its role in the synthesis of nitric oxide, l-arginine serves as a precursor for the synthesis of polyamines, proline, glutamate, creatine, agmatine and urea. Several human and experimental animal studies have indicated that exogenous l-arginine intake has multiple beneficial pharmacological effects when taken in doses larger than normal dietary consumption. Such effects include reduction in the risk of vascular and heart diseases, reduction in erectile dysfunction, improvement in immune response and inhibition of gastric hyperacidity. This review summarises several positive studies and personal experiences of l-arginine. The demonstrated anti-aging benefits of l-arginine show greater potential than any pharmaceutical or nutraceutical agent ever previously discovered.

  1. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney

  2. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    Science.gov (United States)

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  3. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats.

    Science.gov (United States)

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  4. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    International Nuclear Information System (INIS)

    Ackermann, Uwe; Blanc, Paul; Falzon, Cheryl L.; Issa, William; White, Jonathan; Tochon-Danguy, Henri J.; Sachinidis, John I.; Scott, Andrew M.

    2006-01-01

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF 3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  5. Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test.

    Science.gov (United States)

    Zhang, Guang-Fen; Wang, Nan; Shi, Jin-Yun; Xu, Shi-Xia; Li, Xiao-Min; Ji, Mu-Huo; Zuo, Zhi-Yi; Zhou, Zhi-Qiang; Yang, Jian-Jun

    2013-09-01

    Converging evidence shows that the acute administration of a sub-anaesthetic dose ketamine produces fast-acting and robust antidepressant properties in patients suffering from major depressive disorder. However, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the role of the L-arginine-nitric oxide pathway in the antidepressant effects of ketamine in rats performing the forced swimming test (FST). Ketamine (10 mg/kg) significantly decreased immobility times in the FST and the activities of total nitric oxide synthases (T-NOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in the rat hippocampus. Interestingly, the plasma activities of T-NOS, iNOS, and eNOS increased after administration of ketamine. Furthermore, the activities of neuronal NOS (nNOS) did not change significantly in either the hippocampus or plasma after ketamine administration. The antidepressant effects of ketamine were prevented by pre-treatment with l-arginine (750 mg/kg). Pre-treatment with the NOS inhibitor L-NG-nitroarginine methyl ester at a sub-antidepressant dose of 50 mg/kg and ketamine at a sub-antidepressant dose of 3 mg/kg reduced immobility time in the FST compared to treatment with either drug alone. None of the drugs affected crossing and rearing scores in the open field test. These results suggest that the L-arginine-nitric oxide pathway is involved in the antidepressant effects of ketamine observed in rats in the FST and this involvement is characterised by the inhibition of brain T-NOS, iNOS, and eNOS activities. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Combined aliskiren and L-arginine treatment has antihypertensive effects and prevents vascular endothelial dysfunction in a model of renovascular hypertension

    Directory of Open Access Journals (Sweden)

    C.H. Santuzzi

    2015-01-01

    Full Text Available Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK and L-arginine treatment both alone and in combination on blood pressure (BP, and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C hypertension, 2K1C+ALSK (ALSK, 2K1C+L-arginine (L-arg, and 2K1C+ALSK+L-arginine (ALSK+L-arg treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.

  7. Process parameters optimization for synthesis of methyl ester from sunflower oil using Taguchi technique

    Directory of Open Access Journals (Sweden)

    G. Senthilkumar

    2014-09-01

    Full Text Available In this work, transesterification of sunflower oil for obtaining biodiesel was studied. Taguchi’s methodology (L9 orthogonal array was selected to optimize the most significant variables (methanol, catalyst concentration and stirrer speed in transesterification process. Experiments have conducted based on development of L9 orthogonal array by using Taguchi technique. Analysis of Variance (ANOVA and the regression equations were used to find the optimum yield of sunflower methyl ester under the influence of methanol, catalyst & stirrer speed. The study resulted in a maximum yield of sun flower methyl ester as 96% with the optimal conditions of methanol 110 ml with 0.5% by wt. of sodium hydroxide (NaOH stirred at 1200 rpm. The yield was analyzed on the basis of “larger is better”. Finally, confirmation tests were carried out to verify the experimental results.

  8. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    Science.gov (United States)

    Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao

    2017-01-01

    A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700

  9. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kuender D. Yang

    2017-04-01

    Full Text Available A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency.

  10. Theoretical study about L-arginine complexes formation with thiotriazolin

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-02-01

    Full Text Available Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine it is possible

  11. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)

  12. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  13. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  14. Adverse effects induced by ecgonine methyl ester to the zebra mussel: A comparison with the benzoylecgonine

    International Nuclear Information System (INIS)

    Parolini, Marco; Binelli, Andrea

    2013-01-01

    Cocaine and its metabolites are the prevalent psychotropic substances in aquatic environment. However, to date the knowledge on their adverse effects to non-target organisms is inadequate. The aims of this study were to investigate sub-lethal effects induced by the ecgonine methyl ester (EME) to the freshwater bivalve Dreissena polymorpha and to compare its toxicity to that by benzoylecgonine (BE), the other main cocaine metabolite. EME sub-lethal effects were investigated by 14 days in-vivo exposures and a multi-biomarker approach. Slight variations in biomarker responses were found at 0.15 μg/L treatment. 0.5 μg/L EME treatment induced destabilization of lysosome membranes, an overall inactivation of defense enzymes, increases in lipid peroxidation, protein carbonylation and DNA fragmentation, but no variations in fixed genetic damage. The use of a biomarker response index (BRI) showed that at 0.5 μg/L both cocaine metabolites had the same toxicity to zebra mussels specimens. -- Highlights: •Sub-lethal effects induced by ecgonine methyl ester (EME) to D. polymorpha were investigated. •Realistic EME concentrations caused notable adverse effects in treated bivalves. •EME induced oxidative injuries to treated-mussel lipids, protein and DNA. •EME toxicity was comparable to the benzoylecgonine one. -- Environmentally relevant ecgonine methyl ester concentrations induced adverse effects to zebra mussels

  15. Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.

    Science.gov (United States)

    Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K

    1981-12-01

    6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.

  16. Complex formation of technetium with the methyl esters of MAG2 and MAG1

    International Nuclear Information System (INIS)

    Noll, B.; Noll, S.; Grosse, B.; Johannsen, B.; Spies, H.

    1993-01-01

    Mercaptoacetylglycine methyl ester (MAG 2 ester) and mercaptoacetyldiglycine methyl ester (MAG 1 ester) were included to investigate complex formation of SH/amide ligands with technetium. The studies are aimed at finding out how blocking the carboxylic groups influences the complexation reaction, with a view to finding an approach to new lipophilic species. (orig./BBR)

  17. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  18. Asymmetric Meerwein–Ponndorf–Verley reduction of long chain keto alkanoic acid methyl esters

    Directory of Open Access Journals (Sweden)

    AYE YUSUFOGLU

    2007-05-01

    Full Text Available 3-, 7- and 13-Monoketo tetradecanoic acid methyl esters carrying a ketogroup at the ends and at the middle of the chain with 14 carbon atoms were reduced by a Meerwein–Ponndorf–Verley reaction in the presence of R-(+-1,1'-binaphthalene-2,2'-diol, 1,2:5,6-D-di-O-isopropylidene-D-mannitol and L-(–-menthol. The highest enantiomeric purity of 65% ee was found for 13-hydroxy ester isomer. The enantiomeric excess was determined by 1H-NMR shift with Eu(tfc3 and by optical rotation.

  19. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    Science.gov (United States)

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  20. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  1. An intelligent biopolymer gel with pendant L-proline methyl ester

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Safranj, A.; Omichi, Hideki; Katakai, Ryoichi.

    1995-01-01

    Linear poly(acryloyl-L-proline methyl ester, A-ProOMe), obtained by radiation-induced polymerization of its monomer in ethanol, exhibits a lower critical solution temperature (LCST) at 14degC. A-ProOMe was copolymerized with a minor amount of 2-hydroxypropyl methacrylate (HPMA) or 2-hydroxyethyl methacrylate (HEMA), to obtain intelligent biopolymer gels for application in drug delivery systems. The poly(A-ProOMe/HPMA) gel was characterized by an initial rapid shrinkage at the surface in the swollen state, as resulting in formation of a rigid membrane barrier devoid of micropores. This gel is called a surface regulated matrix. In the case of poly(A-ProOMe/HEMA), no such a barrier formed, instead, the whole matrix shrunk without the disappearance of micropores. This gel is called a matrix pumping gel. Testosterone (T) was incorporated into the poly(A-ProOMe/HPMA) gel, and it was found that the daily dose of T released in vivo from this formulation remained constant at approximately 30 μg/day throughout an experimental period of 54 weeks. On the other hand, 9-β-D-arabinofuranosyladenine (Ara-A) was incorporated into the poly(A-ProOMe/HEMA) gel to evaluate the pulsatile drug release when cycled at 10 and 37degC. The in vitro release rate of Ara-A was found to be 11 ng/h at 10degC and 33 ng/h at 37degC. (author)

  2. CFD simulation of fatty acid methyl ester production in bubble column reactor

    Science.gov (United States)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  3. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2018-05-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  4. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2017-12-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  5. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  6. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  7. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Arumugham Suresh

    2014-09-01

    Full Text Available Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp., Candida sp., and Aspergillus niger and Aspergillus flavus. The FAME profiles were determined through gas chromatography with a flame ionization detector. Results: The FAME was found to be radial effective in inhibiting the radial growth of both bacterial and fungal pathogens. The FAME extracts exhibited the antibacterial activity against three clinical pathogens, namely, Escherichia coli, Salmonella typhi and Enterobacter sp. with the maximum zone of inhibition of 12.0 mm, 12.0 mm and 11.0 mm, respectively. The FAME showed moderate antifungal activity against Cryptococcus sp. (11.8 mm, Aspergillus niger (10.5 mm, Candida sp. (11.8 mm and Fusarium sp. (10.4 mm. Gas chromatography-flame ionization detector analysis revealed about 30 different FAMEs. Conclusions: We assume that the observed antimicrobial potency may be due to the abundance of erucic acid methyl ester (C22:0, arachidic acid methyl ester (C20:0, palmitic acid methyl ester (C16:0, cis-11-eicosenoicmethyl ester (C20:1, cis-11, 14-eicosadienoic acid methyl ester (C20:2 and linolenic acid methyl ester (C18:3 in FAMEs which appears to be promising to treat microbial diseases.

  8. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility.

    Science.gov (United States)

    Mennini, Natascia; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola

    2016-09-10

    The influence of l-arginine on the complexing and solubilizing power of randomly-methylated-β-cyclodextrin (RameβCD) towards oxaprozin, a very poorly soluble anti-inflammatory drug, was examined. The interactions between the components were investigated both in solution, by phase-solubility analysis, and in the solid state, by differential scanning calorimetry, FTIR and X-ray powder diffractometry. The morphology of the solid products was examined by Scanning Electron Microscopy. Results of phase-solubility studies indicated that addition of arginine enhanced the RameβCD complexing and solubilizing power of about 3.0 and 4.5 times, respectively, in comparison with the binary complex (both at pH≈6.8). The effect of arginine was not simply additive, but synergistic, being the ternary system solubility higher than the sum of those of the respective drug-CD and drug-arginine binary systems. Solid equimolar ternary systems were prepared by physical mixing, co-grinding, coevaporation and kneading techniques, to explore the effect of the preparation method on the physicochemical properties of the final products. The ternary co-ground product exhibited a dramatic increase in both drug dissolution efficiency and percent dissolved at 60min, whose values (83.6 and 97.1, respectively) were about 3 times higher than the sum of those given by the respective drug-CD and drug-aminoacid binary systems. Therefore, the ternary co-ground system with arginine and RameβCD appears as a very valuable product for the development of new more effective delivery systems of oxaprozin, with improved safety and bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  10. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension

    Directory of Open Access Journals (Sweden)

    Silvia Llorens

    2015-09-01

    Full Text Available Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L. bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester or indomethacin (both 10−5 M, respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.

  11. Synthesis of no-carrier-added alpha-[11C]methyl-L-tryptophan

    International Nuclear Information System (INIS)

    Chaly, T.; Diksic, M.

    1988-01-01

    Described here is a synthesis of no-carrier-added alpha-[ 11 C]methyl-L-tryptophan based on alkylation with 11 CH 3 I of an anion generated by reacting the Schiff base of L-tryptophan methyl ester with di-isopropylamine. The synthesis requires approximately 30 min after the end of 11 CO 2 collection and gives alpha-[ 11 C]methyl-L-tryptophan in a 20-25% radiochemical yield calculated at the end of the synthesis and without correction for radioactive decay. The specific activity of the final radiopharmaceutical, measured at the end of the synthesis, was around 2000 Ci/mmol. Data confirming the stereospecificity of the synthesis are also presented

  12. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Gail, S.; Sarathy, S.M.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 (Canada); Dievart, P.; Dagaut, P. [CNRS, 1C, Ave de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2008-12-15

    This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C{sub 4} FAME) and methyl butanoate (MB, saturated C{sub 4} FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios ({phi}=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for {phi}=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel. (author)

  13. Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases

    DEFF Research Database (Denmark)

    Knuhtsen, Astrid; Legrand, Baptiste; Van der Poorten, Olivier

    2016-01-01

    Protein arginine N-methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-pr...

  14. Combustion of Pure, Hydrolyzed and Methyl Ester Formed of Jatropha Curcas Lin oil

    Directory of Open Access Journals (Sweden)

    Muhaji Muhaji

    2015-10-01

    Full Text Available The density and viscosity of vegetable oil are higher than that of diesel oil. Thus its direct combustion in the diesel engine results many problems. This research was conducted to investigate the flame characteristics of combustion of jatropha curcas lin in pure, hydrolyzed and methyl ester form. The results indicated that the combustion of pure jatropha curcas lin occurs in three stages, hydrolyzed in two stages    and methyl ester in one stage. For pure jatropha curcas lin, in the first stage, unsaturated fatty acid burned for  0.265 s.  It is followed by saturated fatty acid, burned for 0.389 s in the second stage. And, in the last stage is the burned of glycerol for 0.560 s. Meanwhile for hydrolyzed one, in the first stage, unsaturated fatty acid burned for 0.736 s, followed by saturated fatty acid, burned  for 0.326 s in the second stage. And the last, for methyl ester is the burned for 0.712 s. The highest burning rate was for methyl ester which was 0.003931cc/s. The energy releasing rate of methyl ester, which was for 13,628.67 kcal/(kg.s resembled that of diesel oil the most, while the lowest rate was for pure jatropha curcas lin which was 8,200.94 kcal/(kg.s. In addition, massive explosion occurred in the fuel containing unsaturated fatty acid and glycerol

  15. The effects of L-arginine, D-arginine, L-name and methylene blue on channa striatus-induced peripheral antinociception in mice.

    Science.gov (United States)

    Zakaria, Zainul Amiruddin; Sulaiman, Mohd Rosian; Somchit, Muhammad Nazrul; Jais, Abdul Manan Mat; Ali, Daud Israf

    2005-08-03

    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test. The ASH was prepared by soaking fresh haruan fillet in chloroform:methanol (CM) (2/1 (v/v)) for 72 h followed by evaporation of the upper layer supernatant to remove any solvent residues. The supernatant was then subjected to a freeze-drying process (48 h) followed by doses preparation. Subcutaneous (SC) administration of ASH alone (0.170, 0.426 and 1.704 mg/kg) exhibited a dose-dependent antinociception. On the other hand, 20 mg/kg (SC) of L-arginine and MB exhibited a significant nociception and antinociception, while D-arginine and L-NAME did not produce any effect at all. Pre-treatment with L-arginine was found to significantly reverse the three respective doses of ASH antinociception; pre-treatment with D-arginine did not produce any significant change in the ASH activity; pre-treatment with L-NAME only significantly increased the 0.170 and 0.426 mg/kg ASH antinociception; and pre-treatment with MB significantly enhanced the respective doses of ASH antinociception, respectively. Furthermore, co-treatment with L-NAME significantly enhanced the L-arginine reversal effect on 0.426 mg/kg ASH antinociception. In addition, MB significantly reversed the L-arginine nociception on 0.426 mg/kg ASH. These finding suggest ASH antinociception involves the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway. The presence of NO was found to reverse ASH antinociceptive activity while blocking of cGMP system enhanced it.

  16. Effect of S-methyl-l-thiocitrulline dihydrochloride on rat micturition reflex

    Directory of Open Access Journals (Sweden)

    Jeová Nina Rocha

    Full Text Available ABSTRACT Objective: To evaluate the effect of neuronal nitric oxide synthase on the striated urethral sphincter and the urinary bladder. Materials and Methods: A coaxial catheter was implanted in the proximal urethra and another one in the bladder of female rats, which were anesthetized with subcutaneous injection of urethane. The urethral pressure with saline continuous infusion and bladder isovolumetric pressure were simultaneously recorded. Two groups of rats were formed. In group I, an intrathecal catheter was implanted on the day of the experiment at the L6-S1 level of the spinal cord; in group II, an intracerebroventricular cannula was placed 5-6 days before the experiment. Results: It was verified that the group treated with S-methyl-L-thio-citrulline, via intrathecal pathway, showed complete or partial inhibition of the urethral sphincter relaxation and total inhibition of the micturition reflexes. The urethral sphincter and the detrusor functions were recovered after L-Arginine administration. When S-methyl-L-thio-citrulline was administered via intracerebroventricular injection, there was a significant increase of urethral sphincter tonus while preserving the sphincter relaxation and the detrusor contractions, at similar levels as before the use of the drugs. Nevertheless there was normalization of the urethral tonus when L-Arginine was applied. Conclusions: The results indicate that, in female rats anaesthetized with urethane, the nNOS inhibitor administrated through the intrathecal route inhibits urethral sphincter relaxation, while intracerebroventricular injection increases the sphincter tonus, without changing bladder function. These changes were reverted by L-Arginine administration. These findings suggest that the urethral sphincter and detrusor muscle function is modulated by nitric oxide.

  17. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils

    Directory of Open Access Journals (Sweden)

    MARIA E.A. PINTO

    2017-08-01

    Full Text Available ABSTRACT Fatty acid methyl esters (FAMEs were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL. All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity.

  18. Effects of mixing technologies on continuous methyl ester production: Comparison of using plug flow, static mixer, and ultrasound clamp

    International Nuclear Information System (INIS)

    Somnuk, Krit; Prasit, Tanongsak; Prateepchaikul, Gumpon

    2017-01-01

    Highlights: • Four types of continuous reactors were compared with methyl ester conversion. • Plug flow, static mixer, ultrasound clamp, SM with ultrasound reactors were tested. • The 16 × 400 W ultrasound clamps were operated at 20 kHz frequency for US reactor. • The US reactor was clearly superior over the other types of continuous reactor. • The US reactor was the most effective alternative with short reactor length. - Abstract: Four types of continuous reactors, namely plug flow reactor (PF), static mixer reactor (SM), ultrasound clamp on tubular reactor (US), and static mixer combined with ultrasound (SM/US) were compared for their purities of methyl ester in biodiesel production from refined palm oil (RPO). The reactor conditions were: KOH 4, 6, 8, 10, and 12 g L −1 , methanol content 20 vol.%, and under 20 L h −1 RPO flow rate at 60 °C temperature. The highest purity of methyl esters: 81.99 wt.% for PF, 95.70 wt.% for SM, 98.98 wt.% for US, and 97.67 wt.% for SM/US, were achieved with 900 mm, 900 mm, 700 mm, and 900 mm reactor lengths respectively, and 12 g L −1 of KOH was used in all cases. The 16 × 400 W ultrasound clamp was operated at 20 kHz frequency, and among short length reactors the US case was more effective than PF, SM, or SM/US. Moreover, ester purity from the US reactor was slightly decreased by the lowest 4 g L −1 KOH. The US reactor was clearly superior over the other types of continuous reactor, and had the potential to reduce KOH consumption by sonochemical effects on the base-catalyzed transesterification reaction.

  19. Acellular matrix of bovine pericardium bound with L-arginine

    International Nuclear Information System (INIS)

    Kim, Hyo Joo; Bae, Jin Woo; Kim, Chun Ho; Lee, Jin Woo; Shin, Jung Woog; Park, Ki Dong

    2007-01-01

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses

  20. Acellular matrix of bovine pericardium bound with L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Joo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Bae, Jin Woo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Chun Ho [Laboratory of Tissue Engineering, Korea Cancer Center Hospital, Seoul 139-240 (Korea, Republic of); Lee, Jin Woo [Department of Orthopaedic Surgery, College of Medicine, Yonsei University, Seoul 120-749 (Korea, Republic of); Shin, Jung Woog [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Ki Dong [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2007-09-15

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses.

  1. Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l-arginine-nitric oxide pathway.

    Science.gov (United States)

    Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam; Alboghobeish, Soheila; Amirgholami, Neda; Houshmand, Gholamreza; Cauli, Omar

    2018-05-01

    Opioid-induced neuroinflammation and the nitric oxide (NO) signal-transduction pathway are involved in the development of opioid analgesic tolerance. The antidepressant venlafaxine (VLF) modulates NO in nervous tissues, and so we investigated its effect on induced tolerance to morphine, neuroinflammation, and oxidative stress in mice. Tolerance to the analgesic effects of morphine were induced by injecting mice with morphine (50 mg/kg) once a day for three consecutive days; the effect of co-administration of VLF (5 or 40 mg/kg) with morphine was similarly tested in a separate group. To determine if the NO precursor l-arginine hydrochloride (l-arg) or NO are involved in the effects rendered by VLF, animals were pre-treated with l-arg (200 mg/kg), or the NO synthesis inhibitors N(ω)-nitro-l-arginine methyl ester (L-NAME; 30 mg/kg) or aminoguanidine hydrochloride (AG; 100 mg/kg), along with VLF (40 mg/kg) for three days before receiving morphine for another three days. Nociception was assessed with a hot-plate test on the fourth day, and the concentration of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-10, brain-derived neurotrophic factor, NO, and oxidative stress factors such as total thiol, malondialdehyde content, and glutathione peroxidase (GPx) activity in the brain was also determined. Co-administration of VLF with morphine attenuated morphine-induced analgesic tolerance and prevented the upregulation of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), NO, and malondialdehyde in brains of mice with induced morphine tolerance; chronic VLF administration inhibited this decrease in brain-derived neurotrophic factor, total thiol, and GPx levels. Moreover, repeated administration of l-arg before receipt of VLF antagonized the effects induced by VLF, while L-NAME and AG potentiated these effects. VLF attenuates morphine-induced analgesic tolerance, at least partly because of its anti

  2. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    Science.gov (United States)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  3. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, G. Barney

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted

  4. Diorganotin(IV) Complexes with Methionine Methyl Ester. Equilibria ...

    African Journals Online (AJOL)

    IV) (DBT) and diphenyltin(IV) (DPT) was investigated at 25 °C and 0.1 mol dm–3 ionic strength in water for dimethyltin(IV) and in 50 % dioxane–water mixture for dibutyltin(IV) and diphenyltin(IV). Methionine methyl ester forms1:1 and 1:2 ...

  5. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  6. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  7. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  8. Larvicidal activity of oils, fatty acids, and methyl esters from ripe and unripe fruit of Solanum lycocarpum (Solanaceae against the vector Culex quinquefasciatus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Viviane de Cássia Bicalho Silva

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:The larvicidal activity of oils, fatty acids, and methyl esters of Solanum lycocarpum fruit against Culex quinquefasciatus is unknown.METHODS:The larvicidal activity of samples of ripe and unripe fruit from S. lycocarpum was evaluated against third and fourth instar larvae of C. quinquefasciatus .RESULTS:The oils, fatty acids, and methyl esters of S. lycocarpum showed the greatest larvicidal effect (57.1-95.0% at a concentration of 100mg/L (LC 50values between 0.70 and 27.54mg/L.CONCLUSIONS:Solanum lycocarpum fruit may be a good source of new natural products with larvicidal activity.

  9. Efficient 'One Pot' Nitro Reduction-Protection of γ-Nitro Aliphatic Methyl Esters

    OpenAIRE

    Díaz-Coutiño, Francisco D.; Escalante, Jaime

    2009-01-01

    A simple and efficient protocol has been developed for the direct conversion of γ-nitro aliphatic methyl esters to N-(tert-butoxycarbonyl)amine methyl esters using NH4+HCO2- and Pd/C in the presence of (Boc)2O. There was a significant decrease in the reaction time under these conditions, increased yields and the purity of the products using this 'one pot' procedure. Un protocolo simple y eficiente de síntesis ha sido desarrollado para la conversión directa de metil ésteres de γ-nitro alifá...

  10. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  11. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  12. Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction.

    Science.gov (United States)

    Sandqvist, Anna; Schneede, Jörn; Kylhammar, David; Henrohn, Dan; Lundgren, Jakob; Hedeland, Mikael; Bondesson, Ulf; Rådegran, Göran; Wikström, Gerhard

    2018-03-01

    Pulmonary arterial hypertension (PAH) is a life-threatening condition, characterized by an imbalance of vasoactive substances and remodeling of pulmonary vasculature. Nitric oxide, formed from L-arginine, is essential for homeostasis and smooth muscle cell relaxation in PAH. Our aim was to compare plasma concentrations of L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) in PAH compared to left ventricular systolic dysfunction (LVSD) and healthy subjects. This was an observational, multicenter study comparing 21 patients with PAH to 14 patients with LVSD and 27 healthy subjects. Physical examinations were obtained and blood samples were collected. Plasma levels of ADMA, SDMA, L-arginine, L-ornithine, and L-citrulline were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma levels of ADMA and SDMA were higher, whereas L-arginine and L-arginine/ADMA ratio were lower in PAH patients compared to healthy subjects (p L-arginine than patients with LVSD (p L-Arginine correlated to 6 min walking distance (6MWD) (r s  = 0.58, p = 0.006) and L-arginine/ADMA correlated to WHO functional class (r s  = -0.46, p = 0.043) in PAH. In conclusion, L-arginine levels were significantly lower in treatment naïve PAH patients compared to patients with LVSD. Furthermore, L-arginine correlated with 6MWD in PAH. L-arginine may provide useful information in differentiating PAH from LVSD.

  13. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    International Nuclear Information System (INIS)

    Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.

    2016-01-01

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  14. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com [Department of Physics, Siddhartha College of Arts, Science and Commerce, Fort, Mumbai-400001, India. Email: ashok.sunatkari@rediffmail.com (India); Talwatkar, S. S. [Department of Physics, N.G. Aacharya and D.K. Maratha College of Arts, Science and Commerce, Chembur, Mumbai-400071, India. Email: swarna-81@rediffmail.com (India); Tamgadge, Y. S. [Department of Physics, Mahatma Phule Arts, Commerce & S.R.C. Science College, Warud-444906, India. Email: ystamgadge@gmail.com (India); Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati-444602 India. Email: gajananggm@yahoo.co.in (India)

    2016-05-06

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  15. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    International Nuclear Information System (INIS)

    Schröder, O; Munack, A; Schaak, J; Pabst, C; Schmidt, L; Bünger, J; Krahl, J

    2012-01-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  16. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    Science.gov (United States)

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Melon oil methyl ester: an environmentally friendly fuel

    Directory of Open Access Journals (Sweden)

    S.K. Fasogbon

    2015-06-01

    Full Text Available Demand for energy is growing across the globe due to the direct relationship between the well-being and prosperity of people and energy usage. However, meeting this growing energy demand in a safe and environmentally friendly manner is a key challenge. To this end, methyl esters (biodiesels have been and are being widely investigated as alternatives to fossil fuels in compression ignition engines. In this study, melon (Colocynthis Citrullus Lanatus oil was used to synthesize biodiesel (methyl ester using the transesterification method in the presence of a sodium hydroxide promoter. The emissions profile of the biodiesel was investigated by setting up a single-cylinder four-stroke air-cooled CI engine connected to a TD115-hydraulic dynamometer and an Eclipse Flue Gas Analyzer (FGA with model number EGA4 flue gas analyzer. The engine was run at engine speeds of 675, 1200 and 1900rpm for biodiesel/diesel blends at 21°C on a volume basis of 0/100(B0, 10/90(B10, 20/80(B20, 30/70(B30, 40/60(B40 and 50/50(B50. The test showed a downward trend in the emissions profile of the biodiesel, with remarkable reductions of about 55% in the dangerous-carbon monoxide exhaust gas pollutant and 33.3% in the unfriendly SOX from 100% diesel to B30-biodiesel concentration. Increasing the speed from 675 to 1200 and then to 1900 rpm also afforded further reductions in CO and SOX exhaust emissions. NOX however increased marginally by 2.1% from the same 100% diesel to the B30-biodiesel composition. Based on the remarkable reduction in CO and SOX and the marginal increase in NOX as the concentration of the biodiesel increased in the blends, the study concludes that melon oil methyl ester is an environmentally friendly fuel.

  19. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    Science.gov (United States)

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  20. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    International Nuclear Information System (INIS)

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-01-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine- 125 I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity

  1. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2004-01-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and...

  2. Plasma glucagon responses to L-arginine in various diseases

    International Nuclear Information System (INIS)

    Morita, Nobuto; Hayakawa, Hiroyuki; Kawai, Kohzo; Noto, Yutaka; Ohno, Taro

    1978-01-01

    To clarify the mechanism of abnormal glucose metabolism in the secondary diabetes, we examined the dynamics of plasma glucagon levels in various diseases which may accompany glucose intolerance. Plasma glucagon responses to L-arginine were observed in 20 liver cirrhotics, 8 patients with chronic renal failure, 6 patients with chronic pancreatitis, 4 patients, with hyperthyroidism, 22 diabetics and 9 normal controls. Plasma glucagon levels were determined by the radioimmunoassay method of Unger using 125 I-glucagon and antiserum 30K which is specific for pancreatic glucagon. In the cirrhotics, the plasma glucagon responses to L-arginine were significantly higher than in normal controls. The patients whose BSP retention at 45 minutes were above 30% showed higher plasma glucagon responses than in the patients whose BSP retention at 45 minutes were below 30%, suggesting that the more severely the liver was damaged, the more the plasma glucagon levels were elevated. In the patients with chronic renal failure, the plasma glucagon responses to L-arginine were also significantly higher than in normal controls. These abnormal levels were not improved by a hemodialysis, although serum creatinine levels were fairly decreased. In the patients with chronic pancreatitis, the plasma glucagon responses to L-arginine were the same as those in normal controls. In the patients with hyperthyroidism the plasma glucagon responses to L-arginine seemed to be lower than normal controls. In the diabetics, the plasma glucagon responses to L-arginine were almost the same as in normal controls. However their glucagon levels seemed to be relatively high, considering the fact that diabetics had high blood glucose levels. (auth.)

  3. Synergistic Effects of l-Arginine and Methyl Salicylate on Alleviating Postharvest Disease Caused by Botrysis cinerea in Tomato Fruit.

    Science.gov (United States)

    Zhang, Xinhua; Min, Dedong; Li, Fujun; Ji, Nana; Meng, Demei; Li, Ling

    2017-06-21

    The effects of l-arginine (Arg, 1 mM) and/or methyl salicylate (MeSA, 0.05 mM) treatment on gray mold caused by Botrytis cinerea in tomato fruit were studied. Results indicated that Arg or MeSA alleviated the incidence and severity of fruit disease caused by B. cinerea, and that both Arg and MeSA (Arg + MeSA) further inhibited the development of fruit decay. Treatment with Arg + MeSA not only enhanced the activities of superoxide dismutase, catalase, and peroxidase but also promoted the expression levels of pathogenesis-related protein 1 gene and the activities of defense-related enzymes of phenylalanine ammonia-lyase, polyphenol oxidase, β-1,3-glucanase, and chitinase during most of the storage periods, which were associated with lower disease incidence and disease index. In addition, the combined treatment elevated the levels of total phenolics, polyamines, especially putrescine, and nitric oxide. These observations suggest that treatment of fruit with Arg + MeSA is an effective and promising way to alleviate postharvest decays on a commercial scale.

  4. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    Science.gov (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    Directory of Open Access Journals (Sweden)

    Cleci M. Moreira

    2012-01-01

    Full Text Available OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1 streptozotocin-induced diabetic and control Wistar rats; (2 N-nitro-L-arginine methyl ester (L-NAME hypertensive and untreated Wistar rats; (3 deoxycorticosterone acetate (DOCA salt-treated, nephrectomized and salt- and DOCA-treated rats; (4 spontaneous hypertensive rats (SHR and Wistar Kyoto (WKY rats; (5 rats with myocardial infarction and shamoperated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes, a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better

  6. Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing

    Directory of Open Access Journals (Sweden)

    Maulidiyah

    2017-06-01

    Full Text Available The second generation of Bioenergy: a study of CPO liquid waste-based biodiesel production technology has been conducted. The aims of this study were to obtain biodiesel from Industrial liquid waste of CPO processing and to identify the kind of methyl-ester compound of the biodiesel. The production of biodiesel was applied in two steps of reactions; esterification reaction using H2SO4 and transesterification using CaO catalyst at 60 °C for 2 h. GC-MS analysis result showed that methyl ester from liquid waste of CPO contains methyl hexadecanoate 12.87%, methyl 9-octadecanoate 19.98%, methyl octadecanoate 5.71%, and methyl 8,11-octadecadienoate 10.22%.

  7. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  8. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  9. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  10. Methyl and ethyl soybean esters production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Park, Kil Jin; Zorzeto, Thais Queiroz [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Biodiesel is a fuel obtained from triglycerides found in nature, like vegetable oils and animal fats. Nowadays it has been the subject of many researches impulses by the creation of the Brazilian law that determined the blend of 2% of biodiesel with petrodiesel. Basically, there are no limitations on the oilseed type for chemical reaction, but due to high cost of this major feedstock, it is important to use the grain that is available in the region of production. Soybean is the oilseed mostly produced in Brazil and its oil is the only one that is available in enough quantity to supply the current biodiesel demand. The objective of this work was to study the effects of reaction time and temperature on soybean oil transesterification reaction with ethanol and methanol. A central composite experimental design with five variation levels was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that none of the factors affected the ethyl esters production. However, the methyl esters production suffered the influence of temperature (linear effect), reaction time (linear and quadratic) and interaction of these two variables. None of the generated models showed significant regression consequently it was not possible to build the response surface. The experiments demonstrated that methanol is the best alcohol for transesterification reactions and the ester yield was up to 85%. (author)

  11. Adsorption and wettability study of methyl ester sulphonate on precipitated asphaltene

    International Nuclear Information System (INIS)

    Okafor, H E; Gholami, R; Sukirman, Y

    2016-01-01

    Asphaltene precipitation from crude oil and its subsequent aggregation forms solid, which preferentially deposit on rock surfaces causing formation damage and wettability changes leading to loss of crude oil production. To resolve this problem, asphaltene inhibitor has been injected into the formation to prevent the precipitation of asphaltene. Asphaltene inhibitors that are usually employed are generally toxic and non-biodegradable. This paper presents a new environmentally friendly asphaltene inhibitor (methyl ester sulphonate), an anionic surfactant, which has excellent sorption on formation rock surfaces. Result from adsorption study validated by Langmuir and Freundlich models indicate a favourable adsorption. At low volumes injected, methyl ester sulphonate is capable of reverting oil-wet sandstone surface to water-wet surface. Biodegradability test profile shows that for concentrations of 100-5000ppm it is biodegradable by 65-80%. (paper)

  12. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Directory of Open Access Journals (Sweden)

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  13. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel ...

    African Journals Online (AJOL)

    Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the. Seeds Oil of Curcubita ... Gas chromatograph coupled with mass spectrophotometer (GC-MS). The results indicate ..... Chemical and physical properties of ...

  14. L-arginine increases nitric oxide and attenuates pressor and heart ...

    African Journals Online (AJOL)

    olayemitoyin

    heart rate responses to change in posture in sickle cell anemia subjects. 1 .... the standing position and measurements made immediately. Arterial ... pressure was the difference between systolic and diastolic ... Table 3. Effect of L-Arginine Supplementation on Blood Pressure Parameters, Plasma L-Arginine and Nitric Oxide.

  15. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease

    DEFF Research Database (Denmark)

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l......-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible...... cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease....

  16. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2010-01-01

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g -1 . The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm 2 s -1 (40 o C), and 14.6 h (110 o C). The cold filter plugging and pour points were -15 o C and -19 o C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  17. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    International Nuclear Information System (INIS)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-01-01

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca 2+ transients and cellular uptake of L-[ 3 H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[ 3 H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine

  18. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Directory of Open Access Journals (Sweden)

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  19. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    Science.gov (United States)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  20. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  1. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  2. Analysis of the ecological parameters of the diesel engine powered with biodiesel fuel containing methyl esters from Camelina sativa oil

    Directory of Open Access Journals (Sweden)

    S. Lebedevas

    2010-03-01

    Full Text Available The article explores the possibilities of using fatty acid methyl esters derived from the oil of a new species of oily plant Camelina sativa not demanding on soil. The performed research on the physical and chemical properties of pure methyl esters from Camelina sativa show that biofuels do not meet requirements for the biodiesel fuel standard (LST EN 14214:2009 of a high iodine value and high content of linoleic acid methyl ester, so they must be mixed with methyl esters produced from pork lard the content of which in the mixture must be not less than 32%. This article presents the results of tests on combustion emission obtained when three-cylinder diesel engine VALMET 320 DMG was fuelled with a mixture containing 30% of this new kind of fuel with fossil diesel fuel comparing with emissions obtained when the engine was fuelled with a fuel mixture containing 30% of conventional biodiesel fuel (rapeseed oil methyl esters with fossil diesel fuel. The obtained results show that using both types of fuel, no significant differences in CO and NOx concentrations were observed throughout the tested load range. When operating on fuels containing methyl esters from Camelina sativa, HC emissions decreased by 10 to 12% and the smokeness of exhaust gas by 12 to 25%.

  3. Fatty Acid Methyl Esters and Solutol HS 15 Confer Neuroprotection After Focal and Global Cerebral Ischemia

    OpenAIRE

    Lin, Hung Wen; Saul, Isabel; Gresia, Victoria L.; Neumann, Jake T.; Dave, Kunjan R.; Perez-Pinzon, Miguel A.

    2013-01-01

    We previously showed that palmitic methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Soluto...

  4. Antihypertensive effect of extracts from Crateva adansonii DC.ssp ...

    African Journals Online (AJOL)

    HP

    administering the N (ω) -Nitro-L-Arginine-Methyl Ester (L-NAME). The crude extract was .... naphthoquinones, the migration solvents are .... Table 2: Phytochemical screening of the crude extract and the different fractions of Crateva adansonii ...

  5. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    Science.gov (United States)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  6. Thermal Properties of Methyl Ester-Containing Poly(2-oxazolines

    Directory of Open Access Journals (Sweden)

    Petra J. M. Bouten

    2015-10-01

    Full Text Available This paper describes the synthesis and thermal properties in solution and bulk of poly(2-alkyl-oxazolines (PAOx containing a methyl ester side chain. Homopolymers of 2-methoxycarbonylethyl-2-oxazoline (MestOx and 2-methoxycarbonylpropyl-2-oxazoline (C3MestOx, as well as copolymers with 2-ethyl-2-oxazoline (EtOx and 2-n-propyl-2-oxazoline (nPropOx, with systematic variations in composition were prepared. The investigation of the solution properties of these polymers revealed that the cloud point temperatures (TCPs could be tuned in between 24 °C and 108 °C by variation of the PAOx composition. To the best of our knowledge, the TCPs of PMestOx and PC3MestOx are reported for the first time and they closely resemble the TCPs of PEtOx and PnPropOx, respectively, indicating similar hydrophilicity of the methyl ester and alkyl side chains. Furthermore, the thermal transitions and thermal stability of these polymers were investigated by DSC and TGA measurements, respectively, revealing amorphous polymers with glass transition temperatures between -1 °C and 54 °C that are thermally stable up to >300 °C.

  7. Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats.

    Science.gov (United States)

    Omanwar, S; Saidullah, B; Ravi, K; Fahim, M

    2013-01-01

    Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10(-4) M) was significantly increased, and in presence of glybenclamide (10(-5) M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  8. Modulation of Vasodilator Response via the Nitric Oxide Pathway after Acute Methyl Mercury Chloride Exposure in Rats

    Directory of Open Access Journals (Sweden)

    S. Omanwar

    2013-01-01

    Full Text Available Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.. The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh. In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M was significantly increased, and in presence of glybenclamide (10-5 M, the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF. In addition, superoxide dismutase (SOD + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  9. Alterations in plasma L-arginine and methylarginines in heart failure and after heart transplantation.

    Science.gov (United States)

    Lundgren, Jakob; Sandqvist, Anna; Hedeland, Mikael; Bondesson, Ulf; Wikström, Gerhard; Rådegran, Göran

    2018-04-12

    Endothelial function, including the nitric oxide (NO)-pathway, has previously been extensively investigated in heart failure (HF). In contrast, studies are lacking on the NO pathway after heart transplantation (HT). We therefore investigated substances in the NO pathway prior to and after HT in relation to hemodynamic parameters. 12 patients (median age 50.0 yrs, 2 females), heart transplanted between June 2012 and February 2014, evaluated at our hemodynamic lab, at rest, prior to HT, as well as four weeks and six months after HT were included. All patients had normal left ventricular function post-operatively and none had post-operative pulmonary hypertension or acute cellular rejection requiring therapy at the evaluations. Plasma concentrations of ADMA, SDMA, L-Arginine, L-Ornithine and L-Citrulline were analyzed at each evaluation. In comparison to controls, the plasma L-Arginine concentration was low and ADMA high in HF patients, resulting in low L-Arginine/ADMA-ratio pre-HT. Already four weeks after HT L-Arginine was normalized whereas ADMA remained high. Consequently the L-Arginine/ADMA-ratio improved, but did not normalize. The biomarkers remained unchanged at the six-month evaluation and the L-Arginine/ADMA-ratio correlated inversely to pulmonary vascular resistance (PVR) six months post-HT. Plasma L-Arginine concentrations normalize after HT. However, as ADMA is unchanged, the L-Arginine/ADMA-ratio remained low and correlated inversely to PVR. Together these findings suggest that (i) the L-Arginine/ADMA-ratio may be an indicator of pulmonary vascular tone after HT, and that (ii) NO-dependent endothelial function is partly restored after HT. Considering the good postoperative outcome, the biomarker levels may be considered "normal" after HT.

  10. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  11. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  12. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    Science.gov (United States)

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  14. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    International Nuclear Information System (INIS)

    Ozsezen, Ahmet Necati; Canakci, Mustafa

    2011-01-01

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO 2 ) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO x ) emissions by 11-22% compared with those of the PBDF over the speed range.

  15. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    Science.gov (United States)

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  16. EVALUATION OF ANTIOXIDANT ACTIVITY OF SOME IMINES DERIVATIVES OF L-ARGININE.

    Science.gov (United States)

    Iacob, Andreea-Teodora; Drăgan, Maria; Constantin, Sandra; Lupaşcu, Florentina; Confederat, Luminiţa; Buron, F; Routier, S; Profire, Lenuţa

    2016-01-01

    L-Arginine is an a-amino acid which plays important roles in different diseases or processes, such as Alzheimer disease, inflammatory process, healing and tissue regeneration and it also could be useful as an anti-atherosclerotic agent. Considering the large amount of studies on the beneficial effects of different antioxidants, this paper is focused on the evaluation of the antioxidant potential of some imine derivatives, synthesized by the authors and described in a previous article. The evaluation of the antioxidant power was performed using phosphomolydenum-reducing antioxidant power (PRAP) and ferric reducing antioxidant power (FRAP) assays, tests described in the literature and which are used with some minor modifications. It was found that most of the imine derivatives are more active than the L-Arginine in the PPAP and FRAP assays. The most active derivative was the compound obtained by condensation of L-arginine with 2,3-dihydroxybenzaldehyde (2k) and 2-nitrobenzaldehyde (2g). Following the described protocol, some imine derivatives of L-arginine were evaluated in terms of antioxidant potential using in vitro methods. The most favorable influence was obtained by the aromatic substitution with nitro and hydroxyl, the corresponding derivatives being the most active derivatives compared to L-arginine.

  17. Synthesis of 1-Methyl-3-oxo-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gil Valdo José da Silva

    2005-11-01

    Full Text Available A simple and efficient method for the preparation of 1-methyl-3-oxo-7- oxabicyclo[2.2.1]hept-5-en-2-carboxylic acid methyl ester (1 is described. The first step is a highly regioselective Diels-Alder reaction between 2-methylfuran and methyl-3-bromo- propiolate. A remarkably difficult ketal hydrolysis reaction was effected by treatment with HCl, a simple reagent that was shown to be more efficient, in this case, than commonly used more elaborate methods.

  18. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  19. L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m.

    Science.gov (United States)

    Mansoor, Jim K; Morrissey, Brian M; Walby, William F; Yoneda, Ken Y; Juarez, Maya; Kajekar, Radhika; Severinghaus, John W; Eldridge, Marlowe W; Schelegle, Edward S

    2005-01-01

    We examined the effect of dietary supplementation with L-arginine on breath condensate VEGF, exhaled nitric oxide (NO), plasma erythropoietin, symptoms of acute mountain sickness, and respiratory related sensations at 4,342 m through the course of 24 h in seven healthy male subjects. Serum L-arginine levels increased in treated subjects at time 0, 8, and 24 h compared with placebo, indicating the effectiveness of our treatment. L-arginine had no significant effect on overall Lake Louise scores compared with placebo. However, there was a significant increase in headache within the L-arginine treatment group at 12 h compared with time 0, a change not seen in the placebo condition between these two time points. There was a trend (p = 0.087) toward greater exhaled NO and significant increases in breath condensate VEGF with L-arginine treatment, but no L-arginine effect on serum EPO. These results suggest that L-arginine supplementation increases HIF-1 stabilization in the lung, possibly through a NO-dependent pathway. In total, our observations indicate that L-arginine supplementation is not beneficial in the prophylactic treatment of AMS.

  20. The Effects Of L-Arginine And L-Name On Coronary Flow And Oxidative Stress In Isolated Rat Hearts

    Directory of Open Access Journals (Sweden)

    Sobot Tanja

    2015-12-01

    Full Text Available The aim of this experimental study was to assess the effects of the acute administration of L-arginine alone and in combination with L-NAME (a non-selective NO synthase inhibitor on the coronary flow and oxidative stress markers in isolated rat hearts. The experimental study was performed on hearts isolated from Wistar albino rats (n=12, male, 8 weeks old, body mass of 180-200 g. Retrograde perfusion of the isolated preparations was performed using a modified method according to the Langendorff technique with a gradual increase in the perfusion pressure (40–120 cmH2O. The following values were measured in the collected coronary effluents: coronary flow, released nitrites (NO production marker, superoxide anion radical and the index of lipid peroxidation (measured as thiobarbiturate reactive substances. The experimental protocol was performed under controlled conditions, followed by the administration of L-arginine alone (1 mmol and L-arginine (1 mmol + L-NAME (30 μmol. The results indicated that L-arginine did not significantly increase the coronary flow or the release of NO, TBARS and the superoxide anion radical. These effects were partially blocked by the joint administration of L-arginine + L-NAME, which indicated their competitive effect. Hence, the results of our study do not demonstrate significant effects of L-arginine administration on the coronary flow and oxidative stress markers in isolated rat hearts.

  1. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor

    Czech Academy of Sciences Publication Activity Database

    Liu, R.; Heiss, E.H.; Waltenberger, B.; Blažević, T.; Schachner, B.; Jiang, B.; Kryštof, Vladimír; Liu, W.; Schwaiger, S.; Peña-Rodríguez, L. M.; Breuss, J.; Stuppner, H.; Dirsch, V.M.; Atanasov, A. G.

    2018-01-01

    Roč. 62, č. 7 (2018), č. článku 1700860. ISSN 1613-4125 Institutional support: RVO:61389030 Keywords : Mediterranean spices * neointima formation * rosmarinic acid * rosmarinic acid methyl ester * vascular smooth muscle cells Subject RIV: CE - Biochemistry OBOR OECD: Biochemical research methods Impact factor: 4.323, year: 2016

  2. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    Science.gov (United States)

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes

    International Nuclear Information System (INIS)

    Lou, L.L.; Clarke, S.

    1987-01-01

    Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77). The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3 H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl- 3 H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl- 3 H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[ 3 H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [ 3 H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[ 3 H]methyl ester or glutamyl gamma-[ 3 H]methyl ester was detected. The formation of D-aspartic acid beta-[ 3 H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl- 3 H]methionine

  4. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  5. Effect of L-arginine on the growth of Plasmodium falciparum and immune modulation of host cells.

    Science.gov (United States)

    Awasthi, Vikky; Chauhan, Rubika; Chattopadhyay, Debprasad; Das, Jyoti

    2017-01-01

    Malaria is a life-threatening disease caused by Plasmodium parasites. The life-cycle of Plasmodium species involves several stages both in mosquito and the vertebrate host. In the erythrocytic stage, Plasmodium resides inside the red blood cells (RBCs), where it meets most of its nutritional requirement by degrad- ing host's haemoglobin. L-arginine is required for growth and division of cells. The present study was aimed to demonstrate the effect of supplementation of different concentrations of L-arginine and L-citrulline on the growth of parasite, and effect of the culture supernatant on the host's peripheral blood mononuclear cells (PBMCs). To examine the effect of supplementation of L-arginine and L-citrulline, Plasmodium falciparum (3D7 strain) was cultured in RPMI 1640, L-arginine deficient RPMI 1640, and in different concentrations of L-arginine, and L-citrulline supplemented in arginine deficient RPMI 1640 medium. To have a holistic view of in vivo cell activation, the PBMCs isolated from healthy human host were cultured in the supernatant collected from P. falciparum culture. Growth of the parasite was greatly enhanced in L-arginine supplemented media and was found to be concentration dependent. However, parasite growth was compromised in L-citrulline supplemented and L-arginine deficient media. The supernatant collected from L-arginine supplemented parasite media (sArg) showed increased FOXP3 and interleukin-10 (IL-10) expression as compared to the supernatant collected from L-citrulline supple- mented parasite media (sCit). The in vitro culture results showed, decreased parasite growth, and decreased expression of programmed cell death-1 (PD-1) (a coinhibitory molecule) and IL-10 in the L-citrulline supplemented media as compared to L-arginine supplemented media. Hence, it was concluded that L-citrulline supplementation would be a better alternative than L-arginine to inhibit the parasite growth.

  6. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  7. Molecular view of the structural reorganization of water in DPPC multilamellar membranes induced by L-cysteine methyl ester

    Science.gov (United States)

    Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben

    2018-03-01

    In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.

  8. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  9. Microwave-assisted methyl esters synthesis of Kapok (Ceiba pentandra seed oil: parametric and optimization study

    Directory of Open Access Journals (Sweden)

    Awais Bokhari

    2015-09-01

    Full Text Available The depleting fossil fuel reserves and increasing environmental concerns have continued to stimulate research into biodiesel as a green fuel alternative produced from renewable resources. In this study, Kapok (Ceiba pentandra oil methyl ester was produced by using microwave-assisted technique. The optimum operating conditions for the microwave-assisted transesterification of Kapok seed oil including temperature, catalyst loading, methanol to oil molar ratio, and irradiation time were investigated by using Response Surface Methodology (RSM based on Central Composite Design (CCD. A maximum conversion of 98.9 % was obtained under optimum conditions of 57.09 °C reaction temperature, 2.15 wt% catalyst (KOH loading, oil to methanol molar ratio of 1:9.85, and reaction time of 3.29 min. Fourier Transform Infra-Red (FT-IR spectroscopy was performed to verify the conversion of the fatty acid into methyl esters. The properties of Kapok oil methyl ester produced under the optimum conditions were characterized and found in agreement with the international ASTM D 6751 and EN 14214 standards.

  10. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    Science.gov (United States)

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  11. Development of Isocratic RP-HPLC Method for Separation and Quantification of L-Citrulline and L-Arginine in Watermelons

    Directory of Open Access Journals (Sweden)

    Rasdin Ridwan

    2018-01-01

    Full Text Available Watermelons (Citrullus lanatus are known to have sufficient amino acid content. In this study, watermelons grown and consumed in Malaysia were investigated for their amino acid content, L-citrulline and L-arginine, by the isocratic RP-HPLC method. Flesh and rind watermelons were juiced, and freeze-dried samples were used for separation and quantification of L-citrulline and L-arginine. Three different mobile phases, 0.7% H3P04, 0.1% H3P04, and 0.7% H3P04 : ACN (90 : 10, were tested on two different columns using Zorbax Eclipse XDB-C18 and Gemini C18 with a flow rate of 0.5 mL/min and a detection wavelength at 195 nm. Efficient separation with reproducible resolution of L-citrulline and L-arginine was achieved using 0.1% H3P04 on the Gemini C18 column. The method was validated and good linearity of L-citrulline and L-arginine was obtained with R2 = 0.9956, y=0.1664x+2.4142 and R2=0.9912, y=0.4100x+3.4850, respectively. L-citrulline content showed the highest concentration in red watermelon of flesh and rind juice extract (43.81 mg/g and 45.02 mg/g, whereas L-arginine concentration was lower than L-citrulline, ranging from 3.39 to 11.14 mg/g. The isocratic RP-HPLC method with 0.1% H3P04 on the Gemini C18 column proved to be efficient for separation and quantification of L-citrulline and L-arginine in watermelons.

  12. Molecularly imprinted polymer for the selective extraction of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester, from biological fluids before LC-MS analysis.

    Science.gov (United States)

    Thibert, Valérie; Legeay, Patrice; Chapuis-Hugon, Florence; Pichon, Valérie

    2014-02-15

    Considering the important complexity of biological samples, a molecularly imprinted polymer (MIP) was applied to the selective extraction of cocaine and its two main metabolites, benzoylecgonine and ecgonine methyl ester from biological samples. The MIP was imprinted with cocaine and it was synthesized in acetonitrile with methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a crosslinker. The selectivity of the MIP was first assessed for the three target analytes in acetonitrile with recoveries higher than 80% on the MIP and lower than 30% on the non-imprinted polymer (NIP). The MIP was then evaluated for the selective extraction of these targets from real aqueous media, i.e. serum and urine samples. The pH adjustment of the sample as well as the optimization of the washing step led to a very selective extraction of cocaine from these media. A LOQ of 0.5ng/mL was obtained for cocaine in urine. Concerning cocaine metabolites, benzoylecgonine and ecgonine methyl ester, they were first extracted from urine by liquid-liquid extraction and the resulting extract was purified on the MIP. The results obtained with the MIP as compared to the LLE alone showed the great potential of the MIP extraction for the clean-up of the biological matrix. This procedure was tested for the extraction of the analytes from urine samples, leading to a very selective protocol with LOQs of 0.09ng/mL, 0.4ng/mL and 1.1ng/mL for cocaine, benzolecgonine and ecgonine methyl ester respectively in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    Energy Technology Data Exchange (ETDEWEB)

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M. [Central Arid Zone Research Institute, Jodhpur 342003 (India)

    2005-10-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel. (author)

  14. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    International Nuclear Information System (INIS)

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M.

    2005-01-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel

  15. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  16. Jojoba methyl ester as a diesel fuel substitute: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.S.; Ismail, M.A.; Elfeky, S.M.S.; Abu-Elyazeed, O.S.M. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, University of Helwan, Masakin Elhelmia, Mattaria, Cairo 11718 (Egypt)

    2007-02-15

    The aim of the present work is to prepare jojoba methyl ester (JME) as a diesel fuel substitute. This was carried out experimentally and its chemical and physical properties were determined. Esterification method is used to produce methyl ester from raw jojoba oil. This method is optimized to produce the highest amount of fuel using a minimum amount of methyl alcohol. To achieve the above aim, a test rig for fuel production was developed. To measure the JME burning velocity a constant volume bomb was developed. The bomb was fully instrumented with a piezoelectric pressure transducer, charge amplifier, digital storage oscilloscope, A/D converter and a personal computer. Several grades of fuel were produced but, two grades only were selected and tested as an economical alternative fuel. The chemical and physical properties of these grades of fuel are measured as well as the laminar burning velocity. It is found that JME liquid fuel exhibited lower burning velocities than iso-octane. The new fuel is found to be suitable for compression ignition engine particularly in the indirect-injection ones, while for direct-injection, and high-speed engines fuel modifications are required. The new fuel is safe, has no sulphur content and reduces the engine wear as well as lengthens the lifetime of lubricating oil. (author)

  17. The second case of a young man with L-arginine-induced acute pancreatitis.

    Science.gov (United States)

    Binet, Quentin; Dufour, Inès; Agneessens, Emmanuel; Debongnie, Jean-Claude; Aouattah, Tarik; Covas, Angélique; Coche, Jean-Charles; De Koninck, Xavier

    2018-04-21

    Dietary supplementation of arginine has been used by numerous world-class athletes and professional bodybuilders over the past 30 years. L-Arginine indeed enhances muscular power and general performance via maintaining ATP level. However, L-arginine is also known to induce acute pancreatitis in murine models. We report the case of young man presenting with upper abdominal pain and increased serum lipase levels. Contrast-enhanced computed tomography confirms a mild acute pancreatitis. Common etiologies have been ruled out and toxicological anamnestic screening reveals the intake of protein powder. This is, to the best of our knowledge, the second case in human of arginine-induced acute pancreatitis. This case report suggests that every patient presenting with acute pancreatitis without obvious etiology should be evaluated for the intake of toxics other than alcohol, including L-arginine.

  18. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Oleksandr Fediv

    2015-01-01

    Full Text Available Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation link in patients with NASH associated with the metabolic syndrome. Subjects and Methods 128 patients with nonalcoholic steatohepatitis associated with metabolic syndrome were examined. Some patients 63 persons received standard treatment according to national guidelines. To another group 65 patients on the background of basic therapy L-arginine hydrochloride followed by transition to oral form of L-arginine aspartate was administered. Blood levels of stable nitrogen monoxide metabolites nitrites nitrates endothelin-1 and plasma recalcification time prothrombin time thrombin time activated partial thromboplastin time fibrinogen plasma level activity of antithrombin III and coagulation factor XIII potential activity of plasminogen plasma fibrinolytic blood activity were studied. Results Originally significantly increased levels of endothelin-1 decreased after the therapy in all studied groups but more noticeable changes in the group with L-arginine appointment were observed p0.05. In the studied groups normalization of stable nitrogen monoxide metabolites after treatment was also noticed. Significant p0.05 increase in all haemocoagulation time characteristics and activities of antithrombin-III and factor XIII was found. The positive effect of L-arginine on blood fibrinolytic activity was noted. Discussion and Conclusion Combined therapy of nonalcoholic steatohepatitis associated with metabolic syndrome with a differentiated degreeal L-arginine assignment by

  19. Ecological audit of rape seed oil or rape methyl ester as a substitute for diesel fuel (ecological audit rape seed oil)

    International Nuclear Information System (INIS)

    Friedrich, A.; Glante, F.; Schlueter, C.; Golz, C.; Noeh, I.; Reinhard, G.; Hoepfner, U.; Satorius, R.; Benndorf, R.; Bluemel, H.; Schaerer, B.; Rodt, S.

    1993-01-01

    The objective of this study is to answer the following central question: Is the environmental pollution burden resulting from the cultivation of rape and the use of rape seed oil or rape methyl ester to be rated less severe than that of the manufacture and use of diesel fuel, and should, therefore, farmland be used in Germany to grow rape for rape seed oil or rape methyl ester production as a substitute for diesel fuel? Firstly, the extent is investigated to which rape seed oil or rape methyl ester can contribute to cuts in emissions of climate-relevant trace gases as compared to diesel fuel from crude oil. Secondly, the environmental impact and hazards associated with the cultivation, transport and manufacture of rape seed oil or rape methyl ester (again as compared to diesel fuel) are investigated. The data analysed relate to the entire life cycle. (orig./UWA) [de

  20. Synthesis of methyl ester sulphonate by sulfonation of soybean oil methyl ester for chemical flooding application

    International Nuclear Information System (INIS)

    Richie Adi Putra; Renisa Ismayanti; Agam Duma Kalista W

    2018-01-01

    This research has accomplished the synthesis of Surfactant Methyl Ester Sulphonate from Methyl Soyate and Sodium Bisulfite as sulfonating agent. The Steps of the synthesis were reaction, purification, neutralization, and separation. The reaction done by several variated condition such as Reaction Temperature (100, 110, 120)°C, Reaction time (210, 270, 330)minute, and the mole ratio between Methyl Soyate and NaHSO 3 (1:1, 1:1.5, 1:2) with 1.5 % of Al 2 O 3 as catalyst of sulfonation reaction. The purification process was conducted at 55 °C and 60 minute by adding Methanol 35 % v/v. The neutralization done was conducted by 20 % of NaOH until pH 6-8. And the rest of the methanol are separated from MES using rotary evaporator. MES which is pass the compatibility Test is MES at the condition of reaction (100 °C, 210 minute and 1 : 2 mole ratio).This MES has tested by FT - IR to see the existence of the Sulphonate group.The FT-IR test result has shown the existence of the Sulphonate group at wave length between 1000 until 1300 cm -1 . Which is the highest peak at 1176 cm-1. From the qualitative test above, then the MES performed by IFT Test with light oil of X- field as comparison. The IFT results has shown a decrease of the interfacial tensions between 12,000 ppm of brine water and the light oil with addition of 0.3 % (v/v) MES, from 3.36 dyne/cm 2 to 1.54 dyne/cm 2 . (author)

  1. Functional and neurochemical profile of place learning after L-nitro-arginine in the rat

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Wörtwein, Gitta; Hasman, Andreas

    1995-01-01

    Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning......Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning...

  2. Erythrocytes L-arginine y+ transporter inhibition by N-ethylmaleimide in ice-bath.

    Science.gov (United States)

    Pinheiro da Costa, Bartira Ercília; de Almeida, Priscilla Barcellos; Conceição, Ioná Rosine; Antonello, Ivan Carlos Ferreira; d'Avila, Domingos O; Poli-de-Figueiredo, Carlos Eduardo

    2010-11-01

    Erythrocytes L: -arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. L: -Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes L: -arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V (max) measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes L: -arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.

  3. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.

    1992-01-01

    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  4. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  5. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available   Abstract  Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  6. Effects of dietary L-arginine on orthodontic tooth movement in rats

    African Journals Online (AJOL)

    Yomi

    2012-01-03

    Jan 3, 2012 ... arginine in drinking water six days before the insertion of springs to ... Key words: L-Arginine, dietary, orthodontic tooth movement, nitric oxide, root resorption, osteoclast, .... cAMP, interleukin 1-beta and neurotransmitters are.

  7. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a

    International Nuclear Information System (INIS)

    Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.; Reeves, Raymond; Clarke, Steven

    2005-01-01

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation

  9. 40 CFR 721.9530 - Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal. 721.9530 Section 721.9530 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.9530 Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester...

  10. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats Part I: cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats.

    Science.gov (United States)

    Afkir, Saida; Nguelefack, Telesphore Benoit; Aziz, Mohamed; Zoheir, Johar; Cuisinaud, Guy; Bnouham, Mohamed; Mekhfi, Hassane; Legssyer, Abdelkhaleq; Lahlou, Saad; Ziyyat, Abderrahim

    2008-03-05

    Hypertension induced by nitric oxide synthase inhibition is associated with functional abnormalities of the heart and kidney. The aim of the present study was to investigate whether chronic treatment with Arbutus unedo leaf (AuL) or root (AuR) aqueous extracts can prevent these alterations. Six groups of rats were used: control group received tap water; N(G)-nitro-l-arginine methyl-ester (L-NAME) group treated with L-NAME at 40 mg/kg/day; AuL and AuR groups received simultaneously L-NAME (40 mg/kg/day) and Au leaves or roots extract at the same concentration 250 mg/kg/day; l-arginine and enalapril groups received simultaneously L-NAME (40 mg/kg/day) and l-arginine at 50mg/kg/day or enalapril at 15 mg/kg/day. Treatment of rats during 4 weeks with L-NAME caused an increase of the systolic blood pressure (SBP) accompanied by a ventricular hypertrophy, an impairment of endothelium-dependent vasorelaxation, an increase of the cardiac baroreflex sensitivity and a decrease of water, sodium and potassium excretion. The co-administration of AuL or AuR extracts with L-NAME reduces the development of increased SBP, ameliorates the vascular reactivity as well as the baroreflex sensitivity and normalizes the renal function. AuR reduces the ventricular hypertrophy but AuL do not. Enalapril associated with L-NAME reverses the majority of alterations induced by L-NAME while l-arginine only lightly ameliorates the vascular reactivity. These results show that chronic treatment with Arbutus extract regress the development of hypertension and ameliorate cardiovascular and renal functions in NO deficient hypertension.

  11. Transesterification of rubber seed oil by sonication technique for the production of methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ragavan, S.N.; Roy, D.V. [Scott Christian College (Autonomous), Department of Chemistry, Research Centre, Nagercoil, Tamil Nadu (India)

    2011-07-15

    The ever-increasing concern due to the fast-depleting energy sources and the environmental impact of the fossil fuel burning has provoked the researchers to turn out for an environmentally benign fuel source. Biodiesel (fatty acid methyl esters) being renewable, biodegradable, non-toxic and eco-friendly, is now gaining momentum. Added carbon sequestration ability of rubber trees has made it one of the best sources for biodiesel in developing countries. Fatty acid methyl esters (FAMEs) from high acid content (23%) rubber seed oil by sonication technique at room temperature (32 C) is of good yield (80%). The FAMEs produced have acceptable fuel standards as specified by ASTM D 6751. This study deals with the utilisation of FAMEs as an alternate fuel for petrodiesel. (orig.)

  12. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    Science.gov (United States)

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  13. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  14. L-arginine and L-NMMA for Assessing Cerebral Endothelial Dysfunction in Ischemic Cerebrovascular Disease: A Systematic Review

    DEFF Research Database (Denmark)

    Karlsson, William Kristian; Sørensen, Caspar Godthaab; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l......-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible...... cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease....

  15. Supplementation with apple enriched with L-arginine may improve metabolic control and survival rate in alloxan-induced diabetic rats.

    Science.gov (United States)

    Escudero, Andrea; Petzold, Guillermo; Moreno, Jorge; Gonzalez, Marcelo; Junod, Julio; Aguayo, Claudio; Acurio, Jesenia; Escudero, Carlos

    2013-01-01

    Supplementation with L-arginine or fresh food with high content of this amino acid is associated with favorable effects in the metabolic control of diabetes. We aimed to determine whether supplementation with apples enriched with L-arginine offer additional benefits compared to L-arginine by itself in a preclinical study of diabetes. This study combines food-engineer technologies with in vivo and in vitro analysis. In vitro experiments show that cells derived from non-diabetic animals and exposed to high glucose (25 mM, 12 H) and cells isolated from alloxan-induced diabetic animals exhibited a reduction (∼50%) in the L-arginine uptake. This effect was reverted by L-arginine pretreatment (12 H) in both the normal and diabetes-derived cells. In preclinical studies, normoglycemic (n = 25) and diabetic groups (n = 50) were divided into subgroups that received either L-arginine (375 mg/kg per 10 days) or apple enriched with L-arginine or vehicle (control). In a preliminary analysis, supplementation with L-arginine by itself (50%) or apple enriched with L-arginine (100%) improve survival rate in the diabetic group compared to control (0%) at the end of the follow up (17 days). This phenomenon was associated with a partial but sustained high plasma level of L-arginine, as well as plasma concentration of nitrites and insulin in the L-arginine or apple + L-arginine groups after supplementation. Apple + L-arginine supplementation in diabetic animals induced the highest and longest effects in the level of these three markers among the studied groups. Therefore, apple enriched by L-arginine offers more benefits than L-arginine by itself in this preclinical study. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  16. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    Science.gov (United States)

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. © 2015 by the Society for Experimental Biology and Medicine.

  17. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    Science.gov (United States)

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  18. USAGE OF METHYL ESTER PRODUCED FROM WASTE GRAPE AND MN ADDITIVE AS ALTERNATIVE DIESEL FUEL

    Directory of Open Access Journals (Sweden)

    Hanbey Hazar

    2017-06-01

    Full Text Available In this study, methyl ester was produced from waste grape pulp sources. The produced methyl ester was mixed with diesel in different proportions, and was tested for engine performance and emission. It was found that with increasing biodiesel content, the specific fuel consumption and exhaust temperature have increased partially, while the CO, HC and smoke emissions decreased significantly. Additionally, in the scope of this study, dodecanol, propylene glycol and Mn based additives were added to fuel B50 to improve the emission and engine performance values. With the presence of additives, an increase in the exhaust temperature was observed, while a decrease in the specific fuel consumption, CO, HC, and smoke emissions were detected.

  19. Developmental changes of l-arginine transport at the blood-brain barrier in rats.

    Science.gov (United States)

    Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi

    2018-05-01

    l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Production of methyl ester from oil in the wastewater pond of a palm oil factory

    Directory of Open Access Journals (Sweden)

    Tongurai, C.

    2007-11-01

    Full Text Available This research studied the suitable technique for the production of methyl ester from waste palm oil in the water pond of a palm oil mill. The composition of the waste palm oil was 73.82% fatty acid, 5.07% triglyceride, 3.39% diglyceride and 17.76% unknown compounds. The unknown compounds were separated via simple distillation carried out at a temperature range of 300-350oC.First, the experiments were carried out in screw capped bottles using filtrated as-received waste oil as the reactant. The esterification and transesterification process were conducted using sulfuric acid catalyst in a methanol solution. The key parameters studied were mole ratio of waste oil to methanol (1:1 to 1:72, amount of catalyst from 0.1-20 v/w% of the reactant, temperature range of 60-98oC and reaction time range of 15-180 minutes. Thin Layer Chromatography (TLC analysis showed 85-90% purity of methyl ester with 4-5% of mono-, di-, and triglycerides and fatty acids and about 5-10% of the unknown compounds for the best condition. The resulting yield of biodiesel was 84-88%. Eradication of contaminants by distillation gave about a 75% distillate yield. Distilled waste palm oil was esterified and transesterified using the previous optimum condition of as-received waste oil, but the reaction time and temperature were varied. The optimal result was obtained by using distilled waste palm oil to methanol molar ratio of 1:8, sulfuric acid of 1 v/w% of reactant, reaction temperature of 70oC and reaction time of 1 hour. TLC analysis indicated a biodiesel composition of methyl ester, free fatty acid, diglyceride and monoglyceride of 96.39%, 3.20%, 0.24% and 0.17%, respectively. The yield of biodiesel was 96-98% having physical fuel properties according to Thailand standard for methyl esterFinally, the distilled waste palm oil was esterified using a 3 liters continuous stirred-tank reactor (CSTR. Using the suitable condition for the batch process and an hour retention time, the

  1. Protective effect of L-carnitine and L-arginine against busulfan-induced oligospermia in adult rat.

    Science.gov (United States)

    Abd-Elrazek, A M; Ahmed-Farid, O A H

    2018-02-01

    Busulfan is an anticancer drug caused variety of adverse effects for patients with cancer. But it could cause damage to the male reproductive system as one of its adverse effects. This study aimed to investigate the protective effect of L-carnitine and L-arginine on semen quality, oxidative stress parameters and testes cell energy after busulfan treatment. Adult male rats were divided into four groups: control (Con), busulfan (Bus), busulfan plus L-arginine (Bus + L-arg) and busulfan plus L-carnitine (Bus + L-car). After 28 days, the semen was collected from the epididymis and the testes were assessed. Sperm count, motility and velocity were measured by CASA, and smears were prepared for assessment of sperm morphology. Serum and testes supernatants were separated for DNA metabolites, oxidative stress and cell energy parameters. Testes tissues also subjected for caspase-3. The results showed significant improvement in sperm morphology, motility, velocity and count in the groups treated with L-arginine and L-carnitine and accompanied with an increase in MDA, GSSG and ATP, reduction in GSH, AMP, ADP, NO and 8-OHDG also recorded. These results are supported by caspase-3. Administration of L-arg and L-car attenuated the cytotoxic effects of busulfan by improving semen parameters, reducing oxidative stress and maintaining cell energy. © 2017 Blackwell Verlag GmbH.

  2. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Ham; Leusink, John; Zaagsma, Johan; Meurs, Herman

    2006-01-01

    Nitric oxide synthase (NOS) converts L-arginine into nitric oxide (NO) and L-Citrulline. In NO-producing cells, L-citrulline can be recycled to L-arginine in a two-step reaction involving argininosuccinate synthase (ASS) and -lyase (ASL). In guinea pig trachea, L-arginine is a limiting factor in

  3. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  4. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  5. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Science.gov (United States)

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  6. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    Science.gov (United States)

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  7. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  8. L-ARGININE PREVENTS METABOLIC EFFECTS OF HIGH GLUCOSE IN DIABETIC MICE

    OpenAIRE

    West, Matthew B.; Ramana, Kota V.; Kaiserova, Karin; Srivastava, Satish K.; Bhatnagar, Aruni

    2008-01-01

    We tested the hypothesis that activation of the polyol pathway and protein kinase C (PKC) during diabetes is due to loss of NO. Our results show that after 4 weeks of streptozotocin-induced diabetes, treatment with L-arginine restored NO levels and prevented tissue accumulation of sorbitol in mice, which was accompanied by an increase in glutathiolation of aldose reductase. L-arginine treatment decreased superoxide generation in the aorta, total PKC activity and PKC-βII phosphorylation in the...

  9. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  10. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.

  11. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet......-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...

  12. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  13. [l-arginine efficiency in MELAS syndrome. A case report].

    Science.gov (United States)

    Moutaouakil, F; El Otmani, H; Fadel, H; Sefrioui, F; Slassi, I

    2009-05-01

    Mitochondrial encephalomyopathy lactic acidosis and stoke-like episodes (MELAS) is a rare neurodegenerative disease caused by mutations of mitochondrial DNA. We report the case of a 12-year-old child with MELAS syndrome who presented with recurrent migraine-like headache and sudden blindness suggesting stroke-like episodes. Furthermore, he developed progressive muscular impairment with bilateral hearing loss. Serum lactate and pyruvate levels were elevated and the muscle biopsy showed an aspect of red-ragged fibers with Gomori trichrome. Brain imaging showed calcifications of basal ganglia on the CT scan and a parieto-occipital high signal on diffusion-weighted MRI. A genetic analysis was not performed but the presence of hearing loss in the patient's mother was suggestive of maternal transmission. Stroke-like episodes in the form of migraine-like headache and blindness were the patient's major complaint and did not improve despite analgesic drugs. After oral administration of l-arginine at the dose of 0.4mg/kg per day, stroke-like symptoms totally and rapidly disappeared. The efficiency of l-arginine in stroke-like episodes was initially reported then confirmed in a controlled study. The pathophysiology of stoke-like episodes and the mechanisms underlying the action of l-arginine are discussed.

  14. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia

    Directory of Open Access Journals (Sweden)

    Sopi Ramadan B

    2012-08-01

    Full Text Available Abstract Background Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM. Methods Electrical field stimulation (EFS, 2–20 V-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen for 7 days supplemented with L-citrulline or saline (in vitro or in vivo. The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL succinate (1 mM and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM. Results Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p ; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group. Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p ; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline. Inhibition of ASS or ASL prevented this effect of L-citrulline. Conclusion The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups

  15. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yung-Sung [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China); Department of Mechanical Engineering, Hsiuping Institute of Technology, No.11, Gongye Rd., Dali City, Taichung County 412-80 (China); Lin, Hai-Ping [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China)

    2010-09-15

    In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span-Tween 0.5%. (author)

  16. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    International Nuclear Information System (INIS)

    Martínez, G.; Sánchez, N.; Encinar, J.M.; González, J.F.

    2014-01-01

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  17. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  18. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...

  19. Thermodynamic study of phase transitions in methyl esters of ortho- meta- and para-aminobenzoic acids

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2012-01-01

    Highlights: ► Vapor pressures of liquid and crystalline phases of methyl esters of the aminobenzoic acids were measured. ► Accurate values of enthalpies of sublimation, vaporization, and fusion were derived. ► The enthalpy of intermolecular NH–O hydrogen bonds in methyl p-aminobenzoate was determined. ► The volatility of the methyl benzoates was compared with the volatility of the parent acids. - Abstract: A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K. From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−H … O) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.

  20. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    Science.gov (United States)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  1. Synthesis of γ-Nitro Aliphatic Methyl Esters Via Michael Additions Promoted by Microwave Irradiation

    OpenAIRE

    Escalante, Jaime; Díaz-Coutiño, Francisco D.

    2009-01-01

    A simple and efficient protocol has been developed for the direct synthesis of γ-nitrobutyric acid methyl esters under microwave irradiation. This methodology reduces reaction times from days to minutes, compared to conventional conditions. Additionally, these conditions increased yields and provided cleaner reactions.

  2. The Effect of Pumpkin ( Cucurbita pepo L) Seeds and L-Arginine ...

    African Journals Online (AJOL)

    The present study aimed to examine the effect of pumpkin (Cucurbita pepo L.) seeds supplementation on androgenic diet-induced atherosclerosis. Rat were divided into two main groups , normal control and atherogenic control rats , each group composed of three subgroups one of them supplemented with 2% arginine in ...

  3. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation.

    Science.gov (United States)

    Xu, Meijuan; Qin, Jingru; Rao, Zhiming; You, Hengyi; Zhang, Xian; Yang, Taowei; Wang, Xiaoyuan; Xu, Zhenghong

    2016-01-19

    Corynebacterium crenatum SYPA 5 is the industrial strain for L-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and L-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the L-arginine biosynthesis in C. crenatum SYPA 5. C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of L-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L L-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key L-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9-3.0 times compared with the parent strain. Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time L-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular L-arginine

  4. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    Science.gov (United States)

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  5. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    Science.gov (United States)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  6. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  7. 76 FR 32332 - BASF Corp.; Filing of Food Additive Petition (Animal Use); Methyl Esters of Conjugated Linoleic...

    Science.gov (United States)

    2011-06-06

    .... FDA-2011-F-0365] BASF Corp.; Filing of Food Additive Petition (Animal Use); Methyl Esters of... petition proposing that the food additive regulations be amended to provide for the safe use of methyl... is given that a food additive petition (FAP 2269) has been filed by BASF Corp. (BASF), 100 Campus Dr...

  8. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus.

    Science.gov (United States)

    de Chávez, Julio Agustín Ruiz; Guzmán, Adrian; Zamora-Gutiérrez, Diana; Mendoza, Germán David; Melgoza, Luz María; Montes, Sergio; Rosales-Torres, Ana María

    2015-08-01

    The aim of the present study was to evaluate the effects of L-arginine-HCl supplementation on ovulation rate, fertility, prolificacy, and serum VEGF concentrations in ewes with synchronized oestrus. Thirty Suffolk ewes with a mean body weight of 45 ± 3 kg and a mean body condition score (BCS) of 2.4 ± 0.28 were synchronized for estrus presentation with a progestin-containing sponge (20 mg Chronogest® CR) for 9 days plus PGF2-α (Lutalyse; Pfizer, USA) on day 7 after the insertion of the sponge. The ewes were divided into two groups; i.e., a control group (n = 15) that was fed on the native pasture (basal diet) and an L-arginine-HCl group (n = 15) that received 7.8 g of rumen-protected L-arginine-HCl from day 5 of the sponge insertion until day 25 after mating plus the basal diet. The L-arginine-HCl was administered daily via an esophageal probe between days 5 and 9 of the synchronization protocol and every third day subsequently. Blood samples were drawn from the jugular vein every 6 days throughout the entire experimental period. The results revealed that the L-arginine-HCl supplementation increased fertility during the synchronized estrus (P = 0.05). However, no effects were observed on the final BCS (P = 0.78), estrus presentation (P = 0.33), multiple ovulations (P = 0.24), prolificacy (P = 0.63), or serum VEGF concentration. In conclusion, L-arginine-HCl supplementation during the period used in this study increased fertility in sheep with synchronized estrus possibly due to improved embryo-fetal survival during early pregnancy.

  9. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  10. Embryo Development and Post-Hatch Performances of Kampung Chicken by in Ovo Feeding of L-Arginine

    Directory of Open Access Journals (Sweden)

    M. Azhar

    2016-12-01

    Full Text Available The research was conducted to evaluate embryo development, post-hatch performances, and growth rate of kampung chicken treated in-ovo feeding of L-Arginine. A total of 135 kampung chicken fertile eggs (weight 42-43 g were used and divided into 5 treatment groups of three replications. They were placed in the semi-automatic incubator. The first group was without in-ovo feeding (negative control; the second group was in-ovo feeding of saline 0.9% (positive control; the 3, 4, and 5 groups were in-ovo feeding of 0.5, 1.0, and 1.5% L-Arginine, respectively. In-ovo feeding of L-Arginine were injected into albumen on day 10 of incubation period using automatic syringe in the narrow end side of egg by inserting needle through a small hole at 10 mm depth. After hatching, all day old chicks were placed in floor pens (1 x 0.5 x 0.5 m accordance with the previous egg groups. The results showed that in-ovo feeding of L-Arginine increased weight and circumference of the embryo, but did not affect the length of embryo. In-ovo feeding of L-Arginine resulted in a higher body weight gain and a lower feed conversion even though feed intake was not significantly different compared to the control groups. The growth rate performance up to 6 weeks rearing increased significantly by increasing L-Arginine administration to 1.0%. It can be concluded that embryo development and post-hatch performances of kampung chicken were markedly increased by in-ovo feeding of L-arginine.

  11. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  12. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Chou, S.K.; Chua, K.J.

    2013-01-01

    Highlights: ► Group contribution methods from molecular level have been used for the prediction. ► Complete prediction of the physical properties for 5 methyl esters has been done. ► The predicted results can be very useful for biodiesel combustion modeling. ► Various models have been compared and the best model has been identified. ► Predicted properties are over large temperature ranges with excellent accuracies. -- Abstract: In order to accurately simulate the fuel spray, atomization, combustion and emission formation processes of a diesel engine fueled with biodiesel, adequate knowledge of biodiesel’s physical properties is desired. The objective of this work is to do a detailed physical properties prediction for the five major methyl esters of biodiesel for combustion modeling. The physical properties considered in this study are: normal boiling point, critical properties, vapor pressure, and latent heat of vaporization, liquid density, liquid viscosity, liquid thermal conductivity, gas diffusion coefficients and surface tension. For each physical property, the best prediction model has been identified, and very good agreements have been obtained between the predicted results and the published data where available. The calculated results can be used as key references for biodiesel combustion modeling.

  13. Competitive metabolism of L-arginine: arginase as a therapeutic target in asthma☆

    Science.gov (United States)

    Bratt, Jennifer M.; Zeki, Amir A.; Last, Jerold A.; Kenyon, Nicholas J.

    2011-01-01

    Exhaled breath nitric oxide (NO) is an accepted asthma biomarker. Lung concentrations of NO and its amino acid precursor, L-arginine, are regulated by the relative expressions of the NO synthase (NOS) and arginase isoforms. Increased expression of arginase I and NOS2 occurs in murine models of allergic asthma and in biopsies of asthmatic airways. Although clinical trials involving the inhibition of NO-producing enzymes have shown mixed results, small molecule arginase inhibitors have shown potential as a therapeutic intervention in animal and cell culture models. Their transition to clinical trials is hampered by concerns regarding their safety and potential toxicity. In this review, we discuss the paradigm of arginase and NOS competition for their substrate L-arginine in the asthmatic airway. We address the functional role of L-arginine in inflammation and the potential role of arginase inhibitors as therapeutics. PMID:23554705

  14. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat.

    Science.gov (United States)

    Brooks, Wesley W; Conrad, Chester H; Robinson, Kathleen G; Colucci, Wilson S; Bing, Oscar H L

    2009-02-01

    The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.

  15. Synthesis of γ-Nitro Aliphatic Methyl Esters Via Michael Additions Promoted by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Francisco D. Díaz-Coutiño

    2009-04-01

    Full Text Available A simple and efficient protocol has been developed for the direct synthesis of γ-nitrobutyric acid methyl esters under microwave irradiation. This methodology reduces reaction times from days to minutes, compared to conventional conditions. Additionally, these conditions increased yields and provided cleaner reactions.

  16. Production of additives from Jatropha Curcas L. methyl esther as a way to improve diesel engine performance

    Energy Technology Data Exchange (ETDEWEB)

    Silitonga, A.S. [Department of Mechanical Engineering, Medan State Polytechnic (Indonesia)], email: ardinsu@yahoo.co.id, email: a_atabani2@msn.com; Mahlia, T.M.I. [Department of Mechanical Engineering, Syiah Kuala University, (Indonesia); Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya (Malaysia); Ghofur, A. [Department of Mechanical Engineering, Lambung Mangkurat University (Indonesia); Abdullahe [Department of Chemical Engineering, Lambung Mangkurat University (Indonesia)

    2011-07-01

    Nowadays we are searching for ideal alternative fuels in order to reduce harmful gas emissions and improve air quality. And many kinds of bio-diesel have been proposed. This paper introduces a bio-diesel converted from the oil of Jatropha curcas L. through a series of physical and chemical processes. This bio-diesel, which has a high cetane number, is better adapted than diesel or other, edible, vegetable oils to be an ideal alternative fuel. Moreover, the additive promotes the physico-chemical characteristics of Jatropha curcas methyl ester, further enhancing its desirability as a substitute for diesel oil. This paper analyzes and reports the results of a laboratory-scale investigation of the feasibility of blending diesel with an additive produced from Jatropha curcas methyl ester. It finds that this additive can improve engine performance and reduce exhaust emissions.

  17. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  18. Temporal Lob Epilepsi'sinde L-Arginine ve CaEDTA'nın Etkileri

    OpenAIRE

    NOYAN, Behzat

    2005-01-01

    Bu çalışmada, bir nitrik oksit (NO-) prekürsörü olan L-Arginine ve bir ekstrasellüler çinko şelatörü olan CaEDTA'nın pilokarpine HCl ile oluşturulan kısa süreli epileptik nöbet üzerine etkileri araştırıldı. Deney, nöbet kontrol (serum fizyolojik 10 µl, i.c.v., ve sonra 380 mg/kg pilokarpine HCl i.p.), L-Arginine (150 µg/10 µl, i.c.v.), CaEDTA (100 mM, 10 µl, i.c.v.), L-Arginine+CaEDTA olmak üzere 4 gruptan oluştu. Enjeksiyonlardan sonra iki saat boyunca nöbet davranışları gözlemlenen ...

  19. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  20. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    Science.gov (United States)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  1. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    Science.gov (United States)

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera

    Directory of Open Access Journals (Sweden)

    Godwin Kafui Ayetor

    2015-12-01

    Full Text Available In this study, the effect of H2SO4 on viscosity of methyl esters from Jatropha oil (JCME, palm kernel oil (PKOME from Elaeis guineensis species, and coconut oil (COME has been studied. Effect of methanol to oil molar mass ratio on yield of the three feedstocks has also been studied. Methyl ester yield was decreased by esterification process using sulphuric acid anhydrous (H2SO4. Jatropha methyl ester experienced a viscosity reduction of 24% (4.1–3.1 mm2/s with the addition of 1% sulphuric acid. In this work palm kernel oil (PKOME, coconut oil (COME and Jatropha oil (JCME were used as feedstocks for the production of biodiesel to investigate optimum parameters to obtain high yield. For each of the feedstock, the biodiesel yield increased with increase in NaOH concentration. The highest yield was obtained with 1% NaOH concentration for all. The effect of methanol in the range of 4:1–8:1 (molar ratio was investigated, keeping other process parameters fixed. Optimum ratios of palm kernel oil and coconut oil biodiesels yielded 98% each at methanol:oil molar ratio of 8:1. The physiochemical properties obtained for each methyl showed superior properties compared with those reported in published data.

  3. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    International Nuclear Information System (INIS)

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-01-01

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal

  4. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  5. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  6. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

    2010-01-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  7. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    Science.gov (United States)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  8. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  9. Evaluation of novel arginine based inhibitors of DDAH and investigations into radical hydroacylation of vinyl sulfonates

    OpenAIRE

    Khanom, N.

    2010-01-01

    The thesis is in two main sections. In the first section, studies on methylarginine processing enzymes are presented. Dimethyalrginine dimethylaminohydrolase (DDAH) is a class of enzymes involved in the metabolism of methylarginines ADMA and L-NMMA, which indirectly regulate physiological nitric oxide levels. It is desirable to inhibit excess NO in pathological situations, and the arginine mimetic L-257 is a DDAH inhibitor which reduces levels of NO. Synthesis of ester analo...

  10. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fuelled direct injection diesel engine

    International Nuclear Information System (INIS)

    Nanthagopal, K.; Ashok, B.; Karuppa Raj, R. Thundil

    2016-01-01

    Highlights: • Effect of injection pressure of Calophyllum inophyllum biodiesel is investigated. • Engine characteristics of 100% Calophyllum inophyllum biodiesel has been performed. • Calophyllum inophyllum is a non-edible source for biodiesel production. • Increase in injection pressure of biodiesel, improves the fuel economy. • Incylinder pressure characteristics of biodiesel follows similar trend as of diesel. - Abstract: The trend of using biodiesels in compression ignition engines have been the focus in recent decades due to the promising environmental factors and depletion of fossil fuel reserves. This work presents the effect of Calophyllum inophyllum methyl ester on diesel engine performance, emission and combustion characteristics at different injection pressures. Experimental investigations with varying injection pressures of 200 bar, 220 bar and 240 bar have been carried out to analyse the parameters like brake thermal efficiency, specific fuel consumption, heat release rate and engine emissions of direct injection diesel engine fuelled with 100% biodiesel and compared with neat diesel. The experimental results revealed that brake specific fuel consumption of C. inophyllum methyl ester fuelled engine has been reduced to a great extent with higher injection pressure. Significant reduction in emissions of unburnt hydrocarbons, carbon monoxide and smoke opacity have been observed during fuel injection of biodiesel at 220 bar compared to other fuel injection pressures. However oxides of nitrogen increased with increase in injection pressures of C. inophyllum methyl ester and are always higher than that of neat diesel. In addition the combustion characteristics of biodiesel at all injection pressures followed a similar trend to that of conventional diesel.

  11. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Mandal

    2017-07-01

    Full Text Available The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL, depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important

  12. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    International Nuclear Information System (INIS)

    Sessa, W.C.; Hecker, M.; Mitchell, J.A.; Vane, J.R.

    1990-01-01

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and N G -monomethyl-L-arginine. L-Gln also inhibited the conversion of L-[ 14 C]Cit to L-[ 14 C]Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor

  13. Stereoselective semi-hydrogenation and deuteration of a diacetylenic precursor of leukotriene B4 methyl ester

    International Nuclear Information System (INIS)

    Pontikis, R.; Le Merrer, Y.; Depezay, J.-C.; Petillot, Y.; Rousseau, B.; Beaucourt, J.P.

    1990-01-01

    [6,7,14,15- 2 H4]-Leukotriene B4 methyl ester was prepared by reduction with deuterium gas of a suitable precursor (deuterium incorporation > 90%). Several catalytic semi-hydrogenations were affected in order to determine the best conditions for the labeling step. (author)

  14. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  15. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    International Nuclear Information System (INIS)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-01-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolic sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented

  16. Exogenous L-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension

    DEFF Research Database (Denmark)

    Garcia, Vinicius P; Rocha, Helena N M; Silva, Gustavo M.

    2016-01-01

    Aims Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective L-arginine-NO pathway. Exogenous L-arginine improves endothelial function to prevent the onset of cardiovascular...... disease, but the mechanism by which this is accomplished remains unclear. We determined the effects of exogenous L-arginine infusion on vascular biomarkers in patients with hypertension. Main methods Venous blood samples were obtained from seven patients with hypertension (45 ± 5 yrs., HT group...... biomarkers between groups during the saline infusion (P > 0.05). Significance Exogenous L-arginine diminished metalloproteinase-2 and -9 activities and MMP-9/TIMP-1 ratio along with restoring the oxidative stress balance in patients with hypertension....

  17. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Yasar, Abdulkadir; Guerue, Metin; Altiparmak, Duran

    2010-01-01

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO x emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO 2 emissions did not vary with the blend fuels significantly.

  18. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali; Yasar, Abdulkadir [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2010-12-15

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO{sub x} emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO{sub 2} emissions did not vary with the blend fuels significantly. (author)

  19. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  20. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    Science.gov (United States)

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  1. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Silva, Fernando Neto da; Prata, Antonio Salgado; Teixeira, Jorge Rocha

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO x ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO x and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%. (Author)

  2. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Neto da Silva, Fernando; Salgado Prata, Antonio; Rocha Teixeira, Jorge

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO X ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO X and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%

  3. The phytotoxic effects and biodegradability of stored rapeseed oil and rapeseed oil methyl ester

    Directory of Open Access Journals (Sweden)

    V. VAUHKONEN

    2008-12-01

    Full Text Available The aims of this study were to determine the phytotoxicity of stored rapeseed (Brassica rapa oil (RSO and rapeseed oil methyl ester (RME after "spill like" contamination on the growth of barley (Hordeum vulgare and the biodegradability of these substances in OECD 301F test conditions and in ground water. Rapeseed oil and rapeseed oil methyl ester were both stored for a period of time and their fuel characteristics (e.g. acid number had changed from those set by the fuel standards and are considered to have an effect on its biodegradation. The phytotoxicity was tested using two different types of barley cultivars: ‘Saana’ and ‘Vilde’. The phytotoxic effect on the barley varieties was determined, after the growth season, by measuring the total biomass growth and the mass of 1000 kernels taken from the tests plots. Also visual inspection was used to determine what the effects on the barley growth were. These measurements suggest that both RSO and RME have a negative impact on barley sprouts and therefore the total growth of the barley. RSO and RME both decreased the total amount of harvested phytomass. The weight of 1000 kernels increased with low concentrations of these contaminants and high contamination levels reduced the mass of the kernels. The results of these experiments suggest that the stored rapeseed oil and rapeseed oil methyl ester are both phytotoxic materials and therefore will cause substantial loss of vegetation in the case of a fuel spill. The RSO and RME biodegraded effectively in the measurement period of 28 days under OECD test conditions: the degree of biodegradation being over 60%. The biodegradation in the ground water was much slower: the degree of biodegradation being about 10% after 28 days.;

  4. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    Science.gov (United States)

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  5. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles.

    Science.gov (United States)

    Kudo, Shinpei; Nagasaki, Yukio

    2015-11-10

    In the immune system, macrophages in tumor tissue generate nitric oxide (NO), producing versatile effects including apoptosis of tumor cells, because inducible NO synthase (iNOS) in the cytoplasm of a macrophage produces NO using l-arginine as a substrate. Here, we propose novel NO-triggered immune therapeutics based on our newly designed nanoparticle system. We designed a poly(ethylene glycol)-block-poly(l-arginine) (i.e., PEG-b-P(l-Arg)) block copolymer and prepared polyion complex micelles (PEG-b-P(l-Arg)/m) composed of PEG-b-P(l-Arg) and chondroitin sulfate for systemic anticancer immunotherapy. iNOS treatment of PEG-b-P(l-Arg) did not generate NO, but NO molecules were detected after trypsin pretreatment, indicating that hydrolysis of P(l-Arg) to monomeric arginine was taking place in vitro. RAW264.7 macrophages abundantly generated NO from the PEG-b-P(l-Arg)/m in comparison with control micelles; this finding is indicative of robustness of the proposed method. It is interesting to note that systemic administration of PEG-b-P(l-Arg)/m had no noticeable adverse effects and suppressed the tumor growth rate in C26 tumor-bearing mice in a dose-dependent manner. Our newly designed nanoparticle-assisted arginine delivery system seems to hold promise as an NO-mediated anticancer immunotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    Science.gov (United States)

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  7. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  8. Fatty acid methyl esters synthesis from non-edible vegetable oils using supercritical methanol and methyl tert-butyl ether

    International Nuclear Information System (INIS)

    Lamba, Neha; Modak, Jayant M.; Madras, Giridhar

    2017-01-01

    Highlights: • FAMEs were synthesized from non-edible oils using supercritical MeOH and MTBE. • Effect of time, temperature, pressure and molar ratio on conversions was studied. • Rate constants of reaction with methanol and MTBE differ by an order of magnitude. • Non-catalytic supercritical reactions are one order faster than acid catalyzed synthesis. - Abstract: Fatty acid methyl esters (FAMEs) are useful as biodiesel and have environmental benefits compared to conventional diesel. In this study, these esters were synthesized non-catalytically from non-edible vegetable oils: neem oil and mahua oil with two different methylating agents: methanol and methyl tert-butyl ether (MTBE). The effects of temperature, pressure, time and molar ratio on the conversion of triglycerides were studied. The temperature was varied in the range of 523–723 K with molar ratios upto 50:1 and a reaction time of upto 150 min. Conversion of neem and mahua oil to FAMEs with supercritical methanol was found to be 83% in 15 min and 99% in 10 min, respectively at 698 K. Further, a conversion of 46% of mahua oil and 59% of neem oil was obtained in 15 min at 723 K using supercritical MTBE. The rate constants evaluated using pseudo first order reaction kinetics were in the range of 4.7 × 10"−"6 to 1.0 × 10"−"3 s"−"1 for the investigated range of temperatures. The activation energies obtained were in the range of 62–113 kJ/mol for the reaction systems investigated. The supercritical synthesis was found to be superior to the catalytic synthesis of the corresponding FAMEs.

  9. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    Science.gov (United States)

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  10. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  11. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  12. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  13. Stereoselective semi-hydrogenation and deuteration of a diacetylenic precursor of leukotriene B sub 4 methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, R.; Le Merrer, Y.; Depezay, J.-C. (U.D.C. CNRS-INSERM (URA 400), 75, Paris (France). Lab. de Chimie et Biochimie Pharamacologiques et Toxicologiques); Petillot, Y.; Rousseau, B.; Beaucourt, J.P. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service des Molecules Marquees)

    1990-10-01

    (6,7,14,15-{sup 2}H4)-Leukotriene B4 methyl ester was prepared by reduction with deuterium gas of a suitable precursor (deuterium incorporation > 90%). Several catalytic semi-hydrogenations were affected in order to determine the best conditions for the labeling step. (author).

  14. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    Science.gov (United States)

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correlation of the L-Arginine Pathway with Thrombo-Inflammation May Contribute to the Outcome of Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Molnar, Tihamer; Pusch, Gabriella; Nagy, Lajos

    2016-01-01

    BACKGROUND: Immune responses contribute to secondary injury after acute ischemic stroke (AIS), and metabolites of the L-arginine pathway are associated with stroke outcome. Here, we analyzed the relationship of the L-arginine pathway with thrombo-inflammatory biomarkers in AIS and their additive...... and independent associations to outcome. METHODS: Serial changes in P-selectin, tPA, MCP-1, sCD40L, IL-6, IL-8, L-arginine, and asymmetric and symmetric dimethylarginine (ADMA, SDMA) were investigated in 55 patients with AIS and without infection within 6 and 72 hours after stroke onset. Outcomes were assessed...... as National Institutes of Health Stroke Scale (NIHSS) worsening by 24 hours, poststroke infection, and death by 1 month. RESULTS: Serum levels of L-arginine showed negative correlation, whereas ADMA and SDMA showed positive correlation with thrombo-inflammatory biomarkers in the hyperacute phase. Most...

  16. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  17. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  18. The Histological Effects of L-arginine on Ventricular Myocardium in Iron Treated Male Rats

    Directory of Open Access Journals (Sweden)

    M Sofiabadi

    2012-05-01

    Full Text Available

    Background and Objectives: Iron overload is detrimental for the body and can create damage to different body tissues, such as myocardium by producing oxidative stress. Therefore, the antioxidant factors can neutralize iron induced damages. According to available reports, L-arginine as a precursor nitric oxide production has antioxidant effects. This study was carried out to evaluate the histological effects of iron overload on ventricular muscle and preventive role of L-arginine in male rats.
    Methods: In this experiment, 40 male rats with weight range of 300-250g were divided at random into five equal groups including:1- Control, 2- Iron (10mg/kg, ip, 3- Iron(10mg/kg, ip+L-arginine (1mg/ml, po, 4- Iron (50mg/kg, ip and 5- Iron (50mg/kg,ip+L-arginine(1mg/ml,po. After treatment (6 weeks, the animals were anesthetized and the samples of left apical ventricular myocardium were taken out and morphological studies were done following fixation with 10% formalin and H&E staining. Microscopic parameters under study were cell swelling, vessel dilatation and hypercongestion, cell necrosis and tissue deformity. The type and severity of damage to the tissue were also noted. Data were analyzed using chi-square statistical procedure, and Pvalue≤0.05 were considered to be significant. 
    Results: The data showed moderate changes in the ventricular myocardium of group 2 that was significant in comparison to the control group (P<0.05. The ventricular myocardium of group 3 showed low changes and wasn't significant in comparison to control group (P=0.84. The ventricular myocardium of the group 4 showed severe changes in comparison to the control group (P<0.01. The low change showed in the ventricular myocardium of group 5 that wasn't significant in comparison to the control group.

    Conclusion: This study showed

  19. L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.

    Science.gov (United States)

    de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F

    2011-05-01

    Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.

  20. Bi-enzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode.

    Science.gov (United States)

    Stasyuk, Nataliya; Smutok, Oleh; Gayda, Galina; Vus, Bohdan; Koval'chuk, Yevgen; Gonchar, Mykhailo

    2012-01-01

    A novel L-arginine-selective amperometric bi-enzyme biosensor based on recombinant human arginase I isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer was placed onto a polyaniline-Nafion composite platinum electrode and covered with a calcium alginate gel. The developed sensor revealed a good selectivity to L-arginine. The sensitivity of the biosensor was 110 ± 1.3 nA/(mM mm(2)) with the apparent Michaelis-Menten constant (K(M)(app)) derived from an L-arginine (L-Arg) calibration curve of 1.27 ± 0.29 mM. A linear concentration range was observed from 0.07 to 0.6mM, a limit of detection being 0.038 mM and a response time - 10s. The developed biosensor demonstrated good storage stability. A laboratory prototype of the proposed amperometric biosensor was applied to the samples of three commercial pharmaceuticals ("Tivortin", "Cytrarginine", "Aminoplazmal 10% E") for L-Arg testing. The obtained L-Arg-content values correlated well with those declared by producers. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Analysis of L-citrulline and L-arginine in Ficus deltoidea leaf extracts by reverse phase high performance liquid chromatography

    Science.gov (United States)

    Shafaei, Armaghan; Aisha, Abdalrahim F. A.; Siddiqui, Mohammad Jamshed Ahmad; Ismail, Zhari

    2015-01-01

    Background: Ficus deltoidea (FD) is one of the native plants widely distributed in several countries in Southeast Asia. Previous studies have shown that FD leaf possess antinociceptive, wound healing and antioxidant properties. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids and flavonoids. Objective: The aim was to develop a reverse phase high-performance liquid chromatography method with ultraviolet detection that involves precolumn derivatisation with O-phthaladehyde for simultaneous analysis of two amino acids L-citrulline and L-arginine in FD leaf extracts. Materials and Methods: An isocratic elution program consisting of methanol: acetonitrile: Water at 45:45:10 v/v (solvent A) and 0.1 M phosphate buffer pH 7.5 (solvent B) at A: B v/v ratio of 80:20 on Zorbax Eclipse C18 SB-Aq column (250 × 4.6 mm, 5 μm) were used. The flow rate was set at 1 ml/min and detection was carried out at 338 nm with 30 min separation time. Results: Good linearity for L-citrulline and L-arginine was obtained in the range 0.1-1000 μg/ml at R2 ≥ 0.998. The limit of detection and limit of quantification values for both L-citrulline and L-arginine were 1 and 5 μg/ml, respectively. The average of recoveries was in the range 94.94-101.95%, with relative standard deviation (%RSD) less than 3%. Intra- and inter-day precision was in the range 96.36-102.43% with RSD less than 2%. Conclusion: All validation parameters of the developed method indicate the method is reliable and efficient for simultaneous determination of L-citrulline and L-arginine for routine analysis of FD. PMID:25598632

  2. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Determination of Chlorophenoxy Acid Methyl Esters and Other Chlorinated Herbicides by GC High-resolution QTOFMS and Soft lonization

    Directory of Open Access Journals (Sweden)

    Viorica Lopez-Avila

    2015-01-01

    Full Text Available Gas chromatography with quadrupole time-of-flight mass spectrometry (GC-QTOFMS and soft ionization generated by a rare-gas plasma is described here for the determination of various chlorophenoxy acid methyl esters and a few chlorinated herbicides. This plasma-based, wavelength-selectable ionization source, which can use Xe, Kr, Ar, Ne, or He as the plasma gas, enables ionization of GC-amenable compounds with ionization energies below 8.4, 10, 11.6, 16.5, or 22.4 eV, respectively. The advantages of soft ionization include enhanced molecular ions, reduced fragmentation, and reduced background noise as compared to electron ionization. In the study presented here for two plasma gases, we demonstrate that Kr plasma, which is softer than Ar plasma, yields molecular ions with a relative intensity >60% for 11 of the 16 test compounds. When using this “tunable” plasma to ionize the analytes, there is the possibility for selective ionization and less fragmentation, which may lead to increased sensitivity and may help structure elucidation, especially when using high-resolution mass spectrometry that generates accurate masses within a few parts per million (ppm mass errors. Data generated with the Ar plasma and real matrices such as a peppermint extract, a plum extract, and an orange peel extract, spiked with 16 test compounds, indicate that the test compounds can be detected at 1-10 pg/µL of extract, and compounds such as menthone, limonene, eucalyptol, pinene, caryophylene, and other C 15 H 24 isomers, which are present in the peppermint and the orange peel extracts at ppm to percent levels, do not appear to interfere with the determination of the chlorophenoxy acid methyl esters or the chlorinated herbicides, although there were matrix effects when the test compounds were spiked at 1-10 pg/µL of extract.

  4. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    Science.gov (United States)

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  5. Spectroscopic studies of the quality of WCO (Waste Cooking Oil fatty acid methyl esters

    Directory of Open Access Journals (Sweden)

    Matwijczuk Arkadiusz

    2018-01-01

    Full Text Available Different kinds of biodiesel fuels become more and more attractive form of fuel due to their unique characteristics such as: biodegradability, replenishability, and what is more a very low level of toxicity in terms of using them as a fuel. The test on the quality of diesel fuel is becoming a very important issue mainly due to the fact that its high quality may play an important role in the process of commercialization and admitting it on the market. The most popular techniques among the wellknown are: molecular spectroscopy and molecular chromatography (especially the spectroscopy of the electron absorption and primarily the infrared spectroscopy (FTIR.The issue presents a part of the results obtained with the use of spectroscopy of the electron absorption and in majority infrared spectroscopy FTIR selected for testing samples of the acid fats WCO (Waste Cooking Oil types. The samples were obtained using laboratory methods from sunflower oil and additionally from waste animal fats delivered from slaughterhouses. Acid methyl esters were selected as references to present the samples. In order to facilitate the spectroscopic analysis, free glycerol, methanol, esters and methyl linolenic acid were measured

  6. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Directory of Open Access Journals (Sweden)

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  7. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Directory of Open Access Journals (Sweden)

    Lucyna Łękawska-Andrinopoulou

    2013-01-01

    Full Text Available Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h−1. A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

  8. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide

    Science.gov (United States)

    Ruiz-Durántez, Eduardo; Ruiz-Ortega, José A; Pineda, Joseba; Ugedo, Luisa

    2002-01-01

    To investigate whether agmatine (the proposed endogenous ligand for imidazoline receptors) controls locus coeruleus neuron activity and to elucidate its mechanism of action, we used single-unit extracellular recording techniques in anaesthetized rats. Agmatine (10, 20 and 40 μg, i.c.v.) increased in a dose-related manner the firing rate of locus coeruleus neurons (maximal increase: 95±13% at 40 μg). I1-imidazoline receptor ligands stimulate locus coeruleus neuron activity through an indirect mechanism originated in the paragigantocellularis nucleus via excitatory amino acids. However, neither electrolytic lesions of the paragigantocellularis nucleus nor pretreatment with the excitatory amino acid antagonist kynurenic acid (1 μmol, i.c.v.) modified agmatine effect (10 μg, i.c.v.). After agmatine administration (20 μg, i.c.v.), dose-response curves for the effect of clonidine (0.625 – 10 μg kg−1 i.v.) or morphine (0.3 – 4.8 mg kg−1 i.v.) on locus coeruleus neurons were not different from those obtained in the control groups. Pretreatment with the nitric oxide synthase inhibitors Nω-nitro-L-arginine (10 μg, i.c.v.) or Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) but not with the less active stereoisomer Nω-nitro-D-arginine methyl ester (100 μg, i.c.v.) completely blocked agmatine effect (10 and 40 μg, i.c.v.). Similarly, when agmatine (20 pmoles) was applied into the locus coeruleus there was an increase that was blocked by Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) in the firing rate of the locus coeruleus neurons (maximal increase 53±11% and 14±10% before and after nitric oxide synthase inhibition, respectively). This study demonstrates that agmatine stimulates the firing rate of locus coeruleus neurons via a nitric oxide synthase-dependent mechanism located in this nucleus. PMID:11877321

  9. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    Science.gov (United States)

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of

  10. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Weihrauch, Dorothee; Billstrom, Amie R; Zielonka, Jacek; Krolikowski, John G; Bienengraeber, Martin W; Warltier, David C; Pratt, Philip F; Kersten, Judy R

    2009-02-01

    Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.

  11. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    OpenAIRE

    Arumugham Suresh; Ramasamy Praveenkumar; Ramasamy Thangaraj; Felix Lewis Oscar; Edachery Baldev; Dharumadurai Dhanasekaran; Nooruddin Thajuddin

    2014-01-01

    Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME) extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp.,...

  12. [Effect of L-arginine on platelet aggregation, endothelial function adn exercise tolerance in patients with stable angina pectoris].

    Science.gov (United States)

    Sozykin, A V; Noeva, E A; Balakhonova, T V; Pogorelova, O A; Men'shikov, M Iu

    2000-01-01

    Examination of the action of donor NO (L-arginine) on platelet aggregation, endothelial function and exercise tolerance in patients with stable angina of effort (SAE). 42 patients with SAE (functional class I-II) and 10 healthy volunteers (control group) were assigned to two groups. 22 patients of group 1 were randomized to cross-over. They received cardiket (60 mg/day for 10 days or cardiket (60 mg/day) in combination with L-arginine (15 g/day for 10 days). 20 SAE patients of group 2 and control group received L-arginine (15 g/day for 10 days). In each group blood lipids were examined, and bicycle exercise test (BET) was performed. In addition, platelet aggregation and endothelial function were studied in group 2 and control group before and after the course of L-arginine. Compared to control group, endothelial function significantly improved in group 2 (from 5.0 +/- 2.9 to 7.8 +/- 4.1% vs 7.1 +/- 1.9 to 6.6 +/- 4.8%) (M +/- SD). BET duration increased in all the patients. After ADP addition in concentrations 1.5, 2.0, and 5.0 micromol/l platelet aggregation declined in 17 patients except 3 in whom the aggregation remained unchanged. Positive effect of L-arginine on endothelial function, exercise tolerance and platelet aggregation was observed in patients with stable angina of effort (functional class I-II). Therefore, arginine can be recommended as an adjuvant in the treatment of patients with ischemic heart disease.

  13. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine

    International Nuclear Information System (INIS)

    E, Jiaqiang; Liu, Teng; Yang, W.M.; Li, Jing; Gong, Jinke; Deng, Yuanwang

    2016-01-01

    Highlights: • The effects of FAMEs proportion on combustion and emission were numerically studied. • The impact of the saturation level on combustion characteristic is not straightforward. • The NO_x emission is mainly related to the fuel kinetic viscosity. - Abstract: With the growing energy problems, scholars has focused on utilizing renewable biodiesel as a fossil fuel alternative. Four different typical biodiesels were employed to investigate the effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine in terms of heat release rate, cylinder pressure, indicated power and formation of NO_x emission. The corresponding computational fluid dynamic modeling was performed by KIVA4 coupled CHEMKIN II code, and a special chemical kinetics mechanism consisting of 106 species and 263 reactions was developed to simulate the combustion process since it contained methyl linoleate, a majority component in most biodiesel, thereby improved the accuracy of simulation. The simulation results indicated that chemical ignition delay time and kinetic viscosity of biodiesel played very important roles in combustion process. Higher saturation level could shorten chemical ignition delay time, but the higher saturation contents like C16:0 and C18:0 together with C18:1 (a single double bond methyl ester) would increase the kinetic viscosity, resulting in poor fuel–air mixing and evaporation process. Lower kinetic viscosity methyl esters like C18:2 and C18:3 was favorable for better fuel–air mixing and subsequent combustion, however, a higher NO_x emission was discovered. Therefore, the relationship between saturation levels and combustion and emission characteristics of biodiesels is not simple and straightforward, the balance of five majority components is very important.

  14. A convenient synthesis of deuterated leukotriene A sub 4 methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Bestmann, H.J.; Roeder, T. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Organische Chemie); Meese, C.O. (Fischer-Bosch-Inst. fuer Klinische Pharmakologie, Stuttgart (Germany, F.R.))

    1989-11-01

    2,2,3,3-({sup 2}H{sub 4})-1-Iodopentane was prepared in four steps from propargyl alcohol and used in the C-alkylation of the THP-protected 3-butyne-1-ol. Subsequent protective group removal, semi-deuteration of the acetylenic alcohol and further transformation by known methods afforded the labelled key reagent 3,4,6,6,7,7-({sup 2}H{sub 6})-(Z)-(3-nonen-1-yl)triphenylphosphonium iodide. Wittig olefination of epoxy dienal with the ylide generated from the latter completed the convenient synthesis of hexadeuterated leukotriene A{sub 4} methyl ester. (author).

  15. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    International Nuclear Information System (INIS)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-01-01

    Highlights: ► L-Arginine treatment reduced the metabolic disturbances in diabetic animals. ► Antioxidant marker proteins were found high in myocardium by L-arginine treatment. ► Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. ► L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. ► Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg −1 body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-κB. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be

  16. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India); Selvam, Govindan Sadasivam, E-mail: drselvamgsbiochem@rediffmail.com [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  17. The L-arginine/asymmetric dimethylarginine ratio is improved by anti-tumor necrosis factor-α therapy in inflammatory arthropathies. Associations with aortic stiffness.

    Science.gov (United States)

    Angel, Kristin; Provan, Sella Aarrestad; Mowinckel, Petter; Seljeflot, Ingebjørg; Kvien, Tore Kristian; Atar, Dan

    2012-11-01

    Anti-Tumor Necrosis Factor (TNF)-α therapy improves vascular pathology in inflammatory arthropathies such as rheumatoid arthritis, ankylosing spondylitis and psoriatic arthritis. The l-arginine/ADMA ratio is important for modulation of the nitric oxide synthase activity. We examined the effect of TNF-α antagonists on ADMA and l-arginine/ADMA, and associations between ADMA, L-arginine/ADMA, aortic stiffness and carotid intima media thickness (CIMT) in patients with inflammatory arthropathies. Forty-eight patients who started with anti-TNF-α therapy were compared with a non-treated group of 32 patients. Plasma ADMA and L-arginine were assessed at baseline, 3 and 12 months. In a subgroup of 55 patients, aortic pulse wave velocity (aPWV) was measured at baseline, 3 and 12 moths, and CIMT was examined at baseline and 12 months. Anti-TNF-α therapy increased the L-arginine/ADMA ratio (mean [SD]) in the treatment group compared to the control group after 3 months (12 [29] vs. -13 [20], P < 0.001) and 12 months (7 [27] vs. -8 [19], P = 0.008), but did not affect ADMA (3 months: 0.00 [0.09] μmol/L vs. 0.02 [0.07] μmol/L, P = 0.42, 12 months: 0.01 [0.08] μmol/L vs. 0.01 [0.09] μmol/L, P = 0.88). Baseline aPWV was associated with ADMA (P = 0.02) and L-arginine/ADMA (P = 0.02) in multiple regression analyses, and the L-arginine/ADMA ratio was continuously associated with aPWV after initiation of anti-TNF-α therapy (P = 0.03). ADMA and L-arginine/ADMA were not correlated with CIMT. Anti-TNF-α therapy improved the L-arginine/ADMA ratio in patients with inflammatory arthropathies. ADMA and the L-arginine/ADMA ratio were associated with aPWV, and might have a mechanistic role in the aortic stiffening observed in these patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2004-02-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and is characterized by a NH⋯O intramolecular hydrogen bond; in this form, the ester group assumes the cis configuration and the OC-C-N and Lp-N-C-C (where Lp is the nitrogen lone electron pair) dihedral angles are ca. -17.8 and 171.3°, respectively. The second most stable conformer ( GSC) differs from the ASC conformer essentially in the conformation assumed by the methylamino group, which in this case is gauche ( Lp-N-C-C dihedral angle equal to 79.4°). On the other hand, the third most stable conformer ( AAC) differs from the most stable form in the conformation of the OC-C-N axis (151.4°). These three forms were predicted to differ in energy by less than ca. 5 kJ mol -1 and represent ≈95% of the total conformational population at room temperature. FT-IR spectra were obtained for sarcosine-Me isolated in argon matrices (T=9 K) revealing the presence in the matrices of the three lowest energy conformers predicted by the calculations. The matrices were prepared by deposition of the vapour of the compound using two different nozzle temperatures, 25 and 60 °C. The relative populations of the three conformers trapped in the matrices were found to be consistent with occurrence of conformational cooling during matrix deposition and with a stabilization of the most polar GSC and AAC conformers in the matrices compared to the gas phase. Indeed, like it was previously observed for the methyl ester of dimethylglycine [Phys. Chem. Chem. Phys. 5 (2003) 52] the different

  19. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    Science.gov (United States)

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be

  20. Fatty acid methyl ester from Neurospora intermedia N-1 isolated from Indonesian red peanut cake (oncom merah).

    Science.gov (United States)

    Priatni, S; Hartati, S; Dewi, P; Kardono, L B S; Singgih, M; Gusdinar, T

    2010-08-01

    The objective of this study was to identify the Fatty Acid Methyl Ester (FAME) from Neurospora intermedia N-1 that isolated from Indonesian red peanut cake (oncom). FAME profiles have been used as biochemical characters to study many different groups of organisms, such as bacteria and yeasts. FAME from N. intermedia N-1 was obtained by some stages of extraction the orange spores and fractination using a chromatotron. The pure compound (1) was characterized by 500 mHz NMR (1H and 13C), FTIR and LC-MS. Summarized data's of 1H and 13C NMR spectra of compound 1 contained 19 Carbon, 34 Hydrogen and 2 Oxygen (C19H34O2). The position of the double bonds at carbon number 8 and 12 were indicated in the HMBC spectrum (2D-NMR). LC-MS spectrum indicates molecular weight of the compound 1 as 294 which is visible by the presence of protonated molecular ion [M+H] at m/z 295. Methyl esters of long chain fatty acids was presented by a 3 band pattern of IR spectrum with bands near 1249, 1199 and 1172 cm(-1). We suggested that the structure of the pure compound 1 is methyl octadeca-8,12-dienoate. The presence methyl octadeca-8,12-dienoate in N. intermedia is the first report.

  1. Spectroscopic investigation of degradation of rapseed oil methyl esters

    International Nuclear Information System (INIS)

    Kampars, V.

    2003-01-01

    Investigation of rapseed oil methyl esters by US VIS and FTIR spectroscopy during the heating at 80 deg C were carried out. The degradation begins immediately after beginning of experiment. The main process at first stage is destroying of carotenoids and oxidation of polyunsaturated fatty acids by forming conjugated polyenes. Between the formation of conjugated triens and destroying of carotenoids exist definite interconnection, but there isn't evidence for the protective activity of carotenoids. As follows from FTIR spectroscopy the increase of carbonyl compounds concentration begins immediately after the start of experiment and continues all the time. Despite to the complex character the peak at 220 nm is only one spectroscopic characteristic with a sharp alteration point and may be used for the fast and simple detection of storage stability of bio diesels. (authors)

  2. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    International Nuclear Information System (INIS)

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-01-01

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly

  3. Potential grape-derived contributions to volatile ester concentrations in wine.

    Science.gov (United States)

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  4. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    Science.gov (United States)

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  5. 15th International Sunflower Conference Synthesis of new derivatives from vegetable sunflower oil methyl esters via epoxydation and oxirane opening

    Directory of Open Access Journals (Sweden)

    Pages Xavier

    2001-03-01

    Full Text Available Recently, epoxides have received increased attention because they are of interest both as end-products and as chemical intermediates; epoxidized oils, mainly High Oleic Sunflower Oil, and their ester derivatives have thus found important applications as plasticizers and additives for polyvinyl chloride (PVC. Epoxidized esters have been produced classically from High Oleic Sunflower Methyl Esters (HOSME using H2O2 and formic acid. The epoxidation reaches 90% on pilot scale (5kg. Epoxidized esters produced from HOSME have respectively hydroxyl values of 0, oxirane values of 5.2/4.5 and iodine values of 1.7/1.5. Cleavage trials of the oxirane group of the epoxidized esters with different reactants have been undertaken in order to produce on pilot scale new derivatives to be characterized and tested in different fields of application (lubrication, detergency and as chemical intermediates. Reaction of Epoxy-HOSME with an excess of oleic acid was conducted under atmospheric pressure without any catalyst and solvent. The oxirane opening leads to complete estolide formation: after neutralization, analytical controls (chemical values, GC and HPLC analysis indicate that the estolides are composed of a mixture of C36 (oleate of methyl hydroxystearate and C54 (di-oleate of methyl dihydroxystearate. Oxirane opening with alcohols (ethanol and octanol was preferentially performed by acid catalysis at 100°C under atmospheric pressure. Analytical controls show the formation of different etheralcohols and secondary products resulting from dehydration, transesterification and dimerization side-reactions. Cleavage reaction of Epoxy-HOSME with a primary amine (butylamine was conducted under pressure, at high temperature (180/200°C. Both transesterification and opening of the oxirane group occur under these conditions. Reaction products are composed of amides formed by transesterification and a mixture of fatty amines/imines obtained by ring opening as established

  6. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    Science.gov (United States)

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  7. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia.

    Science.gov (United States)

    Arami, Masoumeh Kourosh; Zade, Javad Mirnajafi; Komaki, Alireza; Amiri, Mahmood; Mehrpooya, Sara; Jahanshahi, Ali; Jamei, Behnam

    2015-10-01

    Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of hypothermia. Intra-NRM injection of SNP (exogenous NO donor, 0.1- 0.2 μl, 0.2 nM) increased the blood flow. Similarly, unilateral microinjection of glutamate (0.1- 0.2 μl, 2.3 nM) into the nucleus increased the blood flow. This effect of L-glutamate was reduced by prior intra NRM administration of NO synthase inhibitor N(G)-methyl-L-arginine or N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 µl, 100 nM). It is concluded that NO modulates the thermoregulatory response of NRM to hypothermia and may interact with excitatory amino acids in central skin blood flow regulation.

  8. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.

    Science.gov (United States)

    Chandrasekaran, M; Senthilkumar, A; Venkatesalu, V

    2011-07-01

    The fatty acid methyl esters (FAME extract) from Sesuvium (S.) portulacastrum was studied for its fatty acid composition and antimicrobial activity against human pathogenic microorganisms. The gas chromatographic analysis of FAME extract revealed the presence of palmitic acid with the highest relative percentage (31.18%), followed by oleic acid (21.15%), linolenic acid (14.18%) linoleic acid (10.63%), myristic acid (6.91%) and behenic acid (2.42%). The saturated fatty acids were higher than the unsaturated fatty acids. FAME extract showed the highest antibacterial and anticandidal activities and moderate antifungal activity against the tested microorganisms. The highest mean zone of inhibition (16.3 mm) and the lowest MIC (0.25 mg/ml) and MBC (0.5 mg/ml) values were recorded against Bacillus subtilis. The lowest mean zone of inhibition (8.8 mm) and the highest MIC (8 mg/ml) and MFC (16 mg/ml) values were recorded against Aspergillus fumigatus and Aspergillus niger. The results of the present study justify the use of S. portulacastrum in traditional medicine and the FAME extract can be used as a potential antimicrobial agent against the tested human pathogenic microorganisms.

  9. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  10. L-Homoarginine and L-arginine are antagonistically related to blood pressure in an elderly population: the Hoorn study

    NARCIS (Netherlands)

    van der Zwan, L.P.; Davids, M.; Scheffer, P.G.; Dekker, J.M.; Stehouwer, C.D.A.; Teerlink, T.

    2013-01-01

    Objectives: Production of nitric oxide by the vascular endothelium is crucial for the maintenance of vascular tone, an important determinant of blood pressure. L-Arginine and its homolog L-homoarginine are competitive substrates of nitric oxide synthase (NOS), whereas asymmetric dimethylarginine

  11. l-Arginine Pathway Metabolites Predict Need for Intra-operative Shunt During Carotid Endarterectomy

    DEFF Research Database (Denmark)

    Szabo, P; Lantos, J; Nagy, L

    2016-01-01

    lactate levels were increased during reperfusion (p = .02). The median pre-operative concentration of l-arginine was lower in patients requiring an intra-operative shunt than in patients without need of shunt (median: 30.3 μmol/L [interquartile range 24.4-34.4 μmol/L] vs. 57.6 μmol/L [interquartile range...

  12. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  13. L-Arginine Availability and Metabolism Is Altered in Ulcerative Colitis.

    Science.gov (United States)

    Coburn, Lori A; Horst, Sara N; Allaman, Margaret M; Brown, Caroline T; Williams, Christopher S; Hodges, Mallary E; Druce, Jennifer P; Beaulieu, Dawn B; Schwartz, David A; Wilson, Keith T

    2016-08-01

    L-arginine (L-Arg) is the substrate for both inducible nitric oxide (NO) synthase (NOS2) and arginase (ARG) enzymes. L-Arg is actively transported into cells by means of cationic amino acid transporter (SLC7) proteins. We have linked L-Arg and arginase 1 activity to epithelial restitution. Our aim was to determine if L-Arg, related amino acids, and metabolic enzymes are altered in ulcerative colitis (UC). Serum and colonic tissues were prospectively collected from 38 control subjects and 137 UC patients. Dietary intake, histologic injury, and clinical disease activity were assessed. Amino acid levels were measured by high-performance liquid chromatography. Messenger RNA (mRNA) levels were measured by real-time PCR. Colon tissue samples from 12 Crohn's disease patients were obtained for comparison. Dietary intake of arginine and serum L-Arg levels were not different in UC patients versus control subjects. In active UC, tissue L-Arg was decreased, whereas L-citrulline (L-Cit) and the L-Cit/L-Arg ratio were increased. This pattern was also seen when paired involved (left) versus uninvolved (right) colon tissues in UC were assessed. In active UC, SLC7A2 and ARG1 mRNA levels were decreased, whereas ARG2 and NOS2 were increased. Similar alterations in mRNA expression occurred in tissues from Crohn's disease patients. In involved UC, SLC7A2 and ARG1 mRNA levels were decreased, and NOS2 and ARG2 increased, when compared with uninvolved tissues. Patients with UC exhibit diminished tissue L-Arg, likely attributable to decreased cellular uptake and increased consumption by NOS2. These findings combined with decreased ARG1 expression indicate a pattern of dysregulated L-Arg availability and metabolism in UC.

  14. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  15. Effects of L-arginine on anatomical and electrophysiological deterioration of the eye in a rodent model of nonarteritic ischemic optic neuropathy.

    Science.gov (United States)

    Chuman, Hideki; Maekubo, Tomoyuki; Osako, Takako; Ishiai, Michitaka; Kawano, Naoko; Nao-I, Nobuhisa

    2013-07-01

    The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.

  16. L-Arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction

    NARCIS (Netherlands)

    Maarsingh, H.; Bossenga, B. E.; Bos, I. S. T.; Volders, H. H.; Zaagsma, J.; Meurs, H.

    Peroxynitrite has been shown to be crucially involved in airway hyperresponsiveness (AHR) after the late asthmatic reaction (LAR). Peroxynitrite production may result from simultaneous synthesis of nitric oxide (NO) and superoxide by inducible NO-synthase (iNOS) at low L-arginine concentrations.

  17. Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung.

    Science.gov (United States)

    Grasemann, C; Herrmann, R; Starschinova, J; Gertsen, M; Palmert, M R; Grasemann, H

    2017-02-20

    Alterations in the L-arginine/nitric oxide (NO) metabolism contribute to diseases such as obesity, metabolic syndrome and airway dysfunction. The impact of early-life exposures on the L-arginine/NO metabolism in lung later in life is not well understood. The objective of this work was to study the effects of intrauterine exposures to maternal hyperglycemia and high-fat diet (HFD) on pulmonary L-arginine/NO metabolism in mice. We used two murine models of intrauterine exposures to maternal (a) hyperglycemia and (b) HFD to study the effects of these exposures on the L-arginine/NO metabolism in lung in normal chow-fed offspring. Both intrauterine exposures resulted in NO deficiency in the lung of the offspring at 6 weeks of age. However, each of the exposures leading to different metabolic phenotypes caused a distinct alteration in the L-arginine/NO metabolism. Maternal hyperglycemia leading to impaired glucose tolerance but no obesity in the offspring resulted in increased levels of asymmetric dimethylarginine and impairment of NO synthases. Although maternal HFD led to obesity without impairment in glucose tolerance in the offspring, it resulted in increased expression and activity of arginase in the lung of the normal chow-fed offspring. These data suggest that maternal hyperglycemia and HFD can cause alterations in the pulmonary L-arginine/NO metabolism in offspring.

  18. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit.

    Science.gov (United States)

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2011-09-14

    The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels.

  19. Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Ramírez, Marco A; Morales, Jorge; Cornejo, Marcelo; Blanco, Elias H; Mancilla-Sierpe, Edgardo; Toledo, Fernando; Beltrán, Ana R; Sobrevia, Luis

    2018-04-01

    l-Arginine is taken up via the cationic amino acid transporters (system y + /CATs) and system y + L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y + /CATs and system y + L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH 4 Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y + /CATs inhibitor) or 2 mmol/L l-leucine (systemy + L substrate) was measured. Protein abundance for eNOS and serine 1177 or threonine 495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y + L but not system y + /CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine 1177 phosphorylation. Thus, system y + L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  1. Growth and characterization of pure and doped NLO L-arginine ...

    Indian Academy of Sciences (India)

    Administrator

    NLO; SHG; solution growth; LAA. 1. Introduction. L-arginine phosphate monohydrate (LAP) was first repor- ted by Xu et al (1983) as a promising nonlinear optical. (NLO) material. LAP is nearly three times more nonlinear than KDP. Monaco et al (1987) reported the formation of. LAP and its chemical analogs from the strongly ...

  2. The Effect of L-arginine Supplementation on Blood Pressure in Patients with Type 2 Diabetes: A Double-Blind Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Sara Asadi

    2016-10-01

    Full Text Available Background: The prevalence of hypertension in patients with type 2 diabetes (T2D is approximately twice as much as healthy people. This study was designed to determine the effect of L-arginine supplementation on blood pressure in patients with T2D. Methods: In a double-blind randomized clinical trial, 75 T2D were randomly divided into three groups (3 g/d and 6g/d of L-arginine and placebo for 3 months. Height, weight, waist circumference, dietary intake, and blood pressure (BP were measured before and after intervention. Results: In patients who received 3g/d L-arginine, no significant difference was observed between BP before and after the intervention, however, subgroup analysis among patients with high BP showed significant reduction in systolic (P = 0.036 and diastolic BP (P = 0.027 after L-arginine supplementation. After 3 months of intervention, systolic and diastolic BP were significantly different compared to the baseline values and also with placebo value in patients receiving 6g/d of L-arginine (P < 0.05. Conclusions: The daily intake of 6g of L-arginine for 3 months in T2D may improve BP. Taking 3g/d of this supplement may help to improve BP only in patients with hypertension.

  3. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    International Nuclear Information System (INIS)

    Arjunan, S.; Bhaskaran, A.; Kumar, R. Mohan; Mohan, R.; Jayavel, R.

    2010-01-01

    Research highlights: → Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. → The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. → The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. → Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  4. Combustion characteristics of the mustard methyl esters

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Vasilev, I.P.

    2011-01-01

    Mustard Methyl Esters (further bio diesel) and regular diesel fuel were tested in direct injection diesel engine. Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with bio diesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. Increase in fuel consumption was attributed to lesser heating value of bio diesel and partially to decreased fuel conversion efficiency. Analysis of combustion characteristics revealed earlier start of injection and shorter ignition delay period of bio diesel. Resulting decrease in maximum rate of heat release and cylinder pressure was the most probable reason for reduced emission of nitrogen oxides. Analysis of combustion characteristics also showed that cetane index determined by ASTM Method D976 is not a proper measure of ignition quality of bio diesel. Conclusion was made on applicability of mustard oil as a source for commercial production of bio diesel in Pakistan. Potentialities of on improving combustion and emissions characteristics of diesel engine by reformulating bio diesel were discussed. (author)

  5. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  6. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: biodiesel production and characterization.

    Science.gov (United States)

    Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk

    2010-05-01

    Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Synthetic studies with Pinus elliottiis rosin derivatives. Oxidation of maleopimaric anhydride methyl ester and trimethyl fumaropimarate

    Directory of Open Access Journals (Sweden)

    Hess Sonia C.

    2000-01-01

    Full Text Available Ozonolysis of maleopimaric anhydride methyl ester in the presence of tetracyanoethylene led to an epoxide and an ozonide. Ozonolysis of the trimethyl fumaropimarate, followed by treatment with Me2S, led to an epoxide, a diene, a keto-acid and an allylic oxidation product. Some of the compounds obtained were active against Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus.

  8. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  9. Effects of Dietary l-Arginine on Nitric Oxide Bioavailability in Obese Normotensive and Obese Hypertensive Subjects

    Directory of Open Access Journals (Sweden)

    Beverly Giam

    2016-06-01

    Full Text Available Obesity related hypertension is a major risk factor for resistant hypertension. We do not completely understand the mechanism(s underlying the development of obesity related hypertension which hinders the development of novel treatment strategies for this condition. Data from experimental studies and small clinical trials indicate that transport of l-arginine, the substrate for nitric oxide (NO, and subsequent NO production are reduced in obesity induced hypertension. Reduced NO bioavailability can induce hypertension via multiple mechanisms. Mirmiran et al. recently analyzed data from a large population study and found that the association between dietary l-arginine and serum nitrate and nitrite was weakened in obese hypertensive subjects compared to obese normotensives. These data suggest that l-arginine dependent NO production is impaired in the former group compared to the latter which may represent a novel mechanism contributing to hypertension in the setting of obesity.

  10. Comparison of the effect of topical versus systemic L-arginine on wound healing in acute incisional diabetic rat model

    Directory of Open Access Journals (Sweden)

    Alireza Zandifar

    2015-01-01

    Full Text Available Background: Diabetes is associated with endothelial dysfunction and impaired wound healing. The amino acid L-arginine is the only substrate for nitric oxide (NO synthesis. The purpose of this study was to compare the topical versus systemic L-arginine treatment on total nitrite (NO x and vascular endothelial growth factor (VEGF concentrations in wound fluid and rate of wound healing in an acute incisional diabetic wound model. Materials and Methods: A total of 56 Sprague-Dawley rats were used of which 32 were rendered diabetic. Animals underwent a dorsal skin incision. Dm-sys-arg group (N = 8, diabetic and Norm-sys-arg group (N = 8, normoglycemic were gavaged with L-arginine. Dm-sys-control group (N = 8, diabetic and Norm-sys-control group (N = 8, normoglycemic were gavaged with water. Dm-top-arg group (N = 8, diabetic and norm-top-arg group (N = 8, normoglycemic received topical L-arginine gel. Dm-top-control group (N = 8, diabetic received gel vehicle. On the day 5 the amount of NO x in wound fluid was measured by Griess reaction. VEGF/total protein in wound fluids was also measured on day 5 using enzyme-linked immunosorbent assay. All wound tissue specimens were fixed and stained to be evaluated for rate of healing. Data were analyzed using SPSS software (version 18.0, Chicago, IL, USA through One-way analysis of variance test and Tukey′s post-hoc. Results: In dm-sys-arg group, the level of NO x on day 5 was significantly more than dm-top-arg group (P < 0.05. VEGF content in L-arginine treated groups were significantly more than controls (P < 0.05. Rate of diabetic wound healing in dm-sys-arg group was significantly more than dm-top-arg group. Conclusion: Systemic L-arginine is more efficient than topical L-arginine in wound healing. This process is mediated at least in part, by increasing VEGF and NO in the wound fluid.

  11. EG-01EPIGENETIC INACTIVATION OF ARGININE BIOSYNTHESIS PATHWAY IN PAEDIATRIC HIGH GRADE GLIOMA

    Science.gov (United States)

    Channathodiyil, Prasanna; Kardooni, Hoda; Khozoie, Combiz; Nelofer, Syed; Darling, John; Morris, Mark; Warr, Tracy

    2014-01-01

    Aberrant cellular metabolism contributes significantly to the growth and proliferation of several tumour types. Identification of genes that control critical metabolic pathways is a major factor in the development of novel therapies that target metabolic defects in tumour cells. Our aim is to identify such genes in paediatric high grade glioma that are altered due to promoter hyper-methylation of cytosine residues in CpG dinucleotides. Genome wide DNA methylation profiling using Illumina infinium methylation 450K bead chip array was performed on 18 well-characterised short term cultures derived from paediatric high grade astrocytoma including 3 from diffuse intrinsic pontine glioma. Data analyses were based on beta scores of probes for each gene as measures of intensities of methylation. Genes were selected with beta scores of tumour > =0.70 and that of normal human astrocytes < =0.30. We identified that two vital genes involved in the regulation of arginine biosynthetic pathway, argininosuccinate synthetase 1(ASS1) and argininosuccinate lyase (ASL) were methylated in 9/18 (50%) cases. Hyper methylation was confirmed by methylation-specific PCR and up-regulation of gene expression following treatment with 2 µM 5-aza-2'-deoxyctidine. Down-regulation of ASS1 in hyper methylated samples was confirmed by Western blot analysis. Our findings report epigenetic deregulation of ASS1 and ASL in a subset of paediatric high grade glioma. The enzymes encoded by these genes are essential elements of urea cycle that function together in the de novo synthesis of arginine from citrulline. Tumour cells with deficient ASS1/ASL depend on external sources of arginine for survival and have been reported to be sensitive to autophagic cell death induced by arginine starvation. Therefore, further investigation may render the possibility of arginine-deprivation therapy in such sub type of paediatric high grade glioma. This therapeutic approach is of interest as tumour cells with abnormal

  12. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  13. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  14. Simultaneous determination of oxalic, citric, nitrilotriacetic and ethylenediamenetetraacetic acids by gas liquid chromatography of their methyl esters

    International Nuclear Information System (INIS)

    Eskell, C.J.; Pick, M.E.

    1980-04-01

    A procedure for simultaneous determination of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid and oxalic acid by gas liquid chromatography is described. The involatile acids are first concerted to their volatile methyl ester derivatives by reaction with boron trifluoride in methanol. Transition metal ions (Fe 3+ , Cr 3+ and Ni 2+ ) which will be present in decontamination liquors from nuclear reactors, and form strong chelates with the acids, have been shown to cause no interference to the esterification reaction. The esters were separated by temperature programming on a 3.5 metre capillary column packed with 3% OV1 on Diatomite CQ and were detected by flame ionisation. (author)

  15. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    Science.gov (United States)

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  16. Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis

    Czech Academy of Sciences Publication Activity Database

    Čechová, L.; Durnová, E.; Šikutová, Silvie; Halouzka, Jiří; Němec, M.

    2004-01-01

    Roč. 808, č. 2 (2004), s. 249-254 ISSN 1570-0232 R&D Projects: GA ČR GA206/03/0726 Institutional research plan: CEZ:AV0Z6093917 Keywords : spirochetes * arthropods * fatty acid methyl esters Subject RIV: EE - Microbiology, Virology Impact factor: 2.176, year: 2004

  17. The L-arginine Pathway in Acute Ischemic Stroke and Severe Carotid Stenosis

    DEFF Research Database (Denmark)

    Molnar, Tihamer; Pusch, Gabriella; Papp, Viktoria

    2014-01-01

    BACKGROUND: Endothelial dysfunction is associated with increased levels of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) resulting in a decreased production of nitric oxide, which regulates the vascular tone. METHODS: Patients with acute ischemic stroke (AIS, n = 55......) and asymptomatic significant carotid stenosis (AsCS, n = 44) were prospectively investigated. L-arginine, ADMA, SDMA, S100 B, and high-sensitivity C-reactive protein (hsCRP) were serially measured within 6 hours after the onset of stroke, at 24 and 72 poststroke hours. All markers were compared with healthy...... subjects (n = 45). The severity of AIS was daily assessed by National Institute of Health Stroke Scale scoring. RESULTS: Even within 6 hours after the onset of stroke, L-arginine, ADMA, and SDMA were significantly higher in patients with AIS compared with both AsCS and healthy subjects. S100 B reflecting...

  18. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  19. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.

    Science.gov (United States)

    Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea

    2018-04-10

    Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  1. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Directory of Open Access Journals (Sweden)

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  2. EFFECT OF INJECTOR OPENING PRESSURE ON PERFORMANCE AND EMISSION OF LPG - METHYL ESTER OF MAHUA OIL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2017-11-01

    Full Text Available One of variables, which affect the performance and emission of dual fuel engine is injection pressure. Hence in the present work, effect of Injector opening pressure on the performance of the engine was studied.  A four stroke single cylinder engine was modified to work in dual fuel mode. Three injector opening pressures (180 bar, 200 bar and 220 bar were considered for the present work. Methyl ester of mahua oil was used as pilot fuel and LPG was used as primary fuel.    From the test results, it was observed that the injector opening pressure of 200 bar results in higher brake thermal efficiency. The higher injector opening pressure results in better atomization and peneatration of methyl ester of mahua oil. The exhaust emissions such as Smoke, unburnt hydro carbon and carbon monoxide of 200 bar is lower than other pressures.

  3. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    International Nuclear Information System (INIS)

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-01-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-γ synthesized nitrite (NO 2 - ) and nitrate (NO 3 - ). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO 2 - /NO 3 - synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-[guanido- 15 N 2 ]arginine established that the NO 2 - /NO 3 - and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO 2 - /NO 3 - was L-citrulline. The role of the respiratory burst in NO 2 - /NO 3 - synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO 2 - /NO 3 - . However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO 2 - /NO 3 - synthesis

  4. Changes in cholinergic and nitrergic systems of defunctionalized colons after colostomy in rabbits.

    Science.gov (United States)

    Moralıoğlu, Serdar; Vural, İsmail Mert; Özen, İbrahim Onur; Öztürk, Gökçe; Sarıoğlu, Yusuf; Başaklar, Abdullah Can

    2017-01-01

    This study was designed to assess smooth muscle function and motility in defunctionalized colonic segments and subsequent changes in pathways responsible for gastrointestinal motility. Two-month-old New Zealand rabbits were randomly allocated into control and study groups. Sigmoid colostomies were performed in the study group. After a 2-month waiting period, colonic segments were harvested in both groups. For the in vitro experiment, the isolated circular muscle strips which were prepared from the harvested distal colon were used. First, contraction responses were detected using KCl and carbachol; relaxation responses were detected using papaverine, sodium nitroprusside, sildenafil, and l-arginine. The neurologic responses of muscle strips to electrical field stimulation (EFS) were evaluated in an environment with guanethidine and indomethacin. EFS studies were then repeated with atropine, Nω-nitro-l-arginine methyl ester, atropine, and Nω-nitro-l-arginine methyl ester-added environments. Although macroscopic atrophy had developed in the distal colonic segment of the colostomy, the contraction and relaxation capacity of the smooth muscle did not change. EFS-induced nitrergic-peptidergic, cholinergic-peptidergic, and noncholinergic nonnitrergic responses significantly decreased at all frequencies (0.5-32 Hz) in the study group compared with those in the control group (P < 0.05). Although the contraction capacity of the smooth muscle was not affected, the motility of the distal colon deteriorated owing to the defective secretion of presynaptic neurotransmitters such as acetylcholine, nitric oxide, and neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

    Directory of Open Access Journals (Sweden)

    Thewarid Berkban

    2015-06-01

    Full Text Available The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day for five weeks. L-NAME induced high systolic blood pressure (SBP and increased heart rate (HR, hindlimb vascular resistance (HVR and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.

  6. Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP ...

    Indian Academy of Sciences (India)

    TECS

    popular due to their applications in frequency converters, electro-optic switching and .... parameters of dehydration process of pure and L-arginine doped KDP crystals were ... action, R a gas constant, and a the heating rate in deg.C.min. –1.

  7. Effects of L-arginine oral supplements in pregnant spontaneously hypertensive rats Efeitos da oferta oral de L-arginina em ratas prenhas espontaneamente hipertensas

    Directory of Open Access Journals (Sweden)

    José Ricardo Sousa Ayres de Moura

    2006-08-01

    Full Text Available PURPOSE: To evaluate the effects of L-arginine oral supplementation in spontaneously hypertensive pregnant rats (SHR. METHODS: Thirty SHR and ten Wistar-EPM-1 virgin female rats were used in the study. Before randomization, females were caged with males of the same strain (3:1. Pregnancy was confirmed by sperm-positive vaginal smear (Day 0. Wistar-EPM-1 rats served as counterpart control (C-1. SHR rats were randomized in 4 groups (n=10: Group Control 2, non-treated rats; Group L-Arginine treated with L-arginine 2%; Group Alpha-methyldopa treated with Alpha-methyldopa 33mg/Kg; Group L-Arginine+Alpha-methyldopa treated with L-arginine 2%+Alpha-methyldopa 33mg/Kg. L-arginine 2% solution was offered ad libitum in drinking water and Alpha-methyldopa was administered by gavage twice a day during the length of pregnancy (20 days. Blood pressure was measured by tailcuff plethysmography on days 0 and 20. Body weight was measured on days 0, 10 and 20. Results were expressed as mean ± SD (Standard Deviation. One-Way ANOVA/Tukey (or Kruskal-Wallis/Dunn, as appropriate was used for group comparisons. Statistical significance was accepted as pOBJETIVO: Avaliar os efeitos da oferta oral de L-arginina em ratas prenhas espontaneamente hipertensivas (SHR. MÉTODOS: 30 SHR e 10 Wistar-EPM-1 ratas virgens foram utilizadas no estudo. Antes da distribuição, as fêmeas foram acasaladas com machos da mesma linhagem (3:1; a prenhez foi confirmada pela presença de espermatozóides no esfregaço vaginal. As ratas Wistar-EPM-1 foram utilizadas como controles. As ratas SHR foram aleatoriamente distribuídas em 4 grupos (n=10: Grupo Controle-2, não-tratado; Grupo L-Arginina, tratado com L-arginina; Grupo Alfa-metildopa, tratado com alfa-metildopa; Grupo L-Arginina+Alfa-metildopa, tratado com arginina+Alfa-metildopa. L-arginina (2% foi oferecida ad libitum na água de beber e a Alfa-metildopa (33 mg/Kg foi administrada por gavagem, duas vezes ao dia, durante toda a

  8. N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates

    Science.gov (United States)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1993-01-01

    Studies of the properties of aminoacyl derivatives of 5'-AMP are aimed at understanding the origin of the process of protein synthesis. Aminoacyl (2',3') esters of 5'-AMP can serve as models of the 3'-terminus of aminoacyl tRNA. We report here on the relative rates of hydrolysis of Ac-D- and L-Phe AMP esters as a function of pH. At all pHs above 3, the rate constant of hydrolysis of the Ac-L-Phe ester is 1.7 to 2.1 times that of Ac-D-Phe ester. The D-isomer seems partially protected from hydrolysis by a stronger association with the adenine ring of the 5'-AMP.

  9. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  10. The effect of pumpkin (Cucurbita pepo L) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats.

    Science.gov (United States)

    Abuelgassim, Abuelgassim O; Al-showayman, Showayman I A

    2012-01-01

    The present study aimed to examine the effect of pumpkin (Cucurbita pepo L.) seeds supplementation on atherogenic diet-induced atherosclerosis. Rat were divided into two main groups , normal control and atherogenic control rats , each group composed of three subgroups one of them supplemented with 2% arginine in drinking water and the other supplemented with pumpkin seeds in diet at a concentration equivalent to 2% arginine. Supplementation continued for 37 days. Atherogenic rats supplemented with pumpkin seeds showed a significant decrease (ppumpkin seeds significantly decreased serum concentrations of TC and LDL-C. Our findings suggest that pumpkin seeds supplementation has a protective effect against atherogenic rats and this protective effect was not attributed to the high arginine concentrations in pumpkin seeds.

  11. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  12. Soluble lipase-catalyzed synthesis of methyl esters using a blend of edible and nonedible raw materials.

    Science.gov (United States)

    Wancura, João H C; Rosset, Daniela V; Brondani, Michel; Mazutti, Marcio A; Oliveira, J Vladimir; Tres, Marcus V; Jahn, Sérgio L

    2018-04-26

    This work investigates the use of blends of edible and nonedible raw materials as an alternative feedstock to fatty acid methyl esters (FAME) production through enzymatic catalysis. As biocatalyst, liquid lipase from Thermomyces lanuginosus (Callera™ Trans L), was used. Under reaction conditions of 35 °C, methanol to feedstock molar ratio of 4.5:1 and 1.45% of catalyst load, the best process performance was reached using 9% of water concentration in the medium-yield of 79.9% after 480 min of reaction. In terms of use of tallow mixed with soybean oil, the best yield was obtained when 100% of tallow was used in the process-84.6% after 480 min of reaction-behavior that was associated with the degree of unsaturation of the feedstock, something by that time, not addressed in papers of the area. The results show that tallow can be used as an alternative to FAME production, catalyzed by soluble lipase.

  13. Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities

    International Nuclear Information System (INIS)

    Littlefield-Wyer, J.G.; Brooks, P.; Katouli, M.

    2008-01-01

    We investigated changes in biomass, biochemical fingerprints, fatty acid methyl ester (FAME) profile and functional status of the natural aquatic microbial communities upon impact of an Atradex pulse. The Atradex was applied to microcosm tanks at concentrations ranging from 24.5 μg L -1 to 245 mg L -1 . The biomass of all microbial communities declined to a minimum level on day 4 with the effect being more pronounced in treated groups. Similarity between microbial communities also decreased on day 4 with the greatest change occurring at a concentration of 245 mg L -1 Atradex. After 8 days exposure to Atradex, microbial communities in all treated groups (except tanks spiked with 245 mg L -1 Atradex) recovered and showed similar metabolic fingerprints and FAME profiles to those of controls. Our results indicate that exposure to an Atradex pulse at concentration above 245 mg L -1 , may irreversibly change the structure and functional status of aquatic microbial communities. - Atradex at concentration above 245 mg L -1 may irreversibly change the structure and functional status of aquatic microbial communities

  14. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core.

    Directory of Open Access Journals (Sweden)

    Barbora Lubyova

    Full Text Available In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc protein and dimethylates arginine residues within the arginine-rich domain (ARD of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI and R156 (outside ARDs were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs, arginine methylation and ubiquitination.

  15. Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic.

    Science.gov (United States)

    Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2017-06-25

    Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    International Nuclear Information System (INIS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-01-01

    Highlights: → L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. → High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. → The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. → Optical birefringence measurement on this material. → The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  17. Improving the sustainability of fatty acid methyl esters (Fame – biodiesel) – assessment of options for industry and agriculture

    NARCIS (Netherlands)

    Jungmeier, G.; Pucker, J.; Ernst, M.; Haselbacher, P.; Lesschen, J.P.; Kraft, A.; Schulzke, T.; Loo, van E.N.

    2016-01-01

    The life cycle based greenhouse gas (GHG) balances of Fatty Acid Methyl Esters (FAME also called “Biodiesel”) from various resources have been set in the Renewable Energy Directive (RED). Due to technology and scientific progress there are various options to improve the GHG balances of FAME. In

  18. N-methylation of the heterogeneous nuclear ribonucleoproteins in HeLa cells

    International Nuclear Information System (INIS)

    Rieker, J.P.

    1984-01-01

    Several of the core proteins on the 40S heterogeneous nuclear ribonucleoprotein particles (hnRNP) from HeLa cells contain N/sup G/,N/sup G/-dimethyl-L-arginine (uDMA). 3-deazaadenosine (c 3 Ado), an inhibitor of and substrate for s-adenosyl-L-homocysteine hydrolase, has been used to study the methylation patterns of the individual polypeptides. Trimethyllysine and uDMA formation in total cellular protein were inhibited in the presence of the drug while other methylated basic amino acids were unaffected. This inhibition was reversed within 60 min after removal of the drug from the medium. Monolayer HeLa cultures were incubated with [methyl- 3 H]-L-methoinine for 12 hours in the presence of 50 uM c 3 Ado. Purified particles were obtained by centrifugation of nuclear extracts on sucrose density gradients. The core proteins were isolated by two-dimensional gel electrophoresis, acid hydrolyzed and analyzed for radioactivity incorporated into methionine and methylated basic amino acids. The ratio of radioactivity incorporated into uDMA relative to that into methionine for the two major particle proteins with molecular weights of 31,000 (A 1 ) and 43,000 (A 2 ) was about 2.0 and 0.2 in control cultures. In the presence of c 3 Ado, these ratios were depressed 60 to 80%. Results of pulse-chase experiments suggested that A 1 and A 2 are metabolically stable proteins (t/sub 0.5/ > 75 hr), whether or not the proteins were undermethylated. Monomethyl-L-arginine may be a precursor in the formation of u-DMA

  19. Metabolic consequences of decreased nitric oxide synthesis in the hearth

    International Nuclear Information System (INIS)

    Pechanova, O.; Bernatova, I.; Pelouch, V.

    1998-01-01

    The aim of the present study was to determine long-term effect of NO-synthase inhibitor N G -nitro-L-arginine methyl ester (L-NAME) on concentrations of cyclic nucleotides, nucleic acids and of collagenous proteins in the left ventricle. Male Wistar rats were investigated. NO-synthase activity in the homogenates of left ventricle was determined by measuring the formation of 3 H]-L-citrulline from [ 3 H]-L-arginine. Cyclic GMP and cAMP concentrations were determined by using radioimmunoassay procedures and commercial cGMP and cAMP 125 I scintillation proximity assay systems.Significantly more remarkable decrease of NO-synthase activity was recorded in the group with higher dose (40 mg/kg/day) of L-NAME. The changes in metabolic parameters corresponded well with the dose-depend decrease of NO-synthase activity. (authors)

  20. Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    João Barbosa Martins

    2013-01-01

    Full Text Available Paraquat (PQ, a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson’s disease in laboratory settings. Other compounds like rotenone (ROT, a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP+ have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aiming to elucidate their differential effects. PQ-induced neurotoxicity was shown to be concentration and time dependent, being mitochondrial dysfunction followed by neuronal death. On the other hand, cells exposure to MPP+ induced mitochondrial dysfunction, but not cellular lyses. Meanwhile, ROT promoted both mitochondrial dysfunction and neuronal death, revealing a biphasic pattern. To further elucidate PQ neurotoxic mechanism, several protective agents were used. SH-SY5Y cells pretreatment with tiron (TIR and 2-hydroxybenzoic acid sodium salt (NaSAL, both antioxidants, and Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, partially protected against PQ-induced cell injury. Additionally, 1-(2-[bis(4-fluorophenylmethoxy]ethyl-4-(3-phenyl-propylpiperazine (GBR 12909, a dopamine transporter inhibitor, and cycloheximide (CHX, a protein synthesis inhibitor, also partially protected against PQ-induced cell injury. In conclusion, we demonstrated that PQ, MPP+, and ROT exerted differential toxic effects on dopaminergic cells. PQ neurotoxicity occurred through exacerbated oxidative stress, with involvement of uptake through the dopamine transporter and protein synthesis.

  1. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    Science.gov (United States)

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  2. Investigation of diesel-ethanol blended fuel properties with palm methyl ester as co-solvent and blends enhancer

    Directory of Open Access Journals (Sweden)

    Mat Taib Norhidayah

    2017-01-01

    Full Text Available Diesel engine is known as the most efficient engine with high efficiency and power but always reported as high fuel emission. Malaysia National Automotive Policy (NAP was targeting to improve competitive regional focusing on green technology development in reducing the emission of the engine. Therefore, ethanol was introduced to reduce the emission of the engine and while increasing its performance, Palm methyl ester was introduced as blend enhancer to improve engine performance and improve diesel-ethanol blends stability. This paper aimed to study the characteristics of the blends and to prove the ability of palm-methyl-ester as co-solvent in ethanol-diesel blends. Stability and thermophysical test were carried out for different fuel compositions. The stability of diesel-ethanol blended was proved to be improved with the addition of PME at the longer period and the stability of the blends changed depending on temperature and ethanol content. Density and viscosity of diesel-ethanol-PME blends also give higher result than diesel-ethanol blends and it's proved that PME is able to increase density and viscosity of blends. Besides, heating value of the blends also increases with the increasing PME in diesel-ethanol blends.

  3. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  4. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.; Švec, František; Frechet, Jean

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  5. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    Science.gov (United States)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  6. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  7. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Wagutu, Agatha W.; Chhabra, Sumesh C.; Lang' at-Thoruwa, Caroline C. [Department of Chemistry, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Thoruwa, Thomas F.N. [Department of Energy Engineering, Kenyatta University, P.O. Box 43844, Nairobi (Kenya); Mahunnah, R.L.A. [University of Dar-es Salaam, Muhimbili College of Medicine, P.O. Box 53486, Dar-es Salaam (Tanzania)

    2010-08-15

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L{sup -1} (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries. (author)

  8. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    International Nuclear Information System (INIS)

    Wagutu, Agatha W.; Thoruwa, Thomas F.N.; Chhabra, Sumesh C.; Lang'at-Thoruwa, Caroline C.; Mahunnah, R.L.A.

    2010-01-01

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L -1 (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries.

  9. γ-irradiation-induced mortality: protective effect of protease inhibitors in chickens and mice

    International Nuclear Information System (INIS)

    Palladino, M.A.; Galton, J.E.; Troll, W.; Thorbecke, G.J.

    1982-01-01

    Chickens (Gallus domesticus) were protected from the acute γ-irradiation-induced mortality (within 24 hours) by the proteolytic enzyme inhibitors, soy-bean trypsin inhibitor (SBTI), lima bean inhibitor (LBTI), antipain, α-N-benzoyl-L-arginine ethyl ester HCl (BAEE), trasylol, and leupeptin. Several other enzyme inhibitors, p-tosyl-L-arginine methyl ester HCl (TAME), α-tosyl-lysyl-chloromethyl ketone HCl (TLCK) and epsilon-amino caproic acid (EACA), did not protect. EACA even increased the mortality caused by γ-irradiation. The pattern of protective enzyme inhibitors suggests involvement of a kallikrein-like enzyme. SBTI and antipain also protected against low range lethal γ-irradiation exposures, 690 R in BALB/c and 880 R in SJL/J mice. It is suggested that enhanced vascular permeability, which in chickens is known to be the cause of the irradiation mortality during the first 24 hours, may also contribute to the mortality in mice during the first week after irradiation. (author)

  10. Protective effect of chlorogenic acid on the inflammatory damage of pancreas and lung in mice with l-arginine-induced pancreatitis.

    Science.gov (United States)

    Ohkawara, Tatsuya; Takeda, Hiroshi; Nishihira, Jun

    2017-12-01

    Pancreatitis is characterized by inflammatory disease with severe tissue injury in pancreas, and the incidence of pancreatitis has been recently increasing. Although several treatments of acute pancreatitis have been developed, some patients have been resistant to current therapy. Chlorogenic acid (CGA) is one of the polyphenols, and is known to have an anti-inflammatory effect. In this study, we investigated the effects of CGA on experimental pancreatitis in mice. Pancreatitis was induced by twice injection of l-arginine (5g/kg body weight). Mice were intraperitoneally injected with CGA (20mg/kg or 40mg/kg) 1h before administration of l-arginine. Administration of 40mg/kg of CGA decreased the histological severity of pancreatitis and pancreatitis-associated lung injury. Moreover, administration of CGA inhibited the levels of pancreatic enzyme activity. Interestingly, CGA reduced the serum and pancreatic levels of macrophage migration inhibitory factor (MIF) in mice with l-arginine-induced pancreatitis. Our results suggest that CGA has an anti-inflammatory effect on l-arginine-induced pancreatitis and pancreatitis-associated lung injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25–500 °C

    International Nuclear Information System (INIS)

    Campbell, M.F.; Freeman, K.G.; Davidson, D.F.; Hanson, R.K.

    2014-01-01

    Gas-phase mid-infrared (IR) absorption spectra (2500–3400 cm −1 ) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm −1 . Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium–neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of C-H bonds in the molecule. - Highlights: • Infrared spectra of 11 fatty acid methyl esters (C 3 –C 11 ) have been measured. • A linear relationship for predicting 3.39 μm cross section values is proposed. • A molecule’s integrated area is linearly related to its number of C-H bonds. • Mono-unsaturation decreases cross section values

  12. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  13. Identification, purification, and localization of tissue kallikrein in rat heart.

    OpenAIRE

    Xiong, W; Chen, L M; Woodley-Miller, C; Simson, J A; Chao, J

    1990-01-01

    A tissue kallikrein has been isolated from rat heart extracts by DEAE-Sepharose and aprotinin-affinity column chromatography. The purified cardiac enzyme has both N-tosyl-L-arginine methyl ester esterolytic and kinin-releasing activities, and displays parallelism with standard curves in a kallikrein radioimmunoassay, indicating it to have immunological identity with tissue kallikrein. The enzyme is inhibited by aprotinin, antipain, leupeptin and by high concentrations of soybean trypsin inhib...

  14. I. Use of m- and p-azidobenzamidines, 4-fluoro-3-nitro-phenylazide, and 3-azido-1,2,4-triazole as photoaffinity probes of tryptic binding site conformation. II. Analysis of tryptophan in proteins by an acidic reaction of 3-diazonium-1,2,4-triazole

    Energy Technology Data Exchange (ETDEWEB)

    DeTraglia, M.C.

    1979-01-01

    Meta- and para-azidobenzamidine have been prepared and evaluated as photoaffinity labels. The compounds inhibit trypsin reversibly in the dark and are competitive with substrate binding. Upon photolysis, irreversible noncompetitive inhibition is observed and is dependent upon concentration, photolysis time, and pH. Specificity of the probes is indicated by experiments in which p-tosyl-L-arginine methyl ester, a trypsin substrate, is used to protect against photoinactivation.

  15. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    Science.gov (United States)

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  16. Experimental and analytical investigation on the emission and combustion characteristics of CI engine fueled with tamanu oil methyl esters

    Directory of Open Access Journals (Sweden)

    Perumal Navaneetha Krishnan

    2016-01-01

    Full Text Available The emission and combustion characteristics of a four stroke multi fuel single cylinder variable compression ratio engine fueled with tamanu oil methyl ester and its blends 10%, 20%, 40%, and 60% with diesel (on volume basis are examined and compared with standard diesel. Biodiesel produced from tamanu oil by trans-esterification process has been used in this study. The experiment has been conducted at a constant engine speed of 1500 rpm with 50% load and at compression ratios of 16:1, 17:1, 18:1, 19:1, and 20:1. With different blend and for selected compression ratio the exhaust gas emissions such as CO, HC, NOx, CO2, and the combustion characteristics are measured. The variation of the emission parameters for different compression ratios and for different blends is given, and optimum compression ratio which gives best performance has been identified. The results indicate higher rate of pressure rise and minimum heat release rate at higher compression ratio for tamanu oil methyl ester when compared with standard diesel. The blend B40 for tamanu oil methyl ester is found to give minimum emission at 50% load. The blend when used as fuel results in reduction of polluting gases like HC, CO, and increase in NOx emissions. The previously mentioned emission parameters have been validated with the aid of artificial neural network. A separate model is developed for emission characteristics in which compression ratio, blend percentage and load percentage were used as the input parameter whereas CO, CO2, HC, and NOx were used as the output parameter. This study shows that there is a good correlation between the artificial neural network predicted values and the experimental data for different emission parameters.

  17. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.

    Science.gov (United States)

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gapsys, Vytautas; Ucurum, Zöhre; de Groot, Bert L; Fotiadis, Dimitrios

    2016-09-13

    Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli.

  18. L-Arginine Pathway in COPD Patients with Acute Exacerbation

    DEFF Research Database (Denmark)

    Ruzsics, Istvan; Nagy, Lajos; Keki, Sandor

    2016-01-01

    -performance liquid chromatography in venous blood samples and partial capillary oxygen pressure were prospectively investigated in 32 patients with COPD, 12 with AECOPD and 30 healthy subjects. RESULTS: Both ADMA and SDMA were significantly higher in AECOPD compared to stable COPD (p = 0.004 and p ....001, respectively). Oxygen content in capillaries correlated with serum ADMA concentration. However, the concentration of L-arginine was not different between AECOPD and stable COPD. Both ADMA and SDMA separated AECOPD with high sensitivity and specificity (AUC: 0.81, p = 0.001; AUC: 0.91, p

  19. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice.

    Science.gov (United States)

    Ito, Tatsuo; Kubo, Masayuki; Nagaoka, Kenjiro; Funakubo, Narumi; Setiawan, Heri; Takemoto, Kei; Eguchi, Eri; Fujikura, Yoshihisa; Ogino, Keiki

    2018-02-01

    Obesity is a risk factor for vascular endothelial cell dysfunction characterized by low-grade, chronic inflammation. Increased levels of arginase I and concomitant decreases in L-arginine bioavailability are known to play a role in the pathogenesis of vascular endothelial cell dysfunction. In the present study, we focused on changes in the systemic expression of arginase I as well as L-arginine metabolism in the pre-disease state of early obesity prior to the onset of atherosclerosis. C57BL/6 mice were fed a control diet (CD; 10% fat) or high-fat diet (HFD; 60% fat) for 8 weeks. The mRNA expression of arginase I in the liver, adipose tissue, aorta, and muscle; protein expression of arginase I in the liver and plasma; and systemic levels of L-arginine bioavailability and NO 2 - were assessed. HFD-fed mice showed early obesity without severe disease symptoms. Arginase I mRNA and protein expression levels in the liver were significantly higher in HFD-fed obese mice than in CD-fed mice. Arginase I levels were slightly increased, whereas L-arginine levels were significantly reduced, and these changes were followed by reductions in NO 2 - levels. Furthermore, hepatic arginase I levels positively correlated with plasma arginase I levels and negatively correlated with L-arginine bioavailability in plasma. These results suggested that increases in the expression of hepatic arginase I and reductions in plasma L-arginine and NO 2 - levels might lead to vascular endothelial dysfunction in the pre-disease state of early obesity.

  20. Autoxidation of conjugated linoleic acid methyl ester in the presence of α-tocopherol: the hydroperoxide pathway

    OpenAIRE

    Pajunen, Taina

    2009-01-01

    The autoxidation of conjugated linoleic acid (CLA) is poorly understood in spite of increasing interest in the beneficial biological properties of CLA and growing consumption of CLA-rich foods. In this thesis, the autoxidation reactions of the two major CLA isomers, 9-cis,11-trans-octadecadienoic acid and 10-trans,12-cis-octadecadienoic acid, are investigated. The results contribute to an understanding of the early stages of the autoxidation of CLA methyl ester, and provide for the first time...

  1. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  2. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  3. Mitigating crystallization of saturated FAMES (fatty acid methyl esters) in biodiesel: 4. The phase behavior of 1,3-dioleoyl-2-palmitoyl glycerol – Methyl stearate binary system

    International Nuclear Information System (INIS)

    Mohanan, Athira; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    The present study examines the phase behavior of a model binary system made of OPO (1,3-dioleoyl-2-palmitoyl glycerol); a TAG (triacylglycerol) highly effective in depressing onset of crystallization of biodiesel, and MeS (methyl stearate); a prevalent saturated FAMEs (fatty acid methyl esters) in biodiesel. The thermal behavior, crystal structure and microstructure of the OPO/MeS mixtures were investigated with DSC (differential scanning calorimetry), XRD (X-ray diffraction) and PLM (polarized light microscope). The OPO/MeS system presented a phase diagram with peritectic and eutectic transitions. A simple thermodynamic modeling of the liquidus line indicated a relatively complex mixing behavior, and highlighted the prevailing effect of the peritectic compound on solubility. Different types of microstructures that were more or less influenced by MeS, OPO or/and compound microstructures were observed in the mixtures. They are associated with the crystal phases and the thermal transitions. Furthermore, MeS, OPO and compound crystal structures (monoclinic, orthorhombic and triclinic, respectively) served as templates for the crystal forms of the coexisting phases. The singularities in the liquidus line are attributed to chain length mismatch between the palmitic acid and the FAME (fatty acid methyl ester). The phase diagram achieved for OPO/MeS system is complete and can help in designing additive formulations to improve the cold flow behavior of biodiesel. - Highlights: • 1,3-dioleoyl-2-palmitoyl glycerol/methyl stearate (OPO/MeS) studied in detail. • Phase diagram with thermal transitions, polymorphism, microstructure achieved. • Phase trajectory singularities attributed to length mismatch of linear chains. • Mechanism for disruption of crystallization of biodiesel evidenced and explained.

  4. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    Science.gov (United States)

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Faddah, L. M.; Baky, Nayira A. Abdel [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia); Mohamed, Azza M., E-mail: azzamohamed99@yahoo.com [King Abdulaziz University, Biochemistry Department, Faculty of Science for Girls (Saudi Arabia); Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M. [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia)

    2013-04-15

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-{alpha}, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  6. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    Science.gov (United States)

    Faddah, L. M.; Baky, Nayira A. Abdel; Mohamed, Azza M.; Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M.

    2013-04-01

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-α, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  7. Low dose vitamin C, vitamin E or L-arginine supplementation and ...

    African Journals Online (AJOL)

    The effect of chronic low-dose supplementation with vitamin C (300mg/day for 6 weeks in adults or 100mg/day for 6 weeks in children) or vitamin E (100 IU/day for 6 weeks in adults) or L-Arginine (1g/day for 6 weeks in adults) in ameliorating the pathophysiology and combating the deleterious effects of sickle cell disease in ...

  8. Synthesis of Chiral, Enantiopure Allylic Amines by the Julia Olefination of α-Amino Esters.

    Science.gov (United States)

    Benedetti, Fabio; Berti, Federico; Fanfoni, Lidia; Garbo, Michele; Regini, Giorgia; Felluga, Fulvia

    2016-06-21

    The four-step conversion of a series of N-Boc-protected l-amino acid methyl esters into enantiopure N-Boc allylamines by a modified Julia olefination is described. Key steps include the reaction of a lithiated phenylalkylsulfone with amino esters, giving chiral β-ketosulfones, and the reductive elimination of related α-acetoxysulfones. The overall transformation takes place under mild conditions, with good yields, and without loss of stereochemical integrity, being in this respect superior to the conventional Julia reaction of α-amino aldehydes.

  9. Use of calcium oxide in palm oil methyl ester production

    Directory of Open Access Journals (Sweden)

    Kulchanat Prasertsit

    2014-04-01

    Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

  10. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yin-yu; Liu, Yuhuan; Lin, Xiangyang [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China); Chen, Wen-wei [College of Life Science, China Jiliang University, Hangzhou 310018 (China); Lei, Hanwu [Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 (United States); Ruan, Roger [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China)]|[Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108-6005 (United States)

    2009-02-15

    Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst. (author)

  11. Chronic nitric oxide synthase inhibition exacerbates renal dysfunction in cirrhotic rats

    DEFF Research Database (Denmark)

    Graebe, M.; Brond, L.; Christensen, S.

    2004-01-01

    The present study investigated sodium balance and renal tubular function in cirrhotic rats with chronic blockade of the nitric oxide (NO) system. Rats were treated with the nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) starting on the day of common bile duct ligation...... (CBL). Three weeks of daily sodium balance studies showed that CBL rats developed sodium retention compared with sham-operated rats and that l-NAME treatment dose dependently deteriorated cumulative sodium balance by reducing urinary sodium excretion. Five weeks after CBL, renal clearance studies were...

  12. The Effect of Central Amygdala Nitric Oxide in Expression Of Drug Seeking Behaviors

    Directory of Open Access Journals (Sweden)

    Mahnaz Rahimpour

    2011-11-01

    Full Text Available Introduction: Previous studies shows L-arginin (nitric oxide precursor increases conditioned place preference and drug seeking behaviors whereas LG-nitro-arginine methyl ester L-NAME( as nitric oxide synthase inhibitor decreases this process. In this project, effects of intra-central amygdale bilateral injection of nitric oxide agents on drug-seeking behaviors including rearing, sniffing and compartment entrance were investigated. Method: animals were wistar male rats (200-250 g which allowed to be recovered after they’re being suffered from a surgery by strereotaxis apparatus to be cannulated in coordination of central amygdale nucleus (CeA. CPP was conducted using a five-day schedule of unbiased procedure. Findings: morphine (2.5-10 mg/kg s.c induced significant drug-seeking behaviors. Naloxone (0.1-0.4 mg/kg i.p injection pretesting (after conditioning by morphine 7.5 mg/kg decreased the expression of behaviors. When L-arginine (0.3-3 µgr/rat injected intra–CeA prior to naloxone (0.4 mg/kg, increased behaviors but L-NAME (0.3-3 µgr/rat intra–CeA injections prior to L-arginine (0.3 µgr/rat pretesting, caused significant decreasement of L-arginine response. Conclusion: NO in the CeA may play an important role in the drug seeking behaviors induced of morphine.

  13. Effects of L-arginine and Nω-nitro-L-arginine methylester on learning and memory and α7 nAChR expression in the prefrontal cortex and hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming Wei; Wei Yang; Li-Xia Liu; Wen-Xiu Qi

    2013-01-01

    Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity,learning and memory.In the present study,we assessed the effects of L-arginine and Nω-nitro-L-arginine methylester (L-NAME,a nitric oxide synthase inhibitor) on learning and memory.Rats were assigned to three groups receiving intracerebroventricular injections of L-Arg (the NO precursor),L-NAME,or 0.9% NaCI (control),once daily for seven consecutive days.Twelve hours after the last injection,they underwent an electric shock-paired Y maze test.Twenty-four hours later,the rats' memory of the safe illuminated arm was tested.After that,the levels of NO and α7 nicotinic acetylcholine receptor (α7 nAChR) in the prefrontal cortex and hippocampus were assessed using an NO assay kit,and immunohistochemistry and Western blots,respectively.We found that,compared to controls,L-Arg-treated rats received fewer foot shocks and made fewer errors to reach the learning criterion,and made fewer errors during the memory-testing session.In contrast,L-NAME-treated rats received more foot shocks and made more errors than controls to reach the learning criterion,and made more errors during the memory-testing session.In parallel,NO content in the prefrontal cortex and hippocampus was higher in L-Arg-treated rats and lower in L-NAME rats,compared to controls.Similarly,α7 nAChR immunoreactivity and protein expression in the prefrontal cortex and hippocampus were higher in L-Arg-treated rats and lower in L-NAME rats,compared to controls.These results suggest that the modulation of NO content in the brain correlates with α7 nAChR distribution and expression in the prefrontal cortex and hippocampus,as well as with learning and memory performance in the Y-maze.

  14. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.

    Science.gov (United States)

    Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu

    2014-07-15

    In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sintesis Metil Ester dari Minyak Biji Kemiri (Aleurites Molluccana Menggunakan Metode Ultrasonokimia

    Directory of Open Access Journals (Sweden)

    Rahmawati Aziz

    2016-01-01

    Full Text Available Using the fuel oil is the basic necessary in the world now. But, the raw material cannot be updated.  To ensure the availability of the fuel oil so, the newest of alternative energy is explored it. One of the ways is biodiesel which made from vegetable oil. In this research is resulted from the transesterification reaction between candlenut oil and methanol by utilizing ultrasonic equipment. This research has passed some phases, they are the determining of acid number in oil then continued by creating biodiesel from ultrasonic wave 47 kHz. Identification of FTIR and GCMS are two methods which used to analyze the component compound in biodiesel product. The conversion number that be gotten from FAME with reaction of variation time 30, 40 and 50 in succession 0,037%, 0,029% and 0,018%. The result analysis of FTIR shows some of functional groups which are special from biodiesel. While the result of GCMS analysis is known that there are 5 component compounds in biodiesel namely ester methyl palmitic acid, ester methyl olead, stearata ester methyl, linoleic ester methyl and elaidic ester methyl.

  16. Synergistic antiviral effect in vitro of azidothymidine and amphotericin B methyl ester in combination on HIV infection

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Svenningsen, A

    1992-01-01

    The nucleoside analogue azidothymidine (AZT) and the methyl ester of amphotericin B (AME) were assayed for antiviral effect on HIV infection singly and in combination. Both compounds were effective in inhibiting HIV infection of MT-4 cells. At concentrations where either compound alone had no sig...... synergistic antiviral properties. Amphotericin B itself significantly reduced HIV infectivity in vitro and should not be used as an antifungal agent in cultures intended to propagate HIV....

  17. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-09-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-..gamma.. synthesized nitrite (NO/sub 2//sup -/) and nitrate (NO/sub 3//sup -/). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO/sub 2//sup -//NO/sub 3//sup -/ synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-(guanido-/sup 15/N/sub 2/)arginine established that the NO/sub 2//sup -//NO/sub 3//sup -/ and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO/sub 2//sup -//NO/sub 3//sup -/ was L-citrulline. The role of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO/sub 2//sup -//NO/sub 3//sup -/. However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis.

  18. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality

    Directory of Open Access Journals (Sweden)

    S. Eskiocak

    2006-05-01

    Full Text Available It has been reported that mental stress causes abnormality of spermiogram parameters. We investigated the effect of psychological stress on the L-arginine-nitric oxide (NO pathway. Semen samples were collected from 29 healthy fourth semester medical students just before (stress and 3 months after (non-stress the final examinations. Psychological stress was measured by the State Anxiety Inventory questionnaire. After standard semen analysis, arginase activity and NO concentration were measured spectrophotometrically in the seminal plasma. Measurements were made in duplicate. During the stress period, sperm concentration (41.28 ± 3.70 vs 77.62 ± 7.13 x 10(6/mL, rapid progressive motility of spermatozoa (8.79 ± 1.66 vs 20.86 ± 1.63% and seminal plasma arginase activity (0.12 ± 0.01 vs 0.22 ± 0.01 U/mL were significantly lower than in the non-stress situation, whereas seminal plasma NO (17.28 ± 0.56 vs 10.02 ± 0.49 µmol/L was higher compared to the non-stress period (P < 0.001 for all. During stress there was a negative correlation between NO concentration and sperm concentration, the percentage of rapid progressive motility and arginase activity (r = -0.622, P < 0.01; r = -0.425, P < 0.05 and r = -0.445, P < 0.05, respectively. These results indicate that psychological stress causes an increase of NO level and a decrease of arginase activity in the L-arginine-NO pathway. Furthermore, poor sperm quality may be due to excessive production of NO under psychological stress. In the light of these results, we suggest that the arginine-NO pathway, together with arginase and NO synthase, are involved in semen quality under stress conditions.

  19. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica

    2000-02-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  20. Identification and dosage by HRGC of minor alcohol and esters in Brazilian sugar-cane spirit

    International Nuclear Information System (INIS)

    Boscolo, Mauricio; Bezerra, Cicero W.B.; Cardoso, Daniel R.; Lima Neto, Benedito S.; Franco, Douglas W.

    2000-01-01

    The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaca), were investigated by high-resolution gas chromatography (HRGC). The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a) and total esters content (24 mg/100 mL a.a) in cachacas, are smaller than in other spirits. The average methanol content in cachacas (6 mg/100 mL a.a) is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachacas have been observed. (author)

  1. Class side effects: decreased pressure in the lower oesophageal and the pyloric sphincters after the administration of dopamine antagonists, neuroleptics, anti-emetics, L-NAME, pentadecapeptide BPC 157 and L-arginine.

    Science.gov (United States)

    Belosic Halle, Zeljka; Vlainic, Josipa; Drmic, Domagoj; Strinic, Dean; Luetic, Kresimir; Sucic, Mario; Medvidovic-Grubisic, Maria; Pavelic Turudic, Tatjana; Petrovic, Igor; Seiwerth, Sven; Sikiric, Predrag

    2017-05-17

    The ulcerogenic potential of dopamine antagonists and L-NAME in rats provides unresolved issues of anti-emetic neuroleptic application in both patients and experimental studies. Therefore, in a 1-week study, we examined the pressures within the lower oesophageal and the pyloric sphincters in rats [assessed manometrically (cm H 2 O)] after dopamine neuroleptics/prokinetics, L-NAME, L-arginine and stable gastric pentadecapeptide BPC 157 were administered alone and/or in combination. Medication (/kg) was given once daily intraperitoneally throughout the 7 days, with the last dose at 24 h before pressure assessment. Given as individual agents to healthy rats, all dopamine antagonists (central [haloperidol (6.25 mg, 16 mg, 25 mg), fluphenazine (5 mg), levomepromazine (50 mg), chlorpromazine (10 mg), quetiapine (10 mg), olanzapine (5 mg), clozapine (100 mg), sulpiride (160 mg), metoclopramide (25 mg)) and peripheral(domperidone (10 mg)], L-NAME (5 mg) and L-arginine (100 mg) decreased the pressure within both sphincters. As a common effect, this decreased pressure was rescued, dose-dependently, by BPC 157 (10 µg, 10 ng) (also note that L-arginine and L-NAME given together antagonized each other's responses). With haloperidol, L-NAME worsened both the lower oesophageal and the pyloric sphincter pressure, while L-arginine ameliorated lower oesophageal sphincter but not pyloric sphincter pressure, and antagonized L-NAME effect. With domperidone, L-arginine originally had no effect, while L-NAME worsened pyloric sphincter pressure. This effect was opposed by L-arginine. All these effects were further reversed towards a stronger beneficial effect, close to normal pressure values, by the addition of BPC 157. In addition, NO level was determined in plasma, sphincters and brain tissue. Thiobarbituric acid reactive substances (TBARS) were also assessed. Haloperidol increased NO levels (in both sphincters, the plasma and brain), consistently producing increased

  2. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.

    OpenAIRE

    Shaibe, E; Metzer, E; Halpern, Y S

    1985-01-01

    The regulation of the synthesis of the enzymes involved in the utilization of L-arginine, L-ornithine, agmatine, and putrescine as a sole nitrogen source in Escherichia coli K-12 was examined. The synthesis of agmatine ureohydrolase, putrescine aminotransferase, and pyrroline dehydrogenase is dually controlled by catabolite repression and nitrogen availability. Catabolite repression of agmatine ureohydrolase, but not that of putrescine aminotransferase or pyrroline dehydrogenase, is relieved ...

  3. Capacity of ensilage of Jatropha curcas L. cake to degrade forbol esters

    Directory of Open Access Journals (Sweden)

    André Soares de Oliveira

    2012-06-01

    Full Text Available The objective of this study was to evaluate the capacity of the ensilage of Jatropha curcas L. expeller cake to reduce the phorbol esters and its effect on fermentative losses, by adding soluble carbohydrates or microbial inoculants. The design was completely randomized with four replications in a 3 × 2 factorial arrangement, with three sources of soluble carbohydrates (SC, control, 50 g sucrose/kg or 50 g crude glycerin/kg as fed and two doses of microbial inoculants (MI, 0 or 5 × 10(5 ufc Lactobacillus plantarum + 3.33 × 10(5 ufc Propionibacterium per g as fed. Twenty-four mini-silos (982 cm³ of polyvinyl chloride were created and opened after 60 days of fermentation at room temperature. The pre-hydrated Jatropha curcas L. cake (282 g of water/kg contained 0.424 mg of phorbol esters/g of dry matter. Ensiling reduced the phorbol esters in 47.4%, on average, regardless of the SC or MI. There was no interaction effect between SC and MI on effluent, gases or total dry matter losses. However, both losses were increased when SC were added, and it was higher with glycerin that than sucrose. The addition of MI reduced all fermentation losses. The process of ensiling, although partially to reduce the phorbol esters of pre-hydrated Jatropha curcas L. cake, is not indicated as a biodestoxification procedure.

  4. Synthesis of Chiral, Enantiopure Allylic Amines by the Julia Olefination of α-Amino Esters

    Directory of Open Access Journals (Sweden)

    Fabio Benedetti

    2016-06-01

    Full Text Available The four-step conversion of a series of N-Boc-protected l-amino acid methyl esters into enantiopure N-Boc allylamines by a modified Julia olefination is described. Key steps include the reaction of a lithiated phenylalkylsulfone with amino esters, giving chiral β-ketosulfones, and the reductive elimination of related α-acetoxysulfones. The overall transformation takes place under mild conditions, with good yields, and without loss of stereochemical integrity, being in this respect superior to the conventional Julia reaction of α-amino aldehydes.

  5. Impaired vascular sensitivity to nitric oxide in the coronary microvasculature after endotoxaemia

    OpenAIRE

    Bogle, Richard G; McLean, Peter G; Ahluwalia, Amrita; Vallance, Patrick

    2000-01-01

    The effects of endotoxaemia on coronary vasodilator responses to bradykinin (BK), sodium nitroprusside (SNP) and nicardipine were investigated in the rat isolated heart perfused at constant flow ex vivo.Dose-dependent reductions in coronary perfusion pressure reaching a maximum of 56±3 and 57±5 mmHg were observed for BK and SNP respectively. The BK response was biphasic, consisting of a rapid dilator response that was insensitive to NGnitro-L-arginine methyl ester (L-NAME, 0.1 mM) and a secon...

  6. Secondary Metabolites of the Cuticular Abdominal Glands of Variegated Grasshopper (Zonocerus variegatus L.

    Directory of Open Access Journals (Sweden)

    O. U. Igwe

    2015-01-01

    Full Text Available Chemical compounds were extracted with petroleum ether from the cuticular abdominal glands of grasshopper (Zonocerus variegatus L. and eleven compounds were characterised using Gas Chromatography/Mass Spectrometry (GC/MS technique in combination with Fourier Transform-Infrared Spectroscopy (FT-IR. The compounds analysed were 2,7-dimethyloctane (3.21%, decane (5.33%, undecane (3.81%, tridecanoic acid methyl ester (4.76%, hexadecanoic acid (9.37%, 11-octadecenoic acid methyl ester (23.18%, pentadecanoic acid, 14-methyl-methyl ester (4.43%, (Z-13-docosenoic acid (10.71%, dodecyl pentafluoropropionate (9.52%, 2-dodecyl-1,3-propanediol (6.38%, and 1,12-tridecadiene (19.30%. FT-IR analysis of the extract showed peaks at 1270.17 (C–O and C–F, 1641.48 (C=C, 2937.68 (C–H, and 3430.51 (O–H cm−1 indicating the presence of ether, alkene, alkane, alcohol, carboxylic acid, and fluoric compounds. These compounds consisted of 32.37% ester, 31.65% hydrocarbons, 20.08% fatty acid, 9.52% halogenated ester, and 6.38% alcohol. The highest component was 11-octadecenoic acid methyl ester followed by 1,12-tridecadiene. Since behavioural bioassays were not carried out, the consideration of these compounds to be pheromone semiochemicals remains a hypothesis.

  7. The Effect of Carbohydrates and Arginine on Arginine Metabolism by Excised Bean Leaves in the Dark

    Science.gov (United States)

    Stewart, Cecil R.

    1975-01-01

    The effect of carbohydrate on arginine utilization by excised bean (Phaseolus vulgaris L. var. Tendergreen) leaves in the dark was studied by adding arginine to leaves differing in carbohydrate levels, and measuring the arginine content of the leaves at intervals. In nonstarved leaves, the arginine content decreased steadily after vacuum infiltration of 10 mm arginine and was essentially completely utilized by 36 hours after infiltration. In starved leaves, the arginine content did not decrease except for a brief period of about 4 hours after infiltration. The distribution of 14C after adding 14C-arginine to starved and nonstarved leaves indicated that the presence of carbohydrates in the leaves stimulates the utilization of arginine for protein synthesis and conversion to other amino acids, organic acids, and CO2 (catabolism). Adding sucrose along with arginine to starved leaves stimulated this utilization of arginine for both protein synthesis and catabolism. This effect of sugar on catabolism is different than results of similar studies done previously with proline. Increasing the concentration of added arginine greatly increased arginine catabolism but had a relatively small effect on utilization of arginine for protein synthesis. This result is the same as similar results from adding different concentrations of proline to excised leaves. PMID:16659159

  8. Analysis of the role of nitric oxide in the relaxant effect of the crude extract and fractions from Eugenia uniflora in the rat thoracic aorta.

    Science.gov (United States)

    Wazlawik, E; Da Silva, M A; Peters, R R; Correia, J F; Farias, M R; Calixto, J B; Ribeiro-Do-Valle, R M

    1997-04-01

    This study has evaluated the possible role played by the L-arginine-nitric oxide pathway in the vasorelaxant action of the hydroalcoholic extract from Eugenia uniflora, and fractions from the extract, in rings of rat thoracic aorta. The addition of an increasing cumulative concentration of hydroalcoholic extract from E. uniflora (1-300 micrograms mL-1) caused a concentration-dependent relaxation response in intact endothelium-thoracic aorta rings pre-contracted with noradrenaline (30-100 nM). The IC50 value, with its respective confidence limit, and the maximum relaxation (Rmax) were 7.02 (4.77-10.00) micrograms mL-1 and 83.94 +/- 3.04%, respectively. The removal of the endothelium completely abolished these responses. The nitric oxide synthase inhibitors N omega-nitro-L-arginine (L-NOARG, 30 microM) and N omega-nitro-L-arginine methyl ester (L-NAME, 30 microM), inhibited the relaxation (Rmax) to -10.43 +/- 7.81% and -3.69 +/- 2.62%, respectively. In addition, L-arginine (1 mM), but not D-arginine (1 mM), completely reversed inhibition by L-NOARG. Methylene blue (30 microM), a soluble guanylate cyclase inhibitor, reduced the relaxation induced by the extract to 14.60 +/- 7.40%. These data indicate that in the rat thoracic aorta the hydroalcoholic extract, and its fractions, from the leaves of E. uniflora have graded and endothelium-dependent vasorelaxant effects.

  9. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    Science.gov (United States)

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting

    International Nuclear Information System (INIS)

    Gross, Henrik; Barth, Stephanie; Palermo, Richard D.; Mamiani, Alfredo; Hennard, Christine; Zimber-Strobl, Ursula; West, Michelle J.; Kremmer, Elisabeth; Graesser, Friedrich A.

    2010-01-01

    The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJκ (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJκ in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJκ.

  11. Triphenyltin derivatives of sulfanylcarboxylic esters.

    Science.gov (United States)

    Casas, José S; Couce, María D; Sánchez, Agustín; Seoane, Rafael; Sordo, José; Perez-Estévez, Antonio; Vázquez-López, Ezequiel

    2018-03-01

    The reaction of 3-(aryl)-2-sulfanylpropenoic acids [H 2 xspa; x: p=3-phenyl-, f=3-(2-furyl)-, t=3-(2-thienyl)-] with methanol or ethanol gave the corresponding methyl (Hxspme) or ethyl (Hxspee) esters. The reaction of these esters (HL) with triphenyltin(IV) hydroxide gave compounds of the type [SnPh 3 L], which were isolated and characterized as solids by elemental analysis, IR spectroscopy and mass spectrometry and in solution by multinuclear ( 1 H, 13 C and 119 Sn) NMR spectroscopy. The structures of [SnPh 3 (pspme)], [SnPh 3 (fspme)] and [SnPh 3 (fspee)] were determined by X-ray diffractometry and the antimicrobial activity against E. coli, S. aureus, B. subtilis, P. aeruginosa, Resistant P. aeruginosa (a strain resistant to 'carbapenem'), and C. albicans was tested and the in vitro cytotoxic activity against the HeLa-229, A2780 and A2780cis cell lines was determined for all compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles.

    Science.gov (United States)

    Anahas, Antonyraj Matharasi Perianaika; Muralitharan, Gangatharan

    2015-05-01

    This study reports on the biodiesel quality parameters of eleven heterocystous cyanobacterial strains based on fatty acid methyl esters (FAME) profiles. The biomass productivity of the tested cyanobacterial strains ranged from 9.33 to 20.67 mg L(-1) d(-1) while the lipid productivity varied between 0.65 and 2.358 mg L(-1) d(-1). The highest biomass and lipid productivity was observed for Calothrix sp. MBDU 013 but its lipid content is only 11.221 in terms of percent dry weight, next to the Anabaena sphaerica MBDU 105, whose lipid content is high. To identify the most competent isolate, a multi-criteria decision analyses (MCDA) was performed by including the key chemical and physical parameters of biodiesel calculated from FAME profiles. The isolate A.sphaerica MBDU 105 is the most promising biodiesel feed stock based on decision vector through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Asymmetric dimethyl-L-arginine (ADMA): a possible link between homocyst(e)ine and endothelial dysfunction.

    Science.gov (United States)

    Stühlinger, Markus C; Stanger, Olaf

    2005-02-01

    Hyperhomocyst(e)inemia is associated with an increased risk for atherosclerotic disease and venous thromboembolism. The impact of elevated plasma homocysteine levels seems to be clinically relevant, since the total cardiovascular risk of hyperhomocyst(e)inemia is comparable to the risk associated with hyperlipidemia or smoking. There is substantial evidence for impairment of endothelial function in human and animal models of atherosclerosis, occurring even before development of overt plaques. Interestingly endothelial dysfunction appears to be a sensitive indicator of the process of atherosclerotic lesion development and predicts future vascular events. NO is the most potent endogenous vasodilator known. It is released by the endothelium, and reduced NO bioavailability is responsible for impaired endothelium-dependent vasorelaxation in hyperhomocyst(e)inemia and other metabolic disorders associated with vascular disease. Substances leading to impaired endothelial function as a consequence of reduced NO generation are endogenous NO synthase inhibitors such as ADMA. Indeed there is accumulating evidence from animal and human studies that ADMA, endothelial function and homocyst(e)ine might be closely interrelated. Specifically elevations of ADMA associated with impaired endothelium-dependent relaxation were found in chronic hyperhomocyst(e)inemia, as well as after acute elevation of plasma homocyst(e)ine following oral methionine intake. The postulated mechanisms for ADMA accumulation are increased methylation of arginine residues within proteins, as well as reduced metabolism of ADMA by the enzyme DDAH, but they still need to be confirmed to be operative in vivo. Hyperhomocyst(e)inemia, as well as subsequent endothelial dysfunction can be successfully treated by application of folate and B vitamins. Since ADMA seems to play a central role in homocyst(e)ine-induced endothelial dysfunction, another way of preventing vascular disease in patients with elevated homocyst

  14. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  15. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production.

    Directory of Open Access Journals (Sweden)

    Yinpu Yue

    Full Text Available Interleukin 4-induced gene-1 (IL4I1 was initially described as an early IL-4-inducible gene in B cells. IL4I1 protein can inhibit T cell proliferation by releasing its enzymatic catabolite, H2O2, and this effect is associated with transient down-regulation of T cell CD3 receptor-zeta (TCRζ expression. Herein, we show that IL4I1 contributes to the regulation of macrophage programming. We found that expression of IL4I1 increased during bone marrow-derived macrophage (BMDM differentiation, expression of IL4I1 is much higher in primary macrophages than monocytes, and IL4I1 expression in BMDMs could be induced by Th1 and Th2 cytokines in two different patterns. Gene expression analysis revealed that overexpression of IL4I1 drove the expression of M2 markers (Fizz1, Arg1, YM-1, MR and inhibited the expression of M1-associated cytokines. Conversely, knockdown of IL4I1 by siRNA resulted in opposite effects, and also attenuated STAT-3 and STAT-6 phosphorylation. Furthermore, IL4I1 produced by macrophages catalyzed L-tryptophan degradation, while levo-1-methyl-tryptophan (L-1-MT, but not dextro-1-methyl-tryptophan, partially rescued IL4I1-dependent inhibition of T cell activation. Other inhibitors, such as diphenylene iodonium (DPI, an anti-IL-10Rα blocking antibody, and a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine, also had this effect. Overall, our findings indicate that IL4I1 promotes an enhanced M2 functional phenotype, which is most likely associated with the phosphorylation of STAT-6 and STAT-3. Moreover, DPI, L-1-MT, NG-monomethyl-L-arginine, and anti-IL-10Rα blocking antibody were all found to be effective IL4I1 inhibitors in vitro.

  16. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100

    International Nuclear Information System (INIS)

    Olsson, Ida; Berrez, Jean-Marc; Leipus, Arunas; Ostlund, Cecilia; Mutvei, Ann

    2007-01-01

    Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experiments with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2Δ mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation

  17. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  18. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-l-lysine, and poly-l-arginine interacting with lipid bilayers.

    Science.gov (United States)

    McGeachy, A C; Dalchand, N; Caudill, E R; Li, T; Doğangün, M; Olenick, L L; Chang, H; Pedersen, J A; Geiger, F M

    2018-04-25

    Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly-l-lysine (PLL), and poly-l-arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with ΔGads values of -61 ± 2, -58 ± 2, -57 ± 1, -52 ± 2, -52 ± 1 kJ mol-1 for PDADMAC400, PDADMAC100, PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m-2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly-l-lysine, and poly-l-arginine are approximately 0.2 C m-2. Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours).

  19. Identification and dosage by HRGC of minor alcohols and esters in Brazilian sugar-cane spirit

    Directory of Open Access Journals (Sweden)

    Boscolo Maurício

    2000-01-01

    Full Text Available The presence of 51 volatile compounds, among alcohols and esters in Brazilian sugar-cane spirit (cachaça, were investigated by high-resolution gas chromatography (HRGC. The following alcohols and esters were identified and quantified: methanol, 1,4-butanodiol, 2-phenylethyl alcohol, amyl alcohol, cetyl alcohol, cynamic alcohol, n-decanol, geraniol, isoamyl alcohol, isobutanol, menthol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, amyl propionate, ethyl acetate, ethyl benzoate, ethyl heptanoate, isoamyl valerate, methyl propionate, propyl butyrate. The average higher alcohols content (262 mg/100 mL in anhydrous alcohol a.a. and total esters content (24 mg/100 mL a.a. in cachaças, are smaller than in other spirits. The average methanol content in cachaças (6 mg/100 mL a.a. is the same as in rum, but smaller than in wine spirit. No qualitative differences of chemical profile among cachaças have been observed.

  20. Hydrodeoxygenation of methyl esters on sulphided NiMo/{gamma}-Al{sub 2}O{sub 3} and CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I; Viljava, T.R.; Krause, A.O.I. [Laboratory of Industrial Chemistry, Helsinki University of Technology, P.O. Box 6100, FIN-02015 Hut (Finland)

    2005-02-28

    Wood-derived bio-oil contains high amounts of compounds with different oxygen-containing functional groups that must be removed to improve the fuel characteristics. Elimination of oxygen from carboxylic groups was studied with model compounds, methyl heptanoate and methyl hexanoate, on sulphided NiMo/{gamma}-Al{sub 2}O{sub 3} and CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts in a flow reactor. Catalyst performances and reaction schemes were addressed. Aliphatic methyl esters produced hydrocarbons via three main paths: The first path gave alcohols followed by dehydration to hydrocarbons. Deesterification yielded an alcohol and a carboxylic acid in the second path. Carboxylic acid was further converted to hydrocarbons either directly or with an alcohol intermediate. Decarboxylation of the esters led to hydrocarbons in the third path. No oxygen-containing compounds were detected at complete conversions. However, the product distributions changed with time, even at complete conversions, indicating that both catalysts deactivated under the studied conditions.

  1. Altered brain arginine metabolism in schizophrenia.

    Science.gov (United States)

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-08-16

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.

  2. L-arginine mediated renaturation enhances yield of human, α6 Type IV collagen non-collagenous domain from bacterial inclusion bodies.

    Science.gov (United States)

    Gunda, Venugopal; Boosani, Chandra Shekhar; Verma, Raj Kumar; Guda, Chittibabu; Sudhakar, Yakkanti Akul

    2012-10-01

    The anti-angiogenic, carboxy terminal non-collagenous domain (NC1) derived from human Collagen type IV alpha 6 chain, [α6(IV)NC1] or hexastatin, was earlier obtained using different recombinant methods of expression in bacterial systems. However, the effect of L-arginine mediated renaturation in enhancing the relative yields of this protein from bacterial inclusion bodies has not been evaluated. In the present study, direct stirring and on-column renaturation methods using L-arginine and different size exclusion chromatography matrices were applied for enhancing the solubility in purifying the recombinant α6(IV)NC1 from bacterial inclusion bodies. This methodology enabled purification of higher quantities of soluble protein from inclusion bodies, which inhibited endothelial cell proliferation, migration and tube formation. Thus, the scope for L-arginine mediated renaturation in obtaining higher yields of soluble, biologically active NC1 domain from bacterial inclusion bodies was evaluated.

  3. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats.

    Science.gov (United States)

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-05-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine-induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg(-1)) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine-induced acute toxicity of pancreas in rats.

  4. Evidence against nitrergic neuromodulation in the rat vas deferens.

    Science.gov (United States)

    Ventura, S; Burnstock, G

    1997-09-03

    Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.

  5. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    Directory of Open Access Journals (Sweden)

    Adewuyi Adewale

    2011-12-01

    Full Text Available Abstract Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP. The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition.

  6. The effects of Al{sub 2}O{sub 3}-TiO{sub 2} coating in a diesel engine on performance and emission of corn oil methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey; Ozturk, Ugur [Department of Automotive, Technical Education Faculty, Firat University, Elazig 23119 (Turkey)

    2010-10-15

    Today, as a result of increase in oil prices, limited fossil fuel resources, environmental consideration and global warming, the methyl ester fuels have been focused on alternative fuels. Methyl ester fuels can be used more efficiently in low heat rejection engines (LHR), in which the temperature of combustion chamber is increased by creating a thermal barrier. In this study, the piston, cylinder head, exhaust and inlet valves of a diesel engine were coated with the ceramic material Al{sub 2}O{sub 3}-TiO{sub 2} by the plasma spray method. Thus, a thermal barrier was provided for the parts of the combustion chamber with these coatings. The effects of corn oil methyl ester that produced by the transesterification method, and No. D2 fuels' performance and exhaust emissions' rate were studied by using equal in every respect coated and uncoated engines. Tests were performed on the uncoated engine, and then repeated on the coated engine and the results were compared. A decrease in engine power and specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NOx), were observed for all test fuels used in the coated engine compared with that of the uncoated engine. (author)

  7. THE EFFECT OF L- ARGININE ON OXIDATIVE STRESS AND MICROALBUMINURIA IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND CHRONIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    L. P. Martynyuk

    2017-07-01

    Full Text Available Background. One of the severest complications of diabetes is diabetic kidney disease (DKD. Microalbuminuria (MAU is one of the first signals of DKD and an important pathogenetic mechanism of disease progression. With diabetes dramatically antioxidant properties worsen. Objective. The aim was to investigate the effect of L-arginine on oxidative stress parameters and microalbuminuria in type 2 diabetes mellitus and chronic kidney disease patients. Methods. Total of 57 patients with type 2 diabetes mellitus and chronic kidney disease and 30 healthy subjects (control group were included in the study. The patients were divided into 2 congruent groups. The 1-st group of patients (n=33, in addition to standard therapy, received L-arginine 4.2 g intravenously for 5 days, after that they took it 1,0 g orally three times a day during meals for 1 month. The second group of patients (n=24 received a standard therapy. The concentration of lipid peroxidation products was measured by a spectrophotometric method. The determination of MAU was carried out in morning portion of urine immunological semiquantitative using test strips. Results. Significant improvement in indexes of lipid peroxidation was observed in both groups after therapy (p˂0.01, but in patients treated with L-arginine it was more expressed (p˂0,01. The standard therapy did not significantly affect the level of MAU (p˃0,05. The patients treated with L-Arginine, showed a significant reduction in MAU (p˂0.01. Conclusions. The usage of L-arginine facilitates the correction of lipid peroxidation processes and reduces the severity of microalbuminuria in patients with diabetic kidney disease that slowing its progression.

  8. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  9. [Variation of long-chain 3-hydroxyacyl-CoA dehydrogenase DNA methylation in placenta of different preeclampsia-like mouse models].

    Science.gov (United States)

    Han, Yiwei; Yang, Zi; Ding, Xiaoyan; Yu, Huan; Yi, Yanhong

    2015-10-01

    By detecting the variation of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) DNA methylation in preeclampsia-like mouse models generated by different ways, to explore the roles of multifactor and multiple pathways in preeclampsia pathogenesis on molecular basis. Established preeclampsia-like mouse models in different ways and divided into groups as follows: (1) Nw-nitro-L-arginine-methyl ester (L-NAME) group: wild-type pregnant mouse received subcutaneous injection of L-NAME; (2) lipopolysaccharide (LPS) group: wild-type pregnant mouse received intraperitoneal injection of LPS; (3) apolipoprotein C-III (ApoC3) group: ApoC3 transgenic pregnant mouse with dysregulated lipid metabolism received subcutaneous injection of L-NAME; (4) β2 glycoprotein I (β-2GPI) group: wild-type pregnant mouse received subcutaneous injection of β-2GPI. According to the first injection time (on day 3, 11, 16 respectively), the L-NAME, LPS and ApoC3 groups were further subdivided into: pre-implantation (PI) experimental stage, early gestation (EG) experimental stage, and late gestation (LG) experimental stage. β-2GPI group was only injected before implantation. LCHAD gene methylation levels in placental were detected in different experimental stage. Normal saline control groups were set within wild-type and ApoC3 transgenic pregnant mice simultaneously. (1) CG sites in LCHAD DNA: 45 CG sites were detected in the range of 728 bp before LCHAD gene transcription start site, the 5, 12, 13, 14, 15, 16, 19, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 43 CG sites were complex sites which contained two or more CG sequences, others were single site which contained one CG sequence. The 3, 5, 6, 11, 13, 14, 18, 28 sites in L-NAME, LPS, ApoC3 and β-2GPI groups showed different high levels of methylation; the 16, 25, 31, 42, 44 sites showed different low levels of methylation; other 32 sites were unmethylated. (2) Comparison of LCHAD gene methylation between different groups: the methylation levels

  10. Effect of L-arginine dietary supplementation on salivary urea concentration and pH in physically active individuals.

    Science.gov (United States)

    Vuletic, L; Spalj, S; Rogic, D; Ruzic, L; Alajbeg, I

    2013-12-01

    The aim of this study was to assess if the consumption of 3 g of a commercially available L-arginine dietary supplement causes a postabsorptive rise in urea concentration or pH of unstimulated saliva in a group of physically active individuals. Salivary urea and pH were determined for 117 participants in a randomized double-blinded placebo-controlled study. Samples were collected by 'spitting' method in fasting conditions. One hour prior to their second visit, participants consumed three tablets of L-arginine or placebo. Urea concentration was significantly lower at second measurement for both the study and control group. The magnitude of the change was not significant between the groups. pH was higher for both groups at second measurement, but only significant for the study group. The magnitude of the change was significant between the groups. Participants who intermittently ingested protein dietary supplements and those with a Body Mass Index (BMI) higher than 25 had significantly higher basal urea concentration. The results of this study did not confirm the hypothesis. Further studies are needed to determine the effects of different doses of L-arginine supplements on the biochemical composition of saliva and the influence of their long-term consumption on the risk of developing dental diseases. © 2013 Australian Dental Association.

  11. [State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine].

    Science.gov (United States)

    Kurhaliuk, N M

    2001-01-01

    In experiments on rats with different resistance to hypoxia are investigated processes of mitochondrial respiration, oxidative phosphorylation and calcium capacity in liver under precursor nitric oxide L-arginine (600 mg/kg) and blockator nitric oxide synthase L-NNA (35 mg/kg) injections. We are used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate, 1 mM alpha-ketoglutarate and 2 mM malonic acid. Increasing of ADP-stimulation respiration states under exogenous L-arginine injection, decreasing efficacy of respiration processes (respiration control on Chance and ADP/O) under such substrates oxidation, testify to oxide energy support decreasing and reversing nitric oxide inhibit in such conditions. This will be used as mechanism cell regulation succinate dehydrogenase activity. It has shown that L-arginine injection increase calcium mitochondrial capacity low resistance to hypoxia rats using substrates of oxidation succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of nitric oxide precursor influence on this processes limit NO-synthase inhibitor L-NNA.

  12. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  13. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  14. Dietary arginine depletion reduces depressive-like responses in male, but not female, mice.

    Science.gov (United States)

    Workman, Joanna L; Weber, Michael D; Nelson, Randy J

    2011-09-30

    Previous behavioral studies have manipulated nitric oxide (NO) production either by pharmacological inhibition of its synthetic enzyme, nitric oxide synthase (NOS), or by deletion of the genes that code for NOS. However manipulation of dietary intake of the NO precursor, L-arginine, has been understudied in regard to behavioral regulation. L-Arginine is a common amino acid present in many mammalian diets and is essential during development. In the brain L-arginine is converted into NO and citrulline by the enzyme, neuronal NOS (nNOS). In Experiment 1, paired mice were fed a diet comprised either of an L-arginine-depleted, L-arginine-supplemented, or standard level of L-arginine during pregnancy. Offspring were continuously fed the same diets and were tested in adulthood in elevated plus maze, forced swim, and resident-intruder aggression tests. L-Arginine depletion reduced depressive-like responses in male, but not female, mice and failed to significantly alter anxiety-like or aggressive behaviors. Arginine depletion throughout life reduced body mass overall and eliminated the sex difference in body mass. Additionally, arginine depletion significantly increased corticosterone concentrations, which negatively correlated with time spent floating. In Experiment 2, adult mice were fed arginine-defined diets two weeks prior to and during behavioral testing, and again tested in the aforementioned tests. Arginine depletion reduced depressive-like responses in the forced swim test, but did not alter behavior in the elevated plus maze or the resident intruder aggression test. Corticosterone concentrations were not altered by arginine diet manipulation in adulthood. These results indicate that arginine depletion throughout development, as well as during a discrete period during adulthood ameliorates depressive-like responses. These results may yield new insights into the etiology and sex differences of depression. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

    Science.gov (United States)

    Pou, S; Pou, W S; Rosen, G M; el-Fakahany, E E

    1991-01-01

    This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP formation in intact cells. This response was not dependent on Ca2+. In cytosol preparations the activation of guanylate cyclase by L-arginine was dose-dependent and required Ca2+ and NADPH. In contrast, NH2OH itself did not activate cytosolic guanylate cyclase but it inhibited the basal activity of this enzyme in a concentration-dependent manner. The formation of cyclic GMP in the cytosolic fractions in response to NH2OH required the addition of catalase and H2O2. On the other hand, catalase and/or H2O2 lead to a decrease in L-arginine-induced cyclic GMP formation. Furthermore, NH2OH inhibited L-arginine- and sodium nitroprusside-induced cyclic GMP formation in the cytosol. The inhibition of L-arginine-induced cyclic GMP formation in the cytosol by NH2OH was not reversed by the addition of superoxide dismutase. These data strongly suggest that NH2OH is not a putative intermediate in the metabolism of L-arginine to an activator of guanylate cyclase. PMID:1671745

  16. Role of Renal Nerves in the Treatment of Renovascular Hypertensive Rats with L-Arginine

    Directory of Open Access Journals (Sweden)

    Sonia Alves Gouvea

    2014-01-01

    Full Text Available The purpose was to determine the role of renal nerves in mediating the effects of antihypertensive treatment with L-arginine in a renovascular hypertension model. The 2K1C (two-kidney one-clip model hypertensive rats were submitted to bilateral surgical-pharmacological renal denervation. The animals were subdivided into six experimental groups: normotensive control rats (SHAM, 2K1C rats, 2K1C rats treated with L-arginine (2K1C + L-arg, denervated normotensive (DN rats, denervated 2K1C (2K1C + DN rats, and denervated 2K1C + L-arg (2K1C + DN + L-arg rats. Arterial blood pressure, water intake, urine volume, and sodium excretion were measured. The 2K1C rats exhibited an increase in the mean arterial pressure (MAP (from 106 ± 3 to 183 ± 5.8 mmHg, P<0.01, whereas L-arg treatment induced a reduction in the MAP (143 ± 3.4 mmHg without lowering it to the control level. Renal nerve denervation reduced the MAP to normotensive levels in 2K1C rats with or without chronic L-arg treatment. L-arg and denervation induced increases in water intake and urine volume, and L-arg caused a significant natriuretic effect. Our results suggest that renal sympathetic activity participates in the genesis and the maintenance of the hypertension and also demonstrate that treatment with L-arg alone is incapable of normalizing the MAP and that the effect of such treatment is not additive with the effect of kidney denervation.

  17. Intake of Blueberry Fermented by Lactobacillus plantarum Affects the Gut Microbiota of L-NAME Treated Rats

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-01-01

    Full Text Available Prebiotics, probiotics, or synbiotics can be used as means to regulate the microbiota to exert preventative or beneficial effects to the host. However, not much is known about the effect of the gut microbiota on hypertension which is a major risk factor of cardiovascular disease and also a symptom of the metabolic syndrome. The NG-nitro-L-arginine methyl ester (L-NAME induced hypertensive rats were used in order to test the effect of a synbiotic dietary supplement of Lactobacillus plantarum HEAL19 either together with fermented blueberry or with three phenolic compounds synthesized during fermentation. The experimental diets did not lower the blood pressure after 4 weeks. However, the fermented blueberries together with live L. plantarum showed protective effect on liver cells indicated by suppressed increase of serum alanine aminotransferase (ALAT levels. The diversity of the caecal microbiota was neither affected by L-NAME nor the experimental diets. However, inhibition of the nitric oxide synthesis by L-NAME exerted a selection pressure that led to a shift in the bacterial composition. The mixture of fermented blueberries with the bacterial strain altered the caecal microbiota in different direction compared to L-NAME, while the three phenolic compounds together with the bacteria eliminated the selection pressure from the L-NAME.

  18. Fatty acid methyl esters, carbon nanotubes and carbon nanowalls coatings such as lubricity improvers of low sulfur diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cursaru, Diana Luciana; Tanasescu, Constantin [Petroleum-Gas Univ. of Ploiesti (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics (Romania)

    2013-06-01

    In this study the lubricity of diesel fuel was restored by different methods, firstly by classic addition of fatty acid methyl esters or by dispersing carbon nanotubes into diesel fuels and secondly, by protecting the metallic surfaces which are in the direct contact to the low sulfur diesel fuel, by application of solid carbon nanowalls coatings synthesized by radiofrequency plasma beam deposition. The fatty acid methyl esters were prepared by transesterification of the sun flower oil in the presence of methanol. The carbon nanotubes were synthesized by CO disproportionation method and were characterized by RAMAN spectroscopy and high resolution transmission electron microscopy (TEM). The CNWs layers, before the friction tests, were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, while the wear on the steel balls was investigated by optical microscopy of the HRRT apparatus and the wear track on the steel disk was investigated by SEM, AFM and profilometry. The lubricity was measured using the High Frequency Reciprocating Rig (HFRR) method. It has been found that CNWs layers exhibit a lubricating potential for the rubbed surfaces in the presence of low sulfur diesel fuels. Tribological analyses of various carbon materials revealed that the friction coefficient of carbon nanowalls is close to the values obtained for graphite. (orig.)

  19. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  20. The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginine-induced insulin release

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Clemmensen, Christoffer; Johansen, Lars Dan

    2013-01-01

    insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by L-arginine did not stimulate insulin secretion. We also investigated central...... metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in L-arginine-induced insulin release and glucose...

  1. Preparation of arginine (guanide 14C)

    International Nuclear Information System (INIS)

    Pichat, L.; Baret, C.

    1960-01-01

    Reaction of anhydrous ammoniac at 800 deg. C on 14 CO 3 Ba gives rise to barium cyanamide 14 C with a yield of about 98 per cent. Addition on H 2 S on cyanamide 14 C leads to thiourea 14 C with a 85 per cent yield, which is quantitatively transformed into S-ethyl-isothiouronium iodide by treatment with methyl iodide. This 14 C-isothiouronium salt is used to introduce 14 C guanide group in α-N-tosyl-ornithine; tosyl group in α-N-tosyl-arginine thus obtained is then removed by hydrolysis with hydrochloric acid. Arginine is separated as flavianic acid salt and is purified on exchange resin Dowex-50. The overall yield based on 14 CO 3 Ba is 25 per cent. (author) [fr

  2. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe{sub 3}O{sub 4} nanoparticles: Optimization, reusability, kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Dalvand, Arash; Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Reza Ganjali, Mohammad [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoobi, Mehdi [Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Nazmara, Shahrokh [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hossein Mahvi, Amir, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-04-15

    This study aimed to investigate the removal of Reactive Blue 19 from colored wastewater using Fe{sub 3}O{sub 4} magnetic nanoparticles modified with L-arginine (Fe{sub 3}O{sub 4}@L-arginine). In order to investigate the effect of independent variables on dye removal and determining the optimum condition, the Box–Behnken Design (BBD) under Response Surface Methodology (RSM) was employed. Fe{sub 3}O{sub 4}@L-arginine nanoparticles were synthesized and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. Applying Fe{sub 3}O{sub 4}@L-arginine nanoparticles for dye removal showed that; by increasing adsorbent dose and decreasing pH, dye concentration, and ionic strength dye removal has been increased. In the optimum condition, Fe{sub 3}O{sub 4}@L-arginine nanoparticles were able to remove dye as high as 96.34% at an initial dye concentration of 50 mg/L, adsorbent dose of 0.74 g/L, and pH 3. The findings indicated that dye removal followed pseudo-second-order kinetic (R{sup 2}=0.999) and Freundlich isotherm (R{sup 2}=0.989). Based on the obtained results, as an efficient and reusable adsorbent, Fe{sub 3}O{sub 4}@L-arginine nanoparticles can be successfully applied for dye removal from colored wastewater. - Highlights: • The Fe{sub 3}O{sub 4}@L-arginine removed RB 19 azo dye from wastewater efficiently. • BBD under RSM was used to analyze and optimize the adsorption process. • pH was the most influential parameter in dye removal.

  3. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    Science.gov (United States)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  4. Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.).

    Science.gov (United States)

    Zitterl-Eglseer, K; Sosa, S; Jurenitsch, J; Schubert-Zsilavecz, M; Della Loggia, R; Tubaro, A; Bertoldi, M; Franz, C

    1997-07-01

    Separation and isolation of the genuine faradiol esters (1, 2) from flower heads of Marigold (Calendula (officinalis L., Asteraceae) could be achieved by means of repeated column chromatography (CC) and HPLC for the first time. Structure elucidation of faradiol-3-myristic acid ester 1, faradiol-3-palmitic acid ester 2 and psi-taraxasterol 3 has been also performed, without any previous degradation by means of MS, 1H-NMR, 13C-NMR and 2D-NMR experiments. The anti-oedematous activities of these three compounds were tested by means of inhibition of Croton oil-induced oedema of the mouse ear. Both faradiol esters showed nearly the same dose dependent anti-oedematous activity and no significant synergism appeared with their mixture. The free monol, psi-taraxasterol, had a slightly lower effect. Furthermore, faradiol was more active than its esters and than psi-taraxasterol and showed the same effect as an equimolar dose of indomethacin.

  5. Use of Fatty Acid Methyl Ester Profiles for Discrimination of Bacillus cereus T-Strain Spores Grown on Different Media▿

    OpenAIRE

    Ehrhardt, Christopher J.; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L.; Swan, Brandon K.; Bannan, Jason; Robertson, James M.

    2010-01-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarit...

  6. Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid, and L-aspartic acid esters

    NARCIS (Netherlands)

    Marck, K.W.; Wildevuur, Ch.R.H.; Sederel, W.L.; Bantjes, A.; Feijen, Jan

    1977-01-01

    A series of copoly(α-amino acids) with varying percentages of hydrophilic (l-aspartic acid) and hydrophobic monomers (l-leucine, ß-methyl-l-aspartate, and ß-benzyl-l-aspartate) were implanted subcutaneously in rats and the macroscopic degradation behavior was studied. Three groups of materials (A,

  7. N-[11C]methylpiperidine esters as acetylcholinesterase substrates: an in vivo structure-reactivity study

    International Nuclear Information System (INIS)

    Kilbourn, Michael R.; Nguyen, Thinh B.; Snyder, Scott E.; Sherman, Phillip

    1998-01-01

    A series of simple esters incorporating the N-[ 11 C]methylpiperidine structure were examined as in vivo substrates for acetylcholinesterase in mouse brain. 4-N-[ 11 C]Methylpiperidinyl esters, including the acetate, propionate and isobutyrate esters, are good in vivo substrates for mammalian cholinesterases. Introduction of a methyl group at the 4-position of the 4-piperidinol esters, to form the ester of a teritary alcohol, effectively blocks enzymatic action. Methylation of 4- N-[ 11 C]methylpiperidinyl propionate at the 3-position gives a derivative with increased in vivo reactivity toward acetylcholinesterase. Esters of piperidinecarboxylic acids (nipecotic, isonipecotic and pipecolinic acid ethyl esters) are not hydrolyzed by acetylcholinesterase in vivo, nor do they act as in vivo inhibitors of the enzyme. This study has identified simple methods to both increase and decrease the in vivo reactivity of piperidinyl esters toward acetylcholinesterase

  8. Transesterification Of Kapok Oil Using Calcium Oxide Catalyst Methyl Esters Yield With Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Yunusa Tukur

    2015-08-01

    Full Text Available Abstract This investigation was necessitated to find other feedstocks for biodiesel production that would not compete with food. Kapok oil with 0.8 FFA was transesterified with methanol using a heterogeneous catalyst CaO to determine its potential for biodiesel production. Methyl esters yields of 70.4 65.6 78.2 71.9 and 72.5 were obtained with catalyst loading of 0.8 1.2 1.6 2.0 and 2.4 wt. of oil. The products had high compositions of FFA and alcohols which indicates that the oil require more esterification to reduce the feedstock FFA far below 0.8. Some unsaturated hydrocarbons such as alkenes and alkynes were also formed which could make the products unstable.

  9. Trypanosomatid Infections: How Do Parasites and Their Excreted–Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages?

    Directory of Open Access Journals (Sweden)

    Philippe Holzmuller

    2018-04-01

    Full Text Available Mononuclear phagocytes (monocytes, dendritic cells, and macrophages are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted–secreted (ES molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage’s inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the

  10. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes Syndrome.

    Directory of Open Access Journals (Sweden)

    Lance H Rodan

    Full Text Available To study the effects of L-arginine (L-Arg on total body aerobic capacity and muscle metabolism as assessed by (31Phosphorus Magnetic Resonance Spectroscopy ((31P-MRS in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes syndrome.We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR in MTTL1 gene with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.At baseline (no L-Arg, MELAS had lower serum Arg (p = 0.001. On 3(1P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr (p = 0.05, decreased ATP (p = 0.018, and decreased intracellular Mg(2+ (p = 0.0002 when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1 increase in mean % maximum work at anaerobic threshold (AT (2 increase in % maximum heart rate at AT (3 small increase in VO(2peak. On (31P-MRS the following mean trends were noted: (1 A blunted decrease in pH after exercise (less acidosis (2 increase in Pi/PCr ratio (ADP suggesting increased work capacity (3 a faster half time of PCr recovery (marker of mitochondrial activity following 5 minutes of moderate intensity exercise (4 increase in torque.These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.ClinicalTrials.gov NCT01603446.

  11. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes) Syndrome.

    Science.gov (United States)

    Rodan, Lance H; Wells, Greg D; Banks, Laura; Thompson, Sara; Schneiderman, Jane E; Tein, Ingrid

    2015-01-01

    To study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by (31)Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome. We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR)) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak)) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine. At baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 3(1)P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg(2+) (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO(2peak). On (31)P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque. These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study. Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects. ClinicalTrials.gov NCT01603446.

  12. Renal response to L-arginine in diabetic rats. A possible link between nitric oxide system and aquaporin-2.

    Directory of Open Access Journals (Sweden)

    María C Ortiz

    Full Text Available The aim of this study was to evaluate whether L-Arginine (L-Arg supplementation modifies nitric oxide (NO system and consequently aquaporin-2 (AQP2 expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.

  13. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism

    International Nuclear Information System (INIS)

    Mansure, Jose Joao; Furtado, Daniel Rodrigues; Bastos de Oliveira, Francisco Meirelles; Rumjanek, Franklin David; Franco, Gloria Regina; Fantappie, Marcelo Rosado

    2005-01-01

    The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions

  14. Preparation of polyol esters based on vegetable and animal fats.

    Science.gov (United States)

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).

  15. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    International Nuclear Information System (INIS)

    Jiang, B.; Liu, Y.

    2014-01-01

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  16. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Gou, W.; Zhang, L.; Chen, F.; Cui, Z.; Zhao, Y.; Zheng, P.; Tian, L.; Zhang, L.; Zhang, C.

    2015-01-01

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  17. New dicyclopeptides from Dianthus chinensis.

    Science.gov (United States)

    Han, Jing; Wang, Zhe; Zheng, Yu-Qing; Zeng, Guang-Zhi; He, Wen-Jun; Tan, Ning-Hua

    2014-05-01

    One new dicyclopeptide cyclo-(L-N-methyl Glu-L-N-methyl Glu) (1), together with one new natural dicyclopeptide cyclo-(L-methyl Glu ester-L-methyl Glu ester) (2), and two known dicyclopeptides cyclo-(L-methyl Glu ester-L-Glu) (3), and cyclo-(L-Glu-L-Glu) (4), were isolated from the aerial parts of Dianthus chinensis L. Their structures were determined by spectroscopic analyses and chemical methods.

  18. Clinical effectiveness of exogenous L-arginine in patients with coronary heart disease after community-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    T. O. Kulynych

    2017-02-01

    Full Text Available Coronary heart disease and community acquired pneumonia associated with a higher risk for morbidity and mortality. The optimization of treatment of comorbid pathology by medicines which modify endothelium functional state is important. Aim: to study effect of exogenous L-arginine on clinical course of disease, markers of systemic inflammation and endothelial dysfunction in patients with coronary heart disease (CHD and community-acquired pneumonia (CAP. Materials and methods. 60 patients with CHD and CAP (the median 72.50 years, range 66.00; 75.00 were included into the study. Patients were randomized in 2 groups: first – 30 patients with basic therapy combined with L-arginine; and second – 30 patients with basic therapy. hs-CRP, neopterin, РАРР-А, NT-proBNP were measured by ELISA-TEST before treatment and 1 month after. Clinical course was assessed during 1 year of follow-up. Results. In the first group the hospitalization rate due to CHD and heart failure decompensation was significantly rare. Biomarkers changes in the 1st group were significant: hs-CRP was significantly decreased by 57.14 % (in the 2nd group – by 28.57 %; neopterin – by 36.57 % (in the 2nd group – by 20.91 %; РАРР-А – by 35.71 % (in the 2nd group – by 4.76 %. There was revealed a significant decreasing of NT-proBNP levels in patients receiving L-arginine by comparing with basic therapy: with the I stage of heart failure (HF – by 50.97 % vs 21.82 %, with the II-A stage of HF – by 43.82 % vs 5.61 % (p < 0.05. After 1 month of therapy patients from the 1st group had significantly lower rates of neopterin – by 16.46 %, and NT-proBNP – by 40.92 % in the subgroup of patients with II-A stage of HF (p < 0.05 compared with patients who received only the basic therapy. Conclusions. Combination of exogenous L-arginine and basic therapy in patients with CHD and CAP was associated with benign clinical course and positive changes of endothelium functional

  19. L-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Madsen, Andreas Nygaard; Smajilovic, Sanela

    2012-01-01

    L: -Arginine (L: -Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with L: -Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity....... However, the effects of L: -Arg on glucose homeostasis, body composition and energy metabolism remain unclear. In addition, no studies have, to our knowledge, examined whether L: -Arg has beneficial effects as a dietary supplement in the mouse model. In the present study, we investigated the effects of L...... groups. Glucose homeostasis experiments revealed a major effect of L: -Arg supplementation on glucose tolerance and insulin sensitivity, interestingly, independent of a parallel regulation in whole-body adiposity. Increased L: -Arg ingestion also raised energy expenditure; however, no concurrent effect...

  20. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Liu Yun; Yang Yun; Wu Feng

    2010-01-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine (L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  1. Effect of l-arginine therapy on plasma NO/sub 2/ and NO/sub 3/ levels, and blood pressure in uremic rabbits

    International Nuclear Information System (INIS)

    Hanif, M.; Khemomal, A.

    2011-01-01

    Background: Normal kidney function is regulated by Nitric oxide (NO) and Superoxide (O/sub 2/-) in the body, and consequently controls blood pressure. Nitric Oxide promotes natriuresis and diuresis, and therefore results in reduction of blood pressure. The objective of this study was to determine the effect of L-arginine supplementation on blood pressure, urinary protein, nitrite and nitrate in addition to blood urea, serum creatinine and creatinine clearance in uremic rabbits. Methods: This study was carried out in the Department of Biochemistry Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. A total of 48 rabbits were included in the study. Twenty-four of the rabbits on surgical intervention were prepared as uremic and so became hypertensive as well. Two groups were uremic, one group was given L-arginine and the other was remained untreated. Systolic and diastolic blood pressure was measured on week 0, week 2, week 4, and week 6, while blood and urine was collected on week 0 and week 6. Results: On supplementation with L-arginine to uremic rabbits systolic and diastolic blood pressures were decreased significantly. Nitrite/nitrate and urinary protein were corrected to some extent while blood urea and serum creatinine were unaffected. Conclusion: L-arginine has a beneficial role as blood pressure lowering agent in uremic rabbits. It corrects NO/sub 2/NO/sub 3/ plasma level and proteinuria which is indicator of renal failure. (author)

  2. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level.Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years].REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations.After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  3. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  4. Comparison of in vitro and in vivo phototoxicity tests with S-(-)-10,11-dihydroxyfarnesic acid methyl ester produced by Beauveria bassiana KACC46831.

    Science.gov (United States)

    Kim, Min-A; Son, Hyeong-U; Yoon, Cheol-Sik; Nam, Sung-Hee; Choi, Young-Cheol; Lee, Sang-Han

    2014-09-01

    Beauveria bassiana is a fungi that is well-known for demonstrating a resistance to environmental change. To confirm whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester (DHFAME) produced by Beauveria bassiana KACC46831 causes phototoxicity when used for cosmetic purposes due to its anti-tyrosinase activity, we conducted in vitro and in vivo phototoxicity tests. There were no significant changes or damage observed in the compound-treated group with regards to skin phototoxicity, while 8-methoxypsoralen, which served as a positive control, induced toxic effects. The in vitro 3T3 neutral red uptake assay, an alternative assessment, was used for further confirmation of the phototoxicity. The results showed that DHFAME did not exhibit phototoxicity at the designated concentrations, with or without UV irradiation in the 3T3 cells. These results indicated that the methyl ester produced by Beauveria bassiana KACC46831 does not induce phototoxicity in the skin. Therefore, the results of the present study indicate that DHFAME shows potential for use as a cosmetic ingredient that does not cause skin phototoxicity.

  5. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  6. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    Directory of Open Access Journals (Sweden)

    Putcharawipa Maneesai

    2016-02-01

    Full Text Available This study examined the effect of Carthamus tinctorius (CT extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO bioavailability, oxidative stress and renin-angiotensin system (RAS in Nω-Nitro-l-arginine methyl ester (l-NAME-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day: captopril (5 mg/kg/day or CT extract (300 mg/kg/day plus captopril (5 mg/kg/day for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.

  7. The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation - gas chromatography

    International Nuclear Information System (INIS)

    Chickos, James S.; Zhao Hui; Nichols, Gary

    2004-01-01

    Vapor pressures and vaporization enthalpies for methyl heptadecanoate and methyl heneicosanoate to methyl octacosanoate exclusive of methyl tricosanoate are evaluated as a function of temperature over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an extrapolative process using literature values for methyl tetradecanoate to methyl eicosanoate as standards. Relationships for calculating vapor pressures of the title compounds from T = 298.15 to 450 K are provided. Experimental fusion enthalpies are also reported for the methyl esters from methyl hexadecanoate to methyl octacosanoate excluding methyl tridecanoate. Vaporization enthalpies and fusion enthalpies adjusted for temperature to T = 298.15 K are combined to provide sublimation enthalpies. The results are compared to available literature values. A rationale for the linear relationship observed between enthalpies of vaporization and enthalpies of transfer from solution to the vapor is also provided

  8. Voluntary wheel running augments aortic l-arginine transport and endothelial function in rats with chronic kidney disease.

    Science.gov (United States)

    Martens, Christopher R; Kuczmarski, James M; Kim, Jahyun; Guers, John J; Harris, M Brennan; Lennon-Edwards, Shannon; Edwards, David G

    2014-08-15

    Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10(-9)-10(-5) M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[(3)H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine. Copyright © 2014 the American Physiological Society.

  9. Low temperature FT-IR and molecular orbital study of N,N-dimethylglycine methyl ester: Proof for different ground conformational states in gas phase and in condensed media

    OpenAIRE

    Gómez-Zavaglia, A.; Fausto, R.

    2002-01-01

    N,N-dimethylglycine methyl ester (DMG-Me) was studied by FT-IR spectroscopy under several experimental conditions, including low temperature solid state and isolated in low temperature inert gas matrices, and by molecular orbital calculations. In agreement with the theoretical predictions, the experimental data show that in the gaseous phase the most stable conformer (ASC) has the ester group in cis configuration and the N–C–CO and Lp–N–C–C (Lp=lone electron pair) dihedral angles equal to 0° ...

  10. Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings

    DEFF Research Database (Denmark)

    Stæhr, Mette; Madsen, Kirsten; Vanhoutte, Paul M

    2011-01-01

    (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS(-/-)) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and N(G)-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases...... in blood pressure, heart rate, and vascular reactivity. Inducible NOS activity appears crucial. COX-2 and eNOS are not obvious therapeutic targets for cardiovascular rescue during gram-negative endotoxemic shock....

  11. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors

    Directory of Open Access Journals (Sweden)

    Jasmine Kolb

    2018-04-01

    Full Text Available Summary: Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. : A hallmark of adult neurogenesis is its strong dependence on physiological stimuli and environmental signals. Schulte and colleagues show that the nuclear localization and activity of a transcriptional regulator of adult neurogenesis is controlled by posttranslational modification. Their results link intrinsic control over neuron production to external signals and help to explain how adult neurogenesis can occur “on demand.” Keywords: subventricular zone, stem cell niche, posttranslational modification, controlled nuclear import, TALE-homdomain protein, MEIS2, PBX1, CRM1, neurogenesis, stem cell niche

  12. Characterization of casein and poly-l-arginine multilayer films

    Science.gov (United States)

    Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P.

    2014-06-01

    Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. alfa- and beta-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). We investigated the effect of the type of casein used for the film formation and of the polyethyleneimine anchoring layer on the thickness and mass of adsorbed films. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability, while the XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.

  13. Sildenafil preserves diastolic relaxation after reduction by L-NAME and increases phosphodiesterase-5 in the intercalated discs of cardiac myocytes and arterioles

    Directory of Open Access Journals (Sweden)

    Silvia Elaine Ferreira-Melo

    2011-01-01

    Full Text Available OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME. METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP plasma levels were measured by ELISA. RESULTS: In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt that was induced by L-NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction. Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats that were treated with L-NAME + sildenafil. CONCLUSION: The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological effects of L-NAME in cardiac myocytes is mediated (at least in part by the inhibition of phosphodiesterase-5.

  14. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  15. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  16. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.

    Science.gov (United States)

    Sherkhanov, Saken; Korman, Tyler P; Clarke, Steven G; Bowie, James U

    2016-04-07

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.

  17. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    Science.gov (United States)

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  18. Fatty acid methyl esters and Solutol HS 15 confer neuroprotection after focal and global cerebral ischemia.

    Science.gov (United States)

    Lin, Hung Wen; Saul, Isabel; Gresia, Victoria L; Neumann, Jake T; Dave, Kunjan R; Perez-Pinzon, Miguel A

    2014-02-01

    We previously showed that palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Solutol HS15, a clinically approved excipient because it possesses similar fatty acid compositions as PAME/SAME. Asphyxial cardiac arrest (ACA, 6 min) was performed 30 min after PAME/SAME treatment (0.02 mg/kg, IV). Solutol HS15 (2 ml/kg, IP) was injected chronically for 14 days (once daily). Histopathology of hippocampal CA1 neurons was assessed 7 days after ACA. For focal ischemia experiments, PAME, SAME, or Solutol HS15 was administered following reperfusion after 2 h of middle cerebral artery occlusion (MCAO). 2,3,5-Triphenyltetrazolium staining of the brain was performed 24 h after MCAO and the infarct volume was quantified. Following ACA, the number of surviving hippocampal neurons was enhanced by PAME-treated (68%), SAME-treated (69%), and Solutol-treated HS15 (68%) rats as compared to ACA only-treated groups. Infarct volume was decreased by PAME (83%), SAME (68%), and Solutol HS15 (78%) as compared to saline (vehicle) in MCAO-treated animals. PAME, SAME, and Solutol HS15 provide robust neuroprotection in both paradigms of ischemia. This may prove therapeutically beneficial since Solutol HS15 is already administered as a solublizing agent to patients. With proper timing and dosage, administration of Solutol HS15 and PAME/SAME can be an effective therapy against cerebral ischemia.

  19. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l-NAME treated rats.

    Science.gov (United States)

    Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa

    2018-07-01

    Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.

  20. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  1. The ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase (ADI) pathway gene cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Noens, Elke E E; Kaczmarek, Michał B; Żygo, Monika; Lolkema, Juke S

    2015-01-01

    The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of

  2. Orally administered L-arginine and glycine are highly effective against acid reflux esophagitis in rats

    Science.gov (United States)

    Nagahama, Kenji; Nishio, Hikaru; Yamato, Masanori; Takeuchi, Koji

    2012-01-01

    Summary Background Reflux esophagitis is caused mainly by excessive exposure of the mucosa to gastric contents. In the present study, we examined the effect of several amino acids on acid reflux esophagitis in rats. Material/Methods After 18 h of fasting, acid reflux esophagitis was induced by ligating both the pylorus and the transitional region between the forestomach and the corpus under ether anesthesia, and the animals were killed 4 h later. The severity of esophagitis was reduced by the oral administration of omeprazole, a proton pump inhibitor, or pepstatin, a specific pepsin inhibitor. Results The development of esophageal lesions was dose-dependently prevented by L-arginine and glycine, given intragastrically (i.g.) after the ligation, with complete inhibition obtained at 250 mg/kg and 750 mg/kg, respectively, and these effects were not influenced by the prior s.c. administration of indomethacin or L-NAME. By contrast, both L-alanine and L-glutamine given i.g. after the ligation aggravated these lesions in a dose-dependent manner. These amino acids had no effect on acid secretion but increased the pH of the gastric contents to 1.8~2.3 due to their buffering action. Conclusions The results confirmed an essential role for acid and pepsin in the pathogenesis of acid reflux esophagitis in the rat model and further suggested that various amino acids affect the severity of esophagitis in different ways, due to yet unidentified mechanisms; L-alanine and L-glutamine exert a deleterious effect on the esophagitis, while L-arginine and glycine are highly protective, independent of endogenous prostaglandins and nitric oxide. PMID:22207112

  3. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Cvengros, J. Jan; Cvengrosova, Zuzana [Slovak Univ. of Technology, Faculty of Chemical and Food Technology, Bratislava (Slovakia)

    2004-08-01

    From the point of view price and available capacity used frying oils or fats (UFO) represent an attractive raw material for the production of methyl esters (ME) of higher fatty acids as alternative fuels for diesel engines. If they are treated such that the required quality, with an acidity number up to 3.0 mg KOH/g and a water content up to 0.1 wt%, is achieved they can be processed to ME using standard techniques of alkali-catalysed transesterification with methanol which are utilized for production of the ME from new oils/fats. The problematic waste can thus be converted to an ecologically friendly fuel. Vacuum distillation of free fatty acids in a film evaporator is an effective method for simultaneously decreasing the content of FFA and water in UFO. Final distillation of raw ME in a film vacuum evaporator results in practically all parameters required by the standard, in the final ME being achieved. Undesirable low-temperature properties of ME derived from UFO, due to higher fraction of saturated acyls, can be adjusted by the addition of depressants-flow improvers for winterization. Some simplified methods for the quality control of UFO and ME are discussed. The conversion of acylglycerols to ME is monitored by GLC with a packed column, where the peak areas of ME in the sample before and after the reaction with an effective methylation agent are compared. The method for the determination of the water content in esters utilizes the reaction of calcium carbide with water, the volume of acetylene being measured. (Author)

  4. A novel method for the functionalization of aminoacids L-glycine, L-glutamic acid and L-arginine on maghemite/magnetite nanoparticles

    Science.gov (United States)

    Bruno, A. J.; Correa, J. R.; Peláez-Abellán, E.; Urones-Garrote, E.

    2018-06-01

    Nanoparticles of maghemite/magnetite functionalized with L-glycine, L-glutamic acid and L-arginine were synthesized by a novel method. The novel procedure consists in an alternative of that reported by Massart for the precipitation of magnetite in which the aminoacid is added in the carboxylate form. The amounts of aminoacid in the initial molar concentrations were 35%, 45% and 65% with respect to the ferrophase. The obtained nanoparticles were characterized by several techniques: X-ray diffraction (XRD), Fourier transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), Electron energy-loss spectroscopy (EELS) and magnetometry. The IR spectroscopy confirmed that the selected aminoacids were functionalized on the surface of iron oxide. XRD and EELS confirm that iron oxide consists of a maghemite-magnetite intermediate phase with an average particle size about 6 nm, which was measured by transmission electron microscopy. The superparamagnetic character of the nanoparticles was evaluated by magnetometry.

  5. Oral administration of L-arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase

    Science.gov (United States)

    Tripathi, Pratima; Chandra, M

    2009-01-01

    Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA) and acute myocardial infarction (MI)]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days) resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD) and increase in the levels of total thiols (T-SH) and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO). These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes. PMID:20716909

  6. Oral Administration of L-Arginine in Patients With Angina or Following Myocardial Infarction May Be Protective By Increasing Plasma Superoxide Dismutase and Total Thiols With Reduction in Serum Cholesterol and Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Pratima Tripathi

    2009-01-01

    Full Text Available Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA and acute myocardial infarction (MI]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD and increase in the levels of total thiols (T-SH and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO. These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes.

  7. Test results of pongamia pinnata methyl esters with direct injection diesel engine

    International Nuclear Information System (INIS)

    Bannikov, MG.; Chattha, J.A.; Khan, A.F.

    2011-01-01

    Pongamia Pinnata oil is considered as a potential source of biodiesel production in Pakistan. When selecting source for commercial production of biodiesel several criteria are used. One of them is that biodiesel or biodiesel/diesel fuel blends must provide satisfactory performance and emissions of the diesel engine without or with a little engine modification. In this research performance and emissions characteristics of a direct injection diesel engine running on Pongamia Pinnata methyl esters were discussed. Discussion was supported by an analysis of combustion characteristics derived from in-cylinder pressure data. Engine running on a neat biodiesel showed higher brake specific fuel consumption and lower brake fuel conversion efficiency at all loads, whereas emissions were improved except of carbon monoxide emission at high loads. Decrease in brake efficiency and reduction of nitrogen oxides emissions were attributed solely to the change in the rate of heat release. Deposits on fuel infector nozzle were observed when engine was running on the neat biodiesel. Based on test results conclusion was made that Pongamia biodiesel/diesel fuel blends can effectively be used as a diesel oil substitute. (author)

  8. Effect of L-arginine and selenium added to a hypocaloric diet enriched with legumes on cardiovascular disease risk factors in women with central obesity: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Alizadeh, Mohammad; Safaeiyan, Abdolrasoul; Ostadrahimi, Alireza; Estakhri, Rassul; Daneghian, Sevana; Ghaffari, Aida; Gargari, Bahram Pourghassem

    2012-01-01

    We aimed to discover if L-arginine and selenium alone or together can increase the effect of a hypocaloric diet enriched in legumes (HDEL) on central obesity and cardiovascular risk factors in women with central obesity. This randomized, double-blind, placebo-controlled trial was undertaken in 84 premenopausal women with central obesity. After a 2-week run-in period on an isocaloric diet, participants were randomly assigned to a control diet (HDEL), L-arginine (5 g/day) and HDEL, selenium (200 μg/day) and HDEL or L-arginine, selenium and HDEL for 6 weeks. Cardiovascular risk factors were assessed before intervention and 3 and 6 weeks afterwards. After 6 weeks, L-arginine had significantly reduced waist circumference (WC); selenium had significantly lowered fasting concentrations of serum insulin and the homeostasis model assessment of insulin resistance index; the interaction between L-arginine and selenium significantly reduced the fasting concentration of nitric oxides (NO(x)), and HDEL lowered triglycerides (TG) and WC and significantly increased the fasting concentration of NO(x). HDEL reduced high-sensitivity C-reactive protein levels in the first half of the study and returned them to basal levels in the second half. These data indicate the beneficial effects of L-arginine on central obesity, selenium on insulin resistance and HDEL on serum concentrations of NO(x) and TG. Copyright © 2012 S. Karger AG, Basel.

  9. Thielavin B methyl ester: a cytotoxic benzoate trimer from an unidentified fungus (MSX 55526) from the Order Sordariales.

    Science.gov (United States)

    Ayers, Sloan; Ehrmann, Brandie M; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2011-11-02

    As part of our ongoing investigation of filamentous fungi for anticancer leads, an active fungal extract was identified from the Mycosynthetix library (MSX 55526; from the Order Sordariales). Bioactivity-directed fractionation yielded the known ergosterol peroxide (2) and 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol(3), and a new benzoate trimer, termed thielavin B methyl ester (1). The structure elucidation of 1 was facilitated by the use of HRMS coupled to an APPI (atmospheric pressure photoionization) source. Compound 1 proved to be moderately active against a panel of three cancer cell lines.

  10. Chloroindolyl-3-acetic Acid and its Methyl Ester Incorporation of 36Cl in Immature Seeds of Pea and Barley

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Immature seeds of pea and barley were harvested on plants grown in solutions containing 36Cl−, but no other chlorides. Autoradiography of two-dimensional thin layer chromatograms (silicagel) of butanol extracts of freeze-dried seeds showed the presence in both species of several radioactive...... compounds besides Cl−. One compound, present in pea and probably in barley, cochromatographed with a mixture of 4- and 6-chloroindolyl-3-acetic acid methyl esters. Another, detected in pea, but probably not in barley, cochromatographed with a mixture of 4-and 6-chloroindolyl-3-acetic acids....

  11. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.

  12. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    Science.gov (United States)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  13. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  14. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Science.gov (United States)

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    Science.gov (United States)

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  16. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with L-arginine decreases contusion size but not behavioral deficits after traumatic brain injury.

    Science.gov (United States)

    Degeorge, M L; Marlowe, D; Werner, E; Soderstrom, K E; Stock, M; Mueller, A; Bohn, M C; Kozlowski, D A

    2011-07-27

    Our laboratory has previously demonstrated that viral administration of glial cell line-derived neurotrophic factor (AdGDNF), one week prior to a controlled cortical impact (CCI) over the forelimb sensorimotor cortex of the rat (FL-SMC) is neuroprotective, but does not significantly enhance recovery of sensorimotor function. One possible explanation for this discrepancy is that although protected, neurons may not have been functional due to enduring metabolic deficiencies. Additionally, metabolic events following TBI may interfere with expression of therapeutic proteins administered to the injured brain via gene therapy. The current study focused on enhancing the metabolic function of the brain by increasing cerebral blood flow (CBF) with l-arginine in conjunction with administration of AdGDNF immediately following CCI. An adenoviral vector harboring human GDNF was injected unilaterally into FL-SMC of the rat immediately following a unilateral CCI over the FL-SMC. Within 30min of the CCI and AdGDNF injections, some animals were injected with l-arginine (i.v.). Tests of forelimb function and asymmetry were administered for 4weeks post-injury. Animals were sacrificed and contusion size and GDNF protein expression measured. This study demonstrated that rats treated with AdGDNF and l-arginine post-CCI had a significantly smaller contusion than injured rats who did not receive any treatment, or injured rats treated with either AdGDNF or l-arginine alone. Nevertheless, no amelioration of behavioral deficits was seen. These findings suggest that AdGDNF alone following a CCI was not therapeutic and although combining it with l-arginine decreased contusion size, it did not enhance behavioral recovery. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    Science.gov (United States)

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The crucial role of L-arginine in macrophage activation: What you need to know about it

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín

    2015-01-01

    Roč. 137, SEP2015 (2015), s. 44-48 ISSN 0024-3205 R&D Projects: GA ČR GP13-40882P; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 Keywords : L-Arginine * Macrophage s * G-protein-coupled receptor Subject RIV: BO - Biophysics Impact factor: 2.685, year: 2015

  19. Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shweta; Singh, Bhaskar; Sharma, Yogesh C. [Banaras Hindu University, Department of Applied Chemistry, Institute of Technology, Varanasi (India); Frometa, Amado Enrique N. [Universidad Tecnologica de Izucar de Matamoros, Puebla (Mexico)

    2012-12-15

    Commercial-grade limestone used in whitewashing which is a low-cost material has been used as a catalyst for the synthesis of fatty acid methyl esters. The catalyst was characterized by differential thermal analysis/thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy for the study of its physicochemical nature. The catalyst was calcined at 900 C for 2.5 h for the decomposition of calcium carbonate to calcium oxide. The catalyst was further activated by dissolving 1.5 wt% of catalyst in 30 ml methanol (7.5:1, methanol to used frying oil molar ratio) and stirred at 25 C for 1 h on a magnetic stirrer. The transesterification reaction was performed using calcium oxide as a catalyst and then with the ''activated calcium oxide.'' The conversion obtained was 94.4 % with calcium oxide and was found to be lower for the ''activated calcium oxide'' (i.e., 87.36 %). The conversion increased to 96.8 % on increasing the catalyst amount to 2.0 wt% in 5 h. A high yield (>95 %) of fatty acid methyl esters was observed when either calcium oxide or ''activated calcium oxide'' was taken as catalyst. The catalytic activity of calcium oxide obtained from low-grade limestone has been found to be comparable with the laboratory-grade CaO. (orig.)

  20. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    Science.gov (United States)

    Robbins, Paul S.; Alm, Steven R.; Armstrong, Charles. D.; Averill, Anne L.; Baker, Thomas C.; Bauernfiend, Robert J.; Baxendale, Frederick P.; Braman, S. Kris; Brandenburg, Rick L.; Cash, Daniel B.; Couch, Gary J.; Cowles, Richard S.; Crocker, Robert L.; DeLamar, Zandra D.; Dittl, Timothy G.; Fitzpatrick, Sheila M.; Flanders, Kathy L.; Forgatsch, Tom; Gibb, Timothy J.; Gill, Bruce D.; Gilrein, Daniel O.; Gorsuch, Clyde S.; Hammond, Abner M.; Hastings, Patricia D.; Held, David W.; Heller, Paul R.; Hiskes, Rose T.; Holliman, James L.; Hudson, William G.; Klein, Michael G.; Krischik, Vera L.; Lee, David J.; Linn, Charles E.; Luce, Nancy J.; MacKenzie, Kenna E.; Mannion, Catherine M.; Polavarapu, Sridhar; Potter, Daniel A.; Roelofs, Wendell L.; Royals, Brian M.; Salsbury, Glenn A.; Schiff, Nathan M.; Shetlar, David J.; Skinner, Margaret; Sparks, Beverly L.; Sutschek, Jessica A.; Sutschek, Timothy P.; Swier, Stanley R.; Sylvia, Martha M.; Vickers, Neil J.; Vittum, Patricia J.; Weidman, Richard; Weber, Donald C.; Williamson, R. Chris; Villani, Michael G

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester. PMID:19537965