WorldWideScience

Sample records for l-arabinose isomerase ecai

  1. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  2. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  3. L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Kim, Kyoung-Rok; Seo, Eun-Sun; Oh, Deok-Kun

    2014-01-01

    L-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the L-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l L-ribose from 300 g/l L-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co(2+), with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h(-1) produced an average of 100 g/l L-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for L-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from L-arabinose as the substrate.

  4. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cloning, Expression, and Characterization of a Novel L-Arabinose Isomerase from the Psychrotolerant Bacterium Pseudoalteromonas haloplanktis.

    Science.gov (United States)

    Xu, Wei; Fan, Chen; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-11-01

    L-Arabinose isomerase (L-AI, EC 5.3.1.4) catalyzes the isomerization between L-arabinose and L-ribulose, and most of the reported ones can also catalyze D-galactose to D-tagatose, except Bacillus subtilis L-AI. In this article, the L-AI from the psychrotolerant bacterium Pseudoalteromonas haloplanktis ATCC 14393 was characterized. The enzyme showed no substrate specificity toward D-galactose, which was similar to B. subtilis L-AI but distinguished from other reported L-AIs. The araA gene encoding the P. haloplanktis L-AI was cloned and overexpressed in E. coli BL21 (DE3). The recombinant enzyme was purified by one-step nickel affinity chromatography . The enzyme displayed the maximal activity at 40 °C and pH 8.0, and showed more than 75 % of maximal activity from pH 7.5-9.0. Metal ion Mn(2+) was required as optimum metal cofactor for activity simulation, but it did not play a significant role in thermostability improvement as reported previously. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) for substrate L-arabinose were measured to be 111.68 mM, 773.30/min, and 6.92/mM/min, respectively. The molecular docking results showed that the active site residues of P. haloplanktis L-AI could only immobilize L-arabinose and recognized it as substrate for isomerization.

  6. Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase.

    Science.gov (United States)

    Kim, Baek-Joong; Hong, Seung-Hye; Shin, Kyung-Chul; Jo, Ye-Seul; Oh, Deok-Kun

    2014-11-01

    The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cat/K m of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cat/K m of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.

  7. Crystallization and preliminary X-ray crystallographic analysis of L-arabinose isomerase from thermophilic Geobacillus kaustophilus.

    Science.gov (United States)

    Cao, Thinh-Phat; Choi, Jin Myung; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sung-Keun; Jun, Youngsoo; Lee, Dong-Woo; Lee, Sung Haeng

    2014-01-01

    L-arabinose isomerase (AI), which catalyzes the isomerization of L-arabinose to L-ribulose, can also convert D-galactose to D-tagatose, a natural sugar replacer, which is of commercial interest in the food and healthcare industries. Intriguingly, mesophilic and thermophilic AIs showed different substrate preferences and metal requirements in catalysis and different thermostabilities. However, the catalytic mechanism of thermophilic AIs still remains unclear. Therefore, thermophilic Geobacillus kaustophilus AI (GKAI) was overexpressed, purified and crystallized, and a preliminary X-ray diffraction data set was obtained. Diffraction data were collected from a GKAI crystal to 2.70 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 224.12, b = 152.95, c = 91.28 Å, β = 103.61°. The asymmetric unit contained six molecules, with a calculated Matthews coefficient of 2.25 Å(3) Da(-1) and a solvent content of 45.39%. The three-dimensional structure determination of GKAI is currently in progress by molecular replacement and model building.

  8. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  9. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    DEWI FITRIANI

    2010-06-01

    Full Text Available L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme had optimum activity at high temperature and alkalin condition.

  10. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    Directory of Open Access Journals (Sweden)

    Wanarska Marta

    2012-08-01

    Full Text Available Abstract Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield

  11. [Screening of food-grade microorganisms for biotransformation of D-tagatose and cloning and expression of L-arabinose isomerase].

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Guan, Yuping; Zhang, Tongcun; Izumori, Ken; Sun, Yuanxia

    2012-05-01

    L-Arabinose isomerase (L-AI) is an intracellular enzyme that catalyzes the reversible isomerization of D-galactose and D-tagatose. Given the widespread use of D-tagatose in the food industry, food-grade microorganisms and the derivation of L-AI for the production of D-tagatose is gaining increased attention. In the current study, food-grade strains from different foods that can convert D-galactose to D-tagatose were screened. According to physiological, biochemical, and 16S rDNA gene analyses, the selected strain was found to share 99% identity with Pediococcus pentosaceus, and was named as Pediococcus pentosaceus PC-5. The araA gene encoding L-AI from Pediococcus pentosaceus PC-5 was cloned and overexpressed in E. coli BL21. The yield of D-tagatose using D-galactose as the substrate catalyzed by the crude enzyme in the presence of Mn2+ was found to be 33% at 40 degrees C.

  12. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  13. L-arabinose fermenting yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  14. L-arabinose fermenting yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  15. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    -arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering......, and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside...... at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L...

  16. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Caballero, Antonio; Ramos, Juan Luis

    2017-04-01

    Lignocellulose contains two pentose sugars, l-arabinose and d-xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing Saccharomyces cerevisiae yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant Saccharomyces cerevisiae strains capable of fermenting d-xylose are available on the market; however, there are few examples of l-arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both d-xylose and l-arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested d-xylose and l-arabinose co-fermentation. To find efficient alternative l-arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate l-arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using l-arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g-1). We demonstrate that efficient co-fermentation of d-xylose and l-arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.

  17. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.

    Science.gov (United States)

    Kurosawa, Kazuhiko; Plassmeier, Jens; Kalinowski, Jörn; Rückert, Christian; Sinskey, Anthony J

    2015-07-01

    Advanced biofuels from lignocellulosic biomass have been considered as a potential solution for the issues of energy sustainability and environmental protection. Triacylglycerols (TAGs) are potential precursors for the production of lipid-based liquid biofuels. Rhodococcus opacus PD630 can accumulate large amounts of TAGs when grown under physiological conditions of high carbon and low nitrogen. However, R. opacus PD630 does not utilize the sugar L-arabinose present in lignocellulosic hydrolysates. Here, we report the engineering of R. opacus to produce TAGs on L-arabinose. We constructed a plasmid (pASC8057) harboring araB, araD and araA genes derived from a Streptomyces bacterium, and introduced the genes into R. opacus PD630. One of the engineered strains, MITAE-348, was capable of growing on high concentrations (up to 100 g/L) of L-arabinose. MITAE-348 was grown in a defined medium containing 16 g/L L-arabinose or a mixture of 8 g/L L-arabinose and 8 g/L D-glucose. In a stationary phase occurring 3 days post-inoculation, the strain was able to completely utilize the sugar, and yielded 2.0 g/L for L-arabinose and 2.2 g/L for L-arabinose/D-glucose of TAGs, corresponding to 39.7% or 42.0%, respectively, of the cell dry weight.

  18. Utilization and Transport of L-Arabinose by Non-Saccharomyces Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, E. P.; Franden, M. A.; Stambuk, B. U.; Zhang, M.; Singh, A.

    2009-01-01

    L-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert L-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for L-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand L-arabinose transport and use in yeasts and to identify a source for efficient L-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of L-arabinose. Initial transport rates of L-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.

  19. The Preparations of L - arabinose%L-阿拉伯糖研究进展

    Institute of Scientific and Technical Information of China (English)

    黄淳

    2011-01-01

    L- arabinose is a new functional and low -caloric sugar. In nature, L -arabinose indwells in the corn bran, beetroot, arabic gum, etc. L- arabinose plays an important role in the modulating of blood sugar and blood fat. The preparation methods of L - arabinose are summarized and the nature of L - arabinose areintrodured in this paper. The article also gives some outlook for the development trend of L -arabinose.%L-阿拉伯糖是一种新兴的低热量功能性糖,在自然界中,广泛存在于玉米皮、甜菜根、阿拉伯胶等中。L-阿拉伯糖在血糖、血脂的调节方面有广阔的前景。本文综述了L-阿拉伯糖的制备方法,并介绍了L-阿拉伯糖的性质,展望了L-阿拉伯糖生产的发展趋势。

  20. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis.

    Science.gov (United States)

    Yoon, Byoung Hoon; Jeon, Woo Young; Shim, Woo Yong; Kim, Jung Hoe

    2011-04-01

    Xylose reductase (XR) is a key enzyme in biological xylitol production, and most XRs have broad substrate specificities. During xylitol production from biomass hydrolysate, non-specific XRs can reduce L-arabinose, which is the second-most abundant hemicellulosic sugar, to the undesirable byproduct arabitol, which interferes with xylitol crystallization in downstream processing. To minimize the flux from L-arabinose to arabitol, the L-arabinose-preferring, endogenous XR was replaced by a D-xylose-preferring heterologous XR in Candida tropicalis. Then, Bacillus licheniformis araA and Escherichia coli araB and araD were codon-optimized and expressed functionally in C. tropicalis for the efficient assimilation of L-arabinose. During xylitol fermentation, the control strains BSXDH-3 and KNV converted 9.9 g L-arabinose l(-1) into 9.5 and 8.3 g arabitol l(-1), respectively, whereas the recombinant strain JY consumed 10.5 g L-arabinose l(-1) for cell growth without forming arabitol. Moreover, JY produced xylitol with 42 and 16% higher productivity than BSXDH-3 and KNV, respectively.

  1. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organ

  2. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-12-02

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.

  3. A mixed diet supplemented with l-arabinose does not alter glycaemic or insulinaemic responses in healthy human subjects

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia; Knudsen, Knud E Bach; Nielsen, Soren

    2015-01-01

    In addition to a yet-to-be published study showing arabinose to have an inhibiting effect on maltase, in vitro studies have shown L-arabinose to exert an inhibiting effect on small-intestinal sucrase and maltase and the consumption of a sucrose-rich drink containing L-arabinose to exert positive ...

  4. A mixed diet supplemented with l-arabinose does not alter glycaemic or insulinaemic responses in healthy human subjects

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia; Knudsen, Knud E Bach; Nielsen, Soren

    2015-01-01

    In addition to a yet-to-be published study showing arabinose to have an inhibiting effect on maltase, in vitro studies have shown L-arabinose to exert an inhibiting effect on small-intestinal sucrase and maltase and the consumption of a sucrose-rich drink containing L-arabinose to exert positive ...

  5. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification

    Directory of Open Access Journals (Sweden)

    Lin Shuangjun

    2011-06-01

    Full Text Available Abstract Background L-arabinose is an important intermediate for anti-virus drug synthesis and has also been used in food additives for diets-controlling in recent years. Commercial production of L-arabinose is a complex progress consisting of acid hydrolysis of gum arabic, followed by multiple procedures of purification, thus making high production cost. Therefore, there is a biotechnological and commercial interest in the development of new cost-effective and high-performance methods for obtaining high purity grade L-arabinose. Results An alternative, economical method for purifying L-arabinose from xylose mother liquor was developed in this study. After screening 306 yeast strains, a strain of Pichia anomala Y161 was selected as it could effectively metabolize other sugars but not L-arabinose. Fermentation in a medium containing xylose mother liquor permitted enrichment of L-arabinose by a significant depletion of other sugars. Biochemical analysis of this yeast strain confirmed that its poor capacity for utilizing L-arabinose was due to low activities of the enzymes required for the metabolism of this sugar. Response surface methodology was employed for optimization the fermentation conditions in shake flask cultures. The optimum conditions were: 75 h fermentation time, at 32.5°C, in a medium containing 21% (v/v xylose mother liquor. Under these conditions, the highest purity of L-arabinose reached was 86.1% of total sugar, facilitating recovery of white crystalline L-arabinose from the fermentation medium by simple methods. Conclusion Yeast-mediated biopurification provides a dynamic method to prepare high purity of L-arabinose from the feedstock solution xylose mother liqour, with cost-effective and high-performance properties.

  6. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2015-12-01

    Full Text Available Background: L-Arabinose is a non-caloric sugar, which could affect glucose and lipid metabolism and suppress obesity. However, few reports have described the effect of L-arabinose in metabolic syndrome, a combination of medical disorders that increase the risk of diabetes and cardiovascular disease. Objective: This study was conducted to explore the effects of L-arabinose in rats with metabolic syndrome induced by a high-carbohydrate, high-fat (HCHF diet. Methods: After the rat model for metabolic syndrome was successfully established, L-arabinose was administrated by oral gavage for 6 weeks. The biochemical index and histological analysis were measured, and the expression levels of genes related to fatty acid metabolism were analyzed using real-time PCR. Results: Following treatment with L-arabinose, metabolic syndrome rats had an obvious reduction in body weight, systolic blood pressure, diastolic blood pressure, fasting blood glucose, triglycerides, total cholesterol, serum insulin, TNF-α, and leptin. Further study showed that treatment with L-arabinose significantly increased the expression of mRNA for hepatic CPT-1α and PDK4, but the expression of mRNA for hepatic ACCα was reduced. Conclusions: This work suggests that L-arabinose could lower body weight, Lee's index, and visceral index and improve dyslipidemia, insulin resistance, inflammation, and viscera function, which indicate that it might be a promising candidate for therapies combating metabolic syndrome.

  7. Engineering Pseudomonas putida S12 for efficient utilization of D-Xylose and L-Arabinose

    NARCIS (Netherlands)

    Meijnen, J.P.; Winde, J.H. de; Ruijssenaars, H.J.

    2008-01-01

    The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to utilize xylose as a substrate by expressing xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli. The initial yield on xylose was low (9% [g CDW g substrate−1], where CDW is cell dry weight), and the growth rate

  8. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2006-04-01

    Full Text Available Abstract Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pentose sugars D-xylose and L-arabinose. Introduction of a fungal xylose and a bacterial arabinose pathway resulted in strains able to grow on both pentose sugars. Introduction of a xylose pathway into an arabinose-fermenting laboratory strain resulted in nearly complete conversion of arabinose into arabitol due to the L-arabinose reductase activity of the xylose reductase. The industrial strain displayed lower arabitol yield and increased ethanol yield from xylose and arabinose. Conclusion Our work demonstrates simultaneous co-utilization of xylose and arabinose in recombinant strains of S. cerevisiae. In addition, the co-utilization of arabinose together with xylose significantly reduced formation of the by-product xylitol, which contributed to improved ethanol production.

  9. Sugar-metal ion interactions: The coordination behavior of cesium ion with lactose, D-arabinose and L-arabinose

    Science.gov (United States)

    Jiang, Ye; Xue, Junhui; Wen, Xiaodong; Zhai, Yanjun; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Kou, Kuan; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2016-04-01

    The novel cesium chloride-lactose complex (CsCl·C12H22O10 (Cs-Lac), cesium chloride-D-arabinose and L-arabinose complexes (CsCl·C5H10O5, Cs-D-Ara and Cs-L-Ara) have been synthesized and characterized using X-ray diffraction, FTIR, FIR, THz and Raman spectroscopies. Cs+ is 9-coordinated to two chloride ions and seven hydroxyl groups from five lactose molecules in Cs-Lac. In the structures of CsCl-D-arabinose and CsCl-L-arabinose complexes, two kinds of Cs+ ions coexist in the structures. Cs1 is 10-coordinated with two chloride ions and eight hydroxyl groups from five arabinose molecule; Cs2 is 9-coordinated to three chloride ions and six hydroxyl groups from five arabinose molecules. Two coordination modes of arabinose coexist in the structures. α-D-arabinopyranose and α-L-arabinopyranose appear in the structures of Cs-D-Ara and Cs-L-Ara complexes. FTIR and Raman results indicate variations of hydrogen bonds and the conformation of the ligands after complexation. FIR and THz spectra also confirm the formation of Cs-complexes. Crystal structure, FTIR, FIR, THz and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-lactose, cesium chloride-D- and L-arabinose complexes.

  10. Effect of C-terminal protein tags on pentitol and L-arabinose transport by Ambrosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae.

    Science.gov (United States)

    Londesborough, John; Richard, Peter; Valkonen, Mari; Viljanen, Kaarina

    2014-05-01

    Functional expression in heterologous hosts is often less successful for integral membrane proteins than for soluble proteins. Here, two Ambrosiozyma monospora transporters were successfully expressed in Saccharomyces cerevisiae as tagged proteins. Growth of A. monospora on l-arabinose instead of glucose caused transport activities of l-arabinose, l-arabitol, and ribitol, measured using l-[1-(3)H]arabinose, l-[(14)C]arabitol, and [(14)C]ribitol of demonstrated purity. A. monospora LAT1 and LAT2 genes were cloned earlier by using their ability to improve the growth of genetically engineered Saccharomyces cerevisiae on l-arabinose. However, the l-arabinose and pentitol transport activities of S. cerevisiae carrying LAT1 or LAT2 are only slightly greater than those of control strains. S. cerevisiae carrying the LAT1 or LAT2 gene fused in frame to the genes for green fluorescent protein (GFP) or red fluorescent protein (mCherry) or adenylate kinase (AK) exhibited large (>3-fold for LAT1; >20-fold for LAT2) increases in transport activities. Lat1-mCherry transported l-arabinose with high affinity (Km ≈ 0.03 mM) and l-arabitol and ribitol with very low affinity (Km ≥ 75 mM). The Lat2-GFP, Lat2-mCherry, and Lat2-AK fusion proteins could not transport l-arabinose but were high-affinity pentitol transporters (Kms ≈ 0.2 mM). The l-arabinose and pentitol transport activities of A. monospora could not be completely explained by any combination of the observed properties of tagged Lat1 and Lat2, suggesting either that tagging and expression in a foreign membrane alters the transport kinetics of Lat1 and/or Lat2 or that A. monospora contains at least one more l-arabinose transporter.

  11. L-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for L-ribose production.

    Science.gov (United States)

    Xu, Zheng; Sha, Yuanyuan; Liu, Chao; Li, Sha; Liang, Jinfeng; Zhou, Jiahai; Xu, Hong

    2016-11-01

    L-Ribose is a synthetic L-form monosaccharide. It is a building block of many novel nucleotide analog anti-viral drugs. Bio-production of L-ribose relies on a two-step reaction: (i) conversion of L-arabinose to L-ribulose by the catalytic action of L-arabinose isomerase (L-AI) and (ii) conversion of L-ribulose to L-ribose by the catalytic action of L-ribose isomerase (L-RI, EC 5.3.1.B3) or mannose-6-phosphate isomerase (MPI, EC 5.3.1.8, alternately named as phosphomannose isomerase). Between the two enzymes, L-RI is a rare enzyme that was discovered in 1996 by Professor Izumori's group, whereas MPI is an essential enzyme in metabolic pathways in humans and microorganisms. Recent studies have focused on their potentials for industrial production of L-ribose. This review summarizes the applications of L-RI and MPI for L-ribose production.

  12. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.

    Science.gov (United States)

    Knoshaug, Eric P; Vidgren, Virve; Magalhães, Frederico; Jarvis, Eric E; Franden, Mary Ann; Zhang, Min; Singh, Arjun

    2015-10-01

    Genes encoding L-arabinose transporters in Kluyveromyces marxianus and Pichia guilliermondii were identified by functional complementation of Saccharomyces cerevisiae whose growth on L-arabinose was dependent on a functioning L-arabinose transporter, or by screening a differential display library, respectively. These transporters also transport D-xylose and were designated KmAXT1 (arabinose-xylose transporter) and PgAXT1, respectively. Transport assays using L-arabinose showed that KmAxt1p has K(m) 263 mM and V(max) 57 nM/mg/min, and PgAxt1p has K(m) 0.13 mM and V(max) 18 nM/mg/min. Glucose, galactose and xylose significantly inhibit L-arabinose transport by both transporters. Transport assays using D-xylose showed that KmAxt1p has K(m) 27 mM and V(max) 3.8 nM/mg/min, and PgAxt1p has K(m) 65 mM and V(max) 8.7 nM/mg/min. Neither transporter is capable of recovering growth on glucose or galactose in a S. cerevisiae strain deleted for hexose and galactose transporters. Transport kinetics of S. cerevisiae Gal2p showed K(m) 371 mM and V(max) 341 nM/mg/min for L-arabinose, and K(m) 25 mM and V(max) 76 nM/mg/min for galactose. Due to the ability of Gal2p and these two newly characterized transporters to transport both L-arabinose and D-xylose, one scenario for the complete usage of biomass-derived pentose sugars would require only the low-affinity, high-throughput transporter Gal2p and one additional high-affinity general pentose transporter, rather than dedicated D-xylose or L-arabinose transporters. Additionally, alignment of these transporters with other characterized pentose transporters provides potential targets for substrate recognition engineering.

  13. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  14. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  15. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.

    Science.gov (United States)

    Fry, S C

    1982-05-01

    1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed.

  16. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  17. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  18. A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge

    Directory of Open Access Journals (Sweden)

    Perricone Nicholas V

    2011-05-01

    Full Text Available Abstract Background A growing body of research suggests that elevated circulating levels of glucose and insulin accelerate risk factors for a wide range of disorders. Low-risk interventions that could suppress glucose without raising insulin levels could offer significant long-term health benefits. Methods To address this issue, we conducted two sequential studies, the first with two phases. In the first phase of Study 1, baseline fasting blood glucose was measured in 20 subjects who consumed 70 grams of sucrose in water and subsequently completed capillary glucose measurements at 30, 45, 60 and 90 minutes (Control. On day-2 the same procedure was followed, but with subjects simultaneously consuming a novel formula containing l-arabinose and a trivalent patented food source of chromium (LA-Cr (Treatment. The presence or absence of the LA-Cr was blinded to the subjects and testing technician. Comparisons of changes from baseline were made between Control and Treatment periods. In the second phase of Study 1, 10 subjects selected from the original 20 competed baseline measures of body composition (DXA, a 43-blood chemistry panel and a Quality of Life Inventory. These subjects subsequently took LA-Cr daily for 4 weeks completing daily tracking forms and repeating the baseline capillary tests at the end of each of the four weeks. In Study 2, the same procedures used in the first phase were repeated for 50 subjects, but with added circulating insulin measurements at 30 and 60 minutes from baseline. Results In both studies, as compared to Control, the Treatment group had significantly lower glucose responses for all four testing times (AUC = P P = Conclusions As compared to a placebo control, consumption of a LA-Cr formula after a 70-gram sucrose challenge was effective in safely lowering both circulating glucose and insulin levels. Trial Registration Clinical Trials.gov, NCT0110743

  19. Induction by (alpha)-L-Arabinose and (alpha)-L-Rhamnose of Endopolygalacturonase Gene Expression in Colletotrichum lindemuthianum.

    Science.gov (United States)

    Hugouvieux, V; Centis, S; Lafitte, C; Esquerre-Tugaye, M

    1997-06-01

    The production of endopolygalacturonase (endoPG) by Colletotrichum lindemuthianum, a fungal pathogen causing anthracnose on bean seedlings, was enhanced when the fungus was grown in liquid medium with L-arabinose or L-rhamnose as the sole carbon source. These two neutral sugars are present in plant cell wall pectic polysaccharides. The endolytic nature of the enzyme was demonstrated by its specific interaction with the polygalacturonase-inhibiting protein of the host plant as well as by sugar analysis of the products released from its action on oligogalacturonides. Additional characterization of the protein was achieved with an antiserum raised against the pure endoPG of the fungus. Induction by arabinose and rhamnose was more prolonged and led to a level of enzyme activity at least five times higher than that on pectin. Northern blot experiments showed that this effect was correlated to the induction of a 1.6-kb transcript. A dose-response study indicated that the endoPG transcript level was already increased at a concentration of each sugar as low as 2.75 mM in the medium and was maximum at 55 mM arabinose and 28 mM rhamnose. Glucose, the main plant cell wall sugar residue which is also present in the apoplast, prevented endoPG gene expression, partially when added to pectin at concentrations ranging from 5 to 110 mM and totally when added at 55 mM to arabinose. Inhibition by glucose of the rhamnose-induced endoPG was correlated to nonuptake of rhamnose. This is the first report that arabinose and rhamnose stimulate endoPG gene expression in a fungus. The possible involvement of these various sugars on endoPG gene expression during pathogenesis is discussed.

  20. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.

    Science.gov (United States)

    Johnsen, Ulrike; Sutter, Jan-Moritz; Schulz, Anne-Christine; Tästensen, Julia-Beate; Schönheit, Peter

    2015-05-01

    The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.

  1. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus.

    Science.gov (United States)

    Yamasaki-Yashiki, Shino; Komeda, Hidenobu; Hoshino, Kazuhiro; Asano, Yasuhisa

    2017-08-01

    l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.

  2. L-阿拉伯糖的功能特性与应用%The function characteristics and applications of L- Arabinose

    Institute of Scientific and Technical Information of China (English)

    孙鲁; 聂永来; 崔淑芬

    2011-01-01

    As a pentose and new type of low - calorie sweetener, L - Arabinose can inhibit the metabolism ot sucrose,control blood glucose elevation and lipid accumulation, prevent constipation, promote the growth of Bacillus bifidus, alter the composition of skeletal muscle fiber. This paper reports the function characteristics of L- Arabinose, also introduces the applications in bakery, drinking and biomedicine. L- Arabinose, as a versatile new resource food, has profound influence on the improvement of dietary structure and quality of life, the market prospect is capacious.%作为五碳糖的L-阿拉伯糖,是一种新型的低热量甜味剂,具有抑制人体对蔗糖的代谢与吸收、控制血糖升高和脂肪堆积、预防便秘、促进双歧杆菌生长、改变骨骼肌纤维成分等性质.本文介绍了L-阿拉伯糖的性质、功能和在焙烤食品、饮品和生物医药方面的应用情况,得出L-阿拉伯糖作为一种用途广泛的新资源食品,对于改善人们的饮食结构、提高人们的生活品质将会产生深远的影响,市场前景广阔.

  3. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression

    NARCIS (Netherlands)

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosacchari

  4. L-阿拉伯糖对代谢综合征大鼠糖脂代谢的影响%Effect of L-Arabinose on glucolipid metabolism in metabolic syndrome rats

    Institute of Scientific and Technical Information of China (English)

    李凯; 吕晓玲; 张婷婷; 王婷婷

    2013-01-01

    目的:观察L-阿拉伯糖对代谢综合征(MS)大鼠糖脂代谢的影响.方法:通过给予健康雄性SD大鼠高糖高脂高盐饮食14w,建立MS大鼠模型.筛选建模成功的MS大鼠,将其随机分为模型对照组和L-阿拉伯糖低剂量组、中剂量组、高剂量组,给予不同剂量L-阿拉伯糖溶液灌胃6w,检测各组大鼠空腹血糖(FBG)及血清TG、TC、HDL-C、LDL-C、游离脂肪酸(FFA)水平.结果:与模型对照组相比,L-阿拉伯糖可以不同程度地降低血清TG、TC、LDL-C水平,降低血清FFA含量,同时可以明显改善FBG水平.结论:L-阿拉伯糖可以通过降低FBG水平和改善脂代谢紊乱来缓解MS大鼠的症状.%Objective:To evaluate the effect of L-arabinose on glucolipid metabolism in metabolic syndrome rats.Methods:Metabolic syndrome rats models were induced by feeding with high sugar-high fat-high salt diet for 14 weeks.The rats were then divided into four groups randomLy:model control group and low dosage L-arabinose group,the medium dosage L-arabinose group,high dosage L-arabinose group.Three doses of L-arabinose solution were given by intragastric administration for 6 weeks.Fasting plasma glucose,the levels of TG,TC,HDL-C,LDL-C,free fatty acids in ser-um of each group rats were measured.Results:Compared with the model control rats,L-arabinose could reduce the levels of TG,TC,and LDL-C in serum and reduce the content of free fatty acids in serum.Meanwhile,L-arabinose could significantly improve the level of fasting plasma glucose.Conclusions:L-arabinnose could relieve the symptoms of MS rats through reducing fasting blood glucose level and improving lipid metabolic disorder.

  5. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    Science.gov (United States)

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  6. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    Directory of Open Access Journals (Sweden)

    Joanna E Kowalczyk

    Full Text Available In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  7. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

    Science.gov (United States)

    de Souza, Wagner Rodrigo; Maitan-Alfenas, Gabriela Piccolo; de Gouvêa, Paula Fagundes; Brown, Neil Andrew; Savoldi, Marcela; Battaglia, Evy; Goldman, Maria Helena S; de Vries, Ronald P; Goldman, Gustavo Henrique

    2013-11-01

    The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.

  8. Thermoinactivation Mechanism of Glucose Isomerase

    Science.gov (United States)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  9. Genetics Home Reference: triosephosphate isomerase deficiency

    Science.gov (United States)

    ... Oláh J, Ovádi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta. 2009 ... healthcare professional . About Genetics Home Reference Site Map Customer Support Selection Criteria for Links USA.gov Copyright ...

  10. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  11. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...... cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p...... was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines...

  12. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Science.gov (United States)

    2010-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma. (b...

  13. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  14. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  15. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  16. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  17. The fermentation of lignocellulose hydrolysates with xylose isomerases and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T.

    1992-01-01

    Untreated spent sulphite liquor (SSL) was fermented with Canida tropicalis, Pichia stipitis, Pachysolen tannophilus, Schizosaccharomyces pombe, Saccharomyces cerevisiae and a co-culture of P. Tannophilus and A. cerevisiae, in the presence of xylose isomerases and 4.6 mM azide. The highest yield of ethanol, 0.41 g/g total sugar was obtained with S. cerevisiae, C. tropicalis, and P. tannophilus produced considerble amounts of polyoles, mainly xylitol. With P. stipitis sugar uptake was rapidly inhibited in untreated SSL. The presence of azide contributed to the yield by about 0.04. The fermentation of hydrogen fluoride-pretreated and acid-hydrolysed wheat straw with S. cerevisiae, xylose isomerase, and azide gave a yield of 0.40 g ethanol/g total sugar. In this substrate the xylose utilisation was 84% compared with 51% in SSL. In the concentration range appropriate for enzymatic xylose isomerization, xylulose was measured in a lignocellulose hydrolysate using HPLC with two hydrogen loaded ion exchange columns in series. SSL was used as a model for lignocellulose hydrolysates. The enzymatic isomerization of xylose to xylulose was followed directly in SSL, providing a method for the direct determination of xylose isomerase activity in lignocellulose hydrolysates. Three different xylose isomerase preparations of L. brevis whole cells were compared with a commercial enzyme preparation Maxazyme GI-immob., with respect to activity and stability. From a continuous SSL fermentation plant, two species of yeasts were isolated, S. cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3 was heavily flocculating. Without acetic acid present, both bakers' yeast and isolate no. 3 showed catabolite repression and fermented glucose and galactose sequentially. Galactose fermentation with bakers' yeast was strongly inhibited by acetic acid at pH values below 6. Isolate no. 3 fermented galactose, glucose and mannose, in the presence of acetic acid

  18. The fermentation of lignocellulose hydrolysates with xylose isomerases and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T.

    1992-09-01

    Untreated spent sulphite liquor (SSL) was fermented with Canida tropicalis, Pichia stipitis, Pachysolen tannophilus, Schizosaccharomyces pombe, Saccharomyces cerevisiae and a co-culture of P. Tannophilus and A. cerevisiae, in the presence of xylose isomerases and 4.6 mM azide. The highest yield of ethanol, 0.41 g/g total sugar was obtained with S. cerevisiae, C. tropicalis, and P. tannophilus produced considerble amounts of polyoles, mainly xylitol. With P. stipitis sugar uptake was rapidly inhibited in untreated SSL. The presence of azide contributed to the yield by about 0.04. The fermentation of hydrogen fluoride-pretreated and acid-hydrolysed wheat straw with S. cerevisiae, xylose isomerase, and azide gave a yield of 0.40 g ethanol/g total sugar. In this substrate the xylose utilisation was 84% compared with 51% in SSL. In the concentration range appropriate for enzymatic xylose isomerization, xylulose was measured in a lignocellulose hydrolysate using HPLC with two hydrogen loaded ion exchange columns in series. SSL was used as a model for lignocellulose hydrolysates. The enzymatic isomerization of xylose to xylulose was followed directly in SSL, providing a method for the direct determination of xylose isomerase activity in lignocellulose hydrolysates. Three different xylose isomerase preparations of L. brevis whole cells were compared with a commercial enzyme preparation Maxazyme GI-immob., with respect to activity and stability. From a continuous SSL fermentation plant, two species of yeasts were isolated, S. cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3 was heavily flocculating. Without acetic acid present, both bakers` yeast and isolate no. 3 showed catabolite repression and fermented glucose and galactose sequentially. Galactose fermentation with bakers` yeast was strongly inhibited by acetic acid at pH values below 6. Isolate no. 3 fermented galactose, glucose and mannose, in the presence of acetic acid even at pH.

  19. Gene regulation in response to protein disulphide isomerase deficiency

    DEFF Research Database (Denmark)

    Nørgaard, Per; Tachibana, Christine; Bruun, Anette W

    2003-01-01

    We have examined the activities of promoters of a number of yeast genes encoding resident endoplasmic reticulum proteins, and found increased expression in a strain with severe protein disulphide isomerase deficiency. Serial deletion in the promoter of the MPD1 gene, which encodes a PDI1-homologue...... element. The sequence (GACACG) does not resemble the unfolded protein response element. It is present in the upstream regions of the MPD1, MPD2, KAR2, PDI1 and ERO1 genes....

  20. GPI Mount Scopus--a variant of glucosephosphate isomerase deficiency.

    Science.gov (United States)

    Shalev, O; Shalev, R S; Forman, L; Beutler, E

    1993-10-01

    Glucosephosphate isomerase (GPI) deficiency is an unusual cause of hereditary nonspherocytic hemolytic anemia. The disease, inherited as an autosomal recessive disorder, is most often manifested by symptoms and signs of chronic hemolysis, ameliorated by splenectomy. We recently diagnosed GPI deficiency in a 23-year-old Ashkenazi Jewish man who displayed the typical clinical course of this disorder. The biophysical characteristics of the GPI variant are slow electrophoretic mobility, presence of only one of the two bands normally present, and extreme thermolability. To the best of our knowledge, this is the first report of GPI deficiency in a patient of Jewish descent, and we propose to designate this enzyme variant "GPI Mount Scopus".

  1. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  2. Determination of the amino acid requirements for a protein hinge in triosephosphate isomerase.

    OpenAIRE

    Sun, J.; Sampson, N. S.

    1998-01-01

    We have determined the sequence requirements for a protein hinge in triosephosphate isomerase. The codons encoding the hinge at the C-terminus of the active-site lid of triosephosphate isomerase were replaced with a genetic library of all possible 8,000 amino acid combinations. The most active of these 8,000 mutants were selected using in vivo complementation of a triosephosphate isomerase deficient strain of E. coli, DF502. Approximately 3% of the mutants complement DF502 with an activity th...

  3. Three phenotypes of glucosephosphate isomerase in sheep: improved staining recipe.

    Science.gov (United States)

    Manwell, C; Baker, C M; Graydon, R J

    1985-01-01

    Contrary to results published recently, we observe three, rather than two, phenotypes for the enzyme glucosephosphate isomerase (EC 5.3.1.9) from sheep. The phenotypic electrophoretic patterns conform to the patterns observed for this dimeric enzyme in other species. Genotype frequencies in a flock of Southdowns do not deviate significantly from those predicted under the assumption of the Hardy-Weinberg equilibrium. A remarkable observation is that the electrophoretically distinct phenotypes of GPI are largely or entirely obliterated by the addition of 1-10 mmol/l MgCl2 to the electrophoretic buffers. Modification of the usual staining recipe for GPI result in greater resolution and shorter staining times.

  4. Solution structure of 3-oxo-delta5-steroid isomerase.

    Science.gov (United States)

    Wu, Z R; Ebrahimian, S; Zawrotny, M E; Thornburg, L D; Perez-Alvarado, G C; Brothers, P; Pollack, R M; Summers, M F

    1997-04-18

    The three-dimensional structure of the enzyme 3-oxo-delta5-steroid isomerase (E.C. 5.3.3.1), a 28-kilodalton symmetrical dimer, was solved by multidimensional heteronuclear magnetic resonance spectroscopy. The two independently folded monomers pack together by means of extensive hydrophobic and electrostatic interactions. Each monomer comprises three alpha helices and a six-strand mixed beta-pleated sheet arranged to form a deep hydrophobic cavity. Catalytically important residues Tyr14 (general acid) and Asp38 (general base) are located near the bottom of the cavity and positioned as expected from mechanistic hypotheses. An unexpected acid group (Asp99) is also located in the active site adjacent to Tyr14, and kinetic and binding studies of the Asp99 to Ala mutant demonstrate that Asp99 contributes to catalysis by stabilizing the intermediate.

  5. Cumene peroxide and Fe(2+)-ascorbate-induced lipid peroxidation and effect of phosphoglucose isomerase.

    Science.gov (United States)

    Agadjanyan, Z S; Dugin, S F; Dmitriev, L F

    2006-09-01

    Malondialdehyde (MDA) is one of cytotoxic aldehydes produced in cells as a result of lipid peroxidation and further MDA metabolism in cytoplasm is not known. In our experiments the liver fraction 10,000 g containing phosphoglucose isomerase and enzymes of the glyoxalase system was used and obtained experimental data shows that in this fraction there is an aggregate of reactions taking place both in membranes (lipid peroxidation) and outside membranes. MDA accumulation is relatively slow because MDA is a substrate of aldehyde isomerase (MDA methylglyoxal). The well known enzyme phosphoglucose isomerase acts as an aldehyde isomerase (Michaelis constant for this enzyme Km = 133 +/- 8 microM). MDA conversion to methylglyoxal and further to neutral product D-lactate (with GSH as a cofactor) occurs in cytoplasm and D-lactate should be regarded as the end product of two different parametabolic reactions: lipid peroxidation or protein glycation.

  6. Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

    Science.gov (United States)

    Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W

    2010-06-01

    Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.

  7. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity.

    Science.gov (United States)

    Loureiro, Inês; Faria, Joana; Clayton, Christine; Macedo-Ribeiro, Sandra; Santarém, Nuno; Roy, Nilanjan; Cordeiro-da-Siva, Anabela; Tavares, Joana

    2015-01-01

    Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection.

  8. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum

    DEFF Research Database (Denmark)

    Xiao, Ruoyu; Wilkinson, Bonney; Solovyov, Anton

    2004-01-01

    In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae......, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI...... homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p...

  9. Detection of platypus-type L/D-peptide isomerase activity in aqueous extracts of papaya fruit.

    Science.gov (United States)

    Arakawa, Kensuke; Koh, Jennifer M S; Crossett, Ben; Torres, Allan M; Kuchel, Philip W

    2012-09-01

    Peptide isomerase catalyses the post-translational isomerisation of the L: - to the D: -form of an amino acid residue around the N/C-termini of substrate peptides. To date, some peptide isomerases have been found in a limited number of animal secretions and cells. We show here that papaya extracts have weak peptide isomerase activity. The activity was detected in each 30-100 kDa fraction of the flesh and the seed extracts of unripe and ripe papaya fruit. The definitive activity was confirmed in the ripe papaya extracts, but even then it was much less active than that of the other peptide isomerases previously reported. The activity was markedly inhibited by methanol, and partly so by amastatin and diethyl pyrocarbonate. This is the first report of peptide isomerase activity in a plant and suggests that perhaps every living organism may have some peptide isomerase activity.

  10. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  11. Comparison of the Recombinant Glucosephosphate Isomerase from Different Zymodemes of Entamoeba histolytica with Their Natural Counterparts by Isoenzyme Electrophoresis

    Directory of Open Access Journals (Sweden)

    E Razmjou

    2005-09-01

    Full Text Available Entamoeba histolytica is the etiological agent of invasive amoebiasis, the third leading parasitic cause of mortality in the world. Our aim was to find a molecular correlation between a glucosephosphate isomerase zymodeme analyses in E. histolytica zymodemes. It was demonstrated that natural and recombinant glucosephosphate isomerase enzymes of E. histolytica comigrated in the starch gel electrophoresis, indicating that the isoenzyme pattern of E. histolytica glucosephosphate isomerase could be explained from the primary sequences alone and means that expression of the polypeptides of the described sequences in Escherichia coli are able to reproduce the classical glucosephosphate isomerase isoenzyme patterns.

  12. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose.

    Science.gov (United States)

    Sund, Christian J; Liu, Sanchao; Germane, Katherine L; Servinsky, Matthew D; Gerlach, Elliot S; Hurley, Margaret M

    2015-02-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in C. acetobutylicum has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in C. acetobutylicum, experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway's primary role in C. acetobutylicum is arabinose metabolism.

  13. 13C metabolic flux analysis in Clostridium acetobutylicum during growth on L-arabinose

    Science.gov (United States)

    Hurley, Margaret; Sund, Christian; Liu, Sanchao; Germane, Katherine; Servinsky, Matthew; Gerlach, Elliot

    2015-03-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism are continuing to emerge. To elucidate the role of xylulose-5-P/fructose-6-P phosphoketolase (XFP), and the recently discovered Pentose Phosphate Pathway (PKP) in C. acetobutylicum, experimental and computational metabolic isotope analysis was performed under growth on glucose, xylose, and arabinose. Results indicate that PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. This was confirmed by mutation of the gene encoding XFP, which almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate:butyrate ratios. We discuss these experimental and computational results here, and the implications for our understanding of sugar metabolism in C. acetobutylicum.

  14. CRYSTAL-STRUCTURE OF RECOMBINANT HUMAN TRIOSEPHOSPHATE ISOMERASE AT 2.8 ANGSTROM RESOLUTION - TRIOSEPHOSPHATE ISOMERASE-RELATED HUMAN GENETIC-DISORDERS AND COMPARISON WITH THE TRYPANOSOMAL ENZYME

    NARCIS (Netherlands)

    MANDE, SC; MAINFROID, [No Value; KALK, KH; GORAJ, K; MARTIAL, JA; HOL, WGJ

    1994-01-01

    The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 Angstrom. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer o

  15. Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia.

    Science.gov (United States)

    Reyes-Vivas, Horacio; de la Mora-de la Mora, Ignacio; Castillo-Villanueva, Adriana; Yépez-Mulia, Lilian; Hernández-Alcántara, Gloria; Figueroa-Salazar, Rosalia; García-Torres, Itzhel; Gómez-Manzo, Saúl; Méndez, Sara T; Vanoye-Carlo, América; Marcial-Quino, Jaime; Torres-Arroyo, Angélica; Oria-Hernández, Jesús; Gutiérrez-Castrellón, Pedro; Enríquez-Flores, Sergio; López-Velázquez, Gabriel

    2014-12-01

    Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.

  16. Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65.

    Science.gov (United States)

    Jin, Minghao; Yuan, Quan; Li, Songhua; Travis, Gabriel H

    2007-07-20

    Absorption of a photon by a vertebrate opsin pigment induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical re-isomerization of the chromophore via an enzyme pathway called the visual cycle. The retinoid isomerase in this pathway is Rpe65, a membrane-associated protein in the retinal pigment epithelium (RPE) with no predicted membrane-spanning segments. It has been suggested that Rpe65 is S-palmitoylated by lecithin:retinol acyl transferase (LRAT) on Cys(231), Cys(329), and Cys(330), and that this palmitoylation is required for isomerase activity and the association of Rpe65 with membranes. Here we show that the affinity of Rpe65 for membranes is similar in wild-type and lrat(-/-) mice. The isomerase activity of Rpe65 is also similar in both strains when all-trans-retinyl palmitate is used as substrate. With all-trans-retinol substrate, isomerase activity is present in wild-type but undetectable in RPE homogenates from lrat(-/-) mice. Substitution of Cys(231), Cys(329), and Cys(330) with Ser or Ala did not affect the affinity of Rpe65 for membranes. Further, these Cys residues are not palmitoylated in Rpe65 by mass spectrometric analysis. Global inhibition of protein palmitoylation by 2-bromopalmitate did not affect the solubility or isomerase activity of Rpe65. Finally, we show that soluble and membrane-associated Rpe65 possesses similar isomerase specific activities. These results indicate that LRAT is not required for isomerase activity beyond synthesis of retinyl-ester substrate, and that the association of Rpe65 with membranes is neither dependent upon LRAT nor the result of S-palmitoylation. The affinity of Rpe65 for membranes is probably an intrinsic feature of this protein.

  17. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision.

    Science.gov (United States)

    Kiser, Philip D; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-06-01

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.

  18. Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus.

    Science.gov (United States)

    Macouzet, Martin; Robert, Normand; Lee, Byong H

    2010-08-01

    While the remarkable health effects of conjugated linoleic acid (CLA) catalyzed from alpha-linoleic acid by the enzyme linoleate isomerase (LI, EC 5.2.1.5) are well recognized, how widely this biochemical activity is present and the mechanisms of its regulation in lactic acid bacteria are unknown. Although certain strains of Lactobacillus acidophilus can enrich CLA in fermented dairy products, it is unknown if other strains share this capacity. Due to its immense economic importance, this work aimed to investigate genetic aspects of CLA production in L. acidophilus for the first time. The genomic DNA from industrial and type strains of L. acidophilus were subjected to PCR and immunoblot analyses using the putative LI gene of L. reuteri ATCC 55739 as probe. The CLA production ability was estimated by gas chromatography of the biomass extracts. The presumptive LI gene from L. acidophilus ATCC 832 was isolated and sequenced. The resulting sequence shared 71% identity with that of L. reuteri and at least 99% with reported sequences from other L. acidophilus strains. All the strains accumulated detectable levels of CLA and tested positive by PCR and immunoblotting. However, no apparent correlation was observed between the yields and the hybridization patterns. The results suggest that LI activity might be common among L. acidophilus and related species and provide a new tool for screening potential CLA producers.

  19. Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi

    2003-10-01

    We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.

  20. Stereoselectivity of chalcone isomerase with chalcone derivatives: a computational study.

    Science.gov (United States)

    Yao, Yuan; Zhang, Hui; Li, Ze-Sheng

    2013-11-01

    Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into flavonoids. The activity of CHI is essential for the biosynthesis of flavonoids precursors of floral pigments and phenylpropanoid plant defense compounds. In the present study, we explored the detailed binding structures and binding free energies for two different active site conformations of CHI with s-cis/s-trans conformers of three chalcone compounds by performing molecular dynamics (MD) simulations and binding free energy calculations. The computational results indicate that s-cis/s-trans conformers of chalcone compounds are orientated in the similar binding position in the active site of CHI and stabilized by the different first hydrogen bond network and the same second hydrogen bond network. The first hydrogen bond network results in much lower binding affinity of s-trans conformer of chalcone compound with CHI than that of s-cis conformer. The conformational change of the active site residue T48 from indirectly interacting with the substrate via the second hydrogen bond network to directly forming the hydrogen bond with the substrates cannot affect the binding mode of both conformers of chalcone compounds, but remarkably improves the binding affinity. These results show that CHI has a strong stereoselectivity. The calculated binding free energies for three chalcone compounds with CHI are consistent with the experimental activity data. In addition, several valuable insights are suggested for future rational design and discovery of high-efficiency mutants of CHI.

  1. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    Science.gov (United States)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  2. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  3. THE CRYSTAL-STRUCTURE OF THE OPEN AND THE CLOSED CONFORMATION OF THE FLEXIBLE LOOP OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE

    NARCIS (Netherlands)

    WIERENGA, RK; NOBLE, MEM; POSTMA, JPM; GROENDIJK, H; KALK, KH; HOL, WGJ; OPPERDOES, FR

    1991-01-01

    Triosephosphate isomerase has an important loop near the active site which can exist in a "closed" and in an "open" conformation. Here we describe the structural properties of this "flexible" loop observed in two different structures of trypanosomal triosephosphate isomerase. Trypanosomal

  4. Identification of fibrillogenic regions in human triosephosphate isomerase

    Directory of Open Access Journals (Sweden)

    Edson N. Carcamo-Noriega

    2016-02-01

    Full Text Available Background. Amyloid secondary structure relies on the intermolecular assembly of polypeptide chains through main-chain interaction. According to this, all proteins have the potential to form amyloid structure, nevertheless, in nature only few proteins aggregate into toxic or functional amyloids. Structural characteristics differ greatly among amyloid proteins reported, so it has been difficult to link the fibrillogenic propensity with structural topology. However, there are ubiquitous topologies not represented in the amyloidome that could be considered as amyloid-resistant attributable to structural features, such is the case of TIM barrel topology. Methods. This work was aimed to study the fibrillogenic propensity of human triosephosphate isomerase (HsTPI as a model of TIM barrels. In order to do so, aggregation of HsTPI was evaluated under native-like and destabilizing conditions. Fibrillogenic regions were identified by bioinformatics approaches, protein fragmentation and peptide aggregation. Results. We identified four fibrillogenic regions in the HsTPI corresponding to the β3, β6, β7 y α8 of the TIM barrel. From these, the β3-strand region (residues 59–66 was highly fibrillogenic. In aggregation assays, HsTPI under native-like conditions led to amorphous assemblies while under partially denaturing conditions (urea 3.2 M formed more structured aggregates. This slightly structured aggregates exhibited residual cross-β structure, as demonstrated by the recognition of the WO1 antibody and ATR-FTIR analysis. Discussion. Despite the fibrillogenic regions present in HsTPI, the enzyme maintained under native-favoring conditions displayed low fibrillogenic propensity. This amyloid-resistance can be attributed to the three-dimensional arrangement of the protein, where β-strands, susceptible to aggregation, are protected in the core of the molecule. Destabilization of the protein structure may expose inner regions promoting

  5. Induction of chalcone isomerase in elicitor-treated bean cells. Comparison of rates of synthesis and appearance of immunodetectable enzyme.

    Science.gov (United States)

    Robbins, M P; Dixon, R A

    1984-11-15

    Chalcone isomerase, an enzyme involved in the formation of flavonoid-derived compounds in plants, has been purified nearly 600-fold from cell suspension cultures of dwarf French bean (Phaseolus vulgaris L.). Chromatofocussing yielded a single form of the enzyme of apparent pI 5.0. This preparation was used to raise rabbit anti-(chalcone isomerase) serum. Changes in the rate of synthesis of chalcone isomerase have been investigated by indirect immunoprecipitation of enzyme labelled in vivo with [35S]methionine in elicitor-treated cultures of P. vulgaris. Elicitor, heat-released from cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose disease of bean, causes increased synthesis of the isomerase, with maximum synthetic rate occurring 11-12 h after exposure to elicitor. Immune blotting studies indicate that the elicitor-mediated increase in extractable activity of the isomerase is associated with increased appearance of immunodetactable isomerase protein of Mr 27 000. However, the maximum level of immunodetectable isomerase was attained approximately 6 h earlier than maximum extractable activity. Furthermore, a 2.8-fold increase in enzyme activity above basal levels at 12 h after elicitor-treatment was associated with a corresponding 5.8-fold increase in immunodetectable enzyme. It is concluded that elicitor induces the synthesis of both active and inactive chalcone isomerase of Mr 27 000, and that some activation of inactive enzyme occurs during the elicitor-mediated increase in isomerase activity. The presence of a pool of inactive chalcone isomerase in bean cell cultures has recently been suggested on the basis of density labelling experiments utilising 2H from 2H2O [Dixon et al. (1983) Planta (Berl.) 159, 561-569].

  6. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    Science.gov (United States)

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi.

    Science.gov (United States)

    Islam, M Ahsanul; Tchigvintsev, Anatoli; Yim, Veronica; Savchenko, Alexei; Yakunin, Alexander F; Mahadevan, Radhakrishnan; Edwards, Elizabeth A

    2016-01-01

    Gene sequences annotated as proteins of unknown or non-specific function and hypothetical proteins account for a large fraction of most genomes. In the strictly anaerobic and organohalide respiring Dehalococcoides mccartyi, this lack of annotation plagues almost half the genome. Using a combination of bioinformatics analyses and genome-wide metabolic modelling, new or more specific annotations were proposed for about 80 of these poorly annotated genes in previous investigations of D. mccartyi metabolism. Herein, we report the experimental validation of the proposed reannotations for two such genes (KB1_0495 and KB1_0553) from D. mccartyi strains in the KB-1 community. KB1_0495 or DmIDH was originally annotated as an NAD(+)-dependent isocitrate dehydrogenase, but biochemical assays revealed its activity primarily with NADP(+) as a cofactor. KB1_0553, also denoted as DmPMI, was originally annotated as a hypothetical protein/sugar isomerase domain protein. We previously proposed that it was a bifunctional phosphoglucose isomerase/phosphomannose isomerase, but only phosphomannose isomerase activity was identified and confirmed experimentally. Further bioinformatics analyses of these two protein sequences suggest their affiliation to potentially novel enzyme families within their respective larger enzyme super families.

  8. Identification of Triosephosphate Isomerase as a Novel Allergen in Octopus fangsiao

    Science.gov (United States)

    A 28 kDa-protein was purified from octopus (Octopus fangsiao) and identified to be triosephosphate isomerase (TIM). The purified TIM is a glycoprotein with 1.7% carbohydrates and the isoelectric point is 7.6. TIM aggregated after heating above 45 °C, and the secondary structure was altered in extre...

  9. The structure in solution of the b domain of protein disulfide isomerase

    NARCIS (Netherlands)

    Kemmink, J; Dijkstra, K; Mariani, M; Scheek, RM; Penka, E; Nilges, M; Darby, NJ

    1999-01-01

    Protein disulfide isomerase (PDI) is a multifunctional protein of the endoplasmic reticulum, which catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. It consists of four domains designated a, b, b' and a'. Both a and a' domains contain an active site with

  10. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules

    NARCIS (Netherlands)

    Kemmink, J; Darby, NJ; Dijkstra, K; Nilges, M; Creighton, TE

    1997-01-01

    Background: Protein disulfide isomerase (PDI), a multifunctional protein of the endoplasmic reticulum, catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. Dissection of this protein into its individual domains has confirmed the presence of the a and a' doma

  11. Escherichia coli rpiA> gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque...

  12. Evidence supporting a cis-enediol-based mechanism for Pyrococcus furiosus phosphoglucose isomerase

    NARCIS (Netherlands)

    Berrisford, J.M.; Hounslow, A.M.; Akerboom, A.P.; Hagen, W.R.; Brouns, S.J.J.; Oost, van der J.; Murray, I.A.; Blackburn, G.M.; Waltho, J.P.; Rice, D.W.; Baker, P.J.

    2006-01-01

    The enzymatic aldose ketose isomerisation of glucose and fructose sugars involves the transfer of a hydrogen between their C1 and C2 carbon atoms and, in principle, can proceed through either a direct hydride shift or via a cis-enediol intermediate. Pyrococcus furiosus phosphoglucose isomerase (PfPG

  13. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  14. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  15. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  16. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  17. Crystal structure of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase

    Institute of Scientific and Technical Information of China (English)

    朱学勇; 龚为民; 牛立文; 滕脉坤; 徐庆平; 伍传金; 崔涛; 王玉珍; 王淳

    1996-01-01

    The crystal structures of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase (SDXyI) have been analysed and refined at 0.19nm. The crystal space group is I222, with unit cell dimensions of a=9.884 ran, b=9.393nm and c=8.798nm. Based on the coordinates of the Streptomyces rubiginosus xylose isomerase (SRXyI), the initial model of SDXyl was built up by the dose packing analysing and R-factor searching and refined by PROLSQ to a final R-factor of 0.177 with the rms deviations of bond lengths and bond angles of 0.001 9nm and 2.1°, respectively. No significant global conformation change existed between SRXyI and SDXyI except the local conformation in the active site.

  18. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    Science.gov (United States)

    Chen, Deliang; Savidge, Tor

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrate electric field-dependent acceleration of biological catalysis using ketosteroid isomerase as a prototypic example. These findings were not extended to aqueous solution because water by itself has field fluctuations that are too large and fast to provide a catalytic effect. Given physiological context, when water electrostatic interactions are considered, electric fields play a less important role in the catalysis.

  19. Novel roles for protein disulphide isomerase in disease states: a double edged sword?

    Directory of Open Access Journals (Sweden)

    Sonam eParakh

    2015-05-01

    Full Text Available Protein disulphide isomerase (PDI is a multifunctional redox chaperone of the endoplasmic reticulum (ER. Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.

  20. A novel chloroplastic isopentenyl diphosphate isomerase gene from Jatropha curcas: Cloning, characterization and subcellular localization

    OpenAIRE

    Wei, Lei; Yin, Li; Hu,Xiaole; Xu, Ying; Chen,Fang

    2014-01-01

    Background Jatropha curcas is a rich reservoir of pharmaceutically active terpenoids. More than 25 terpenoids have been isolated from this plant, and their activities are anti-bacterial, anti-fungal, anti-cancer, insecticidal, rodenticidal, cytotoxic and molluscicidal. But not much is known about the pathway involved in the biosynthesis of terpenoids. The present investigation describes the cloning, characterization and subcellular localization of isopentenyl diphosphate isomerase (IPI) gene ...

  1. Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    OpenAIRE

    Schoville, Sean D.; Flowers, Jonathan M.; Ronald S Burton

    2012-01-01

    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating pa...

  2. Purification and characterization of an extremely stable glucose isomerase from Geobacillus thermodenitrificans TH2.

    Science.gov (United States)

    Konak, L; Kolcuoğlu, Y; Ozbek, E; Colak, A; Ergenoglu, B

    2014-01-01

    The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80 degrees C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4 degrees C and 50 degrees C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4 degrees C and 50 degrees C, respectively. The K(m) and V(max) values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 micromol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.

  3. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-03-01

    A key challenge in the successful treatment of Acanthamoeba infections is its ability to transform into a dormant cyst form that is resistant to physiological conditions and pharmacological therapies, resulting in recurrent infections. The carbohydrate linkage analysis of cyst walls of Acanthamoeba castellanii showed variously linked sugar residues, including xylofuranose/xylopyranose, glucopyranose, mannopyranose, and galactopyranose. Here, it is shown that exogenous xylose significantly reduced A. castellanii differentiation in encystation assays (P < 0.05 using paired t test, one-tailed distribution). Using small interfering RNA (siRNA) probes against xylose isomerase and cellulose synthase, as well as specific inhibitors, the findings revealed that xylose isomerase and cellulose synthase activities are crucial in the differentiation of A. castellanii. Inhibition of both enzymes using siRNA against xylose isomerase and cellulose synthase but not scrambled siRNA attenuated A. castellanii metamorphosis, as demonstrated by the arrest of encystation of A. castellanii. Neither inhibitor nor siRNA probes had any effect on the viability and extracellular proteolytic activities of A. castellanii.

  4. Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis.

    Science.gov (United States)

    Hong, B X; Soong, L

    2008-02-01

    Leishmania parasites primarily infect cells of macrophage lineage and can cause leishmaniasis in the skin, mucosal, and visceral organs, depending on both host- and parasite-derived factors. The protein disulfide isomerases (PDIs) are thiol-disulfide oxidoreductases that catalyze the formation, reduction, and isomerization of disulfide bonds of proteins in cells. Although four Leishmania PDI genes are functionally inferred from homology in the genome sequences, only two of them have been expressed as active proteins to date. The functional relationship among various PDI enzymes remains largely unclear. In this study, we expressed and partially characterized all four L. amazonensis PDIs encoding 52-, 47-, 40-, and 15-kDa proteins. Homology analysis showed that the sequence identity between L. amazonensis (New World) PDIs and their counterpart PDI sequences from L. major (Old World) ranged from 76% to 99%. Kinetic characterization indicated that while the 15-, 40-, and 47- kDa PDI proteins displayed both insulin isomerase and reductase activities, the 52-kDa protein had only isomerase activity with no detectable reductase activity. All four PDI proteins were recognized by sera from L. amazonensis-infected mice and were sensitive to inhibition by standard PDI inhibitors. This study describes the enzymatic activities of recombinant L. amazonensis PDIs and suggests a role for these proteins in parasite development.

  5. Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI).

    Science.gov (United States)

    Mares, Rosa E; Minchaca, Alexis Z; Villagrana, Salvador; Meléndez-López, Samuel G; Ramos, Marco A

    2015-01-01

    Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stressful conditions. The EhPDI enzyme (a 38 kDa polypeptide with two active thioredoxin-like domains) has been used as a model to gain insights into protein folding and disulfide bond formation in E. histolytica. Here, we performed a functional complementation assay, using a ΔdsbC mutant of E. coli, to test whether EhPDI exhibits isomerase activity in vivo. Our preliminary results showed that EhPDI exhibits isomerase activity; however, further mutagenic analysis revealed significant differences in the functional role of each thioredoxin-like domain. Additional studies confirmed that EhPDI protects heat-labile enzymes against thermal inactivation, extending our knowledge about its chaperone-like activity. The characterization of EhPDI, as an oxidative folding catalyst with chaperone-like function, represents the initial step to dissect the molecular mechanisms involved in protein folding in E. histolytica.

  6. Identification, expression, and characterization of the highly conserved D-xylose isomerase in animals

    Institute of Scientific and Technical Information of China (English)

    Ming Ding; Yigang Teng; Qiuyu Yin; Wei Chen; Fukun Zhao

    2009-01-01

    D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xylose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.

  7. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nickbarg, E.B.; Davenport, R.C.; Petsko, G.A.; Knowles, J.R.

    1988-08-09

    An important active-site residue in the glycolytic enzyme triosephosphate isomerase is His-95, which appears to act as an electrophilic component in catalyzing the enolization of the substrates. With the techniques of site-directed mutagenesis, His-95 has been replaced by Gln in the isomerase from Saccharomyces cerevisiae. The mutant isomerase has been expressed in Escherichia coli strain DF502 and purified to homogeneity. The specific catalytic activity of the mutant enzyme is less than that of wild type by a factor of nearly 400. The mutant enzyme can be resolved from the wild-type isomerase on nondenaturing isoelectric focusing gels, and an isomerase activity stain shows that the observed catalytic activity indeed derives from the mutant protein. The mutant enzyme shows the same stereospecificity of proton transfer as the wild type. Tritium exchange experiments similar to those used to define the free energy profile for the wild-type yeast isomerase, together with a new method of analysis involving /sup 14/C and /sup 3/H doubly labeled substrates, have been used to investigate the energetics of the mutant enzyme catalyzed reaction. The deuterium kinetic isotope effects observed with the mutant isomerase using (1(R)-/sup 2/H)dihydroxyacetone phosphate and (2-/sup 2/H)glyceraldehyde 3-phosphate are 2.15 +/- 0.04 and 2.4 +/- 0.1, respectively. These results lead to the conclusion that substitution of Gln for His-95 so impairs the ability of the enzyme to stabilize the reaction intermediate that there is a change in the pathways of proton transfer mediated by the mutant enzyme.

  8. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...... reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate....... In contrast, we found that in the context of full-length PDI, there is an asymmetry in the rate of oxidation of the two active sites. This asymmetry is the result of a dual effect: an enhanced rate of oxidation of the second catalytic (A') domain and the substrate-mediated inhibition of oxidation of the first...

  9. Studies on linoleic acid 8R-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis.

    Science.gov (United States)

    Su, C; Brodowsky, I D; Oliw, E H

    1995-01-01

    Linoleic acid is sequentially converted to 7S,8S-dihydroxy-9Z,12Z-octadecadienoic acid by the 8R-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis, which is a common pathogen of wheat. The objective of this study was to separate and characterize the two enzyme activities. The isomerase activity was found mainly in the microsomal fraction of the mycelia and the 8R-dioxygenase in the cytosol. The 8R-dioxygenase could be partially purified by ammonium sulfate precipitation, gel filtration, ion exchange chromatography or isoelectric focusing. The 8R-dioxygenase was unstable during purification, but it could be stabilized by glutathione, glutathione peroxidase and ethylenediaminetetraacetic acid. Several protease inhibitors reduced the enzyme activity. Gel filtration with Sephacryl S-300 showed that most 8R-dioxygenase activity was eluted with the front with little retention. Isoelectric focusing in the presence of ethylene glycol (20%) indicated an isoelectric point of pl 6.1-6.3. The enzyme was retained on strong anion exchange columns at pH 7.4 and could be eluted with 0.3-0.5 M NaCl. Incubation of the enzyme with 0.1 mM linoleic acid led to partial inactivation, which may indicate product inhibition. Paracetamol and the lipoxygenase inhibitor ICI 230,487 at 30 microM inhibited the 8R-dioxygenase by 44 and 58%, respectively. 8R-hydroperoxy-9Z,12Z-octadecadienoic acid was isolated from incubations of linoleic acid with the partially purified enzyme or with the cytosol in the presence of p-hydroxymercuribenzoate. The hydroperoxide was rapidly converted by the hydroperoxide isomerase in the microsomal fractions to 7S,8S-dihydroxy-9Z,12Z-octadecadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  11. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Nickbarg, E.B.; Knowles, J.R.

    1988-08-09

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from (1(R)-TH)dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase.

  12. Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases.

    Science.gov (United States)

    Tars, Kaspars; Olin, Birgit; Mannervik, Bengt

    2010-03-19

    Glutathione transferases (GSTs) are abundant enzymes catalyzing the conjugation of hydrophobic toxic substrates with glutathione. In addition to detoxication, human GST A3-3 displays prominent steroid double-bond isomerase activity; e.g. transforming Delta(5)-androstene-3-17-dione into Delta(4)-androstene-3-17-dione (AD). This chemical transformation is a crucial step in the biosynthesis of steroids, such as testosterone and progesterone. In contrast to GST A3-3, the homologous GST A2-2 does not show significant steroid isomerase activity. We have solved the 3D structures of human GSTs A2-2 and A3-3 in complex with AD. In the GST A3-3 crystal structure, AD was bound in an orientation suitable for the glutathione (GSH)-mediated catalysis to occur. In GST A2-2, however, AD was bound in a completely different orientation with its reactive double bond distant from the GSH-binding site. The structures illustrate how a few amino acid substitutions in the active site spectacularly alter the binding mode of the steroid substrate in relation to the conserved catalytic groups and an essentially fixed polypeptide chain conformation. Furthermore, AD did not bind to the GST A2-2-GSH complex. Altogether, these results provide a first-time structural insight into the steroid isomerase activity of any GST and explain the 5000-fold difference in catalytic efficiency between GSTs A2-2 and A3-3. More generally, the structures illustrate how dramatic diversification of functional properties can arise via minimal structural alterations. We suggest a novel structure-based mechanism of the steroid isomerization reaction.

  13. Effect of gamma irradiation on whole-cell glucose isomerase. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.; Gebicka, L.

    1984-03-01

    Gamma-rays induced inactivation of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase has been studied. This enzyme exhibits high resistance against ionizing radiation. The D/sub 37/ value was found to be equal to 131 kGy for Actinoplanes missouriensis cells and 88 kGy for Streptomyces olivaceus cells when irradiated in the dry state in the presence of air. Mg/sup 2 +/ ions do not affect the radiosensitivity of the enzyme in cells, while the addition of Co/sup 2 +/ ions to the cell suspension increases its stability against ionizing radiation.

  14. Redox-coupled structural changes of the catalytic a' domain of protein disulfide isomerase.

    Science.gov (United States)

    Inagaki, Koya; Satoh, Tadashi; Yagi-Utsumi, Maho; Le Gulluche, Anne-Charlotte; Anzai, Takahiro; Uekusa, Yoshinori; Kamiya, Yukiko; Kato, Koichi

    2015-09-14

    Protein disulfide isomerase functions as a folding catalyst in the endoplasmic reticulum. Its b' and a' domains provide substrate-binding sites and undergo a redox-dependent domain rearrangement coupled to an open-closed structural change. Here we determined the first solution structure of the a' domain in its oxidized form and thereby demonstrate that oxidation of the a' domain induces significant conformational changes not only in the vicinity of the active site but also in the distal b'-interfacial segment. Based on these findings, we propose that this conformational transition triggers the domain segregation coupled with the exposure of the hydrophobic surface.

  15. Immobilization of glucose isomerase onto radiation synthesized P(AA-co-AMPS) hydrogel and its application

    OpenAIRE

    2014-01-01

    Isomerization of glucose to fructose was carried out using Glucose isomerase (GI) that immobilized by entrapment into Poly(acrylic acid) P(AA) and Poly(acrylic acid-co-2-Acrylamido 2-methyl Propane sulfonic acid) P(AA-co-AMPS) polymer networks, the enzyme carriers were prepared by radiation induced copolymerization in the presence of (Methylene-bisacrylamide) (MBAA) as a crosslinking agent. The maximum gel fraction of pure P(AA) and P(AA-co-AMPS) hydrogel was found to be 95.2% and 89.6% for P...

  16. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  17. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Kozak, Maciej; Taube, Michał

    2009-10-01

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  18. Crystallization and preliminary X-ray diffraction studies of l-rhamnose isomerase from Pseudomonas stutzeri

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hiromi [Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Wayoon, Poonperm; Takada, Goro; Izumori, Ken [Department of Biochemistry and Food Science, Faculty of Agriculture and Rare Sugar Research Center, Kagawa University, Miki-cho, Kagawa 761-0795 (Japan); Kamitori, Shigehiro, E-mail: kamitori@med.kagawa-u.ac.jp [Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan)

    2006-06-01

    Recombinant l-rhamnose isomerase from P. stutzeri has been crystallized. Diffraction data have been collected to 2.0 Å resolution. l-Rhamnose isomerase from Pseudomonas stutzeri (P. stutzeril-RhI) catalyzes not only the reversible isomerization of l-rhamnose to l-rhamnulose, but also isomerization between various rare aldoses and ketoses. Purified His-tagged P. stutzeril-RhI was crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 74.3, b = 104.0, c = 107.0 Å, β = 106.8°. Diffraction data have been collected to 2.0 Å resolution. The molecular weight of the purified P. stutzeril-RhI with a His tag at the C-terminus was confirmed to be 47.7 kDa by MALDI–TOF mass-spectrometric analysis and the asymmetric unit is expected to contain four molecules.

  19. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  20. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  1. Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.

    Science.gov (United States)

    Nurdiani, Dini; Ito, Michihiro; Maruyama, Toru; Terahara, Takeshi; Mori, Tetsushi; Ugawa, Shin; Takeyama, Haruko

    2015-08-01

    Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications.

  2. The Crystal Structure of Yeast Protein Disulfide Isomerase Suggests Cooperativity Between Its Active Sites

    Energy Technology Data Exchange (ETDEWEB)

    Tian,G.; Xiang, S.; Noiva, R.; Lennarz, W.; Schindelin, H.

    2006-01-01

    Protein disulfide isomerase plays a key role in catalyzing the folding of secretory proteins. It features two catalytically inactive thioredoxin domains inserted between two catalytically active thioredoxin domains and an acidic C-terminal tail. The crystal structure of yeast PDI reveals that the four thioredoxin domains are arranged in the shape of a twisted 'U' with the active sites facing each other across the long sides of the 'U.' The inside surface of the 'U' is enriched in hydrophobic residues, thereby facilitating interactions with misfolded proteins. The domain arrangement, active site location, and surface features strikingly resemble the Escherichia coli DsbC and DsbG protein disulfide isomerases. Biochemical studies demonstrate that all domains of PDI, including the C-terminal tail, are required for full catalytic activity. The structure defines a framework for rationalizing the differences between the two active sites and their respective roles in catalyzing the formation and rearrangement of disulfide bonds.

  3. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Science.gov (United States)

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  4. TXNDC5, a Newly Discovered Disulfide Isomerase with a Key Role in Cell Physiology and Pathology

    Science.gov (United States)

    Horna-Terrón, Elena; Pradilla-Dieste, Alberto; Sánchez-de-Diego, Cristina; Osada, Jesús

    2014-01-01

    Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target. PMID:25526565

  5. Sucrose isomerase and its mutants from Erwinia rhapontici can synthesise α-arbutin.

    Science.gov (United States)

    Zhou, Xing; Zheng, Yuantao; Wei, Xingming; Yang, Kedi; Yang, Xiangkai; Wang, Yuting; Xu, Liming; Du, Liqin; Huang, Ribo

    2011-10-01

    Sucrose isomerase (SI) from Erwinia rhapontici is an intramolecular isomerase that is normally used to synthesise isomaltulose from sucrose by a mechanism of intramolecular transglycosylation. In this study, it was found that SI could synthesise α-arbutin using hydroquinone and sucrose as substrates, via an intermolecular transglycosylation reaction. Five phenylalanine residues (F185, F186, F205, F297, and F321) in the catalytic pocket of SI were chosen for sitedirected mutagenesis. Mutants F185I, F321I, and F321W, whose hydrolytic activities were enhanced after the mutation, could synthesise α-arbutin through intermolecular transglycosylation with a more than two-fold increase in the molar transfer ratio compared with wild type SI. The F297A mutant showed a strong ability to synthesise a novel α-arbutin derivative and a four-fold increase in its specific activity for intermolecular transglycosylation over the wild type. Our findings may lead to a new way to synthesise novel glucoside products such as α-arbutin derivatives by simply manipulating the Phe residues in the catalytic pocket. From the structure superposition, our strategy of manipulating these Phe residues may be applicable to other similar transglycosylating enzymes.

  6. Inoculum type response to different pHs on biohydrogen production from L-arabinose, a component of hemicellulosic biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, A.A.; Danko, A.S.; Costa, J.C.; Ferreira, E.C.; Alves, M.M. [IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga (Portugal)

    2009-02-15

    Biohydrogen production from arabinose was examined using four different anaerobic sludges with different pHs ranging from 4.5 to 8.0. Arabinose (30 g l{sup -1}) was used as the substrate for all experiments. Individual cumulative hydrogen production data was used to estimate the three parameters of the modified Gompertz equation. Higher hydrogen production potentials were observed for higher pH values for all the sludges. G2 (acclimated granular sludge) showed the highest hydrogen production potential and percentage of arabinose consumption compared to the other sludges tested. Granular sludges (G1 and G2) showed different behaviour than the suspended sludges (S1 and S2). The differences were observed to be smaller lag phases, the percentage of acetate produced, the higher percentage of ethanol produced, and the amount of arabinose consumed. A high correlation (R{sup 2} = 0.973) was observed between the percentage of n-butyrate and the percentage of ethanol in G1 sludge, suggesting that ethanol/butyrate fermentation was the dominant fermentative pathway followed by this sludge. In S1, however, the percentage of n-butyrate was highly correlated with the percentage of acetate (R{sup 2} = 0.980). This study indicates that granular sludge can be used for larger pH ranges without reducing its capacity to consume arabinose and achieve higher hydrogen production potentials. (author)

  7. Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry

    Science.gov (United States)

    Gao, Hong; Chen, Ye; Leary, Julie A.

    2005-02-01

    A mass spectrometry based method for the direct determination of kinetic constants for phosphoglucose isomerase (PGI) and phosphomannose isomerase (PMI) is described. PGI catalyzes the interconversion between glucose-6-phosphate (Glc6P) and fructose-6-phosphate (Fru6P) and PMI performs the same function between mannose-6-phosphate (Man6P) and Fru6P. These two enzymes are essential in the pathways of glycolytic or oxidative metabolism of carbohydrates and have been considered as potential therapeutic targets. Traditionally, they are assayed either by spectrophotometric detection of Glc6P with one or more coupling enzymes or by a colorimetric detection of Fru6P. However, no suitable assay for Man6P has been developed yet to study the reaction of PMI in the direction from Fru6P to Man6P. In the work presented herein, a general assay for the isomeric substrate-product pair between Glc6P and Fru6P or between Man6P and Fru6P was developed, with the aim of directly studying the kinetics of PGI and PMI in both directions. The 6-phosphorylated aldose and ketose isomers were distinguished based on their corresponding tandem mass spectra (MS2) obtained on a quadrupole ion trap mass spectrometer, and a multicomponent quantification method was utilized to determine the composition of binary mixtures. Using this method, the conversion between Fru6P and Glc6P and that between Fru6P and Man6P are directly monitored. The equilibrium constants for the reversible reactions catalyzed by PGI and PMI are measured to be 0.3 and 1.1, respectively, and the kinetic parameters for both substrates of PGI and PMI are also determined. The values of KM and Vmax for Fru6P as substrate of PMI are reported to be 0.15 mM and 7.78 [mu]mol/(min mg), respectively. All other kinetic parameters measured correlate well with those obtained using traditional methods, demonstrating the accuracy and reliability of this assay.

  8. Cloning and Overexpression of the Triosephosphate Isomerase Genes from Psychrophilic and Thermophilic Bacteria. Structural Comparison of the Predicted Protein Sequences

    NARCIS (Netherlands)

    Rentier-Delrue, Françoise; Mande, Shekhar C.; Moyens, Sylvianne; Terpstra, Peter; Mainfroid, Véronique; Goraj, Karine; Lion, Michelle; Hol, Wim G.J.; Martial, Joseph A.

    1993-01-01

    We focused on the temperature adaptation of triosephosphate isomerase (TIM; E.C. 5.3.1.1.) by comparing the structure of TIMs isolated from bacterial organisms living in either cold or hot environments. The TIM gene from psychrophilic bacteria Moraxella sp. TA137 was cloned and its nucleotide sequen

  9. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  10. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations.

    Science.gov (United States)

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-09-07

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  11. A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073.

    Science.gov (United States)

    Mosberg, Joshua A; Yep, Alejandra; Meredith, Timothy C; Smith, Sara; Wang, Pan-Fen; Holler, Tod P; Mobley, Harry L T; Woodard, Ronald W

    2011-06-01

    Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype.

  12. Physical proximity and functional association of glycoprotein 1balpha and protein-disulfide isomerase on the platelet plasma membrane

    NARCIS (Netherlands)

    Burgess, J K; Hotchkiss, K A; Suter, C; Dudman, N P; Szöllösi, J; Chesterman, C N; Chong, B H; Hogg, P J

    2000-01-01

    Platelet function is influenced by the platelet thiol-disulfide balance. Platelet activation resulted in 440% increase in surface protein thiol groups. Two proteins that presented free thiol(s) on the activated platelet surface were protein-disulfide isomerase (PDI) and glycoprotein 1balpha (GP1balp

  13. NUCLEAR-MAGNETIC-RESONANCE CHARACTERIZATION OF THE N-TERMINAL THIOREDOXIN-LIKE DOMAIN OF PROTEIN DISULFIDE-ISOMERASE

    NARCIS (Netherlands)

    KEMMINK, J; DARBY, NJ; DIJKSTRA, K; SCHEEK, RM; CREIGHTON, TE

    1995-01-01

    A genetically engineered protein consisting of the 120 residues at the N-terminus of human protein disulfide isomerase (PDI) has been characterized by H-1, C-13, and N-15 NMR methods. The sequence of this protein is 35% identical to Escherichia coli thioredoxin, and it has been found also to have si

  14. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  15. Interaction between bisphenol derivatives and protein disulphide isomerase (PDI) and inhibition of PDI functions: requirement of chemical structure for binding to PDI.

    Science.gov (United States)

    Hashimoto, Shoko; Okada, Kazushi; Imaoka, Susumu

    2008-09-01

    Bisphenol A (BPA) is an endocrine disrupting chemical and several biological effects have been reported. Previously, protein disulphide isomerase (PDI) was isolated as a target molecule of bisphenol A. In this study, to clarify the effects of BPA on PDI functions, we investigated the relationship between the chemical structure of BPA derivatives and the effects on PDI-mediated isomerase and chaperone activity. We also investigated the effects of changes in the isomerase domain of PDI on the binding of chemicals, using PDI mutants and oxidized or reduced PDI. Among six chemicals, only chemicals, which have a phenol group, can bind to PDI and these chemicals also have an inhibitory effect on PDI-mediated isomerase activity. Changes in the structure of the PDI isomerase domain did not affect chemical-binding activity. On the other hand, the chemicals used in this study have low effects on chaperone activity of PDI. Substitutions in Cys residues (Cys398 and Cys401) of the isomerase active site changed chaperone activity. The present study indicates that phenolic compounds specifically bind to PDI and inhibit isomerase activity. This study provides useful information to predict the biological effects of chemicals and structural studies of PDI containing the function of chemical binding.

  16. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    Science.gov (United States)

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  17. Identification of a d-Arabinose-5-Phosphate Isomerase in the Gram-Positive Clostridium tetani.

    Science.gov (United States)

    Cech, David L; Markin, Katherine; Woodard, Ronald W

    2017-09-01

    d-Arabinose-5-phosphate (A5P) isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and d-arabinose-5-phosphate. Various Gram-negative bacteria, such as the uropathogenic Escherichia coli strain CFT073, contain multiple API paralogs (KdsD, GutQ, KpsF, and c3406) that have been assigned various cellular functions. The d-arabinose-5-phosphate formed by these enzymes seems to play important roles in the biosynthesis of lipopolysaccharide (LPS) and group 2 K-antigen capsules, as well as in the regulation of the cellular d-glucitol uptake and uropathogenic infectivity/virulence. The genome of a Gram-positive pathogenic bacterium, Clostridium tetani, contains a gene encoding a putative API, C. tetani API (CtAPI), even though C. tetani lacks both LPS and capsid biosynthetic genes. To better understand the physiological role of d-arabinose-5-phosphate in this Gram-positive organism, recombinant CtAPI was purified and characterized. CtAPI displays biochemical characteristics similar to those of APIs from Gram-negative organisms and complements the API deficiency of an E. coli API knockout strain. Thus, CtAPI represents the first d-arabinose-5-phosphate isomerase to be identified and characterized from a Gram-positive bacterium.IMPORTANCE The genome of Clostridium tetani, a pathogenic Gram-positive bacterium and the causative agent of tetanus, contains a gene (the CtAPI gene) that shares high sequence similarity with those of genes encoding d-arabinose-5-phosphate isomerases. APIs play an important role within Gram-negative bacteria in d-arabinose-5-phosphate production for lipopolysaccharide biosynthesis, capsule formation, and regulation of cellular d-glucitol uptake. The significance of our research is in identifying and characterizing CtAPI, the first Gram-positive API. Our findings show that CtAPI is specific to the interconversion of arabinose-5-phosphate and ribulose-5-phosphate while having no activity with the other sugars and sugar phosphates

  18. Thermodynamics of Enzyme-Catalyzed Reactions: Part 5. Isomerases and Ligases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1995-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the isomerase and ligase classes of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 176 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  19. Inheritance and subcellular localization of triose-phosphate isomerase in dwarf mountain pine (Pinus mugo).

    Science.gov (United States)

    Odrzykoski, I J

    2001-01-01

    Several trees with expected heterozygous phenotype for triose-phosphate isomerase (TPI) were discovered in a population of dwarf mountain pine (Pinus mugo Turra) from southern Poland. As the inheritance of this enzyme in pines has not been reported, segregation of allelic variants was tested in eight trees with putative heterozygous phenotypes for two loci, TpiA and TPIB: Linkage between these and some other isozyme loci were studied and evidence for linkage has been found between TpiA and PgdA (r = 0.10) and between TpiB and DiaD (r = 0.36), but in single trees only. The subcellular localization of TPI isozymes was determined by comparing isoenzymes from the total extract with those found in fraction enriched in plastids, prepared by differential gradient centrifugation of cellular organelles. The more slowly migrating TPI-B isozyme is located in plastids.

  20. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus.

    Science.gov (United States)

    Tanaka, Yoshikazu; Amano, Arisa; Morisaki, Masateru; Sato, Yuka; Sasaki, Takashi

    2016-02-01

    Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.

  1. Domain a' of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation.

    Science.gov (United States)

    Cheng, Han; Wang, Lei; Wang, Chih-chen

    2010-07-01

    alpha-Synuclein (alpha Syn) is the main component of Lewy bodies formed in midbrain dopaminergic neurons which is a pathological characteristic of Parkinson's disease. It has been recently showed to induce endoplasmic reticulum (ER) stress and impair ER functions. However, the mechanism of how ER responds to alpha Syn toxicity is poorly understood. In the present study, we found that protein disulfide isomerase (PDI), a stress protein abundant in ER, effectively inhibits alpha Syn fibril formation in vitro. In PDI molecule with a structure of abb'xa'c, domain a' was found to be essential and sufficient for PDI to inhibit alpha Syn fibril formation. PDI was further found to be more avid for binding with intermediate species formed during alpha Syn fibril formation, and the binding was more intensive in the later lag phase. Our results provide new insight into the role of PDI in protecting ER from the deleterious effects of misfolded protein accumulation in many neurodegenerative diseases.

  2. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

    Science.gov (United States)

    Fried, Stephen D; Bagchi, Sayan; Boxer, Steven G

    2014-12-19

    Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.

  3. Dual activity of quinolinate synthase: triose phosphate isomerase and dehydration activities play together to form quinolinate.

    Science.gov (United States)

    Reichmann, Debora; Couté, Yohann; Ollagnier de Choudens, Sandrine

    2015-10-27

    Quinolinate synthase (NadA) is an Fe4S4 cluster-containing dehydrating enzyme involved in the synthesis of quinolinic acid (QA), the universal precursor of the essential coenzyme nicotinamide adenine dinucleotide. The reaction catalyzed by NadA is not well understood, and two mechanisms have been proposed in the literature that differ in the nature of the molecule (DHAP or G-3P) that condenses with iminoaspartate (IA) to form QA. In this article, using biochemical approaches, we demonstrate that DHAP is the triose that condenses with IA to form QA. The capacity of NadA to use G-3P is due to its previously unknown triose phosphate isomerase activity.

  4. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...... conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid...

  5. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding....... This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...

  6. Mechanisms of Neuroprotection by Protein Disulphide Isomerase in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Adam K. Walker

    2011-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI, which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.

  7. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  8. Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus.

    Science.gov (United States)

    Forkmann, G; Dangelmayr, B

    1980-06-01

    In flowers of Dianthus caryophyllus (carnation), the gene I is concerned with a discrete step in flavonoid biosynthesis, Genotypes with recessive (ii) alleles produce yellow flowers, which contain the chalcone isosalipurposide (naringenin-chalcone-2'-glucoside) as the major petal pigment, but in genotypes with wild-type alleles flavonols and anthocyanins can be formed and the flowers are white or red. Enzymatic measurements on petal extracts of four strains with different flower coloration revealed a clear correlation between accumulation of chalcone in recessive genotypes and deficiency of chalcone isomerase (E.C. 5.5.1.6) activity. From the chemogenetic and enzymological evidence it can be concluded that naringenin-chalcone is the first product of the synthesis of the flavonoid skeleton and that only the conversion of naringenin-chalcone to naringenin furnishes the substrate for the further reactions to flavonol and anthocyanin.

  9. Increase Renaturation Yield of Reteplase Using the Recombinant Human Protein Disulfide Isomerase

    Institute of Scientific and Technical Information of China (English)

    Zhao Youchun(赵友春); Wang Ge; Kong Yang; Wang Yanbing; Zhang Changkai; Chen Chao; Liang Bufeng

    2004-01-01

    Reteplase, the recombinant type of novel tissue plasminogen activator (t-PA) variant, is a promising thrombolytics in clinics. Expressed in the form of an inclusion body, reteplase consists of about 40 % of the total intracellular proteins of Escherichia coli. The recombinant human protein disulfide isomerase (rhPDI) is used to increase the chance for the correct matching of the 18 hydrosulfide groups of the reteplase molecule in the renaturation process and it increase is the reteplase renaturation yield from 1%~2% to 15%~20% with a the purity aboue 99% and the specific activity of 5(105 IU/mg is reached. This novel method can reduce significantly the cost of production.

  10. Immobilization of glucose isomerase onto radiation synthesized P(AA-co-AMPS hydrogel and its application

    Directory of Open Access Journals (Sweden)

    H. Kamal

    2014-04-01

    Full Text Available Isomerization of glucose to fructose was carried out using Glucose isomerase (GI that immobilized by entrapment into Poly(acrylic acid P(AA and Poly(acrylic acid-co-2-Acrylamido 2-methyl Propane sulfonic acid P(AA-co-AMPS polymer networks, the enzyme carriers were prepared by radiation induced copolymerization in the presence of (Methylene-bisacrylamide (MBAA as a crosslinking agent. The maximum gel fraction of pure P(AA and P(AA-co-AMPS hydrogel was found to be 95.2% and 89.6% for P(AA and P(AA-co-AMPS, respectively at a total dose of 20 kGy. Effects of immobilization conditions such as radiation dose, MBAA concentration, comonomer composition and amount of GI were investigated. The influence of reaction conditions on the activity of immobilized GI were studied, the optimum pH value of the reaction solution is 7.5 and reaction temperature is 65 °C. The immobilized GI into P(AA-co-AMPS and P(AA polymer networks retained 81% and 69%, respectively of its initial activity after recycled for 15 times while it retained 87% and 71%, respectively of its initial activity after stored at 4 °C for 48 days. The Km values of free and immobilized GI onto P(AA-co-AMPS and onto P(AA matrices were found to be 34, 29.2 and 14.5 mg/mL, respectively while the Vmax Values calculated to be 3.87, 1.6 and 0.79 mg/mL min, respectively. GI entrapped into P(AA-co-AMPS hydrogel show promising behavior that may be useful as the newly glucose isomerase reactor in biomedical applications.

  11. Characterization of an Isopentenyl Diphosphate Isomerase involved in the Juvenile Hormone pathway in Aedes aegypti

    Science.gov (United States)

    Diaz, Miguel; Mayoral, Jaime G.; Priestap, Horacio; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G.

    2012-01-01

    Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterwards IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect. PMID:22782071

  12. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    Science.gov (United States)

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  13. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway.

    Science.gov (United States)

    Wang, Rongliang; Li, Lulu; Zhang, Biao; Gao, Xiaolian; Wang, Dongmei; Hong, Jiong

    2013-08-01

    To improve the xylose fermentation ability of Kluyveromyces marxianus, a xylose assimilation pathway through xylose isomerase was constructed. The genes encoding xylose reductase (KmXyl1) and xylitol dehydrogenase (KmXyl2) were disrupted in K. marxianus YHJ010 and the resultant strain was named YRL002. A codon-optimized xylose isomerase gene from Orpinomyces was transformed into K. marxianus YRL002 and expressed under GAPDH promoter. The transformant was adapted in the SD medium containing 1 % casamino acid with 2 % xylose as sole carbon source. After 32 times of trans-inoculation, a strain named YRL005, which can grow at a specific growth rate of 0.137/h with xylose as carbon source, was obtained. K. marxianus YRL005 could ferment 30.15 g/l of xylose and produce 11.52 g/l ethanol with a yield of 0.38 g/g, production rate of 0.069 g/l/h at 42 °C, and also could ferment 16.60 g/l xylose to produce 5.21 g/l ethanol with a yield of 0.31 g/g, and production rate of 0.054 g/l h at 45 °C. Co-fermentation with 2 % glucose could not improve the amount and yield of ethanol fermented from xylose obviously, but it could improve the production rate. Furthermore, K. marxianus YRL005 can ferment with the corn cob hydrolysate, which contained 20.04 g/l xylose to produce 8.25 g/l ethanol. It is a good platform to construct thermo-tolerant xylose fermentation yeast.

  14. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  15. Effects of /sup 45/Ca on murine skeletal muscle. 1. Alterations of glycogen, phosphorylase and phosphohexose isomerase levels

    Energy Technology Data Exchange (ETDEWEB)

    Asotra, K.; Katoch, S.S.; Krishan, K.; Malhotra, R.K. (Himachal Pradesh Univ., Simla (India). Dept. of Bio-sciences)

    1983-01-01

    Adult Swiss albino mice weighing 16+-1 g were injected with 3.7x10/sup 4/ Bq and 7.4x10/sup 4/ Bq/g body weight of /sup 45/Ca. Mice of both dose groups were autopsied on days 1, 3, 5, 7, 14 and 28 after /sup 45/Ca administration. Diaphragm and gastrocnemius in the /sup 45/Ca-treated and normal mice were analyzed for quantitation of glycogen as well as bioassay of phosphorylase and phosphohexose isomerase activities. Internal irradiation with the two doses of /sup 45/Ca resulted in glycogen accumulation in both the muscles. /sup 45/Ca-treated diaphragm showed greater radioresponse but a slower recovery than gastrocnemius with respect to glycogen accumulation. A decline in the rates of glycogenolysis and glycolysis indicated by decreased phosphorylase and phosphohexose isomerase activities appeared to be responsible for glycogen accumulation in skeletal muscle on account of /sup 45/Ca treatment.

  16. The equilibrium unfolding of triosephosphate isomerase from t. cruzi in guanidinium hydrochloride is a four state process. Intrinsic fluorescence studies

    OpenAIRE

    Edgar Vázquez Contreras; Brenda Guadalupe Sánchez Rebollar; María Elena Chánez Cárdenas

    2004-01-01

    Equilibrium and kinetic folding pathways of several homologous proteins have been studied. Early studies concluded that the folding routes of homologous proteins follow fundamentally similar pathways, and that the folding of a certain conformation is conserved throughout evolution. However, there are examples of homologous proteins that unfold by different routes. Regarding triosephosphate isomerase (TIM), unfolding studies with enzymes from different sources, have shown: 1) two-state behavio...

  17. Sequential oxygenation of linoleic acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and hydroperoxide isomerase reactions.

    Science.gov (United States)

    Hamberg, M; Zhang, L Y; Brodowsky, I D; Oliw, E H

    1994-02-15

    Linoleic acid is sequentially oxygenated to (7S,8S)-dihydroxylinoleic acid by dioxygenase and hydroperoxide isomerase activities present in the fungus Gaeumannomyces graminis (Brodowsky, I. D., Hamberg, M., and Oliw, E. H., J. Biol. Chem. 267, 14738-14745 (1992)). Linoleic acids stereospecifically deuterated at C-7 and C-8 were prepared by biological desaturation of the corresponding stearates and used to determine the stereochemistry of the hydrogen abstractions occurring in the dioxygenase- and hydroperoxide isomerase-catalyzed reactions. The dioxygenase reaction was found to involve stereospecific abstraction of the pro-S hydrogen from C-8 followed by antarafacial insertion of dioxygen to produce (8R)-hydroperoxylinoleic acid. The hydroperoxide isomerase reaction consisted of conversion of (8R)-hydroperoxylinoleic acid into (7S,8S)-dihydroxylinoleic acid by stereospecific elimination of the pro-S hydrogen from C-7 and intramolecular suprafacial insertion of oxygen at C-7. Accordingly, during the conversion of linoleic acid into (8R)-hydroperoxylinoleic acid, the absolute configuration of C-8 was inverted, while the conversion of (8R)-hydroperoxylinoleic acid into (7S,8S)-dihydroxylinoleic acid occurred with retention of absolute configuration at C-7.

  18. Optimization of Fermentation Medium for the Production of Glucose Isomerase Using Streptomyces sp. SB-P1

    Directory of Open Access Journals (Sweden)

    Sheetal Bhasin

    2012-01-01

    Full Text Available The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI, an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS. HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose isomerase. An array of 75 isolates was screened for the production of glucose isomerase. The isolate Streptomyces sp. SB-P1 was found to produce maximum amount of extracellular GI. Sucrose and raffinose among pure carbon sources and corn cob and wheat husk among crude agro residues were found to yield high enzyme titers. Potassium nitrate among pure nitrogen sources and soy residues among crude sources gave maximum production. Quantitative effect of carbon, nitrogen, and inducer on GI was also determined. Plackett-Burman design was used to study the effect of different medium ingredients. Sucrose and xylose as carbon sources and peptone and soy residues as nitrogen sources proved to be beneficial for GI production.

  19. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.

    Science.gov (United States)

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-12-16

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  20. Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium.

    Science.gov (United States)

    Hanson, B Leif; Harp, Joel M; Kirschbaum, Kristin; Schall, Constance A; DeWitt, Ken; Howard, Andrew; Pinkerton, A Alan; Bunick, Gerard J

    2002-11-01

    Helium is a more efficient cryogen than nitrogen, and for macromolecular data collection at high-flux beamlines will deliver lower temperatures. An open-flow helium cryostat developed at the University of Toledo (the Pinkerton Device) has been used for macromolecular data collection. This device differs from standard commercial He cryostats by having a much narrower aperture providing a high velocity stream of He around the crystal that maximizes convective and conductive heat exchange between the crystal and the cryogen. This paper details a series of experiments conducted at the IMCA-CAT 17ID beamline using one crystal for each experimental condition to examine whether helium at 16 K provided better radiation-damage abatement compared with nitrogen at 100 K. These studies used matched high-quality crystals (0.94 A diffraction resolution) of D-xylose isomerase derived from the commercial material Gensweet SGI. Comparisons show that helium indeed abates the indicators of radiation damage, in this case resulting in longer crystal diffractive lifetimes. The overall trend suggests that crystals maintain order and that high-resolution data are less affected by increased radiation load when crystals are cooled with He rather than N(2). This is probably the result of a lower effective temperature at the crystal with concomitant reduction in free-radical diffusion. Other features, such as an apparent phase transition in macromolecular crystals at lower temperatures, require investigation to broaden the utility of He use.

  1. Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

    Directory of Open Access Journals (Sweden)

    Aurélie Cazet

    Full Text Available Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI, an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.

  2. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  3. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum.

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Inaba, Kenji

    2015-06-01

    The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein-protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of a Buried Cysteine-To-Serine Mutation on Yeast Triosephosphate Isomerase Structure and Stability

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2012-08-01

    Full Text Available All the members of the triosephosphate isomerase (TIM family possess a cystein residue (Cys126 located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132–138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns.

  5. Cloning and Characterization of a Lycium chinense Carotenoid Isomerase Gene Enhancing Carotenoid Accumulation in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    李招娣; 季静; 王罡

    2015-01-01

    Carotenoid isomerase(CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all-trans lycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for the first time. The open reading frame of LcCRTISO was 1 815 bp encoding a protein of 604 amino acids with a molecular mass of 66.24 kDa. Amino acid sequence analysis revealed that the LcCRTISO had a high level of simi-larity to other CRTISO. Phylogenetic analysis displayed that LcCRTISO kept a closer relationship with the CRTISO of plants than with those of other species. Semi-quantitative PCR analysis indicated that LcCRTISO gene was expressed in all tissues tested with the highest expression in maturing fruits. The overexpression of LcCRTISO gene in transgenic tobacco resulted in an increase of total carotenoids in the leaves withβ-carotene and lutein being the predominants. The results obtained here clearly suggested that the LcCRTISO gene was a promising candidate for carotenoid production.

  6. DNA sequence analysis of the triose phosphate isomerase gene from isolates of Giardia lamblia

    Institute of Scientific and Technical Information of China (English)

    卢思奇; 文建凡; 李继红; 王凤云

    2002-01-01

    Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries. Methods Genomic DNA were extracted from the trophozoites or cysts of Giardia lamblia. The triose phosphate isomerase (tim) gene was amplified using polymerase chain reaction (PCR) technique. PCR products were digested with endonuclease and sequenced. The data of sequencing were analyzed with the DNAstar software and compared with that of the isolates acquired from GenBank. Results Of nine isolates of Giardia lamblia from China (C1, C2, CH2 and CH3), Cambodia (CAM), Australia (A1 and A2) and America (BP and CDC), respectively, 3 (A1, A2 and CAM) fit into Group 1 (WB), 2 (CH2 and CH3)) into Group 2, and 4 (C1, C2, BP and CDC) into Group 3 (GS). The results confirmed the genetic relatedness of G. lamblia isolates from all over the world. Conclusion Genotyping isolates of G. Lamblia provides important information for establishing the phylogenetic relationship or for the epidemiological evaluation of the spreading of this organism.

  7. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus.

    Science.gov (United States)

    Park, Sung-Woo; Zhen, Guohua; Verhaeghe, Catherine; Nakagami, Yasuhiro; Nguyenvu, Louis T; Barczak, Andrea J; Killeen, Nigel; Erle, David J

    2009-04-28

    Protein disulfide isomerases (PDIs) aid protein folding and assembly by catalyzing formation and shuffling of cysteine disulfide bonds in the endoplasmic reticulum (ER). Many members of the PDI family are expressed in mammals, but the roles of specific PDIs in vivo are poorly understood. A recent homology-based search for additional PDI family members identified anterior gradient homolog 2 (AGR2), a protein originally presumed to be secreted by intestinal epithelial cells. Here, we show that AGR2 is present within the ER of intestinal secretory epithelial cells and is essential for in vivo production of the intestinal mucin MUC2, a large, cysteine-rich glycoprotein that forms the protective mucus gel lining the intestine. A cysteine residue within the AGR2 thioredoxin-like domain forms mixed disulfide bonds with MUC2, indicating a direct role for AGR2 in mucin processing. Mice lacking AGR2 were viable but were highly susceptible to colitis, indicating a critical role for AGR2 in protection from disease. We conclude that AGR2 is a unique member of the PDI family, with a specialized and nonredundant role in intestinal mucus production.

  8. Cyclic Peptidyl Inhibitors against Human Peptidyl-Prolyl Isomerase Pin1

    Science.gov (United States)

    Liu, Tao; Liu, Yu; Kao, Hung-Ying; Pei, Dehua

    2010-01-01

    Peptidyl-prolyl isomerase Pin1 regulates the function and/or stability of phosphoproteins by altering the conformation of specific pSer/pThr-Pro peptide bonds. In this work, a cyclic peptide library was synthesized and screened against the catalytic domain of human Pin1. The selected inhibitors contained a consensus motif of D-pThr-Pip-Nal (where Pip is L-piperidine-2-carboxylic acid and Nal is L-2-naphthylalanine). Representative compounds were tested for binding to Pin1 by isothermal titration calorimetry and inhibition of Pin1 activity and the most potent inhibitors had KD (and KI) values in the low nanomolar range. Treatment of breast cancer cells with the inhibitors, which were rendered membrane permeable by attachment of an octaarginine sequence, inhibited cell proliferation and increased the protein levels of two previously established Pin1 substrates, PML and SMRT. Finally, a second generation of cell permeable Pin1 inhibitors was designed by replacing the noncritical residues within the cyclic peptide ring with arginine residues and shown to have anti-proliferative activity against the cancer cells. PMID:20180533

  9. Effects of a Buried Cysteine-To-Serine Mutation on Yeast Triosephosphate Isomerase Structure and Stability

    Science.gov (United States)

    Hernández-Santoyo, Alejandra; Domínguez-Ramírez, Lenin; Reyes-López, César A.; González-Mondragón, Edith; Hernández-Arana, Andrés; Rodríguez-Romero, Adela

    2012-01-01

    All the members of the triosephosphate isomerase (TIM) family possess a cystein residue (Cys126) located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM) at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132–138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns. PMID:22949845

  10. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  11. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation

    Science.gov (United States)

    Taggart, L. E.; McMahon, S. J.; Butterworth, K. T.; Currell, F. J.; Schettino, G.; Prise, K. M.

    2016-05-01

    Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.

  12. Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway.

    Directory of Open Access Journals (Sweden)

    Alistair G Irvine

    Full Text Available In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding. However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10(-5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding - differential affinity, rapid ligand exchange and conformational flexibility.

  13. Heterologous expression and biochemical characterization of glucose isomerase from Thermobifida fusca.

    Science.gov (United States)

    Deng, Hui; Chen, Sheng; Wu, Dan; Chen, Jian; Wu, Jing

    2014-06-01

    Glucose isomerase (GIase) catalyzes the isomerization of D-glucose to D-fructose. The GIase from Thermobifida fusca WSH03-11 was expressed in Escherichia coli BL21(DE3), and the purified enzyme took the form of a tetramer in solution and displayed a pI value of 5.05. The temperature optimum of GIase was 80 °C and its half life was about 2 h at 80 °C or 15 h at 70 °C. The pH optimum of GIase was 10 and the enzyme retained 95 % activity over the pH range of 5-10 after incubating at 4 °C for 24 h. Kinetic studies showed that the K m and K cat values of the enzyme are 197 mM and 1,688 min(-1), respectively. The maximum conversion yield of glucose (45 %, w/v) to fructose of the enzyme was 53 % at pH 7.5 and 70 °C. The present study provides the basis for the industrial application of recombinant T. fusca GIase in the production of high fructose syrup.

  14. Understanding protein lids: structural analysis of active hinge mutants in triosephosphate isomerase.

    Science.gov (United States)

    Kursula, I; Salin, M; Sun, J; Norledge, B V; Haapalainen, A M; Sampson, N S; Wierenga, R K

    2004-04-01

    The conformational switch from open to closed of the flexible loop 6 of triosephosphate isomerase (TIM) is essential for the catalytic properties of TIM. Using a directed evolution approach, active variants of chicken TIM with a mutated C-terminal hinge tripeptide of loop 6 have been generated (Sun,J. and Sampson,N.S., Biochemistry, 1999, 38, 11474-11481). In chicken TIM, the wild-type C-terminal hinge tripeptide is KTA. Detailed enzymological characterization of six variants showed that some of these (LWA, NPN, YSL, KTK) have decreased catalytic efficiency, whereas others (KVA, NSS) are essentially identical with wild-type. The structural characterization of these six variants is reported. No significant structural differences compared with the wild-type are found for KVA, NSS and LWA, but substantial structural adaptations are seen for NPN, YSL and KTK. These structural differences can be understood from the buried position of the alanine side chain in the C-hinge position 3 in the open conformation of wild-type loop 6. Replacement of this alanine with a bulky side chain causes the closed conformation to be favored, which correlates with the decreased catalytic efficiency of these variants. The structural context of loop 6 and loop 7 and their sequence conservation in 133 wild-type sequences is also discussed.

  15. Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.

    Science.gov (United States)

    Sun, J; Sampson, N S

    1999-08-31

    In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.

  16. Inhibition of glucosephosphate isomerase allozymes of the mosquitofish, Gambusia holbrooki, by mercury

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, V.J.; Newman, M.C. (Univ. of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1994-01-01

    Frequencies of allozyme genotypes are being used as population-level indicators of environmental heavy-metal contamination. A genotype of glucose phosphate isomerase, Gpi-2[sup 38/38], of mosquitofish (Gambusia holbrooki) has been identified as mercury-sensitive in an acute toxicity assay. Partially purified preparations of GPI-2 38/38 and GPI-2 100/100 were assayed to determine differences in maximum gluconeogenic reaction velocity at seven mercury (added as HgCl[sub 2]) concentrations, 15 to 960 nM Hg. Log-Probit analysis of the inhibition curves indicated that the log (IC50) (log[sub 10] of the Hg concentration causing a 50% reduction in reaction velocity) for GPI-2 100/100 initial uninhibited reaction velocity was greater than that of GPI-2 38/38. Although the mechanism of inhibition was not experimentally determined, under the assumption of noncompetitive interaction between Hg and GPI-2, the inhibitor dissociation constants (95% asymptotic C.I.) for GPI-2 100/100 and GPI-2 38/38 were estimated from the log (IC50) as 204 nM Hg (155---269 nM Hg) and 479 nM Hg (363-617 nM Hg), respectively. These results suggested that Hg susceptibility related to the Gpi-2[sup 38/38] genotype in acute toxicity assays was likely not due to enhanced Hg inhibition of GPI-2 38/38.

  17. Diversifying selection underlies the origin of allozyme polymorphism at the phosphoglucose isomerase locus in Tigriopus californicus.

    Directory of Open Access Journals (Sweden)

    Sean D Schoville

    Full Text Available The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations.

  18. Diversifying selection underlies the origin of allozyme polymorphism at the phosphoglucose isomerase locus in Tigriopus californicus.

    Science.gov (United States)

    Schoville, Sean D; Flowers, Jonathan M; Burton, Ronald S

    2012-01-01

    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations.

  19. Elicitor-mediated induction of chalcone isomerase in Phaseolus vulgaris cell suspension cultures.

    Science.gov (United States)

    Dixon, R A; Gerrish, C; Lamb, C J; Robbins, M P

    1983-12-01

    Approximately fourfold increases in the extractable activity of the enzyme chalcone isomerase (CHI, EC 5.5.1.6) were observed within 24 h of treatment of cell suspension cultures of Phaseolus vulgaris with a crude elicitor preparation heatreleased from the cell walls of the bean pathogen Colletotrichum lindemuthianum. The induction of CHI activity was highly dependent upon elicitor concentration, with maximum induction occurring in two discrete concentration ranges. A basal half-life for CHI>32 h in control cultures was determined by labelling with (2)H from (2)H2O followed by analysis of the equilibrium distribution of enzyme activity in CsCl density gradients. Comparative density labelling indicated that at both the lower and higher effective elicitor concentrations, the induced appearance of CHI activity was the result of an apparent initial activation of pre-existing enzyme followed by an increase in the rate of de-novo synthesis of the enzyme as compared with non-elicited controls. The increased appearance of the enzyme over the first 8 h in elicitor-treated cultures was inhibited by cycloheximide, cordycepin and actinomycin D. The results are discussed in relation to the mechanisms of co-ordinate enzyme induction operating in French-bean cell cultures exposed to fungal elicitors.

  20. Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction.

    Science.gov (United States)

    Li, Sha; Cai, Heng; Qing, Yujia; Ren, Ben; Xu, Hong; Zhu, Hongyang; Yao, Jun

    2011-01-01

    The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K (m) of 257 mmol/l and V (max) of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a "batch"-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.

  1. Purification and characterization of a highly selective sucrose isomerase from Erwinia rhapontici NX-5.

    Science.gov (United States)

    Ren, Ben; Li, Sha; Xu, Hong; Feng, Xiao-Hai; Cai, Heng; Ye, Qi

    2011-06-01

    A highly selective sucrose isomerase (SIase) was purified to homogeneity from the cell-free extract of Erwinia rhapontici NX-5 with a recovery of 27.7% and a fold purification of 213.6. The purified SIase showed a high specific activity of 427.1 U mg(-1) with molecular weight of 65.6 kDa. The K (m) for sucrose was 222 mM while V (max) was 546 U mg(-1). The optimum pH and temperature for SIase activity were 6.0 and 30 °C, respectively. The purified SIase was stable in the temperature range of 10-40 °C and retained 65% of the enzyme activity after 2 weeks' storage at 30 °C. The SIase activity was enhanced by Mg(2+) and Mn(2+), inhibited by Ca(2+), Cu(2+), Zn(2+), and Co(2+), completely inhibited by Hg(2+) and Ag(2+). The purified SIase was strongly inhibited by SDS, while partially inhibited by dimethylformamide, tetrahydrofuran, and PMSF. Additionally, glucose and fructose acted as competitive inhibitors for purified SIase.

  2. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz, Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos

    2011-06-01

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 μmol min⁻¹ mg protein⁻¹, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  3. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz Jr., Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos (UNICAMP); (UFRGS-Brazil); (UNAM-Mexico)

    2012-02-06

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 {micro}mol min{sup -1} mg protein{sup -1}, respectively. The resolution of the diffracted crystal was estimated to be 2.4 {angstrom} and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  4. The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent.

    Science.gov (United States)

    Haldrup, A; Petersen, S G; Okkels, F T

    1998-05-01

    The xylose isomerase gene (xylA) from Thermoanaerobacterium thermosulfurogenes (formerly Clostridium thermosulfurogenes) has been expressed in three plant species (potato, tobacco, and tomato) and transgenic plants have been selected on xylose-containing medium. The xylose isomerase gene was transferred to the target plant by Agrobacterium-mediated transformation. The xylose isomerase gene was expressed using the enhanced cauliflower mosaic virus (CaMV) 35S promoter and the omega' translation enhancer sequence from tobacco mosaic virus. Unoptimized selection studies showed that, in potato and tomato, the xylose isomerase selection was more efficient than the established kanamycin resistance selection, whereas in tobacco the opposite was observed. Efficiency may be increased by optimization. The xylose isomerase system enables the transgenic cells to utilize xylose as a carbohydrate source. It is an example of a positive selection system because transgenic cells proliferate while non-transgenic cells are starved but still survive. This contrasts to antibiotic or herbicide resistance where transgenic cells survive on a selective medium but non-transgenic cells are killed. The results give access to a new selection method which is devoid of the disadvantages of antibiotic or herbicide selection.

  5. Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect.

    Science.gov (United States)

    Tanaka, Leonardo Y; Araújo, Haniel A; Hironaka, Gustavo K; Araujo, Thaís L S; Takimura, Celso K; Rodriguez, Andres I; Casagrande, Annelise S; Gutierrez, Paulo S; Lemos-Neto, Pedro Alves; Laurindo, Francisco R M

    2016-03-01

    Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of β1-integrin, and levels of reduced cell-surface β1-integrin, were diminished after PDI antibody treatment, implicating β1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream β1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to

  6. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.

    Directory of Open Access Journals (Sweden)

    Ignacio de la Mora-de la Mora

    Full Text Available Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM, an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.

  7. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  8. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Science.gov (United States)

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  9. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    Directory of Open Access Journals (Sweden)

    Leibly David J

    2011-10-01

    Full Text Available Abstract Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.

  10. Functional Analysis of the Isopentenyl Diphosphate Isomerase of Salvia miltiorrhiza via Color Complementation and RNA Interference

    Directory of Open Access Journals (Sweden)

    Xianan Zhang

    2015-11-01

    Full Text Available Isopentenyl diphosphate isomerase (IPI catalyzes the isomerization between the common terpene precursor substances isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP during the terpenoid biosynthesis process. In this study, tissue expression analysis revealed that the expression level of the Salvia miltiorrhiza IPI1 gene (SmIPI1 was higher in the leaves than in the roots and stems. Furthermore, color complementation and RNA interference methods were used to verify the function of the SmIPI1 gene from two aspects. A recombinant SmIPI1 plasmid was successfully constructed and transferred into engineered E. coli for validating the function of SmIPI1 through the color difference in comparison to the control group; the observed color difference indicated that SmIPI1 served in promoting the accumulation of lycopene. Transformant hairy root lines with RNA interference of SmIPI1 were successfully constructed mediated by Agrobacterium rhizogenes ACCC 10060. RNA interference hairy roots had a severe phenotype characterized by withering, deformity or even death. The mRNA expression level of SmIPI1 in the RSi3 root line was only 8.4% of that of the wild type. Furthermore the tanshinone content was too low to be detected in the RNA interference lines. These results suggest that SmIPI1 plays a critical role in terpenoid metabolic pathways. Addition of an exogenous SmIPI1 gene promoted metabolic flow toward the biosynthesis of carotenoids in E. coli, and SmIPI1 interference in S. miltiorrhiza hairy roots may cause interruption of the 2-C-methyl-D-erythritol-4-phosphate metabolic pathway.

  11. Carotenoid isomerase is key determinant of petal color of Calendula officinalis.

    Science.gov (United States)

    Kishimoto, Sanae; Ohmiya, Akemi

    2012-01-02

    Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462-464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO.

  12. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation

    Science.gov (United States)

    Stopa, Jack D.; Neuberg, Donna; Puligandla, Maneka; Furie, Bruce; Zwicker, Jeffrey I.

    2017-01-01

    BACKGROUND: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. METHODS: We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies. RESULTS: Following oral administration of 1,000 mg isoquercetin to healthy adults, the measured peak plasma quercetin concentration (9.2 μM) exceeded its IC50 for inhibition of PDI by isoquercetin in vitro (2.5 ± 0.4 μM). Platelet-dependent thrombin generation decreased by 51% in the healthy volunteers compared with baseline (P = 0.0004) and by 64% in the anti-phospholipid antibody cohort (P = 0.015) following isoquercetin ingestion. To understand how PDI affects thrombin generation, we evaluated substrates of PDI identified using an unbiased mechanistic-based substrate trapping approach. These studies identified platelet factor V as a PDI substrate. Isoquercetin blocked both platelet factor Va and thrombin generation with an IC50 of ~5 μM. Inhibition of PDI by isoquercetin ingestion resulted in a 53% decrease in the generation of platelet factor Va (P = 0.001). Isoquercetin-mediated inhibition was reversed with addition of exogenous factor Va. CONCLUSION: These studies show that oral administration of isoquercetin inhibits PDI activity in plasma and diminishes platelet-dependent thrombin generation predominantly by blocking the generation of platelet factor Va. These pharmacodynamic and mechanistic observations represent an important step in the development of a novel class of antithrombotic agents targeting PDI. TRIAL REGISTRATION: Clinicaltrials.gov (NCT01722669) FUNDING: National Heart

  13. Endoplasmic reticulum protein (ERp) 29 binds as strongly as protein disulfide isomerase (PDI) to bisphenol A.

    Science.gov (United States)

    Miyake, Yuka; Hashimoto, Shoko; Sasaki, Yoshie; Kudo, Tomohiro; Oguro, Ami; Imaoka, Susumu

    2014-04-21

    Bisphenol A (BPA), which is used in polycarbonate and epoxy resins, affects the development or function of the central nervous system. Previously, we isolated a BPA-binding protein from rat brain, identified it as protein disulfide isomerase (PDI), and found that BPA binds to the b' domain of PDI and inhibits its activity. There are 20 kinds of PDI family proteins in mammalian endoplasmic reticulum. The member proteins each have a different length and domain arrangement. Here we investigated the binding of BPA and T3 to ERp29, ERp57, and ERp72, which each have the b or b' domain. BPA/T3 binding of ERp57 and that of ERp72 were lower than that of PDI, and BPA did not inhibit the oxidase or reductase activity of these proteins. On the other hand, BPA and T3 bound to ERp29 as strongly as to PDI. The CD spectrum of PDI was changed in the presence of BPA in a dose-dependent manner, while that of ERp29 was not, suggesting that BPA did not affect the conformation of ERp29. We found that PDI suppresses GH expression in rat GH3 cells stimulated by thyroid hormone (T3) overexpression of PDI and that ERp57 reduced the GH level, but overexpression of ERp29 did not change GH expression. These results suggested that affinity to T3 does not involve the reduction of the T3 response. In this study, ERp29 was first identified as a BPA-binding protein but is not involved in the T3 response of GH3 cells.

  14. Structure and Stability of the Dimeric Triosephosphate Isomerase from the Thermophilic Archaeon Thermoplasma acidophilum.

    Directory of Open Access Journals (Sweden)

    Sang Ho Park

    Full Text Available Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED pathway and Embden-Meyerhof-Parnas (EMP pathway for glucose degradation. While triosephosphate isomerase (TPI, a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI. TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight β-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1-2. Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.

  15. Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole.

    Directory of Open Access Journals (Sweden)

    Daniel A Kraut

    2006-04-01

    Full Text Available A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing pK(a models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50-0.76 ppm/pK(a unit, suggesting a bond shortening of 0.02 A/pK(a unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (DeltaDeltaG = -0.2 kcal/mol/pK(a unit. The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (DeltaDeltaH = -2.0 kcal/mol/pK(a unit. This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of 300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution.

  16. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    Science.gov (United States)

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  17. The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo.

    Directory of Open Access Journals (Sweden)

    James P Hewitson

    2014-02-01

    Full Text Available Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI, a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60-70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4⁺ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections.

  18. Post-streptococcal auto-antibodies inhibit protein disulfide isomerase and are associated with insulin resistance.

    Directory of Open Access Journals (Sweden)

    Adi Aran

    Full Text Available Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33% and without (67% markers of recent streptococcal infections [anti-Streptolysin O (ASLO or anti-DNAse B (ADB]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI, an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61 and PDI (P328-338. The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001. Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001, and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039 and insulin resistance (Homeostatic Model Assessment (HOMA 4.1 vs. 3.1, n = 1215, p = 0.004, in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances.

  19. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    Full Text Available BACKGROUND: Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture. CONCLUSIONS/SIGNIFICANCE: By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  20. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  1. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    Science.gov (United States)

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca(2+) concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca(2+) influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca(2+) influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Functional Analysis of the Isopentenyl Diphosphate Isomerase of Salvia miltiorrhiza via Color Complementation and RNA Interference.

    Science.gov (United States)

    Zhang, Xianan; Guan, Hongyu; Dai, Zhubo; Guo, Juan; Shen, Ye; Cui, Guanghong; Gao, Wei; Huang, Luqi

    2015-11-10

    Isopentenyl diphosphate isomerase (IPI) catalyzes the isomerization between the common terpene precursor substances isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) during the terpenoid biosynthesis process. In this study, tissue expression analysis revealed that the expression level of the Salvia miltiorrhiza IPI1 gene (SmIPI1) was higher in the leaves than in the roots and stems. Furthermore, color complementation and RNA interference methods were used to verify the function of the SmIPI1 gene from two aspects. A recombinant SmIPI1 plasmid was successfully constructed and transferred into engineered E. coli for validating the function of SmIPI1 through the color difference in comparison to the control group; the observed color difference indicated that SmIPI1 served in promoting the accumulation of lycopene. Transformant hairy root lines with RNA interference of SmIPI1 were successfully constructed mediated by Agrobacterium rhizogenes ACCC 10060. RNA interference hairy roots had a severe phenotype characterized by withering, deformity or even death. The mRNA expression level of SmIPI1 in the RSi3 root line was only 8.4% of that of the wild type. Furthermore the tanshinone content was too low to be detected in the RNA interference lines. These results suggest that SmIPI1 plays a critical role in terpenoid metabolic pathways. Addition of an exogenous SmIPI1 gene promoted metabolic flow toward the biosynthesis of carotenoids in E. coli, and SmIPI1 interference in S. miltiorrhiza hairy roots may cause interruption of the 2-C-methyl-D-erythritol-4-phosphate metabolic pathway.

  3. Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pramod K Kushawaha

    Full Text Available Visceral leishmaniasis (VL is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI, a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9-97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT, nitric oxide (NO production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%. The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.

  4. Disulfide isomerase-like protein AtPDIL1–2 is a good candidate for trichlorophenol phytodetoxification

    Science.gov (United States)

    Peng, Ri-He; Qiu, Jin; Tian, Yong-Sheng; Gao, Jian-jie; Han, Hong-juan; Fu, Xiao-Yan; Zhu, Bo; Xu, Jing; Wang, Bo; Li, Zhen-jun; Wang, Li-juan; Yao, Quan-Hong

    2017-01-01

    Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1–2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b′ domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants. PMID:28059139

  5. NMR assignments of the peptidyl-prolyl cis-trans isomerase domain of trigger factor from E. coli.

    Science.gov (United States)

    Huang, Chih-Ting; Hsu, Shang-Te Danny

    2016-04-01

    Trigger factor (TF) is a highly conserved multi-domain molecular chaperone in bacteria. It binds via its ribosome binding domain (RBD) to the ribosomal tunnel exit and facilitates co-translational folding of a broad range of protein substrates primarily through interactions with the substrate binding domain (SBD) adjacent to the RBD. Within the SBD, a peptidyl-prolyl cis-trans isomerase (PPIase) domain is inserted leading to an unusual domain insertion, which may provide stabilizing effect to the highly plastic SBD. Here we report the near complete NMR assignments of TF PPIase providing the basis for subsequent structural and folding in the context of the chaperone activity of TF.

  6. The active centre of rabbit muscle triose phosphate isomerase. The site that is labelled by glycidol phosphate.

    Science.gov (United States)

    Miller, J C; Waley, S G

    1971-06-01

    1. Glycidol (2,3-epoxypropanol) phosphate is a specific irreversible inhibitor of rabbit muscle triose phosphate isomerase (EC 5.3.1.1); the site of attachment has now been studied. 2. The labelled enzyme was digested with pepsin and a modified peptide isolated. The sequence of the peptide is: Ala-Tyr-Glu-Pro-Val-Trp. 3. It is the glutamic acid residue in this peptide that is labelled: the peptide is thus a gamma-glutamyl ester derived from glycerol phosphoric acid. The same site is labelled by a mixture of glycidol and inorganic phosphate. 4. Kinetic and stereochemical features of these reactions are discussed.

  7. Protein-disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from the Holotoxin without Unfolding the A1 Subunit*

    OpenAIRE

    Taylor, Michael; Banerjee, Tuhina; Ray, Supriyo; Tatulian, Suren A.; Teter, Ken

    2011-01-01

    Protein-disulfide isomerase (PDI) has been proposed to exhibit an “unfoldase” activity against the catalytic A1 subunit of cholera toxin (CT). Unfolding of the CTA1 subunit is thought to displace it from the CT holotoxin and to prepare it for translocation to the cytosol. To date, the unfoldase activity of PDI has not been demonstrated for any substrate other than CTA1. An alternative explanation for the putative unfoldase activity of PDI has been suggested by recent structural studies demons...

  8. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.

    Science.gov (United States)

    Ota, Miki; Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Miyake, Hideo; Tamaru, Yutaka; Ueda, Mitsuyoshi

    2013-01-01

    Xylose isomerase (XI) is a key enzyme in the conversion of D-xylose, which is a major component of lignocellulosic biomass, to D-xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI-related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell-surface display system, and the xylose assimilation and fermentation properties of this XI-displaying yeast were examined. XI-displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions.

  9. The disulfide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner

    OpenAIRE

    Vertommen, Didier; Depuydt, Matthieu; Pan, Jonathan; Leverrier, Pauline; Knoops, Laurent; Szikora, Jean-Pierre; Messens, Joris; Bardwell, James C. A.; Collet, Jean-Francois

    2007-01-01

    In Escherichia coli, DsbA introduces disulfide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulfides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulfides in proteins with multiple cysteines. These incorrect disulfides are thought to be corrected by a protein disulfide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolat...

  10. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    Science.gov (United States)

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus.

  11. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    Science.gov (United States)

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  12. Soluble expression of human leukemia inhibitory factor with protein disulfide isomerase in Escherichia coli and its simple purification.

    Science.gov (United States)

    Song, Jung-A; Jung, A Song; Koo, Bon-Kyung; Chong, Seon-Ha; Kim, Kyunhoo; Choi, Dong Kyu; Thi Vu, Thu Trang; Nguyen, Minh Tan; Jeong, Boram; Ryu, Han-Bong; Kim, Injune; Jang, Yeon Jin; Robinson, Robert Charles; Choe, Han

    2013-01-01

    Human leukemia inhibitory factor (hLIF) is a multifunctional cytokine that is essential for maintaining the pluripotency of embryonic stem cells. hLIF may be also be useful in aiding fertility through its effects on increasing the implantation rate of fertilized eggs. Thus these applications in biomedical research and clinical medicine create a high demand for bioactive hLIF. However, production of active hLIF is problematic since eukaryotic cells demonstrate limited expression and prokaryotic cells produce insoluble protein. Here, we have adopted a hybrid protein disulfide isomerase design to increase the solubility of hLIF in Escherichia coli. Low temperature expression of hLIF fused to the b'a' domain of protein disulfide isomerase (PDIb'a') increased the soluble expression in comparison to controls. A simple purification protocol for bioactive hLIF was established that includes removal of the PDIb'a' domain by cleavage by TEV protease. The resulting hLIF, which contains one extra glycine residue at the N-terminus, was highly pure and demonstrated endotoxin levels below 0.05 EU/μg. The presence of an intramolecular disulfide bond was identified using mass spectroscopy. This purified hLIF effectively maintained the pluripotency of a murine embryonic stem cell line. Thus we have developed an effective method to produce a pure bioactive version of hLIF in E. coli for use in biomedical research.

  13. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    Science.gov (United States)

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  14. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  15. Characterization of Genes Encoding Protein Disulfide Isomerase in Wheat Including the Specific Role of PDI in the Formation of Gluten.

    Science.gov (United States)

    Filip, Ewa; Demska, Katarzyna

    2016-01-01

    The results of phylogenetic analyses revealed that the family of plant PDI may comprise of at least eight different subfamilies with varying numbers and positions of active centers while retention signals in the endoplasmic reticulum may be present or absent. At least one gene has been cloned for each phylogenetic group. Other phylogenetic analyses have indicated that the family of PDIlike proteins consists of ten classes, the first five of which include proteins equipped with two thioredoxin domains. These results indicate complexity and diversity of the family of protein disulfide isomerase in plants. The study of molecular characteristics of PDI in some cereal species have shown that this enzyme participates in the maturation of secretory proteins and also in the formation of albuminous substances in endosperm, in the mechanism of formation of disulfide bonds and polymerization of gluten polypeptides in wheat. The mechanism of formation of disulfide linkage was tested through in vitro experiments. However, it is not entirely certain whether it reflects their formation in vivo. The results of researches suggest that protein folding and disulfide bond formation occurs in the endoplasmic reticulum. PDI plays a prominent role among enzymes involved in posttranslational modification of proteins. The main goal of this work is to present research data on protein disulfide isomerase, which may be a leading research objective in the area of wheat gluten and the impact of PDI on the baking quality of wheat flour.

  16. EFEITO DA ASSOCIAÇÃO DE PECTINASE, INVERTASE E GLICOSE ISOMERASE NA QUALIDADE DO SUCO DE BANANA

    Directory of Open Access Journals (Sweden)

    CARDOSO Marisa H.

    1998-01-01

    Full Text Available O efeito do tratamento em que se associou as enzimas comerciais: 0,03 % v/p de pectinase (Clarex a 0,6 % v/p de invertase (Invertase-S e 0,5 % p/p de glicose-isomerase (Taka-sweet sobre purê de banana (Musa cavendishii, em condições amenas de hidrólise (40o C, 15 min. foi observado e comparado com o efeito de outros três tratamentos enzimáticos: 0,03 % v/p de pectinase (Clarex; 0,03 % v/p de pectinase (Clarex associada à 0,6 % v/p de invertase (Invertase-S; e 0,03 % v/p de pectinase (Sigma associada a 0,03 % v/p de celulase (Sigma, visando determinar a qualidade representada por um conjunto de propriedades físicas, fisico-químicas, químicas, microbiológicas e sensoriais dos sucos de banana obtidos. Essas propriedades não diferiram significativamente em função das pectinases e celulase empregadas. A adição de invertase provocou aumento de doçura e diminuição da viscosidade do suco. Por outro lado, a adição de glicose isomerase ao suco invertido não foi capaz de aumentar significativamente o teor de frutose.

  17. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection.

    Science.gov (United States)

    Mehdy, M C; Lamb, C J

    1987-06-01

    The environmentally regulated synthesis of phenylpropanoid natural products was studied by examining the expression of the gene encoding chalcone isomerase (CHI). This enzyme catalyzes a step common to the synthesis of flavonoid pigments and isoflavonoid phytoalexins. A lambdagt11 library was constructed using mRNA from cell cultures of bean (Phaseolus vulgaris L.) treated with fungal elicitor. Two positive clones were obtained by screening 10 recombinants with an antiserum to purified bean CHI. The identity of the cloned sequences was confirmed by hybrid-select translation and the production of antigenic polypeptides from transcripts synthesized in vitro. Addition of elicitor to cell cultures resulted in the rapid accumulation of CHI mRNA, with maximum levels achieved 3-4 h after elicitation. CHI mRNA also accumulated during the natural infection of hypocotyls with the fungal pathogen Colletotrichum lindemuthianum, and in mechanically wounded hypocotyls. The kinetics of accumulation of CHI mRNA in response to these environmental signals were strikingly similar to those of mRNAs encoding two other phenylpropanoid pathway enzymes, phenylalanine ammonialyase and chalcone synthase. In contrast to the multi-gene families encoding these two enzymes, chalcone isomerase is encoded by a single gene which is regulated by several environmental stimuli.

  18. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Science.gov (United States)

    López-Castillo, Laura M.; Jiménez-Sandoval, Pedro; Baruch-Torres, Noe; Trasviña-Arenas, Carlos H.; Díaz-Quezada, Corina; Lara-González, Samuel; Winkler, Robert; Brieba, Luis G.

    2016-01-01

    In plants triosephosphate isomerase (TPI) interconverts glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs) and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI) and chloroplast TPI (pdTPI) share more than 60% amino acid identity and assemble as (β-α)8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively) and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218). Site directed mutagenesis of residues pdTPI-C15, cTPI-C13, and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS) and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218). Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to the

  19. [Significance of glucose-6-phosphate isomerase assay in early diagnosis of rheumatoid arthritis].

    Science.gov (United States)

    Xu, J; Liu, J; Zhu, L; Zhang, X W; Li, Z G

    2016-12-18

    To explore the titer of glucose-6-phosphate isomerase (GPI) for early diagnosis of the outpatient with rheumatoid arthritis (RA) in real life, and to analyze its relationship with disease activity. In the study, 1 051 patients with arthritis were collected in the group who had joints tender and swelling, and 90 cases of healthy people as a control group. ELISA method was used to detect the serum level of GPI, and according to clinical features and laboratory test, all the patients including 525 RA patients, the other patients including osteoarthritis (OA), 134 cases of seronegative spine joint disease (SpA), 104 cases of systemic lupus erythematosus (SLE), 31 cases of primary Sjogren syndrome (pSS), 24 cases of gout arthritis (GA), 22 cases of other connective tissue diseases (including polymyalgia rheumatica, dermatomyositis, systemic sclerosis, adult Still disease) and 46 cases of other diseases (including 165 cases of osteoporosis, avascular necrosis of the femoral head, traumatic osteomyelitis, bone and joint disease, juvenile rheumatoid arthritis, tumor). The diagnostic values of GPI were assessed, and the differences between the GPI positive and negative groups of the RA patients in clinical characteristics, disease activity, severity and inflammatory index analyzed. The positive rate of serum GPI in the patients with RA was 55.4%, contrasting to other autoimmune diseases (14.3%) and healthy controls (7.78%)(P<0.001). Compared with the OA and SpA patients, the RA group was increased more significantly, and the difference was statistically significant (P<0.001). The diagnostic value of GPI alone for RA was 0.39 mg/L, the sensitivity was 54.2%, and specificity was 87.3%. The positive rate of GPI in RF negative patients was 36.1%; the positive rate of GPI in anti-CCP antibody negative patients was 34.2%; the positive rate of GPI in RF and anti-CCP antibody negative patients was 24.1%. The level of GPI had positive correlation (P<0.05) with ESR, RF, anti

  20. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.

    Directory of Open Access Journals (Sweden)

    Li-Rong Xu

    Full Text Available BACKGROUND: Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. METHODOLOGY/PRINCIPAL FINDINGS: As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244-372 monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244-372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244-372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244-372 fibrillization more strongly than full-length human PDI. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau

  1. Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.

    Science.gov (United States)

    Meredith, Timothy C; Woodard, Ronald W

    2005-10-01

    The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.

  2. Evolutionary significance and diversification of the phosphoglucose isomerase genes in vertebrates.

    Science.gov (United States)

    Tine, Mbaye

    2015-12-18

    Phosphoglucose isomerase (PGI) genes are important multifunctional proteins whose evolution has, until now, not been well elucidated because of the limited number of completely sequenced genomes. Although the multifunctionality of this gene family has been considered as an original and innate characteristic, PGI genes may have acquired novel functions through changes in coding sequences and exon/intron structure, which are known to lead to functional divergence after gene duplication. A whole-genome comparative approach was used to estimate the rates of molecular evolution of this protein family. The results confirm the presence of two isoforms in teleost fishes and only one variant in all other vertebrates. Phylogenetic reconstructions grouped the PGI genes into five main groups: lungfishes/coelacanth/cartilaginous fishes, teleost fishes, amphibians, reptiles/birds and mammals, with the teleost group being subdivided into two subclades comprising PGI1 and PGI2. This PGI partitioning into groups is consistent with the synteny and molecular evolution results based on the estimation of the ratios of nonsynonymous to synonymous changes (Ka/Ks) and divergence rates between both PGI paralogs and orthologs. Teleost PGI2 shares more similarity with the variant found in all other vertebrates, suggesting that it has less evolved than PGI1 relative to the PGI of common vertebrate ancestor. The diversification of PGI genes into PGI1 and PGI2 is consistent with a teleost-specific duplication before the radiation of this lineage, and after its split from the other infraclasses of ray-finned fishes. The low average Ka/Ks ratios within teleost and mammalian lineages suggest that both PGI1 and PGI2 are functionally constrained by purifying selection and may, therefore, have the same functions. By contrast, the high average Ka/Ks ratios and divergence rates within reptiles and birds indicate that PGI may be involved in different functions. The synteny analyses show that the genomic

  3. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Laura Margarita López-Castillo

    2016-12-01

    Full Text Available In plants triosephosphate isomerase (TPI interconverts glyceraldehyde 3-phosphate (G3P and dihydroxyacetone phosphate (DHAP during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI and chloroplast TPI (pdTPI share more than 60% amino acid identity and assemble as (β-α8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218. Site directed mutagenesis of residues pdTPI-C15, cTPI-C13 and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218. Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to

  4. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires

    Directory of Open Access Journals (Sweden)

    Pemberton Trevor J

    2006-09-01

    Full Text Available Abstract Background The peptidyl-prolyl cis/trans isomerase (PPIase class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii whilst the cyclophilins and parvulins have evolved to perform conserved

  5. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    Science.gov (United States)

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  6. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    Directory of Open Access Journals (Sweden)

    Janet Imhof

    Full Text Available In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI, an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1, three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3. We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1 employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  7. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis

    NARCIS (Netherlands)

    Hyyrylainen, Hanne-Leena; Marciniak, Bogumila C.; Dahncke, Kathleen; Pietiainen, Milla; Courtin, Pascal; Vitikainen, Marika; Seppala, Raili; Otto, Andreas; Becher, Doerte; Chapot-Chartier, Marie-Pierre; Kuipers, Oscar P.; Kontinen, Vesa P.; Hyyryläinen, Hanne-Leena; Pietiäinen, Milla

    2010-01-01

    P>The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispe

  8. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24

    Science.gov (United States)

    Saccharomyces cerevisiae strains expressing xylose isomerase (XI) produce some of the highest reported ethanol yields from xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are not functional, require additional strain modification, and have low affinity for xylose...

  9. STRUCTURE OF THE COMPLEX BETWEEN TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE AND N-HYDROXY-4-PHOSPHONO-BUTANAMIDE - BINDING AT THE ACTIVE-SITE DESPITE AN OPEN FLEXIBLE LOOP CONFORMATION

    NARCIS (Netherlands)

    VERLINDE, CLMJ; WITMANS, CJ; PIJNING, T; KALK, KH; HOL, WGJ; CALLENS, M; OPPERDOES, FR

    1992-01-01

    The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 angstrom. Full occupancy binding of the inhibitor is observed only at one of the active sites o

  10. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  11. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase.

    Science.gov (United States)

    Hu, Hao; Lu, Zhenyu; Yang, Weitao

    2007-03-01

    /MM free energy perturbation method. The free energy gradients with respect to the QM degrees of freedom are calculated from molecular dynamics simulations at given QM conformations. With the free energy and free energy gradients in hand, we further implement chain-of-conformation optimization algorithms in the search for the reaction path on the free energy surface without specifying a reaction coordinate. This method thus efficiently provides a unique minimum free energy path for solution and enzyme reactions, with structural and energetic properties being determined simultaneously. To further incorporate the dynamic contributions of the QM subsystem into the simulations, we develop the reaction path potential of Lu, et al.2 for the minimum free energy path. The combination of the methods developed here presents a comprehensive and accurate treatment for the simulation of reaction processes in solution and in enzymes with ab initio QM/MM methods. The method has been demonstrated on the first step of the reaction of the enzyme triosephosphate isomerase with good agreement with previous studies.

  12. HbIDI, SlIDI and EcIDI: A comparative study of isopentenyl diphosphate isomerase activity and structure.

    Science.gov (United States)

    Berthelot, Karine; Estevez, Yannick; Quiliano, Miguel; Baldera-Aguayo, Pedro A; Zimic, Mirko; Pribat, Anne; Bakleh, Marc-Elias; Teyssier, Emeline; Gallusci, Philippe; Gardrat, Christian; Lecomte, Sophie; Peruch, Frédéric

    2016-08-01

    In this study, we cloned, expressed and purified the isopentenyl diphosphate isomerases (IDIs) from two plants, Hevea brasiliensis and Solanum lycopersicum, and compared them to the already well characterized Escherichia coli IDI. Phylogenetic analysis showed high homology between the three enzymes. Their catalytic activity was investigated in vitro with recombinant purified enzymes and in vivo by complementation colorimetric tests. The three enzymes displayed consistent activities both in vitro and in vivo. In term of structure, studied by ATR-FTIR and molecular modeling, it is clear that both plant enzymes are more related to their human homologue than to E. coli IDI. But it is assumed that EcIDI represent the minimalistic part of the catalytic core, as both plant enzymes present a supplementary sequence forming an extra α-helice surrounding the catalytic site that could facilitate the biocatalysis. New potential biotechnological applications may be envisaged.

  13. BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2015-08-28

    Natarajan et al. and Chen and Savidge comment that comparing the electric field in ketosteroid isomerase's (KSI's) active site to zero overestimates the catalytic effect of KSI's electric field because the reference reaction occurs in water, which itself exerts a sizable electrostatic field. To compensate, Natarajan et al. argue that additional catalytic weight arises from positioning of the general base, whereas Chen and Savidge propose a separate contribution from desolvation of the general base. We note that the former claim is not well supported by published results, and the latter claim is intriguing but lacks experimental basis. We also take the opportunity to clarify some of the more conceptually subtle aspects of electrostatic catalysis.

  14. The de novo autism spectrum disorder RELN R2290C mutation reduces Reelin secretion and increases protein disulfide isomerase expression.

    Science.gov (United States)

    Lammert, Dawn B; Middleton, Frank A; Pan, Jen; Olson, Eric C; Howell, Brian W

    2017-07-01

    Despite the recent identification of over 40 missense heterozygous Reelin gene (RELN) mutations in autism spectrum disorder (ASD), none of these has been functionally characterized. Reelin is an integral signaling ligand for proper brain development and post-natal synapse function - properties likely disrupted in ASD patients. We find that the R2290C mutation, which arose de novo in an affected ASD proband, and other analogous mutations in arginine-amino acid-arginine domains reduce protein secretion. Closer analysis of RELN R2290C heterozygous neurospheres reveals up-regulation of Protein Disulfide Isomerase A1, best known as an endoplasmic reticulum-chaperone protein, which has been linked to neuronal pathology. This effect is recapitulated in a heterozygous RELN mouse mutant that is characterized by defective Reelin secretion. These findings suggest that both a deficiency in Reelin signaling and pathologic impairment of Reelin secretion may contribute to ASD risk. © 2017 International Society for Neurochemistry.

  15. ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis – A Controversial Role of Protein Disulphide Isomerase

    Directory of Open Access Journals (Sweden)

    Merja eJaronen

    2014-12-01

    Full Text Available Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS. During excessive ER stress unfolded protein response (UPR is activated to return ER to its normal physiological balance. The exact mechanisms of protein misfolding, accumulation and the following ER stress could lead to neurodegeneration and the question whether UPR is a beneficial compensatory mechanism slowing down the neurodegenerative processes are of interest. Protein disulphide isomerase (PDI is a disulfide bond-modulating ER chaperone, which can also facilitate the ER-associated degradation (ERAD of misfolded proteins. In this review we discuss the recent findings of ER stress, UPR and especially the role of PDI in ALS.

  16. Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides

    DEFF Research Database (Denmark)

    Westphal, V; Spetzler, J C; Meldal, M

    1998-01-01

    Protein-disulfide isomerase (PDI) is an abundant folding catalyst in the endoplasmic reticulum of eukaryotic cells. PDI introduces disulfide bonds into newly synthesized proteins and catalyzes disulfide bond isomerizations. We have synthesized a library of disulfide-linked fluorescence......-quenched peptides, individually linked to resin beads, for two purposes: 1) to probe PDI specificity, and 2) to identify simple, sensitive peptide substrates of PDI. Using this library, beads that became rapidly fluorescent by reduction by human PDI were selected. Amino acid sequencing of the bead-linked peptides...... revealed substantial similarities. Several of the peptides were synthesized in solution, and a quantitative characterization of pre-steady state kinetics was carried out. Interestingly, a greater than 10-fold difference in affinity toward PDI was seen for various substrates of identical length. As opposed...

  17. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry

    DEFF Research Database (Denmark)

    Peng, Li; Rasmussen, Morten Ib; Chailyan, Anna

    2014-01-01

    Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI...... the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous...... interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross...

  18. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance.

    Science.gov (United States)

    Jaeken, J; Pirard, M; Adamowicz, M; Pronicka, E; van Schaftingen, E

    1996-11-01

    Isoelectrofocusing of serum sialotransferrins from patients with untreated hereditary fructose intolerance (HFI) shows a cathodal shift similar to that in carbohydrate-deficient glycoprotein (CDG) syndrome type I and in untreated galactosemia. This report is on serum lysosomal enzyme abnormalities in untreated HFI that are identical to those found in CDG syndrome type I but different from those in untreated galactosemia. CDG syndrome type I is due to phosphomannomutase deficiency, a defect in the early glycosylation pathway. It was found that fructose 1-phosphate is a potent competitive inhibitor (Ki congruent to 40 microM) of phosphomannose isomerase (EC 5.3.1.8), the first enzyme of the N-glycosylation pathway thus explaining the N-glycosylation disturbances in HFI.

  19. The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies

    Science.gov (United States)

    Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena

    2005-04-01

    The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.

  20. AtCXXS: atypical members of the Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide isomerase activity.

    Science.gov (United States)

    Serrato, Antonio Jesús; Guilleminot, Jocelyne; Meyer, Yves; Vignols, Florence

    2008-07-01

    The Arabidopsis thaliana thioredoxin subgroup h III is composed of four members and includes the two monocysteinic (CXXS) thioredoxins encoded by the genome. We show that AtCXXS1 is the ortholog of monocysteinic thioredoxins present in all higher plants. In contrast, unicellular algae and the moss Physcomitrella patens do not encode monocysteinic thioredoxin. AtCXXS2, the second monocysteinic thioredoxin of Arabidopsis has no ortholog in any other higher plants. It probably appeared recently by duplications of a dicysteinic thioredoxin of the same subgroup h III. Both monocysteinic thioredoxins show a low disulfide reductase activity in vitro but are very efficient as disulfide isomerases in RNAse refolding tests. The possible interactions of these proteins with the glutathione glutaredoxin pathway are discussed on the basis of recent papers.

  1. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    Science.gov (United States)

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  2. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Jorge Moraes

    2012-10-01

    Full Text Available In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38 and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus microplus (RmTIM. These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26 was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  3. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Hanson, B. Leif [University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mason, Sax A. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Forsyth, V. Trevor [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keele University, Staffordshire (United Kingdom); Fisher, Zoe [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Mustyakimov, Marat [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Blakeley, Matthew P. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keen, David A. [Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Langan, Paul [Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States)

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  4. The importance of hinge sequence for loop function and catalytic activity in the reaction catalyzed by triosephosphate isomerase.

    Science.gov (United States)

    Xiang, J; Sun, J; Sampson, N S

    2001-04-01

    We have determined the sequence requirements for the N-terminal protein hinge of the active-site lid of triosephosphate isomerase. The codons for the hinge (PVW) were replaced with a genetic library of all possible 8000 amino acid combinations. The most active of these 8000 mutants were selected using in vivo complementation of a triosephosphate isomerase-deficient strain of Escherichia coli, DF502. Approximately 0.3 % of the mutants complement DF502 with an activity that is between 10 and 70 % of wild-type activity. They all contain Pro at the first position. Furthermore, the sequences of these hinge mutants reveal that hydrophobic packing is very important for efficient formation of the enediol intermediate. However, the reduced catalytic activities observed are not due to increased rates of loop opening. To explore the relationship between the N-terminal and C-terminal hinges, three semi-active mutants from the N-terminal hinge selection experiment (PLH, PHS and PTF), and six active C-terminal hinge mutants from previous work (NSS, LWA, YSL, KTK, NPN, KVA) were combined to form 18 "double-hinge" mutants. The activities of these mutants suggest that the N-terminal and C-terminal hinge structures affect one another. It appears that specific side-chain interactions are important for forming a catalytically active enzyme, but not for preventing release of the unstable enediol intermediate from the active site of the enzyme. The independence of intermediate release on amino acid sequence is consistent with the absence of a "universal" hinge sequence in structurally related enzymes.

  5. Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift.

    Science.gov (United States)

    Fenn, Timothy D; Ringe, Dagmar; Petsko, Gregory A

    2004-06-01

    Xylose isomerase (E.C. 5.3.1.5) catalyzes the interconversion of aldose and ketose sugars and has an absolute requirement for two divalent cations at its active site to drive the hydride transfer rates of sugar isomerization. Evidence suggests some degree of metal movement at the second metal site, although how this movement may affect catalysis is unknown. The 0.95 A resolution structure of the xylitol-inhibited enzyme presented here suggests three alternative positions for the second metal ion, only one of which appears positioned in a catalytically competent manner. To complete the reaction, an active site hydroxyl species appears appropriately positioned for hydrogen transfer, as evidenced by precise bonding distances. Conversely, the 0.98 A resolution structure of the enzyme with glucose bound in the alpha-pyranose state only shows one of the metal ion conformations at the second metal ion binding site, suggesting that the linear form of the sugar is required to promote the second and third metal ion conformations. The two structures suggest a strong degree of conformational flexibility at the active site, which seems required for catalysis and may explain the poor rate of turnover for this enzyme. Further, the pyranose structure implies that His53 may act as the initial acid responsible for ring opening of the sugar to the aldose form, an observation that has been difficult to establish in previous studies. The glucose ring also appears to display significant segmented disorder in a manner suggestive of ring opening, perhaps lending insight into means of enzyme destabilization of the ground state to promote catalysis. On the basis of these results, we propose a modified version of the bridged bimetallic mechanism for hydride transfer in the case of Streptomyces olivochromogenes xylose isomerase.

  6. Triose phosphate isomerase from the coelacanth. An approach to the rapid determination of an amino acid sequence with small amounts of material.

    Science.gov (United States)

    Kolb, E; Harris, J I; Bridgen, J

    1974-02-01

    The preparation and purification of cyanogen bromide fragments from [(14)C]carboxymethylated coelacanth triose phosphate isomerase is presented. The automated sequencing of these fragments, the lysine-blocked tryptic peptides derived from them, and also of the intact protein, is described. Combination with results from manual sequence analysis has given the 247-residue amino acid sequence of coelacanth triose phosphate isomerase in 4 months, by using 100mg of enzyme. (Two small adjacent peptides were placed by homology with the rabbit enzyme.) Comparison of this sequence with that of the rabbit muscle enzyme shows that 207 (84%) of the residues are identical. This slow rate of evolutionary change (corresponding to two amino acid substitutions per 100 residues per 100 million years) is similar to that found for glyceraldehyde 3-phosphate dehydrogenase. The reliability of sequence information obtained by automated methods is discussed.

  7. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    Science.gov (United States)

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  8. In silico analysis suggests that PH0702 and PH0208 encode for methylthioribose-1-phosphate isomerase and ribose-1,5-bisphosphate isomerase, respectively, rather than aIF2Bβ and aIF2Bδ.

    Science.gov (United States)

    Gogoi, Prerana; Srivastava, Ambuj; Jayaprakash, Prajisha; Jeyakanthan, Jeyaraman; Kanaujia, Shankar Prasad

    2016-01-01

    The overall process of protein biosynthesis across all domains of life is similar; however, detailed insights reveal a range of differences in the proteins involved. For decades, the process of protein translation in archaea has been considered to be closer to eukaryotes than to bacteria. In archaea, however, several homologues of eukaryotic proteins involved in translation initiation have not yet been identified; one of them being the initiation factor eIF2B consisting of five subunits (α, β, γ, δ and ε). Three open reading frames (PH0440, PH0702 and PH0208) in Pyrococcus horikoshii have been proposed to encode for the α-, β- and δ-subunits of aIF2B, respectively. The crystal structure of PH0440 shows similarity toward the α-subunit of eIF2B. However, the capability of PH0702 and PH0208 to function as the β- and δ-subunits of eIF2B, respectively, remains uncertain. In this study, we have taken up the task of annotating PH0702 and PH0208 using bioinformatics methods. The phylogenetic analysis of protein sequences belonging to IF2B-like family along with PH0702 and PH0208 revealed that PH0702 belonged to methylthioribose-1-phosphate isomerase (MTNA) group of proteins, whereas, PH0208 was found to be clustered in the group of ribose-1,5-bisphosphate isomerase (R15PI) proteins. A careful analysis of protein sequences and structures available for eIF2B, MTNA and R15PI confirms that PH0702 and PH0208 contain residues essential for the enzymatic activity of MTNA and R15PI, respectively. Additionally, the protein PH0208 comprises of the residues required for the dimer formation which is essential for the biological activity of R15PI. This prompted us to examine all eIF2B-like proteins from archaea and to annotate their function. The results reveal that majority of these proteins are homologues of the α-subunit of eIF2B, even though they lack the residues essential for their functional activity. A better understanding of the mechanism of GTP exchange during

  9. Plastidic Phosphoglucose Isomerase Is an Important Determinant of Starch Accumulation in Mesophyll Cells, Growth, Photosynthetic Capacity, and Biosynthesis of Plastidic Cytokinins in Arabidopsis

    OpenAIRE

    Abdellatif Bahaji; Ángela M Sánchez-López; Nuria De Diego; Muñoz, Francisco J.; Edurne Baroja-Fernández; Jun Li; Adriana Ricarte-Bermejo; Marouane Baslam; Iker Aranjuelo; Goizeder Almagro; Humplík, Jan F.; Ondřej Novák; Lukáš Spíchal; Karel Doležal; Javier Pozueta-Romero

    2015-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of th...

  10. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    Science.gov (United States)

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  11. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  12. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity.

    Science.gov (United States)

    Vilagran, Ingrid; Castillo, Judit; Bonet, Sergi; Sancho, Sílvia; Yeste, Marc; Estanyol, Josep M; Oliva, Rafael

    2013-09-15

    Sperm cryopreservation is the most efficient method for storing boar sperm samples for a long time. However, one of the inconveniences of this method is the large variation between and within boars in the cryopreservation success of their sperm. The aim of the present work was thus to find reliable and useful predictive biomarkers of the good and poor capacity to withstand the freeze-thawing process in boar ejaculates. To find these biomarkers, the amount of proteins present in the total proteome in sperm cells were compared between good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) using the two-dimensional difference gel electrophoresis technique. Samples were classified as GFE and PFE using progressive motility and viability of the sperm at 30 and 240 minutes after thawing, and the proteomes from each group, before starting cryopreservation protocols, were compared. Because two proteins, acrosin binding protein (ACRBP) and triosephosphate isomerase (TPI), presented the highest significant differences between GFE and PFE groups in two-dimensional difference gel electrophoresis assessment, Western blot analyses for ACRBP and TPI were also performed for validation. ACRBP normalized content was significantly lower in PFE than in GFE (P sperm viability and motility was confirmed using Pearson's linear correlation. In conclusion, ACRBP and TPI can be used as markers of boar sperm freezability before starting the cryopreservation procedure, thereby avoiding unnecessary costs involved in this practice.

  13. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.; Pallanck, Leo J.

    2016-03-31

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.

  14. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  15. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  16. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA).

    Science.gov (United States)

    Wunderlich, M; Glockshuber, R

    1993-11-25

    The formation of disulfide bonds in Escherichia coli is catalyzed by periplasmic protein disulfide-isomerase (DsbA). When the alpha-amylase/trypsin inhibitor from Ragi, a protein containing five intramolecular disulfide bridges, is secreted into the periplasm of E. coli, large amounts of misfolded inhibitor with incomplete or incorrect disulfides are accumulated. Folding of the inhibitor in the periplasm is not improved when DsbA is coexpressed and cosecreted. However, an up to 14-fold increase in correctly folded inhibitor is observed by co-expression of DsbA in conjugation with the addition of reduced glutathione to the growth medium. This peptide acts as a disulfide-shuffling reagent and can pass the outer membrane of E. coli. Since the influence of DsbA on the folding yield of the inhibitor is reduced in the presence of oxidized glutathione, the in vivo function of DsbA appears to be dependent on the ratio between oxidizing and reducing thiol equivalents in the periplasm. The high stability of thiol reagents against air oxidation during growth of E. coli allows the investigation of oxidative protein folding in vivo under controlled, thiol-dependent redox conditions.

  17. S-nitrosylation of the thioredoxin-like domains of protein disulfide isomerase and its role in neurodegenerative conditions.

    Directory of Open Access Journals (Sweden)

    Myra Elizabeth Conway

    2015-04-01

    Full Text Available Correct protein folding and inhibition of protein aggregation is facilitated by a cellular ‘quality control system’ that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulphide isomerases (PDI and their homologues, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like –CGHC- active site of PDI and how our understanding of this structural motif will play a key role in unravelling the pathogenic mechanisms that underpin these neurodegenerative conditions.

  18. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI).

    Science.gov (United States)

    Masui, Shoji; Vavassori, Stefano; Fagioli, Claudio; Sitia, Roberto; Inaba, Kenji

    2011-05-06

    In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b'-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a'-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis.

  19. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  20. Proapoptotic activities of protein disulfide isomerase (PDI) and PDIA3 protein, a role of the Bcl-2 protein Bak.

    Science.gov (United States)

    Zhao, Guoping; Lu, Huayi; Li, Chi

    2015-04-03

    Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.

  1. Potentiation of the reductase activity of protein disulphide isomerase (PDI) by 19-nortestosterone, bacitracin, fluoxetine, and ammonium sulphate.

    Science.gov (United States)

    Hassan, Maya Haj; Alvarez, Eva; Cahoreau, Claire; Klett, Danièle; Lecompte, François; Combarnous, Yves

    2011-10-01

    Protein disulphide isomerase (PDI) in the endoplasmic reticulum catalyzes the rearrangement of disulphide bridges during folding of secreted proteins. It binds various molecules that inhibit its activity. But here, we looked for molecules that would potentiate its activity. PDI reductase activity was measured in vitro using di-eosin-oxidized glutathione as substrate. Its classical inhibitor bacitracin was found to exert a biphasic effect: stimulatory at low concentrations (∼10(-6) M) and inhibitory only at higher concentrations (∼10(-4)-10(-3) M). The weak oestrogenic molecule bisphenol A was found to exert a weak inhibitory effect on PDI reductase activity relative to the strong oestrogens, ethynylestradiol, and diethylstilbestrol. Like 19-nortestosterone, fluoxetine was found to exert a potentiating effect on PDI reductase activity and their potentiating effects could be reversed by increasing concentrations of oestrogens. In conclusion, this paper provides the first identification of potentiators of PDI activity that are potential pharmaceuticals against pathologies affecting protein folding such as Alzheimer's disease.

  2. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

    Science.gov (United States)

    Wasylenko, Thomas M; Stephanopoulos, Gregory

    2015-03-01

    Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.

  3. Prolyl isomerase Pin1 regulates doxorubicin-inducible P-glycoprotein level by reducing Foxo3 stability.

    Science.gov (United States)

    Shimizu, Taiki; Bamba, Yoshimasa; Kawabe, Yosuke; Fukuda, Tomokazu; Fujimori, Fumihiro; Takahashi, Katsuhiko; Uchida, Chiyoko; Uchida, Takafumi

    2016-03-01

    It has been known that the phosphoSer/Thr-Pro-specific peptidyl prolyl cis/trans isomerase Pin1 regulates a variety of intracellular signaling pathways, including the response to the genotoxic drug doxorubicin. Pin1 binds phosphorylated p53 and stabilizes p53 to cause cell cycle arrest and apoptosis quickly in response to doxorubicin. Here we show another mechanism of Pin1 to maintain cell sensitivity to genotoxic stress, irrespective of whether p53 is present or not. In response to the genotoxic drug, Pin1 binds and decreases levels of the phosphorylated Foxo3, the positive transcription factor of P-glycoprotein (P-gp) gene. Through this mechanism of action, Pin1 decreases the level of P-gp and signals the cell to pump the genotoxic drugs out. This shows that Pin1 is implemented in maintaining the susceptibility to the genotoxic drugs by controlling P-gp level as well as p53-dependent apoptosis and cell cycle signaling pathways.

  4. Human Protein-disulfide Isomerase Is a Redox-regulated Chaperone Activated by Oxidation of Domain a′*

    Science.gov (United States)

    Wang, Chao; Yu, Jiang; Huo, Lin; Wang, Lei; Feng, Wei; Wang, Chih-chen

    2012-01-01

    Protein-disulfide isomerase (PDI), with domains arranged as abb′xa′c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a′, and the minimum redox-regulated cassette is located in b′xa′. The structure of the reduced bb′xa′ reveals for the first time that domain a′ packs tightly with both domain b′ and linker x to form one compact structural module. Oxidation of domain a′ releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI. PMID:22090031

  5. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production.

    Directory of Open Access Journals (Sweden)

    Sujan Sigdel

    Full Text Available The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8 was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P. The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications.

  6. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  7. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics.

    Science.gov (United States)

    Cideciyan, Artur V; Aleman, Tomas S; Boye, Sanford L; Schwartz, Sharon B; Kaushal, Shalesh; Roman, Alejandro J; Pang, Ji-Jing; Sumaroka, Alexander; Windsor, Elizabeth A M; Wilson, James M; Flotte, Terence R; Fishman, Gerald A; Heon, Elise; Stone, Edwin M; Byrne, Barry J; Jacobson, Samuel G; Hauswirth, William W

    2008-09-30

    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with gene therapy.

  8. Expression of. Arabidopsis tryptophan biosynthetic pathway genes: effect of the 5’ coding region of phosphoribosylanthranilate isomerase gene

    Institute of Scientific and Technical Information of China (English)

    何奕昆; 刘新仿; 李家洋

    1999-01-01

    There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5’ region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5’ coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5’ coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5’ region. However, the effect of 5’ coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t

  9. The Potato Sucrose Transporter StSUT1 Interacts with a DRM-Associated Protein Disulfide Isomerase

    Institute of Scientific and Technical Information of China (English)

    Undine Krügel; Hong-Xia He; Konstanze Gier; Jana Reins; Izabela Chincinska; Bernhard Grimm; Waltraud X. Schulze; Christina Kühn

    2012-01-01

    Organization of proteins into complexes is crucial for many cellular functions.Recently,the SUT1 protein was shown to form homodimeric complexes,to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A.We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization,endocytosis,or targeting of SUT1 to raft-like microdomains.Therefore,we identified potato membrane proteins,which are associated with the detergent-resistant membrane (DRM) fraction.Among the proteins identified,we clearly confirmed StSUT1 as part of DRM in potato source leaves.We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membraneassociated or soluble proteins in vivo.The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins.A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction.One of the SUT1-interacting proteins,a protein disulfide isomerase (PDI),interacts also with other sucrose transporter proteins.A potential role of the PDI as escort protein is discussed.

  10. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  11. Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker.

    Science.gov (United States)

    Bakshi, Souvika; Saha, Bedabrata; Roy, Nand Kishor; Mishra, Sagarika; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2012-06-01

    A new method for obtaining transgenic cowpea was developed using positive selection based on the Escherichia coli 6-phosphomannose isomerase gene as the selectable marker and mannose as the selective agent. Only transformed cells were capable of utilizing mannose as a carbon source. Cotyledonary node explants from 4-day-old in vitro-germinated seedlings of cultivar Pusa Komal were inoculated with Agrobacterium tumefaciens strain EHA105 carrying the vector pNOV2819. Regenerating transformed shoots were selected on medium supplemented with a combination of 20 g/l mannose and 5 g/l sucrose as carbon source. The transformed shoots were rooted on medium devoid of mannose. Transformation efficiency based on PCR analysis of individual putative transformed shoots was 3.6%. Southern blot analysis on five randomly chosen PCR-positive plants confirmed the integration of the pmi transgene. Qualitative reverse transcription (qRT-PCR) analysis demonstrated the expression of pmi in T₀ transgenic plants. Chlorophenol red (CPR) assays confirmed the activity of PMI in transgenic plants, and the gene was transmitted to progeny in a Mendelian fashion. The transformation method presented here for cowpea using mannose selection is efficient and reproducible, and could be used to introduce a desirable gene(s) into cowpea for biotic and abiotic stress tolerance.

  12. mRNA and Protein levels of rat pancreas specific protein disulphide isomerase are downregulated during Hyperglycemia.

    Science.gov (United States)

    Gupta, Rajani; Bhar, Kaushik; Sen, Nandini; Bhowmick, Debajit; Mukhopadhyay, Satinath; Panda, Koustubh; Siddhanta, Anirban

    2016-02-01

    Diabetes (Type I and Type II) which affects nearly every organ in the body is a multi-factorial non-communicable disorder. Hyperglycemia is the most characteristic feature of this disease. Loss of beta cells is common in both types of diabetes whose detailed cellular and molecular mechanisms are yet to be elucidated. As this disease is complex, identification of specific biomarkers for its early detection, management and devising new therapies is challenging. Based on the fact that functionally defective proteins provide the biochemical basis for many diseases, in this study, we tried to identify differentially expressed proteins during hyperglycemia. For that, hyperglycemia was induced in overnight fasted rats by intra-peritoneal injection of streptozotocin (STZ). The pancreas was isolated from control and treated rats for subsequent analyses. The 2D-gel electrophoresis followed by MALDI-TOF-MS-MS analyses revealed several up- and down-regulated proteins in hyperglycemic rat pancreas including the downregulation of a pancreas specific isoform of protein disulphide isomerase a2 (Pdia2).This observation was validated by western blot. Quantitative PCR experiments showed that the level of Pdia2 mRNA is also proportionally reduced in hyperglycemic pancreas.

  13. Quality properties and expression profiling of protein disulfide isomerase genes during grain development of three spring wheat near isogenic lines

    Directory of Open Access Journals (Sweden)

    Dong Liwei

    2016-01-01

    Full Text Available Three wheat glutenin near isogenic lines (NILs CB037A, CB037B and CB037C were used to investigate their quality properties and the transcriptional expression profiles of PDI gene family during grain development. Our purpose is to understand the relationships between the dynamic expression of different PDI genes and glutenin allelic compositions related to gluten quality. The results showed that glutenin allelic variations had no significant effects on main agronomic traits and yield performance, but resulted in clear gluten quality changes. CB037B with 5+10 subunits had higher glutenin macropolymer (GMP content and better breadmaking quality than CB037A with 2+12 while the lack of Glu-B3h encoding one abundant B-subunit in CB037C significantly reduced GMP content, dough strength and breadmaking quality. The dynamic expression patterns of eight protein disulfide isomerase (PDI genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR showed the close correlations between higher expression levels of PDI3-1, PDI5-1 and PDI8-1 and the presence of 5+10 subunits. Meanwhile, Glu-B3h silence resulted in significant decrease of expression levels of five PDI genes (PDI3-1, PDI5-1, PDI6-1, PDI7-2 and PDI8-1, suggesting the vital roles of certain PDI genes in glutenin and GMP synthesis and gluten quality formation.

  14. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  15. Identification of Amino Acids that Account for Long-Range Interactions in Two Triosephosphate Isomerases from Pathogenic Trypanosomes

    Energy Technology Data Exchange (ETDEWEB)

    García-Torres, Itzhel; Cabrera, Nallely; Torres-Larios, Alfredo; Rodríguez-Bolaños, Mónica; Díaz-Mazariegos, Selma; Gómez-Puyou, Armando; Perez-Montfort, Ruy (UNAM-Mexico)

    2012-04-02

    For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.

  16. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    Science.gov (United States)

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  17. Molecular Bases of Cyclic and Specific Disulfide Interchange between Human ERO1α Protein and Protein-disulfide Isomerase (PDI)*

    Science.gov (United States)

    Masui, Shoji; Vavassori, Stefano; Fagioli, Claudio; Sitia, Roberto; Inaba, Kenji

    2011-01-01

    In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b′-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a′-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis. PMID:21398518

  18. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes

    Science.gov (United States)

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    Background While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Methodology/Principal Findings Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Conclusion and Significance Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity. PMID:28036348

  19. Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Patil, Gunvant; Deokar, Amit; Jain, P K; Thengane, R J; Srinivasan, R

    2009-11-01

    To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l(-1) mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l(-1) mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.

  20. Autoantibodies against protein disulfide isomerase ER-60 are a diagnostic marker for low-grade testicular inflammation.

    Science.gov (United States)

    Fijak, Monika; Zeller, Thomas; Huys, Tatjana; Klug, Jörg; Wahle, Eva; Linder, Monica; Haidl, Gerhard; Allam, Jean-Pierre; Pilatz, Adrian; Weidner, Wolfgang; Schuppe, Hans-Christian; Meinhardt, Andreas

    2014-11-01

    Is there a non-invasive biomarker for the diagnosis of testicular inflammatory lesions? In sera from infertile azoospermic patients with histologically confirmed low-grade testicular inflammation, significantly elevated titers of autoantibodies against disulfide isomerase family A, member 3 (ER-60) were found. Infection and inflammation of the genital tract are supposed to be responsible for up to 15% of cases among infertile males. However, specific seminal or serological markers are not available to assess subacute or chronic inflammatory conditions in the testis. This study consisted of the identification of autoantibodies for testicular antigens in sera of patients with low-grade testicular inflammation, validation of candidates, development of an ELISA for the most promising target antigen and measurement of autoantibodies titers in healthy normozoospermic men (n = 20); male blood donors (n = 14); men with impaired semen quality without (n = 14) or with (n = 26) symptoms of genital tract infection/inflammation; azoospermic men with histologically confirmed testicular inflammatory lesions (n = 16); men after pharmacotherapy of genital tract infection/inflammation (n = 15) and men with acute epididymo-orchitis (n = 30). Proteins in lysates of normal testicular tissue were separated by high-resolution 2D gel electrophoresis and probed with sera of 13 patients with histologically confirmed chronic testicular inflammation. There were 14 proteins that immunoreacted with a majority of these sera and could be identified by mass spectrometry. Of these 14 proteins, disulfide isomerase family A, member 3 (ER-60), transferrin and chaperonin containing TCP1 complex, subunit 5 (epsilon) (CCT5) were considered as specific. Since ER-60 reacted with 92% of patient sera, an ER-60-autoantibody ELISA was developed. The newly established ELISA detected significantly elevated titers of autoantibodies against ER-60 in the sera from infertile men with histologically confirmed chronic

  1. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): a glycolytic enzyme involved in metacestode growth and parasite-host cell interactions.

    Science.gov (United States)

    Stadelmann, Britta; Spiliotis, Markus; Müller, Joachim; Scholl, Sabrina; Müller, Norbert; Gottstein, Bruno; Hemphill, Andrew

    2010-11-01

    In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

  2. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2007-02-01

    Full Text Available Abstract Background Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i the xylose reductase (XR and xylitol dehydrogenase (XDH pathway and ii the xylose isomerase (XI pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3. The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. Results In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. Conclusion Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.

  3. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  4. Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site.

    Science.gov (United States)

    Schwans, Jason P; Sunden, Fanny; Lassila, Jonathan K; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2013-07-09

    Although the cation-pi pair, formed between a side chain or substrate cation and the negative electrostatic potential of a pi system on the face of an aromatic ring, has been widely discussed and has been shown to be important in protein structure and protein-ligand interactions, there has been little discussion of the potential structural and functional importance in proteins of the related anion-aromatic pair (i.e., interaction of a negatively charged group with the positive electrostatic potential on the ring edge of an aromatic group). We posited, based on prior structural information, that anion-aromatic interactions between the anionic Asp general base and Phe54 and Phe116 might be used instead of a hydrogen-bond network to position the general base in the active site of ketosteroid isomerase from Comamonas testosteroni as there are no neighboring hydrogen-bonding groups. We have tested the role of the Phe residues using site-directed mutagenesis, double-mutant cycles, and high-resolution X-ray crystallography. These results indicate a catalytic role of these Phe residues. Extensive analysis of the Protein Data Bank provides strong support for a catalytic role of these and other Phe residues in providing anion-aromatic interactions that position anionic general bases within enzyme active sites. Our results further reveal a potential selective advantage of Phe in certain situations, relative to more traditional hydrogen-bonding groups, because it can simultaneously aid in the binding of hydrophobic substrates and positioning of a neighboring general base.

  5. Structural and functional perturbation of Giardia lamblia triosephosphate isomerase by modification of a non-catalytic, non-conserved region.

    Directory of Open Access Journals (Sweden)

    Gloria Hernández-Alcántara

    Full Text Available BACKGROUND: We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222 inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. RESULTS: In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. CONCLUSIONS: The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by

  6. Molecular Characterization of Duplicate Cytosolic Phosphoglucose Isomerase Genes in Clarkia and Comparison to the Single Gene in Arabidopsis

    Science.gov (United States)

    Thomas, B. R.; Ford, V. S.; Pichersky, E.; Gottlieb, L. D.

    1993-01-01

    The nucleotide sequence of PgiC1-a which encodes a cytosolic isozyme of phosphoglucose isomerase (PGIC; EC 5.3.1.9) in Clarkia lewisii, a wildflower native to California, is described and compared to the previously published sequence of the duplicate PgiC2-a from the same genome. Both genes have the same structure of 23 exons and 22 introns located in identical positions, and they encode proteins of 569 amino acids. Exon and inferred protein sequences of the two genes are 96.4% and 97.2% identical, respectively. Intron sequences are 88.2% identical. The high nucleotide similarity of the two genes is consistent with previous genetic and biosystematic findings that suggest the duplication arose within Clarkia. A partial sequence of PgiC2-b was also obtained. It is 99.5% identical to PgiC2-a in exons and 99.7% in introns. The nucleotide sequence of the single PgiC from Arabidopsis thaliana was also determined for comparison to the Clarkia genes. The A. thaliana PgiC has 21 introns located at positions identical to those in Clarkia PgiC1 and PgiC2, but lacks the intron that divides Clarkia exons 21 and 22. The A. thaliana PGIC protein is shorter, with 560 amino acids, and differs by about 17% from the Clarkia PGICs. The PgiC in A. thaliana was mapped to a site 20 cM from restriction fragment length polymorphism marker 331 on chromosome 5. PMID:8293986

  7. The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference.

    Science.gov (United States)

    Samanta, Sintu Kumar; Ghosh, Sudip K

    2012-11-01

    Entamoeba histolytica, the causative agent of amoebiasis, infects through its cyst form. A thick chitin wall protects the cyst from the harsh environment outside of the body. It is known that chitin is synthesized only during encystation, but the chitin synthesis pathway (CSP) of Entamoeba is not well characterized. In this report, we have identified the genes involved in chitin biosynthesis from the Entamoeba genome database and verified their expression profile at the transcriptional level in encysting Entamoeba invadens. Semi-quantitative RT-PCR (sqRT-PCR) analysis showed that all the chitin pathway genes are entirely absent or transcribed at low levels in trophozoites. The mRNA expression of most of the CSP genes reached their maximum level between 9 and 12h after the in vitro initiation of encystation. Double-stranded RNA-mediated silencing of glucosamine-6-P isomerase (Gln6Pi) reduced chitin synthesis to 62-64%, which indicates that Gln6Pi might be a key enzyme for regulating chitin synthesis in Entamoeba. The study of different enzymes involved in glycogen metabolism revealed that stored glycogen is converted to glucose during encystation. It is clear from the sqRT-PCR analysis that the rate of glycolysis decreases as encystation proceeds. Encystation up-regulates the expression of glycogen phosphorylase, which is responsible for glycogen degradation. The significant decrease in chitin synthesis in encysting cells treated with a specific inhibitor of glycogen phosphorylase indicates that the glucose obtained from the degradation of stored glycogen in trophozoites might be one of the major sources of glucose for chitin synthesis.

  8. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  9. Cyclophilin J is a novel peptidyl-prolyl isomerase and target for repressing the growth of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Cyclophilin J (CYPJ is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation and in vivo (xenograft tumor formation. Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy.

  10. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes.

    Science.gov (United States)

    Paneni, Francesco; Costantino, Sarah; Castello, Lorenzo; Battista, Rodolfo; Capretti, Giuliana; Chiandotto, Sergio; D'Amario, Domenico; Scavone, Giuseppe; Villano, Angelo; Rustighi, Alessandra; Crea, Filippo; Pitocco, Dario; Lanza, Gaetano; Volpe, Massimo; Del Sal, Giannino; Lüscher, Thomas F; Cosentino, Francesco

    2015-04-01

    Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules. Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  12. Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.

    Science.gov (United States)

    Chen, Bing; Shao, Jingru; Zhuang, Huifu; Wen, Jianfan

    2017-02-20

    Intron evolution, including its dynamics in the evolutionary transitions and diversification of eukaryotes, remains elusive. Inadequate taxon sampling due to data shortage, unclear phylogenetic framework, and inappropriate outgroup application might be among the causes. Besides, the integrity of all the introns within a gene was often neglected previously. Taking advantage of the ancient conserved triosephosphate isomerase gene (tim), the relatively robust phylogeny of Metazoa, and choanoflagellates as outgroup, the evolutionary dynamics of tim intron location pattern (ILP) in Metazoa was investigated. From 133 representative species of ten phyla, 30 types of ILPs were identified. A most common one, which harbors the maximum six intron positions, is deduced to be the common ancestral tim ILP of Metazoa, which almost had formed in their protozoan ancestor and was surprisingly retained and passed down till to each ancestors of metazoan phyla. In the subsequent animal diversification, it underwent different evolutionary trajectories: within Deuterostomia, it was almost completely retained only with changes in a few species with relatively recently fast-evolving histories, while within the rapidly radiating Protostomia, besides few but remarkable retention, it usually displayed extensive intron losses and a few gains. Therefore, a common ancestral exon-intron arrangement pattern of an animal gene is definitely discovered; besides the 'intron-rich view' of early animal genes being confirmed, the novel insight that high exon-intron re-arrangements of genes seem to be associated with the relatively recently rapid evolution of lineages/species/genomes but have no correlation with the ancient major evolutionary transitions in animal evolution, is revealed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determinação da estrutura cristalográfica por difração de raios-x da enzima glicose 6-fosfato isomerase humana

    OpenAIRE

    2001-01-01

    O trabalho realizado como parte do programa de mestrado em física aplicada sub-área biomolecular, teve como objeto de estudo a enzima glicose-6-fosfato isomerase de humanas (PGI-hum). Este trabalho envolveu principalmente três áreas de estudos: biologia molecular, bioquímica e cristalografia. A parte de biologia molecular refere-se a sub-clonagem do gene da PGI-hum a partir de uma biblioteca de cDNA de cérebro de feto humano - capítulo 2 - e a expressão deste gene em bactérias Escherichia col...

  14. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus).

    Science.gov (United States)

    Itoh, Yoshio; Higeta, Daisuke; Suzuki, Akane; Yoshida, Hiroyuki; Ozeki, Yoshihiro

    2002-05-01

    In the "Rhapsody" cultivar of the carnation, which bears white flowers variegated with red flecks and sectors, a transposable element, dTdic1, belonging to the Ac/Ds superfamily, was found within the dihydroflavonol 4-reductase (DFR) gene. The red flecks and sectors of "Rhapsody" may be attributable to a reversion to DFR activity after the excision of dTdic1. The yellow color of the carnation petals is attributed to the synthesis and accumulation of chalcone 2'-glucoside. In several of the carnation cultivars that bear yellow flowers variegated with white flecks and sectors, both the chalcone isomerase (CHI) and DFR genes are disrupted by dTdic1.

  15. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis

    OpenAIRE

    Hyyryläinen, Hanne-Leena; Marciniak, Bogumila C.; Dahncke, Kathleen; Pietiäinen, Milla; Courtin, Pascal; Vitikainen, Marika; Seppala, Raili; Otto, Andreas; Becher, Dörte; Chapot-Chartier, Marie-Pierre; Oscar P. Kuipers; Kontinen, Vesa Pekka

    2010-01-01

    Abstract The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other gram-positive bacteria. It catalyzes the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispensability. We could construct a viable prsA null mutant in the presence of a high concentration of magnesium. Various changes in cell morphology in the absence of PrsA suggested t...

  16. Cloning, nucleotide sequence, and overexpression of the gene coding for delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B.

    Science.gov (United States)

    Kim, S W; Kim, C Y; Benisek, W F; Choi, K Y

    1994-11-01

    The structural gene coding for the delta 5-3-ketosteroid isomerase (KSI) of Pseudomonas putida biotype B has been cloned, and its entire nucleotide sequence has been determined by a dideoxynucleotide chain termination method. A 2.1-kb DNA fragment containing the ksi gene was cloned from a P. putida biotype B genomic library in lambda gt11. The open reading frame of ksi encodes 393 nucleotides, and the amino acid sequence deduced from the nucleotide sequence agrees with the directly determined amino acid sequence (K. Linden and W. F. Benisek, J. Biol. Chem. 261:6454-6460, 1986). A putative purine-rich ribosome binding site was found 8 bp upstream of the ATG start codon. Escherichia coli BL21(DE3) transformed with the pKK-KSI plasmid containing the ksi gene expressed a high level of isomerase activity when induced by isopropyl-beta-D-thiogalactopyranoside. KSI was purified to homogeneity by a simple and rapid procedure utilizing fractional precipitation and an affinity column of deoxycholate-ethylenediamine-agarose as a major chromatographic step. The molecular weight of KSI was 14,535 (calculated, 14,536) as determined by electrospray mass spectrometry. The purified KSI showed a specific activity (39,807 mumol min-1 mg-1) and a Km (60 microM) which are close to those of KSI originally obtained from P. putida biotype B.

  17. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability.

    Science.gov (United States)

    Hutt, Darren M; Roth, Daniela Martino; Chalfant, Monica A; Youker, Robert T; Matteson, Jeanne; Brodsky, Jeffrey L; Balch, William E

    2012-06-22

    Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.

  18. Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1α (Ero1α).

    Science.gov (United States)

    Zhang, Lihui; Niu, Yingbo; Zhu, Li; Fang, Jingqi; Wang, Xi'e; Wang, Lei; Wang, Chih-chen

    2014-11-07

    Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI. The regulation of Ero1α is rapidly facilitated by either a or a' catalytic domain of PDI, independent of the substrate binding domain. On the other hand, activated Ero1α specifically binds to PDI via hydrophobic interactions and preferentially catalyzes the oxidation of domain a'. This asymmetry ensures PDI to function simultaneously as an oxidoreductase and an isomerase. In addition, several PDI family members are also characterized to be potent regulators of Ero1α. The novel modes for PDI as a competent regulator and a specific substrate of Ero1α govern efficient and faithful oxidative protein folding and maintain the ER redox homeostasis.

  19. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.

    Directory of Open Access Journals (Sweden)

    Patrick Schaub

    Full Text Available CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40 hydrocarbon substrate.

  20. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Hang; Cheng, Jing-Sheng; Wang, Benjamin L; Fink, Gerald R; Stephanopoulos, Gregory

    2012-11-01

    Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.

  1. Raft-dependent endocytosis of autocrine motility factor/phosphoglucose isomerase: a potential drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Liliana D Kojic

    Full Text Available BACKGROUND: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway. METHODOLOGY/PRINCIPAL FINDINGS: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen

  2. Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver

    Directory of Open Access Journals (Sweden)

    Chen Ren

    2012-10-01

    Full Text Available Abstract Background Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. Results To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629 encoding isopentenyl diphosphate isomerase (IPI was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line control. Conclusions Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our

  3. Characterization of a recombinant L-fucose isomerase from Caldicellulosiruptor saccharolyticus that isomerizes L-fucose, D-arabinose, D-altrose, and L-galactose.

    Science.gov (United States)

    Ju, Yo-Han; Oh, Deok-Kun

    2010-02-01

    A recombinant L-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg(-1). The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for L-fucose isomerization was at pH 7 and 75 degrees C in the presence of 1 mM Mn(2+). Its half-life at 70 degrees C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for L-fucose, with a k (cat) of 11,910 min(-1) and a K (m) of 140 mM, D-arabinose, D-altrose, and L-galactose. These aldoses were converted to the ketoses L-fuculose, D-ribulose, D-psicose, and L-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.

  4. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2008-01-01

    by the redox state of active-site cysteines found in a Cys-Xaa-Xaa-Cys motif. Progress in understanding redox regulation of the mammalian enzymes is currently hampered by the lack of reliable methods to determine quantitatively their redox state in living cells. We developed such a method based......Thiol-disulfide oxidoreductases of the human protein disulfide isomerase (PDI) family promote protein folding in the endoplasmic reticulum (ER), while also assisting the retrotranslocation of toxins and misfolded ER proteins to the cytosol. The redox activity of PDI-like proteins is determined...... on the alkylation of cysteines by methoxy polyethylene glycol 5000 maleimide. With this method, we showed for the first time that in vivo PDI is present in two semi-oxidized forms in which either the first active site (in the a domain) or the second active site (in the a' domain) is oxidized. We report a steady...

  5. Computational Identification of Amino-Acid Mutations that Further Improve the Activity of a Chalcone-Flavonone Isomerase from Glycine max.

    Science.gov (United States)

    Yuan, Hui; Wu, Jiaqi; Wang, Xiaoqiang; Chen, Jiakuan; Zhong, Yang; Huang, Qiang; Nan, Peng

    2017-01-01

    Protein design for improving enzymatic activity remains a challenge in biochemistry, especially to identify target amino-acid sites for mutagenesis and to design beneficial mutations for those sites. Here, we employ a computational approach that combines multiple sequence alignment, positive selection detection, and molecular docking to identify and design beneficial amino-acid mutations that further improve the intramolecular-cyclization activity of a chalcone-flavonone isomerase from Glycine max (GmCHI). By this approach, two GmCHI mutants with higher activities were predicted and verified. The results demonstrate that this approach could determine the beneficial amino-acid mutations for improving the enzymatic activity, and may find more applications in engineering of enzymes.

  6. Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity

    DEFF Research Database (Denmark)

    Nørgaard, P; Winther, Jakob R.

    2001-01-01

    Protein disulphide isomerase (PDI) is an essential protein which is localized to the endoplasmic reticulum of eukaryotic cells. It catalyses the formation and isomerization of disulphide bonds during the folding of secretory proteins. PDI is composed of domains with structural homology...... to thioredoxin and with CXXC catalytic motifs. EUG1 encodes a yeast protein, Eug1p, that is highly homologous to PDI. However, Eug1p contains CXXS motifs instead of CXXC. In the current model for PDI function both cysteines in this motif are required for PDI-catalysed oxidase activity. To gain more insight...... into the biochemical properties of this unusual variant of PDI we have purified and characterized the protein. We have furthermore generated a number of mutant forms of Eug1p in which either or both of the active sites have been mutated to a CXXC sequence. To determine the catalytic capacity of the wild...

  7. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    Aspects of protein disulfide isomerase (PDI) function have been studied in yeast in vivo. PDI contains two thioredoxin-like domains, a and a', each of which contains an active-site CXXC motif. The relative importance of the two domains was analyzed by rendering each one inactive by mutation to SGAS....... Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC...... active site were randomly mutagenized. The resulting mutant PDIs were ranked by their growth phenotype on medium containing increasing concentrations of DTT. The rate of CPY folding in the mutants showed the same ranking as the DTT sensitivity, suggesting that the oxidative power of PDI is an important...

  8. Computational Identification of Amino-Acid Mutations that Further Improve the Activity of a Chalcone–Flavonone Isomerase from Glycine max

    Science.gov (United States)

    Yuan, Hui; Wu, Jiaqi; Wang, Xiaoqiang; Chen, Jiakuan; Zhong, Yang; Huang, Qiang; Nan, Peng

    2017-01-01

    Protein design for improving enzymatic activity remains a challenge in biochemistry, especially to identify target amino-acid sites for mutagenesis and to design beneficial mutations for those sites. Here, we employ a computational approach that combines multiple sequence alignment, positive selection detection, and molecular docking to identify and design beneficial amino-acid mutations that further improve the intramolecular-cyclization activity of a chalcone–flavonone isomerase from Glycine max (GmCHI). By this approach, two GmCHI mutants with higher activities were predicted and verified. The results demonstrate that this approach could determine the beneficial amino-acid mutations for improving the enzymatic activity, and may find more applications in engineering of enzymes. PMID:28286513

  9. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  10. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    Science.gov (United States)

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  11. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  12. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    Science.gov (United States)

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  13. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons.

    Directory of Open Access Journals (Sweden)

    Jan Paul Buschdorf

    Full Text Available Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation.

  14. Research Progress of Glucose Phosphate Isomerase%葡萄糖-6-磷酸异构酶研究进展

    Institute of Scientific and Technical Information of China (English)

    韩龙; 杜翠红

    2012-01-01

    葡萄糖-6-磷酸异构酶(Glucose phosphate isomerase,GPI)是一类多功能蛋白质,在糖代谢的糖酵解中催化葡萄糖-6-磷酸和果糖-6-磷酸之间的可逆反应,同时它还具有其他重要生理生化功能.人体GPI的缺乏可导致非球型血红细胞贫血症以及神经功能的紊乱,GPI还具有细胞因子的活性,并与类风湿关节炎的发生有密切关系.此外在渔业研究方面有研究表明,鱼体GPI具有特异抑制鱼体自身肌原纤维结合型丝氨酸蛋白酶活性的功能等.文章GPI的功能、空间结构、酶学性质及克隆表达等方面简要介绍了目前研究的一些情况.%Glucose phosphate isomerase is a multifunctional protein. It catalyzes the reversible isomerization between glucose-6-phosphate and fructose- 6-phosphate as a part of the glycolytic pathway. In addition, it has some other biological functions. For example,the lack of GPI from human can result in nonspherocytic red blood cell hemolytic anemia and nervous disorder. GPI also has cytokine activity and is closely related to the incidence of rheumatoid arthritis. In fisheries research, GPI also has been found to have specific inhibitory activity toward myofibril-bound serine proteinases in fish. This article briefly introduces the overview of the GPI research in the side of the functional roles of GPI,the spatial structure,enzymatic properties,cloning and expression.

  15. 固定化葡萄糖异构酶活化条件对其酶活的影响%Influence of activation conditions on the enzyme activity of immobilized glucose isomerase

    Institute of Scientific and Technical Information of China (English)

    胡弢; 周雪艳; 赵国群

    2012-01-01

    Activation was need before immobilized glucose isomerase was used in order to make it have the best catalytic ability.The influences of activation conditions on the enzyme activity of GENSWEETTM IGI-SA immobilized glucose isomerase were studied including concentration of glucose syrup,temperature,pH,activation time and metal ions.The optimal activation condition was as follows:Glucose syrup 60%,temperature 55℃,pH 7.5 and activation time 4h.Under this condition,the enzyme activity of immobilized glucose isomerase was 815U/g,which was 40% higher than one under normal activation condition.Mg2+,Co2+,Mn2+and Zn2+were not necessary to be added into glucose syrup when immobilized glucose isomerase was activated.%固定化葡萄糖异构酶在使用前需先进行活化,从而使酶发挥其最佳催化功效。本文从糖液浓度、温度、pH、活化时间和金属离子五个方面研究了活化条件对GENSWEETTMIGI-SA固定化葡萄糖异构酶酶活的影响。该酶的最适活化条件为:葡萄糖液浓度60%、温度55℃、pH7.5、时间4h。经此条件活化之后,其酶活达815U/g,与常规活化条件相比,酶活提高了40%以上。固定化葡萄糖异构酶活化时不宜加入Mg2+、Co2+、Mn2+和Zn2+。

  16. Genetic expression of hexokinase and glucose phosphate isomerase in late-stage mouse preimplantation embryos: transcription activities in glucose/phosphate-containing HTF and glucose/phosphate-free P1 media.

    Science.gov (United States)

    Johnson, M D; Batey, D W; Behr, B; Barro, J

    1997-04-01

    In mouse and human preimplantation development, pyruvate is consumed preferentially during early embryogenesis; however, during the morula and blastocyst stages, glucose is the preferred energy substrate. Studies have suggested that the glycolytic enzymes, hexokinase and glucose phosphate isomerase, are important enzymes in glucose metabolism during these later stages of human and mouse preimplantation development. In order to investigate the genetic activities of these enzymes in late-stage mouse embryos developing in vitro, we analysed hexokinase and glucose phosphate isomerase transcription activities by qualitative RNA assays using reverse transcriptase-nested polymerase chain reaction amplification of individual mouse morulae and early blastocysts incubated in glucose/phosphate-free preimplantation stage one (P1) medium and glucose/phosphate-containing human tubal fluid (HTF) medium. We observed an increased incidence of hexokinase transcripts in the population of blastocysts compared with morulae, and differences in transcript incidence between early blastocysts developing in HTF medium and in P1 medium. In contrast, glucose phosphate isomerase transcripts were consistantly present in all embryos analysed, and appear to be constitutively expressed during late-stage mouse embryogenesis. The different activity patterns of the two glycolytic genes may reflect different mechanisms of gene regulation or differential transcript stability during the later stages of mouse preimplantation development.

  17. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability

    Directory of Open Access Journals (Sweden)

    Lu Kun

    2008-12-01

    Full Text Available Abstract Overexpression of HER-2/Neu occurs in about 25–30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself. Methods Immunohistochemistry for Her2 and Pin1 were performed on two hundred twenty-three human breast cancers, with 59% of the specimen from primary cancers and 41% from metastatic sites. Pin1 inhibition was achieved using siRNA in Her2+ breast cancer cell lines, and its effects were studied using cell viability assays, immunoblotting and immunofluorescence. Results Sixty-four samples (28.7% stained positive for Her2 (IHC 3+, and 54% (122/223 of all breast cancers stained positive for Pin1. Of the Her2-positive cancers 40 (62.5% were also Pin1-positive, based on strong nuclear or nuclear and cytoplasmic staining. Inhibition of Pin1 via RNAi resulted in significant suppression of Her2-positive tumor cell growth in BT474, SKBR3 and AU565 cells. Pin1 inhibition greatly increased the sensitivity of Her2-positive breast cancer cells to the mTOR inhibitor Rapamycin, while it did not increase their sensitivity to Trastuzumab, suggesting that Pin1 might act on Her2 signaling. We found that Pin1 interacted with the protein complex that contains ubiquitinated erbB2 and that Pin1 inhibition accelerated erbB2

  18. 变异链球菌核糖-5-磷酸异构酶A的表达、纯化与鉴定%Expression, purification and characterization of ribose 5-phosphate isomerase A from Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    武文琦; 丛旭珍; 殷爱红; 胡家; 翟方丽; 李慎涛

    2012-01-01

    目的 在大肠杆菌中高效表达变异链球菌核糖-5-磷酸异构酶A( ribose 5-phosphate isomerase A,rpiA ),并对表达产物进行纯化和鉴定.方法 根据GenBank中变异链球菌UA159株基因组rpiA的DNA编码序列,设计PCR引物,扩增变异链球菌核糖-5-磷酸异构酶A的DNA编码序列,将其克隆至pGEX-6p-1载体中,构建重组质粒,将测序正确的重组质粒转化入大肠杆菌BL21 (DE3)中,用异丙基-β-D-硫代吡喃半乳糖苷(isopropyl β-D-1-thiogalactopyranoside,IPTG)诱导表达;对培养温度、IPTG用量、诱导时间等条件进行了优化;用亲和层析、离子交换层析纯化目标蛋白;用SDS-PAGE和质谱对目标蛋白进行鉴定.结果 变异链球菌核糖-5-磷酸异构酶A在大肠杆菌中高效、可溶性表达,经质谱鉴定及SDS-PAGE分析,表达产物为变异链球菌核糖-5-磷酸异构酶A蛋白.经过纯化,得到纯度高达95%的变异链球菌核糖-5-磷酸异构酶A.结论 成功地在大肠杆菌中高效表达了变异链球菌核糖-5-磷酸异构酶A蛋白,并建立了纯化工艺,得到高纯度的重组蛋白,为进一步研究变异链球菌属核糖-5-磷酸异构酶蛋白的生物学活性及功能奠定了基础.%Objective To express, purify and characterize the ribose 5-phosphate isomerase A(rpiA) from Streptococcus muians. Methods A DNA fragment encoding S. mutans ribose 5-phosphate isomerase A was amplified by PCR using the genomic DNA of Streptococcus mutans UA159 as a template. The PCR product was cloned into vector pGEX-6p-l. The construct carrying the coding DNA sequence of rpiA fused with GST was transformed into E. coli BL21 (DE3) , and the fusion protein was expressed by induction with IPTG. The recombinant protein was purified by affinity chromatography and ion exchange chromatography. The purified target protein was identified by SDS-PAGE and MALDI-TOF MS. Results S. mutans ribose 5-phosphate isomerase A was successfully expressed in E. coli in

  19. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function.

    Science.gov (United States)

    Wu, X; Chang, A; Sudol, M; Hanes, S D

    2001-12-01

    Transcription of protein-coding genes by RNA polymerase II (pol II) is a highly coordinated process that requires the stepwise association of distinct protein complexes with the C-terminal domain (CTD) of Rpbl, the largest subunit of RNA pol II. Interaction of these complexes with the CTD might be subject to regulation by proteins such as Ess1 and Rsp5. Ess1, a prolyl-isomerase, binds the CTD and is thought to play a positive role in pol II transcription by generating conformational isomers of the CTD. Rsp5, a ubiquitin ligase, binds the CTD and is thought to play a negative role in transcription by mediating Rpbl ubiquitination and degradation. In this paper, we demonstrate that ESS1 and RSP5 interact genetically and that these interactions occur via RPBI. We show that over-expression of RSP5 enhances the growth defect of ess1ts cells and this effect is reversed by introducing extra copies of RPB1. Over-expression of RSP5 also mimics the sensitivity of ess1ts mutant cells to the toxicity of plasmids carrying dominant-negative CTD mutations, whereas mutations in RSP5 suppress this effect. Using a modified two-hybrid assay, we also demonstrate that Essl and Rsp5 compete directly for binding to the CTD. The results suggest a model in which Essl and Rsp5 act opposingly on pol II function to control the level of pol II available for transcription.

  20. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

    Science.gov (United States)

    Czajlik, András; Kovács, Bertalan; Permi, Perttu; Gáspári, Zoltán

    2017-03-01

    Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.

  1. Genetical control and linkage relationships of isozyme markers in sugar beet (B. vulgaris L.) : 1. Isocitrate dehydrogenase, adenylate kinase, phosphoglucomutase, glucose phosphate isomerase and cathodal peroxidase.

    Science.gov (United States)

    Smed, E; Van Geyt, J P; Oleo, M

    1989-07-01

    Five isozyme systems were genetically investigated. The different separation techniques, the developmental expression and the use as marker system in sugar beet genetics and breeding is discussed. Isocitrate dehydrogenase was controlled by two genes. The gene products form inter- as well as intralocus dimers, even with the gene products of the Icd gene in B. procumbens and B. patellaris. Adenylate kinase was controlled by one gene. Three different allelic forms were detected, which were active as monomeric proteins. Glucose phosphate isomerase showed two zones of activity. One zone was polymorphic. Three allelic variants, active as dimers, were found. Phosphoglucomutase also showed two major zones of activity. One zone was polymorphic and coded for monomeric enzymes. Two allelic forms were found in the accessions studied. The cathodal peroxidase system was controlled by two independent genes, of which only one was polymorphic. The gene products are active as monomers. Linkage was found between red hypocotyl color (R) and Icd 2. Pgm 1, Gpi 2, Ak 1 and the Icd 2-R linkage group segregated independently.

  2. Triosephosphate isomerase tyrosine nitration induced by heme-NaNO2 -H2 O2 or peroxynitrite: Effects of different natural phenolic compounds.

    Science.gov (United States)

    Gao, Wanxia; Zhao, Jie; Li, Hailing; Gao, Zhonghong

    2017-06-01

    Peroxynitrite and heme peroxidases (or heme)-H2 O2 -NaNO2 system are the two common ways to cause protein tyrosine nitration in vitro, but the effects of antioxidants on reducing these two pathways-induced protein nitration and oxidation are controversial. Both nitrating systems can dose-dependently induce triosephosphate isomerase (TIM) nitration, however, heme-H2 O2 -NaNO2 was less destructive to protein secondary structures and led to more nitrated tyrosine residue than 3-morpholinosydnonimine hydrochloride (SIN-1, a peroxynitrite donor). Both of desferrioxamine and catechin could inhibit TIM nitration induced by heme-H2 O2 -NaNO2 and SIN-1 and protein oxidation induced by SIN-1, but promoted heme-H2 O2 -NaNO2 -induced protein oxidation. Moreover, the antagonism of natural phenolic compounds on SIN-1-induced tyrosine nitration was consistent with their radical scavenging ability, but no similar consensus was found in heme-H2 O2 -NaNO2 -induced nitration. Our results indicated that peroxynitrite and heme-H2 O2 -NaNO2 -induced protein nitration was different, and the later one could be a better model for anti-nitration compounds screening. © 2017 Wiley Periodicals, Inc.

  3. Connecting Active-Site Loop Conformations and Catalysis in Triosephosphate Isomerase: Insights from a Rare Variation at Residue 96 in the Plasmodial Enzyme.

    Science.gov (United States)

    Pareek, Vidhi; Samanta, Moumita; Joshi, Niranjan V; Balaram, Hemalatha; Murthy, Mathur R N; Balaram, Padmanabhan

    2016-04-01

    Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position 96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residue--phenylalanine--at this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue 96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.

  4. Molecular cloning and transgenic characterization of the genes encoding chalcone synthase and chalcone isomerase from the Tibetan herbal plant Mirabilis himalaica.

    Science.gov (United States)

    Lan, Xiaozhong; Quan, Hong; Xia, Xinli; Yin, Weilun; Zheng, Weilie

    2016-05-01

    Mirabilis himalaica is an endangered medicinal plant species in the Tibetan Plateau. The two genes respectively encoding chalcone synthase (MhCHS) and chalcone isomerase (MhCHI) were isolated and characterized from M. himalaica. The sequence analysis revealed that the two genes were similar with their corresponding homologous genes in other plants. The tissue profiles showed that both MhCHS and MhCHI had higher expression levels in roots than in stems and leaves. Transgenic hairy root cultures respectively with overexpressing MhCHS and MhCHI were established. The genomic PCR detection confirmed the authority of transgenic hairy root lines, in which either MhCHS or MhCHI expression levels were much higher than that in non-transgenic hairy root line. Finally, the HPLC detection results demonstrated that the rotenoid contents in MhCHS/MhCHI-transformed hairy root lines were enhanced. This study provided two candidate genes that could be used to genetic engineering rotenoid biosynthesis in M. himalaica and an alternative method to produce rotenoid using transgenic hairy root cultures.

  5. Structure and activity of the peptidyl-prolyl isomerase domain from the histone chaperone Fpr4 toward histone H3 proline isomerization.

    Science.gov (United States)

    Monneau, Yoan R; Soufari, Heddy; Nelson, Christopher J; Mackereth, Cameron D

    2013-09-06

    The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy. This canonical FKBP domain actively increases the rate of isomerization of three decapeptides derived from the N terminus of yeast histone H3, whereas maintaining intrinsic cis and trans populations. Observation of the uncatalyzed and Fpr4-catalyzed isomerization rates at equilibrium demonstrate Pro(16) and Pro(30) of histone H3 as the major proline targets of Fpr4, with little activity shown against Pro(38). This alternate ranking of the three target prolines, as compared with affinity determination or the classical chymotrypsin-based fluorescent assay, reveals the mechanistic importance of substrate residues C-terminal to the peptidyl-prolyl bond.

  6. A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering.

    Science.gov (United States)

    Zheng, Tianyu; Cherubin, Patrick; Cilenti, Lucia; Teter, Ken; Huo, Qun

    2016-02-07

    The hydrodynamic dimension of a protein is a reflection of both its molecular weight and its tertiary structures. Studying the hydrodynamic dimensions of proteins in solutions can help elucidate the structural properties of proteins. Here we report a simple and fast method to measure the hydrodyamic size of a relatively small protein, protein disulfide isomerase (PDI), using gold nanoparticle probes combined with dynamic light scattering. Proteins can readily adsorb to citrate-capped gold nanoparticles to form a protein corona. By measuring the average diameter of the gold nanoparticles before and after protein corona formation, the hydrodynamic diameter of the protein can be deduced from the net particle size increase of the assay solution. This study found that when the disulfide bonds in PDI are reduced to thiols, the reduced PDI exhibits a smaller hydrodynamic diameter than the oxided PDI. This finding is in good agreement with the X-ray diffraction analysis of PDI in single crystals. In comparison with other techniques that are used for protein hydrodynamic size analysis, the current method is easy to use, requires a trace amount of protein samples, with results obtained in minutes instead of hours.

  7. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  8. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Directory of Open Access Journals (Sweden)

    Natália M. N. Fava

    2013-01-01

    Full Text Available Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh and triose phosphate isomerase (tpi primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4% and 36 (61.0% samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology.

  9. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks.

  10. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.

    Science.gov (United States)

    Tanino, Takanori; Hotta, Atsushi; Ito, Tomonori; Ishii, Jun; Yamada, Ryosuke; Hasunuma, Tomohisa; Ogino, Chiaki; Ohmura, Naoto; Ohshima, Takayuki; Kondo, Akihiko

    2010-11-01

    A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.

  11. Structural Basis of Human Triosephosphate Isomerase Deficiency: Mutation E104D is Related to Alterations of a Conserved Water Network at the Dimer Interface

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Almazan, Claudia; Arreola, Rodrigo; Rodriguez-Larrea, David; Aguirre-Lopez, Beatriz; Gomez-Puyou, Marietta Tuena de; Perez-Montfort, Ruy; Costas, Miguel; Gomez-Puyou, Armando; Torres-Larios, Alfredo (Granada); (U. NAM)

    2010-01-07

    Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood. Here, we show that the purified, recombinant mutant enzyme E104D, while exhibiting normal catalytic activity, shows impairments in the formation of active dimers and low thermostability and monomerizes under conditions in which the wild type retains its dimeric form. The crystal structure of the E104D mutant at 1.85 {angstrom} resolution showed that its global structure was similar to that of the wild type; however, residue 104 is part of a conserved cluster of 10 residues, five from each subunit. An analysis of the available high resolution structures of TIM dimers revealed that this cluster forms a cavity that possesses an elaborate conserved network of buried water molecules that bridge the two subunits. In the E104D mutant, a disruption of contacts of the amino acid side chains in the conserved cluster leads to a perturbation of the water network in which the water-protein and water-water interactions that join the two monomers are significantly weakened and diminished. Thus, the disruption of this solvent system would stand as the underlying cause of the deficiency.

  12. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  13. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  14. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  15. Characterization of grown-in dislocations in high-quality glucose isomerase crystals by synchrotron monochromatic-beam X-ray topography

    Science.gov (United States)

    Suzuki, Ryo; Koizumi, Haruhiko; Kojima, Kenichi; Fukuyama, Seijiro; Arai, Yasutomo; Tsukamoto, Katsuo; Suzuki, Yoshihisa; Tachibana, Masaru

    2017-06-01

    High quality glucose isomerase (GI) single crystals are grown by using chemical cross-linked seed crystals. The crystal structure is an orthorhombic system in which the molecular arrangement is close to a body-centered cubic (bcc) one. The crystal defects, especially dislocations, in GI crystals are experimentally characterized by synchrotron monochromatic-beam X-ray topography. Two straight dislocations are clearly observed, which originate from the interface between the cross-linked seed crystal and the grown crystal. From the invisibility criterion of the dislocation images, it is experimentally identified that they are close to be of pure edge character with the Burgers vector of [1 1 bar 1] which is typical one in bcc metal crystals. Moreover, bead-like contrasts along the dislocation images and the equal-thickness fringes, related to Pendellösung fringes, at crystal edges are clearly observed, which have never been observed in other protein crystals so far. These contrasts can attributed to the dynamical diffraction effect which has been often observed in high-quality crystals such as Si. Thus it seems that the perfection of GI crystals shown in this paper is extremely high compared with other protein crystals reported so far.

  16. Analysis of the relationship between Chalcone Isomerase gene expression level and rutin production in Ficus deltoidea var. deltoidea and F. deltoidea var. angustifolia

    Science.gov (United States)

    Najid, Najihah Mohd; Zain, Che Radziah Che Mohd; Zainal, Zamri

    2016-11-01

    Ficus deltoidea (moraceae) is a herbal plant with medicinal values. Previous studies reported that the F. deltoidea contains a high level of bioactive compounds such as flavonoids. A cDNA encodes for chalcone isomerase was identified from F. deltoidea, designated as FdCHI, which involved in the isomerization of naringenin chalcone to naringenin. Naringenin is a key branch point for the synthesis of rutin, which is believed involved in defense mechanism in the plant. Therefore, we hypothesized that there might be a direct relationship between FdCHI expression level and rutin production in leaves of F. deltoidea var. deltoidea (FDD) and F. deltoidea var. angustifolia (FDA). Our result showed that expression level of FdCHI in leaves FDD was greater than FDA. Analysis of High Performance Liquid Chromatography (HPLC) revealed that rutin was only detected in FDA leaves. Based on the results between FdCHI expression and rutin production, this study concluded that there is no relationship between FdCHI expression and rutin production in leaves of FDA and FDD.

  17. The adaptive evolution divergence of triosephosphate isomerases between parasitic and free-living flatworms and the discovery of a potential universal target against flatworm parasites.

    Science.gov (United States)

    Chen, Bing; Wen, Jian-Fan

    2011-08-01

    Triosephosphate isomerase (TIM) is an important drug target or vaccine candidate for pathogenetic organisms such as schistosomes. Parasitic and free-living flatworms shared their last common ancestor but diverged from each other for adapting to parasitic and free-living lives afterwards, respectively. Therefore, adaptive evolution divergence must have occurred between them. Here, for the first time, TIMs were identified from three free-living planarian flatworms, namely Dugesia japonica, Dugesia ryukyuensis, and Schmidtea mediterranea. When these were compared with parasitic flatworms and other organisms, the following results were obtained: (1) planarian TIM genes each contain only one intron, while parasitic flatworm genes each contain other four introns, which are usually present in common metazoans, suggesting planarian-specific intron loss must have occurred; (2) planarian TIM protein sequences are more similar to those of vertebrates rather than to their parasitic relatives or other invertebrates. This implies that relatively rapid evolution occurred in parasitic flatworm TIMs; (3) All the investigated parasitic flatworm TIMs contain a unique tripeptide insert (SXD/E), which may imply its insertion importance to the adaptation of parasitic life. Moreover, our homology modeling results showed the insert region was largely surface-exposed and predicted to be of a B cell epitope location. Finally, the insert is located within one of the three regions previously suggested to be promising immunogenic epitopes in Schistosoma mansoni TIM. Therefore, this unique insert might be significant to developing new effective vaccines or specific drugs against all parasitic flatworm diseases such as schistosomiasis and taeniosis/cysticercosis.

  18. Synergistic Interaction of Light Alcohol Administration in the Presence of Mild Iron Overload in a Mouse Model of Liver Injury: Involvement of Triosephosphate Isomerase Nitration and Inactivation

    Science.gov (United States)

    Gao, Wanxia; Zhao, Jie; Gao, Zhonghong

    2017-01-01

    It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or alcohol used in studies are usually able to induce liver injury independently. Little attention has been paid to the coexistence of low alcohol consumption and mild iron overload when either of them is insufficient to cause obvious liver damage, although this situation is very common among some people. We studied the interactive effects and the underlining mechanism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran, i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4 weeks of treatment, mice were sacrificed and blood and livers were collected for biochemical analysis. Protein nitration level in liver tissue was determined by immunoprecipitation and Western blot analysis. Although neither iron overload nor alcohol consumption at our tested doses can cause severe liver injury, it was found that co-administration of the same doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and subsequent elevated protein nitration level. Further study revealed that triosephosphate isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and nitrated, which was responsible for its inactivation. These data indicate that even under low alcohol intake, a certain amount of iron overload can cause significant liver oxidative damage, and the modification of triosephosphate isomerasemight be the important underlining mechanism of hepatic dysfunction. PMID:28103293

  19. Molecular characterization of a thermostable L-fucose isomerase from Dictyoglomus turgidum that isomerizes L-fucose and D-arabinose.

    Science.gov (United States)

    Hong, Seung-Hye; Lim, Yu-Ri; Kim, Yeong-Su; Oh, Deok-Kun

    2012-09-01

    A recombinant thermostable l-fucose isomerase from Dictyoglomus turgidum was purified with a specific activity of 93 U/mg by heat treatment and His-trap affinity chromatography. The native enzyme existed as a 410 kDa hexamer. The maximum activity for l-fucose isomerization was observed at pH 7.0 and 80 °C with a half-life of 5 h in the presence of 1 mM Mn(2+) that was present one molecular per monomer. The isomerization activity of the enzyme with aldose substrates was highest for l-fucose (with a k(cat) of 15,500 min(-1) and a K(m) of 72 mM), followed by d-arabinose, d-altrose, and l-galactose. The 15 putative active-site residues within 5 Å of the substrate l-fucose in the homology model were individually replaced with other amino acids. The analysis of metal-binding capacities of these alanine-substituted variants revealed that Glu349, Asp373, and His539 were metal-binding residues, and His539 was the most influential residue for metal binding. The activities of all variants at 349 and 373 positions except for a dramatically decreased k(cat) of D373A were completely abolished, suggesting that Glu349 and Asp373 were catalytic residues. Alanine substitutions at Val131, Met197, Ile199, Gln314, Ser405, Tyr451, and Asn538 resulted in substantial increases in K(m), suggesting that these amino acids are substrate-binding residues. Alanine substitutions at Arg30, Trp102, Asn404, Phe452, and Trp510 resulted in decreases in k(cat), but had little effect on K(m).

  20. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  1. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L. genome

    Directory of Open Access Journals (Sweden)

    Łucja ePrzysiecka

    2015-04-01

    Full Text Available Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI, a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL, and fatty acid-binding (FAP proteins. Here, two Lupinus angustifolius (narrow-leafed lupin CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1 main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis

  2. Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures.

    Science.gov (United States)

    Kallscheuer, Nicolai; Bott, Michael; van Ooyen, Jan; Polen, Tino

    2015-11-01

    Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum, a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum, a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA, which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum. In vitro, FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l-glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum ΔfkpA, giving insight into the transcriptional response upon mild heat stress when FkpA is absent.

  3. Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions.

    Science.gov (United States)

    Laxa, Miriam; König, Janine; Dietz, Karl-Josef; Kandlbinder, Andrea

    2007-01-01

    Cyps (cyclophilins) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved cysteine residues further suggest a role in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast-located CYP20-3, site-directed mutagenized cysteine-->serine variants were generated and analysed for enzymatic and conformational properties under reducing and oxidizing conditions. Compared with the wild-type form, elimination of three out of the four cysteine residues decreased the catalytic efficiency of PPI (peptidyl-prolyl cis-trans isomerase) activity of the reduced CYP20-3, indicating a regulatory role of dithiol-disulfide transitions in protein function. Oxidation was accompanied by conformational changes with a predominant role in the structural rearrangement of the disulfide bridge formed between Cys(54) and Cys(171). The rather negative E(m) (midpoint redox potential) of -319 mV places CYP20-3 into the redox hierarchy of the chloroplast, suggesting the activation of CYP20-3 in the light under conditions of limited acceptor availability for photosynthesis as realized under environmental stress. Chloroplast Prx (peroxiredoxins) were identified as interacting partners of CYP20-3 in a DNA-protection assay. A catalytic role in the reduction of 2-Cys PrxA and 2-Cys PrxB was assigned to Cys(129) and Cys(171). In addition, it was shown that the isomerization and disulfide-reduction activities are two independent functions of CYP20-3 that both are regulated by the redox state of its active centre.

  4. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    Science.gov (United States)

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  5. Inhibition of the functional interplay between endoplasmic reticulum (ER) oxidoreduclin-1α (Ero1α) and protein-disulfide isomerase (PDI) by the endocrine disruptor bisphenol A.

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-09-26

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b' domain, preventing PDI from binding to unfolded proteins. The b' domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b' domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation.

  6. Proton pump inhibitors drastically modify triosephosphate isomerase from Giardia lamblia at functional and structural levels, providing molecular leads in the design of new antigiardiasic drugs.

    Science.gov (United States)

    García-Torres, Itzhel; de la Mora-de la Mora, Ignacio; Marcial-Quino, Jaime; Gómez-Manzo, Saúl; Vanoye-Carlo, América; Navarrete-Vázquez, Gabriel; Colín-Lozano, Blanca; Gutiérrez-Castrellón, Pedro; Sierra-Palacios, Edgar; López-Velázquez, Gabriel; Enríquez-Flores, Sergio

    2016-01-01

    Proton pump inhibitors (PPIs) are extensively used in clinical practice because of their effectiveness and safety. Omeprazole is one of the best-selling drugs worldwide and, with other PPIs, has been proposed to be potential drugs for the treatment of several diseases. We demonstrated that omeprazole shows cytotoxic effects in Giardia and concomitantly inactivates giardial triosephosphate isomerase (GlTIM). Therefore, we evaluated the efficiency of commercially available PPIs to inactivate this enzyme. We assayed the effect of PPIs on the GlTIM WT, single Cys mutants, and the human counterpart, following enzyme activity, thermal stability, exposure of hydrophobic regions, and susceptibility to limited proteolysis. PPIs efficiently inactivated GlTIM; however, rabeprazole was the best inactivating drug and was nearly ten times more effective. The mechanism of inactivation by PPIs was through the modification of the Cys 222 residue. Moreover, there are important changes at the structural level, the thermal stability of inactivated-GlTIM was drastically diminished and the structural rigidity was lost, as observed by the exposure of hydrophobic regions and their susceptibility to limited proteolysis. Our results demonstrate that rabeprazole is the most potent PPI for GlTIM inactivation and that all PPIs tested have substantial abilities to alter GITIM at the structural level, causing serious damage. This is the first report demonstrating the effectiveness of commercial PPIs on a glycolytic parasitic enzyme, with structural features well known. This study is a step forward in the use and understanding the implicated mechanisms of new antigiardiasic drugs safe in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus.

    Science.gov (United States)

    Figueroa-Montiel, Andrea; Ramos, Marco A; Mares, Rosa E; Dueñas, Salvador; Pimienta, Genaro; Ortiz, Ernesto; Possani, Lourival D; Licea-Navarro, Alexei F

    2016-01-01

    Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI) enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico) were assembled. Complementary DNA (cDNA) libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.

  8. In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus.

    Directory of Open Access Journals (Sweden)

    Andrea Figueroa-Montiel

    Full Text Available Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico were assembled. Complementary DNA (cDNA libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.

  9. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease.

    Science.gov (United States)

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G

    2013-07-26

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.

  10. A ribosomal misincorporation of Lys for Arg in human triosephosphate isomerase expressed in Escherichia coli gives rise to two protein populations.

    Directory of Open Access Journals (Sweden)

    Beatriz Aguirre

    Full Text Available We previously observed that human homodimeric triosephosphate isomerase (HsTIM expressed in Escherichia coli and purified to apparent homogeneity exhibits two significantly different thermal transitions. A detailed exploration of the phenomenon showed that the preparations contain two proteins; one has the expected theoretical mass, while the mass of the other is 28 Da lower. The two proteins were separated by size exclusion chromatography in 3 M urea. Both proteins correspond to HsTIM as shown by Tandem Mass Spectrometry (LC/ESI-MS/MS. The two proteins were present in nearly equimolar amounts under certain growth conditions. They were catalytically active, but differed in molecular mass, thermostability, susceptibility to urea and proteinase K. An analysis of the nucleotides in the human TIM gene revealed the presence of six codons that are not commonly used in E. coli. We examined if they were related to the formation of the two proteins. We found that expression of the enzyme in a strain that contains extra copies of genes that encode for tRNAs that frequently limit translation of heterologous proteins (Arg, Ile, Leu, as well as silent mutations of two consecutive rare Arg codons (positions 98 and 99, led to the exclusive production of the more stable protein. Further analysis by LC/ESI-MS/MS showed that the 28 Da mass difference is due to the substitution of a Lys for an Arg residue at position 99. Overall, our work shows that two proteins with different biochemical and biophysical properties that coexist in the same cell environment are translated from the same nucleotide sequence frame.

  11. TAL effectors target the C-terminal domain of RNA polymerase II (CTD by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin.

    Directory of Open Access Journals (Sweden)

    Mariane Noronha Domingues

    Full Text Available Transcriptional activator-like (TAL effectors of plant pathogenic bacteria function as transcription factors in plant cells. However, how TAL effectors control transcription in the host is presently unknown. Previously, we showed that TAL effectors of the citrus canker pathogen Xanthomonas citri, named PthAs, targeted the citrus protein complex comprising the thioredoxin CsTdx, ubiquitin-conjugating enzymes CsUev/Ubc13 and cyclophilin CsCyp. Here we show that CsCyp complements the function of Cpr1 and Ess1, two yeast cyclophilins that regulate transcription by the isomerization of proline residues of the regulatory C-terminal domain (CTD of RNA polymerase II. We also demonstrate that CsCyp, CsTdx, CsUev and four PthA variants interact with the citrus CTD and that CsCyp co-immunoprecipitate with the CTD in citrus cell extracts and with PthA2 transiently expressed in sweet orange epicotyls. The interactions of CsCyp with the CTD and PthA2 were inhibited by cyclosporin A (CsA, a cyclophilin inhibitor. Moreover, we present evidence that PthA2 inhibits the peptidyl-prolyl cis-trans isomerase (PPIase activity of CsCyp in a similar fashion as CsA, and that silencing of CsCyp, as well as treatments with CsA, enhance canker lesions in X. citri-infected leaves. Given that CsCyp appears to function as a negative regulator of cell growth and that Ess1 negatively regulates transcription elongation in yeast, we propose that PthAs activate host transcription by inhibiting the PPIase activity of CsCyp on the CTD.

  12. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    Science.gov (United States)

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  13. Phylogenetic characterization and promoter expression analysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique to plants and chromalveolates.

    Science.gov (United States)

    Yuen, Christen Y L; Wong, Katharine; Christopher, David A

    2016-02-01

    Protein disulfide isomerases (PDIs) play critical roles in protein folding by catalyzing the formation and rearrangement of disulfide bonds in nascent secretory proteins. There are six distinct PDI subfamilies in terrestrial plants. A unique feature of PDI-C subfamily members is their homology to the yeast retrograde (Golgi-to-endoplasmic reticulum) cargo receptor proteins, Erv41p and Erv46p. Here, we demonstrate that plant Erv41p/Erv46p-like proteins are divided into three subfamilies: ERV-A, ERV-B and PDI-C, which all possess the N-proximal and C-proximal conserved domains of yeast Erv41p and Erv46p. However, in PDI-C isoforms, these domains are separated by a thioredoxin domain. The distribution of PDI-C isoforms among eukaryotes indicates that the PDI-C subfamily likely arose through an ancient exon-shuffling event that occurred before the divergence of plants from stramenopiles and rhizarians. Arabidopsis has three PDI-C genes: PDI7, PDI12, and PDI13. PDI12- and PDI13-promoter: β-glucuronidase (GUS) gene fusions are co-expressed in pollen and stipules, while PDI7 is distinctly expressed in the style, hydathodes, and leaf vasculature. The PDI-C thioredoxin domain active site motif CxxS is evolutionarily conserved among land plants. Whereas PDI12 and PDI13 retain the CxxS motif, PDI7 has a CxxC motif similar to classical PDIs. We hypothesize that PDI12 and PDI13 maintain the ancestral roles of PDI-C in Arabidopsis, while PDI7 has undergone neofunctionalization. The unusual PDI/cargo receptor hybrid arrangement in PDI-C isoforms has no counterpart in animals or yeast, and predicts the need for pairing redox functions with cargo receptor processes during protein trafficking in plants and other PDI-C containing organisms.

  14. The Activity and Localization of 3β-hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase and Release of Androstenedione and Progesterone by Uterine Tissues During Early Pregnancy and the Estrous Cycle in Pigs

    OpenAIRE

    Wojciechowicz, Bartosz; KOTWICA, Genowefa; Kolakowska, Justyna; Franczak, Anita

    2012-01-01

    Abstract Steroid hormones are produced by the porcine uterus. We hypothesized that the uterus in pigs possesses active 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) responsible for progesterone and androstenedione production, that uterine steroids may supplement the amount of steroid hormones produced by embryos and corpus luteum and that these steroids are necessary for maintenance of pregnancy. In this study, we examined 1) endometrial and myometrial expression of 3β-HSD mRNA, 2)...

  15. 3 Beta-hydroxy-delta 5-steroid dehydrogenase/3-keto-delta 5-steroid isomerase from bovine adrenals: mechanism of inhibition by 3-oxo-4-aza steroids and kinetic mechanism of the dehydrogenase.

    Science.gov (United States)

    Brandt, M; Levy, M A

    1989-01-10

    Several 3-oxo-4-aza steroids (1) have been identified as inhibitors of the 3 beta-hydroxy-delta 5-steroid dehydrogenase/3-keto-delta 5-steroid isomerase catalyzed conversion of pregnenolone to progesterone. By kinetically decoupling the two enzyme activities isolated from bovine adrenal cortex, it has been demonstrated that inhibition by 1 occurs through interference of both activities. A preferred ordered association of substrates to the 3 beta-hydroxy-delta 5-steroid dehydrogenase in which the cofactor binds prior to steroid was determined by isotope exchange at equilibrium. With this result, the dead-end inhibition patterns of 1 with the dehydrogenase were interpreted to originate from a preferred association of inhibitor within an enzyme ternate containing NADH; this proposal is supported by data from multiple inhibition analysis indicating synergistic binding of NADH and 1. Similarly, inhibition of the 3-keto-delta 5-steroid isomerase by the 3-oxo-4-aza steroids was enhanced in the presence of the positive effector NADH. On the basis of pH profiles upon Vm, Vm/Km, and 1/Ki for both enzyme activities, inhibition is proposed to result from the structural similarity of 1 to intermediate states formed upon enzyme catalysis.

  16. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    Science.gov (United States)

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  17. Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available Phosphoglucose isomerase (PGI catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP. In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(PH/NAD(P ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP-pathway derived cytokinins (CKs in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy

  18. Soluble prokaryotic overexpression and purification of bioactive human granulocyte colony-stimulating factor by maltose binding protein and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Bich Hang Do

    Full Text Available Human granulocyte colony-stimulating factor (hGCSF, a neutrophil-promoting cytokine, is an effective therapeutic agent for neutropenia patients who have undergone several cancer treatments. Efficient production of hGCSF using E. coli is challenging because the hormone tends to aggregate and forms inclusion bodies. This study examined the ability of seven different N-terminal fusion tags to increase expression of soluble hGCSF in E. coli. Four tag proteins, namely maltose-binding protein (MBP, N-utilization substance protein A, protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', increased the solubility of hGCSF under normal conditions. Lowering the expression temperature from 30°C to 18°C also increased the solubility of thioredoxin-tagged and glutathione S-transferase-tagged hGCSF. By contrast, hexahistidine-tagged hGCSF was insoluble at both temperatures. Simple conventional chromatographic methods were used to purify hGCSF from the overexpressed PDIb'a'-hGCSF and MBP-hGCSF proteins. In total, 11.3 mg or 10.2 mg of pure hGCSF were obtained from 500 mL cultures of E. coli expressing PDIb'a'-hGCSF or MBP-hGCSF, respectively. SDS-PAGE analysis and silver staining confirmed high purity of the isolated hGCSF proteins, and the endotoxin levels were less than 0.05 EU/µg of protein. Subsequently, the bioactivity of the purified hGCSF proteins similar to that of the commercially available hGCSF was confirmed using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50s of the cell proliferation dose-response curves for hGCSF proteins purified from MBP-hGCSF and PDIb'a'-hGCSF were 2.83±0.31 pM, and 3.38±0.41 pM, respectively. In summary, this study describes an efficient method for the soluble overexpression and purification of bioactive hGCSF in E. coli.

  19. Soluble prokaryotic overexpression and purification of bioactive human granulocyte colony-stimulating factor by maltose binding protein and protein disulfide isomerase.

    Science.gov (United States)

    Do, Bich Hang; Ryu, Han-Bong; Hoang, Phuong; Koo, Bon-Kyung; Choe, Han

    2014-01-01

    Human granulocyte colony-stimulating factor (hGCSF), a neutrophil-promoting cytokine, is an effective therapeutic agent for neutropenia patients who have undergone several cancer treatments. Efficient production of hGCSF using E. coli is challenging because the hormone tends to aggregate and forms inclusion bodies. This study examined the ability of seven different N-terminal fusion tags to increase expression of soluble hGCSF in E. coli. Four tag proteins, namely maltose-binding protein (MBP), N-utilization substance protein A, protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), increased the solubility of hGCSF under normal conditions. Lowering the expression temperature from 30°C to 18°C also increased the solubility of thioredoxin-tagged and glutathione S-transferase-tagged hGCSF. By contrast, hexahistidine-tagged hGCSF was insoluble at both temperatures. Simple conventional chromatographic methods were used to purify hGCSF from the overexpressed PDIb'a'-hGCSF and MBP-hGCSF proteins. In total, 11.3 mg or 10.2 mg of pure hGCSF were obtained from 500 mL cultures of E. coli expressing PDIb'a'-hGCSF or MBP-hGCSF, respectively. SDS-PAGE analysis and silver staining confirmed high purity of the isolated hGCSF proteins, and the endotoxin levels were less than 0.05 EU/µg of protein. Subsequently, the bioactivity of the purified hGCSF proteins similar to that of the commercially available hGCSF was confirmed using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50s of the cell proliferation dose-response curves for hGCSF proteins purified from MBP-hGCSF and PDIb'a'-hGCSF were 2.83±0.31 pM, and 3.38±0.41 pM, respectively. In summary, this study describes an efficient method for the soluble overexpression and purification of bioactive hGCSF in E. coli.

  20. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI

    Directory of Open Access Journals (Sweden)

    Chen Xueping

    2012-10-01

    Full Text Available Abstract Background Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. Methods To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI and copper-zinc superoxide dismutase (SOD1 were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Results Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the

  1. Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

    Science.gov (United States)

    Selles, Benjamin; Zannini, Flavien; Couturier, Jérémy; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2017-01-01

    Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.

  2. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle.

    Science.gov (United States)

    Rank, Nathan E; Bruce, Douglas A; McMillan, David M; Barclay, Colleen; Dahlhoff, Elizabeth P

    2007-03-01

    Eastern Sierra Nevada populations of the willow beetle Chrysomela aeneicollis commonly experience stressfully high and low environmental temperatures that may influence survival and reproduction. Allele frequencies at the enzyme locus phosphoglucose isomerase (PGI) vary across a climatic latitudinal gradient in these populations, with PGI allele 1 being most common in cooler regions and PGI allele 4 in warmer ones. PGI genotypes differ in heat and cold tolerance and in expression of a 70 kDa heat shock protein. Here we examine genetic, behavioral and environmental factors affecting a performance character, running speed, for willow beetles, and assess effects of consecutive cold and heat exposure on running speed and expression of Hsp70 in the laboratory. In nature, running speed depends on air temperature and is higher for males than females. Mating beetles ran faster than single beetles, and differences among PGI genotypes in male running speed depended on the presence of females. In the laboratory, exposure to cold reduced subsequent running speed, but the amount of this reduction depended on PGI genotype and previous thermal history. Effects of exposure to heat also depended on life history stage and PGI genotype. Adults possessing allele 1 ran fastest after a single exposure to stressful temperature, whereas those possessing allele 4 ran faster after repeated exposure. Larvae possessing allele 4 ran fastest after a single stressful exposure, but running speed generally declined after a second exposure to stressful temperature. The ranking of PGI genotypes after the second exposure depended on whether a larva had been exposed to cold or heat. Effects of temperature on Hsp70 expression also varied among PGI genotypes and depended on type of exposure, especially for adults (single heat exposure, two cold exposures: PGI 1-1>1-4>4-4; other multiple extreme exposures: 4-4>1-4>1-1). There was no consistent association between alleles at other polymorphic enzyme loci

  3. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog.

  4. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.

    Science.gov (United States)

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar

    2015-05-01

    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.

  5. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    So, Keum-Young [Department of Anesthesiology and Pain Medicine College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: seonh@chosun.ac.kr [Department of Premedicine, School of Medicine, College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-10-23

    Prolyl isomerase Pin1 plays an important role in cell proliferation and is overexpressed in many human tumors. However, its role in autophagy induction remains undefined. Here we show that Pin1 regulates cell survival via autophagy in cadmium (Cd)-exposed oral squamous cell carcinoma (OSCC). OSCC exposure to Cd induced autophagy, as demonstrated by the formation of green fluorescent punctae in transfected cells expressing GFP-conjugated microtubule-associated protein light chain 3 (LC3) and by LC3 flux in the presence of autophagy inhibitors. Suppression of Atg5 enhanced Cd-induced apoptosis, indicating that autophagy is involved in cell protection. In dose–response experiments, cleavage of procaspase-3, PARP-1, and LC3-II was induced by Cd with an IC{sub 50} of 45 μM. Expression of Pin1 was decreased at or above the Cd IC{sub 50} value and was inversely correlated with the level of phospho(p)-Ser-GSK3αβ. Genetic or pharmacologic inhibition of Pin1 suppressed Cd-induced autophagy, but increased p-Akt-mediated p-Ser-GSK3αβ; this was reversed by overexpression of Pin1. However, suppression of GSK3αβ inhibited Cd-induced autophagy and induced apoptosis, which could be reversed by overexpression of GSK3β. The PI3K inhibitor Ly294002 blocked p-Akt-mediated increases in p-Ser-GSK3αβ and autophagy and induced apoptosis. Therefore, p-Ser-GSK3αβ can directly regulate Cd-induced autophagy, although its function is suppressed by Pin1. Collectively, the present results indicate that targeting Pin1 and GSK3αβ at the same time could be an effective therapeutic tool for Cd-induced carcinogenesis. - Highlights: • Pin1 regulated autophagy to protect cells from cadmium toxicity. • Pin1 suppression inhibited cadmium-induced autophagy and induced apoptosis. • Pin1 inhibited the function of p-Ser-GSK3αβ in autophagy regulation. • p-Ser-GSK3αβ regulated autophagy independently of Pin1.

  6. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    Directory of Open Access Journals (Sweden)

    Pakula Tiina

    2011-05-01

    Full Text Available Abstract Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in

  7. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells.

    Science.gov (United States)

    Ahmad, Aamir; Aboukameel, Amro; Kong, Dejuan; Wang, Zhiwei; Sethi, Seema; Chen, Wei; Sarkar, Fazlul H; Raz, Avraham

    2011-05-01

    Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) plays an important role in glycolysis and gluconeogenesis and is associated with invasion and metastasis of cancer cells. We have previously shown its role in the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells, which led to increased aggressiveness; however, the molecular mechanism by which PGI/AMF regulates EMT is not known. Here we show, for the first time, that PGI/AMF overexpression led to an increase in the DNA-binding activity of NF-κB, which, in turn, led to increased expression of ZEB1/ZEB2. The microRNA-200s (miR-200s) miR-200a, miR-200b, and miR-200c are known to negatively regulate the expression of ZEB1/ZEB2, and we found that the expression of miR-200s was lost in PGI/AMF overexpressing MCF-10A cells and in highly invasive MDA-MB-231 cells, which was consistent with increased expression of ZEB1/ZEB2. Moreover, silencing of PGI/AMF expression in MDA-MB-231 cells led to overexpression of miR-200s, which was associated with reversal of EMT phenotype (i.e., mesenchymal-epithelial transition), and these findings were consistent with alterations in the relative expression of epithelial (E-cadherin) and mesenchymal (vimentin, ZEB1, ZEB2) markers and decreased aggressiveness as judged by clonogenic, motility, and invasion assays. Moreover, either reexpression of miR-200 or silencing of PGI/AMF suppressed pulmonary metastases of MDA-MB-231 cells in vivo, and anti-miR-200 treatment in vivo resulted in increased metastases. Collectively, these results suggest a role of miR-200s in PGI/AMF-induced EMT and thus approaches for upregulation of miR-200s could be a novel therapeutic strategy for the treatment of highly invasive breast cancer.

  8. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . The rpiB gene resided on a 4.6-kbp HindIII-EcoRV DNA fragment from phage lambda 10H5 (642) of the Kohara gene library and mapped at 92.85 min. Consistent with this map position, the cloned DNA fragment contained two divergent open reading frames of 149 and 296 codons, encoding ribose phosphate isomerase B...

  9. 葡萄糖异构酶及其在高果糖浆生产中的应用%Glucose Isomerase and Its Application in Production of High Fructose Corn Syrup

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 周海岩; 柳志强; 郑裕国

    2014-01-01

    葡萄糖异构酶(Glucose isomerase,GI)能催化D-葡萄糖的异构化反应,生成D-果糖,是目前工业上制备高果糖浆(HFCS)的关键酶之一.本文对GI的来源、分类、高级结构特征和催化机制进行了介绍,并从GI催化功能的改善、基因工程菌的构建和固定化三个方面对GI在HFCS生产中应用的关键技术和策略进行分析.

  10. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    Science.gov (United States)

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  11. The intraspecific difference of the triose phosphate isomerase (tim) gene from Giardia lamblia%蓝氏贾第鞭毛虫磷酸丙糖异构酶基因种内差异研究

    Institute of Scientific and Technical Information of China (English)

    卢思奇; 李继红; 张亚平; 文建凡; 王凤云

    2002-01-01

    目的探讨蓝氏贾第鞭毛虫(Giardia lamblia)磷酸丙糖异构酶基因种内差异.方法提取虫体总DNA,对所有虫株磷酸丙糖异构酶(tim)基因部分片段进行PCR扩增.测定序列后,用简约法和NJ法构建系统树进行系统发育分析.结果共有124个位点存在变异(占所有测定序列中的23%),且大多数为发生在密码子的同义突变. 两种构树方法所得二树的分枝结构相似,均将受试的16株蓝氏贾第虫分为明显的两组.结论宿主及地理因素对蓝氏贾第虫群体的遗传多样性影响不大.在DNA分子进化水平上,自然选择的影响十分显著.可将tim基因作为蓝氏贾第虫群体遗传结构一个十分有效的遗传标记.%Objective To investigate the intraspecific difference of the triose phosphate isomerase(ti m) gene from Giardia lamblia (G. lamblia).Methods Total genomic DNA of G. lamblia was extracted and partial fragments of the triose phosphate isomerase (tim) gene were amplified by polymerase chain reactio n (PCR). All nucleotide sequences were analyzed by using a phylogenetic analysi s, which was constructed with parsimony and Neighbor-joining (N-J) methods. Results A total of 124 variable sites (23% of all sequences detected) was defined, most of which were found at the silent sites of codons. Two similar phylogenetic tre es were constructed, subdividing 16 Giardia isolates into two groups. Conclusion The genetic diversity of G. lamblia appeared to be little affected by facto rs of both host and geography, while natural-selection played an important role in DNA molecular evolution level of the tim gene. The tim gene may be consider ed a very useful genetic marker of the population genetic structure of G. lam blia.

  12. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  13. The cloning, characterization, and functional analysis of a gene encoding an isopentenyl diphosphate isomerase involved in triterpene biosynthesis in the Lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes).

    Science.gov (United States)

    Wu, Feng-Li; Shi, Liang; Yao, Jian; Ren, Ang; Zhou, Chao; Mu, Da-Shuai; Zhao, Ming-Wen

    2013-01-01

    An isopentenyl diphosphate isomerase (IDI) gene, GlIDI, was isolated from Ganoderma lucidum, which produces triterpenes through the mevalonate pathway. The open reading frame of GlIDI encodes a 252 amino acid polypeptide with a theoretical molecular mass of 28.71 kDa and a theoretical isoelectric point of 5.36. GlIDI is highly homologous to other fungal IDIs and contains conserved active residues and nudix motifs shared by the IDI protein family. The color complementation assay indicated that GlIDI can accelerate the accumulation of β-carotene and confirmed that the cloned complementary DNA encoded a functional GlIDI protein. Gene expression analysis showed that the GlIDI transcription level was relatively low in the mycelia and reached a relatively high level in the mushroom primordia. In addition, its expression level could be up-regulated by 254 µM methyl jasmonate. Our results suggest that this enzyme may play an important role in triterpene biosynthesis.

  14. Mutation in Cyclophilin B That Causes Hyperelastosis Cutis in American Quarter Horse Does Not Affect Peptidylprolyl cis-trans Isomerase Activity but Shows Altered Cyclophilin B-Protein Interactions and Affects Collagen Folding*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A.; Boudko, Sergei P.; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R.; Rashmir-Raven, Ann M.; Nagata, Kazuhiro; Winand, Nena J.; Bächinger, Hans Peter

    2012-01-01

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum. PMID:22556420

  15. Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A; Boudko, Sergei P; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R; Rashmir-Raven, Ann M; Nagata, Kazuhiro; Winand, Nena J; Bächinger, Hans Peter

    2012-06-22

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.

  16. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation.

  17. Protein Disulfide Isomerase Regulates Tissue Factor-Initiated Thrombin Generation%蛋白二硫键异构酶调控组织因子介导的凝血酶生成

    Institute of Scientific and Technical Information of China (English)

    陈凤梧; 鲁翌; 周俊松

    2016-01-01

    目的 研究蛋白二硫键异构酶(protein disulfide isomerase,PDI)在血栓形成中的机制.方法 应用重组PDI蛋白和PDI基因敲除小鼠通过凝血酶生成实验(thrombin generation asaay,TGA)探讨PDI对组织因子促凝活性的调控作用.结果 组织因子抗体(4501)几乎完全抑制单核细胞介导的凝血酶产生(P<0.001),表明该凝血反应依赖于组织因子;重组PDI蛋白(rPDI ss-ss)促进凝血酶的产生(P<0.01);相比野生型单个核细胞,PDI敲除的单个核细胞促凝活性明显降低(P<0.05).结论 PDI对于组织因子介导的凝血酶生成具有重要的调控作用.

  18. Histochemical activity of 5-4-isomerase-3-B hydroxy steroid dehydrogenase in the ovary of the viviparous mexican lizardSceloporus mucronatus (Reptilia:Prhynosomatidae) and interelationship with progesterone levels during pregnancy

    Institute of Scientific and Technical Information of China (English)

    Martn Martnez-torres; E Martha Prez-armendariz; M Elena Hernndez Caballero; Juana luis; guadalupe ortz-Lpez

    2012-01-01

    Objective:To relate the histological characteristics and histochemicalΔ5-4-isomerase-3 beta hydroxy steroid dehydrogenase(Δ5-43β-HSD) activity of the corpora lutea(CL) and the atresic vitellogenic follicles(AVF) with progesterone(P4) plasma concentrations in three different times of gestation (early, medium and late) in the viviparous lizardSceloporus mucronatus (S. mucronatus).Methods:The histological characteristics as well as histochemical activity ofΔ5-43β-HSD of theCL andAVF and their relationship with plasmaP4 levels were studied during three different times of pregnancy of the viviparous lizardS. mucronatus.Results:Corpora lutea develops during the first third of gestation.In second third, the luteal tissue reaches maturity and starts the first regressive changes.The last third of gestation was characterized by a considerably advance in the luteolysis.Activity ofΔ5-43β-HSD was observed in he luteal cell mas.The activity of this enzyme were high during the first third and scantle activity was detected in the last third.Even though atresic vitellogenic follicles are found throughout the whole period of gestation,Δ5-43β-HSD activity is very low in relation with showed byCL and does not change significantly in the studied period of time.Another hand, we observed a direct relationship among the histological aspect of the corpus luteum,Δ5-43β-HSD activity and progesterone levels. Conclusions:These observations suggests that the corpus luteum is the most important source of ovarian progesterone(P4) during pregnancy and that the participation of theAVF in the production of this hormone is little or non-existent.

  19. A linoleic acid (8R)-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. Biosynthesis of (8R)-hydroxylinoleic acid and (7S,8S)-dihydroxylinoleic acid from (8R)-hydroperoxylinoleic acid.

    Science.gov (United States)

    Brodowsky, I D; Hamberg, M; Oliw, E H

    1992-07-25

    The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.

  20. Mutagenesis breeding of Lactobacillus bulgaricus and enzymatic properties of linoleate isomerase%产亚油酸异构酶菌株的诱变选育及其酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    游庆红; 尹秀莲; 蒋中海

    2011-01-01

    Using Lactobacillus bulgaricus as original strain, two mutated high enzyme-producing strains A1 and A2 were obtained by ultraviolet mutation. The enzyme activity of the mutant strains A1 and A2 were 30. 1U/ml and 32. 1U/mi, which increased by 45% and 54% to the original strain, respectively. Study on enzymatic properties indicated that for stain A2, the optimum linoleate isomerase-producing temperature and pH was 40℃ and 6. 5 respectively, and the enzyme was stable when the temperature lower than 40℃ and pH in the range of 6. 0 ~ 7. 0. The maximum reaction rate Km and Vm were 0. 039mmol/L and 0. 24mmol/( h · mg), respectively when determined with enzyme dynamics experiment.%以保加利亚乳杆菌为出发菌株,经紫外诱变选育,获得2株高产酶突变株A1及A2,其酶活分别为30.1U/mL、32.1U/mL,酶活较出发菌株分别提高45%和54%.酶学性质研究表明,A2菌株产亚油酸异构酶的最适反应温度分别为40℃,最适pH 6.5,酶在低于40%时具有良好的热稳定性,pH 6.0~7.0时较稳定.以Lineweaver-Burk双倒数作图法求得亚油酸异构酶的Km为0.039 mmol/L,Vmax为0.24mmol/(h·mg).

  1. Development of a mariner-Based Transposon and Identification of Listeria monocytogenes Determinants, Including the Peptidyl-Prolyl Isomerase PrsA2, That Contribute to Its Hemolytic Phenotype▿

    Science.gov (United States)

    Zemansky, Jason; Kline, Benjamin C.; Woodward, Joshua J.; Leber, Jess H.; Marquis, Hélène; Portnoy, Daniel A.

    2009-01-01

    Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mutants were screened ex vivo for intracellular growth defects. Eight mutants with a phenotype were identified, and they contained insertions in the following genes: lmo0964 (similar to yjbH), lmo1268 (clpX), lmo1401 (similar to ymdB), lmo1575 (similar to ytqI), lmo1695 (mprF), lmo1821 (similar to prpC), lmo2219 (prsA2), and lmo2460 (similar to cggR). Some of these genes are involved in previously unexplored areas of research with L. monocytogenes: the genes yjbH and clpX regulate the disulfide stress response in Bacillus subtilis, and the prpC phosphatase has been implicated in virulence in other gram-positive pathogens. Here we demonstrate that prsA2, an extracytoplasmic peptidyl-prolyl cis/trans isomerase, is critical for virulence and contributes to the folding of LLO and to the activity of another virulence factor, the broad-range phospholipase C (PC-PLC). Furthermore, although it has been shown that prsA2 expression is linked to PrfA, the master virulence transcription factor in L. monocytogenes pathogenesis, we demonstrate that prsA2 is not directly controlled by PrfA. Finally, we show that PrsA2 is involved in flagellum-based motility, indicating that this factor likely serves a broad physiological role. PMID:19376879

  2. Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype.

    Science.gov (United States)

    Zemansky, Jason; Kline, Benjamin C; Woodward, Joshua J; Leber, Jess H; Marquis, Hélène; Portnoy, Daniel A

    2009-06-01

    Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mutants were screened ex vivo for intracellular growth defects. Eight mutants with a phenotype were identified, and they contained insertions in the following genes: lmo0964 (similar to yjbH), lmo1268 (clpX), lmo1401 (similar to ymdB), lmo1575 (similar to ytqI), lmo1695 (mprF), lmo1821 (similar to prpC), lmo2219 (prsA2), and lmo2460 (similar to cggR). Some of these genes are involved in previously unexplored areas of research with L. monocytogenes: the genes yjbH and clpX regulate the disulfide stress response in Bacillus subtilis, and the prpC phosphatase has been implicated in virulence in other gram-positive pathogens. Here we demonstrate that prsA2, an extracytoplasmic peptidyl-prolyl cis/trans isomerase, is critical for virulence and contributes to the folding of LLO and to the activity of another virulence factor, the broad-range phospholipase C (PC-PLC). Furthermore, although it has been shown that prsA2 expression is linked to PrfA, the master virulence transcription factor in L. monocytogenes pathogenesis, we demonstrate that prsA2 is not directly controlled by PrfA. Finally, we show that PrsA2 is involved in flagellum-based motility, indicating that this factor likely serves a broad physiological role.

  3. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics.

    Science.gov (United States)

    Roux, Celine; Gresh, Nohad; Perera, Lalith E; Piquemal, Jean-Philip; Salmon, Laurent

    2007-04-15

    Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates.

  4. Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): a new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers?

    Science.gov (United States)

    Wang, Jing-Zhang; Liu, Ji; Lin, Tao; Han, Yong-Guang; Luo, Yue; Xi, Lei; Du, Lin-Fang

    2013-09-01

    The enzyme peptidyl-prolyl cis-trans isomerase (Pin1) may play an important role in preventing the development of Alzheimer's disease (AD). The structural and functional stability of Pin1 is extremely important. Previously, we have determined the stability of Pin1 under stressed conditions, such as thermal treatment and acidic-pH. Considering that aluminum (Al(III)) is well known for its potential neurotoxicity in the pathogenesis of AD, we examined whether Al(III) affects the structure and function of Pin1, by means of a PPIase activity assay, intrinsic fluorescence, circular dichroism (CD) spectroscopy, FTIR, and differential scanning calorimetry (DSC). The intrinsic tryptophan fluorescence measurements mainly show that Al(III) may bind to the clusters nearby W11 and W34 in the WW domain of Pin1, quenching the intrinsic fluorescence of the two tryptophan residues, which possibly results in the decreased binding affinity of Pin1 to substrates. The secondary structural analysis as revealed by FTIR and CD measurements indicate that Al(III) induces the increase in β-sheet and the decrease in α-helix in Pin1. Furthermore, the changes of the thermodynamic parameters for Pin1 as monitored by DSC confirm that the thermal stability of Pin1 significantly increases in the presence of Al(III). The Al(III)-induced structural changes of Pin1 result in a sharp decrease of the PPIase activity of Pin1. To some extent, our research is suggestive that Al(III) may inhibit the isomerization activity of Pin1 in vivo, which may contribute to the pathogenesis of AD.

  5. The Activity and Localization of 3β-hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase and Release of Androstenedione and Progesterone by Uterine Tissues During Early Pregnancy and the Estrous Cycle in Pigs

    Science.gov (United States)

    WOJCIECHOWICZ, Bartosz; KOTWICA, Genowefa; KOLAKOWSKA, Justyna; FRANCZAK, Anita

    2012-01-01

    Abstract Steroid hormones are produced by the porcine uterus. We hypothesized that the uterus in pigs possesses active 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) responsible for progesterone and androstenedione production, that uterine steroids may supplement the amount of steroid hormones produced by embryos and corpus luteum and that these steroids are necessary for maintenance of pregnancy. In this study, we examined 1) endometrial and myometrial expression of 3β-HSD mRNA, 2) uterine 3β-HSD protein activity and 3) in vitro production of A4 and P4 by uterine slices harvested from pigs on days 10 to 11, 12 to 13 and 15 to 16 of pregnancy and the estrous cycle. The expression of 3β-HSD and the presence and activity of 3β-HSD protein were different in the endometrium and the myometrium during the examined periods of pregnancy and the estrous cycle. Production of A4 by the endometrium and myometrium was highest on days 12 to 13 of pregnancy and the estrous cycle. Endometrial secretion of P4 did not differ in the course of early pregnancy and on the respective days of the estrous cycle. The gravid myometrium was the highest source of P4 in pregnant pigs on days 12 to 13. The release of P4 by the cyclic myometrium rose during the examined days of the estrous cycle. The steroidogenic activity of the uterus, as described in this study, may support early pregnancy or the luteal phase of the estrous cycle in pigs. PMID:23095516

  6. The activity and localization of 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase and release of androstenedione and progesterone by uterine tissues during early pregnancy and the estrous cycle in pigs.

    Science.gov (United States)

    Wojciechowicz, Bartosz; Kotwica, Genowefa; Kolakowska, Justyna; Franczak, Anita

    2013-01-01

    Steroid hormones are produced by the porcine uterus. We hypothesized that the uterus in pigs possesses active 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) responsible for progesterone and androstenedione production, that uterine steroids may supplement the amount of steroid hormones produced by embryos and corpus luteum and that these steroids are necessary for maintenance of pregnancy. In this study, we examined 1) endometrial and myometrial expression of 3β-HSD mRNA, 2) uterine 3β-HSD protein activity and 3) in vitro production of A(4) and P(4) by uterine slices harvested from pigs on days 10 to 11, 12 to 13 and 15 to 16 of pregnancy and the estrous cycle. The expression of 3β-HSD and the presence and activity of 3β-HSD protein were different in the endometrium and the myometrium during the examined periods of pregnancy and the estrous cycle. Production of A(4) by the endometrium and myometrium was highest on days 12 to 13 of pregnancy and the estrous cycle. Endometrial secretion of P(4) did not differ in the course of early pregnancy and on the respective days of the estrous cycle. The gravid myometrium was the highest source of P(4) in pregnant pigs on days 12 to 13. The release of P(4) by the cyclic myometrium rose during the examined days of the estrous cycle. The steroidogenic activity of the uterus, as described in this study, may support early pregnancy or the luteal phase of the estrous cycle in pigs.

  7. Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of swiss landrace pigs.

    Science.gov (United States)

    Vögeli, P; Stranzinger, G; Schneebeli, H; Hagger, C; Künzi, N; Gerwig, C

    1984-12-01

    Associations between production traits and the genes for halothane sensitivity (HAL), S, A and H blood group systems and phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) enzyme systems were investigated in two lines of pigs selected for an index. The phenotypic variance-covariance matrix of the index included backfat thickness and daily gain, whereas the genetic variance-covariance matrix included daily gain, feed conversion and percentage of lean meat. The experiment was conducted at the experimental station of the Institute of Animal Production and has been underway since 1973. The same index was applied but in two opposite directions to give a superior and inferior line in relation to the production traits. One hundred twenty-nine animals of the superior line in the seventh generation and 88 animals of the inferior line in the sixth generation were studied. Forty-two percent (54/129) of the animals of the superior line were halothane-positive. No animals in the inferior line were halothane reactors. Of the halothane-positive pigs, 70.4% (38/54) in the superior line had the HaHa and 94.4% (51/54) had the SsSs genotype, whereas only 4% (3/75) of the HaHa and 12% (9/75) of the SsSs pigs were halothane-negative. By practicing selection at the H and S loci, it seems possible to efficiently reduce halothane sensitivity in Swiss Landrace pigs. In pigs of the superior line, there were significant differences in percentage of lean meat, carcass length, pH1 (pH value at 45 min to 1 h postmortem, M. longissimus) and reflectance values among genotypes of the HAL, S and H systems and among some genotypes of the 6-PGD system. Poorest meat quality, highest percentage of lean meat and shortest carcass length were observed in pigs homozygous for the alleles HALn, Ss, Ha, PHIB and 6-PGDA. In the inferior line, these associations were absent. As the HAL locus is associated with the above mentioned production traits, linkage disequilibria may explain the

  8. Cloning and Expression Analysis of Chalcone Isomerase Gene from Narcissus tazetta var.chinensis%中国水仙查尔酮异构酶基因的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    蔡雪玲; 陈晓静; 叶一江; 何玮毅; 申艳红

    2011-01-01

    Chalcone isomerase(CHI)is one of the key enzymes in the biosynthesis pathway of flavonoids and plays an important role in the process of flower color development. Three genes, named NtCHIW, NtCHIJ and NtCHIY respectively, were cloned from Narcissus tazetta var. Chinensis petal by RT-PCR and RACE. The open reading frame encompassed 735 bp encoding a polypeptide of 244 amino acids. Sequencing analysis showed that the amino acid sequence of Baihua Narcissus was 93.03%, 93.44%, 64.75%, 55.42%, 50.58%, 59.43%, and 58.20% homologous with CHI genes from Jinzhanyintai Narcissus, Huanghua Narcissus, Allium cepa, Elaeis oleifera, Vitis labrusca, Oryza saliva Japonica, Arabidopsis thaliana, respectively. The result of real time RT-PCR showed that the transcription expression of CHI gene changed accordingly during flower blooming, indicating the possible role of CHI genes in the change of flower color.%查尔酮异构酶(CHI)是影响类黄酮合成的一个重要限速酶,在植物花色发育过程中起着重要作用.通过RT-PCR和RACE技术从中国水仙的花瓣中克隆得到3条CHI基因,分别命名为NtCHIW、NtCHIJ和NtCHIY.3个基因均含有一个735 bp的开放阅读框(ORF),编码244个氨基酸.氨基酸序列分析表明:白花水仙与金盏银台、黄花水仙、洋葱、粳稻、拟南芥、油棕榈、葡萄相应基因的氨基酸序列同源性分别为93.03%、93.44%、64.75%、55.42%、50.58%、59.43%、58.20%.荧光定量PCR分析表明:随着花开放的过程,中国水仙的CHI基因转录水平发生变化,说明CHI基因可能参与花色变化的过程.

  9. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  10. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.).

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Federman Gross, Aya; Rafalowski, Meirav; Pick, Edgar

    2015-01-01

    The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes

  11. 几种南海芋螺二硫键异构酶的克隆及进化分析%Cloning and Phylogenetic Analysis of Protein Disulfide Isomerases from Several Conus Species in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    李海鹰; 刘珠果; 蒋继志; 戴秋云

    2011-01-01

    目的:从来自中国南海的4种芋螺中克隆出包含完整3′和5′非翻译区的蛋白质二硫键异构酶(PDI)全基因序列,并对其进行序列及进化分析.方法:根据各种生物PDI基因的保守区域设计引物,利用3′和5′cDNA末端快速扩增(RACE)方法克隆出PDI全基因序列,并通过生物信息学方法对各芋螺PDI序列进行分析.结果与结论:从中国南海玉女芋螺、黑星芋螺、堂皇芋螺、桶形芋螺cDNA中克隆出包含有完整3′和5′非翻译区的PDI全基因序列;分析结果表明各芋螺之间的同源性大于90%,而与对虾、人类、酿酒酵母的同源性均小于60%;各芋螺PDI与其他生物的2个活性位点序列高度保守,而底物结合位点具有物种特异性,进化树显示各芋螺PDI的特征可能受其捕食食性影响.%Objective: To clone and analyze entire nucleotide sequences of protein disulfide isomerase(PDI) of four Conus from South China Sea.Methods: The entire nucleotide sequences of PDI of Conus from the South China Sea were cloned by 3' and 5' rapid amplification of cDNA ends(RACE), which primers were designed on conservative amino acid sequences of other PDI, and the sequences were analyzed by bioinformatics.Results & Conclution: The homology of the deduced amino acid sequences among these Conus species was more than 90%, and higher than that of the Litopenaeus vannamei, Homo sapiens and Saccharomyces cerevisiae.Two active sites of PDI were highly conservative between Conus and other organisms, but the substrate binding sites were species specific.Phylogenetic tree analysis showed that the mutants of PDI from Conus might be affected by their predator diet.

  12. 高产D-塔格糖植物乳杆菌WU14的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    D-tagatose is a kind of natural sweetener with low-calorie.L-arabinose isomerase is the key enzyme for D-galactose isomerization to D-tagatose by biological method.In this study lactic acid bacteria strains were isolated from pickled vegetables and pickled cabbage.A lactic acid bacteria strain with high yield of D-tagatose was screened by the thin layer chromatography and modified cysteine carbazole method from the lactic acid bacteria strains and its L-arabinose isomerase activity was 13.95 U/mL after analysed.This strain was named Lactobacillus plantarum WU14 based on the se-quence analysis of 16S rDNA and biochemical characteristics.The result of this study could lay the foundation for the bio-conversion D-tagatose industrial production.%D-塔格糖是一种天然低热量甜味剂。 L-阿拉伯糖异构酶(L-AI)是生物法异构化D-半乳糖为D-塔格糖的关键酶。本研究从腌菜和泡菜中分离出一批乳酸菌,经薄层色谱法初筛和改良半胱氨酸咔唑法复筛,获得一株高产D-塔格糖的乳酸菌,其发酵粗酶液中L-阿拉伯糖异构酶酶活达13.95 U/mL,经16S rDNA序列比对及生化特征分析,该菌被鉴定并命名为Lactobacillus plantarum WU14。研究结果可为生物转化D-塔格糖达到工业化生产奠定基础。

  13. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... have episodes of more severe hemolysis, called hemolytic crises, which can be triggered by bacterial or viral ... the enzyme plays a role in a critical energy-producing process known as glycolysis, also called the ...

  14. Bioconversion of D-fructose to D-allose by novel isomerases%以D-果糖为原料利用新型异构酶转化生产D-阿洛糖

    Institute of Scientific and Technical Information of China (English)

    柏玮; 朱玥明; 门燕; 李晓波; 何森健; 孙媛霞

    2012-01-01

    Rare sugar is a kind of important low-energy monosaccharide that is rarely found in nature and difficult to synthesize chemically. D-allose, a six-carbon aldose, is an important rare sugar with unique physiological functions. It is radical scavenging active and can inhibit cancer cell proliferation. To obtain D-allose, the microorganisms deriving D-psicose 3-epimerase (DPE) and L-rhamnose isomerase (L-Rhl) have drawn intense attention. In this paper, DPE from Clostridium cellulolyticum H10 was cloned and expressed in Bacillus subtilis, and L-Rhl from Bacillus subtilis 168 was cloned and expressed in Escherichia coli BL21 (DE3). The obtained crude DPE and L-Rhl were then purified through a HisTrap HP affinity chromatography column and an anion-exchange chromatography column. The purified DPE and L-Rhl were employed for the production of rare sugars at last, in which DPE catalyzed D-fructose into D-psicose while L-Rhl converted D-psicose into D-allose. The conversion of D-fructose into D-psicose by DPE was 27.34%, and the conversion of D-psicose into D-allose was 34.64%.%稀少糖是自然界中含量稀少、化学合成困难的一类低热量单糖.D-阿洛糖是一种重要的稀少己醛糖,其具有减少活性自由基、抑制癌细胞增殖等独特的生理学功能.因此,以微生物发酵生产D-阿洛酮糖-3-差向异构酶(DPE)和L-鼠李糖异构酶(L-RhI)转化生产D-阿洛糖,成为近几年来国际研究的热点之一.文中分别克隆了来源于解纤维梭菌Clostridium cellulolyticum H10的DPE基因以及来源于枯草芽胞杆菌Bacillus subtilis 168的L-RhI基因,并分别使其在宿主菌B.subtilis及大肠杆菌Escherichia coli BL21 (DE3)中得到了表达.进一步利用镍亲和层析和阴离子交换色谱等手段对这两种酶进行了纯化,并对这两种纯化后酶的转化能力进行了分析测定.结果表明,以D-果糖为原料利用两种异构酶依次转化获得D-阿洛酮糖及D-阿洛糖,其

  15. 胶质瘤中PIN1-Nanog相关通路表达的研究%Relation of peptidyl-prolyi isomerase 1 and Nanog expressions in human gliomas

    Institute of Scientific and Technical Information of China (English)

    倪升远; 牛朝诗; 杨洋; 张翔宇

    2015-01-01

    目的 观察肽基脯氨酰异构酶1(PIN1)、Nanog在胶质瘤组织中的表达以及PIN1抑制剂PiB对U87细胞增殖能力及PIN1、Nanog表达的影响. 方法 选取安徽医科大学附属省立医院神经外科自2013年3月至2014年8月间手术切除的84例胶质瘤和10例正常脑组织标本,免疫组化染色检测标本PIN1、Nanog蛋白的表达.体外常规培养U87胶质瘤细胞,用0.2、0.5、1.0、2.0 μg/mL PiB分别作用24、48 h,MTT检测PiB对细胞增殖的抑制作用并计算抑制率;以1.0μmol/L PiB处理U87细胞24 h为1.0 μmol/L PiB组,未经任何处理的U87细胞作为对照组,免疫荧光双染检测细胞PIN1、Nanog的表达,RT-PCR和Westem blotting分别检测细胞PIN1、Nanog mRNA和蛋白的表达. 结果 WHOⅡ级、Ⅲ级、Ⅳ级胶质瘤中PIN1、Nanog高表达率不同,差异有统计学意义(P<0.05),且胶质瘤级别越高,PIN1、Nanog高表达率越高.MTT检测显示PiB对U87细胞的增殖有抑制作用,且呈时间和剂量依赖性.与对照组比较,1.0 μmol/L PiB组PIN1、Nanog及PIN1/Nanog阳性细胞百分比降低,差异有统计学意义(P<0.05);对照组和1.0 μmol/L PiB组细胞PIN1 mRNA的表达量分别为1.82±0.03和0.94±0.20,Nanog mRNA的表达量分别为1.47±0.04和0.82±0.19,差异均有统计学意义(P<0.05);对照组和1.0 μmol/L PiB组细胞PIN1蛋白表达量分别为2.96±0.05和1.15±0.26,Nanog蛋白表达量分别为1.52±0.16和0.75±0.05,差异均有统计学意义(P<0.05). 结论 PIN1、Nanog在胶质瘤的发生发展中起重要作用,且与肿瘤的恶性程度相关.PIN1可参与调控Nanog,两者之间存在相关通路,下调PIN1-Nanog通路后,胶质瘤细胞增殖能力下降.%Objective To obsevre the peptidyl-prolyi isomerase 1 (PIN1) and Nanog expreesions in glioma tissues and the effect of PIN1 inhibitor polyiso-butylene (PiB) on their expressions and U87 cell proliferation.Methods Eighty-four glioma samples (15 with WHO graded Ⅱ,27 with WHO graded

  16. 地芽孢杆菌Y565-5分离鉴定及其木糖异构酶基因xylA的克隆表达和酶学性质%Cloning, expression and characterization of xylose isomerase, XylA from Geobacillus sp.Y565-5

    Institute of Scientific and Technical Information of China (English)

    张洁; 黄志勇; 王钦宏; 王永莉; 王硕

    2011-01-01

    从甘肃玉门油田地表土中分离到一株嗜热木糖利用菌,地芽孢杆菌Y565-5.利用PCR方法从该菌株中克隆得到一个木糖异构酶基因,xylA.该基因开放阅读框长1 182 bp,编码394个氨基酸,XylA氨基酸序列与Geobacillus sp.Y412MC52相似性达到99%.将xylA基因克隆到原核表达载体pET-28a(+)上,得到重组质粒pET-28a(+)-xylA,然后将此重组质粒转化至BL21(DE3)中,经IPTG诱导后,通过SDS-PAGE电泳检测出明显的45 kD(相对分子质量)特异性蛋白质条带,并且通过半胱氨酸咔唑法检测出表达产物具有木糖异构酶的活性.对其酶学性质的研究发现,XylA最适温度为90℃,最适pH值为8.0.%Xylose-utilizing and thermophilic Geobacillus sp. Y565-5 was isolated from surface soil of an oilfield in Yumen Town, Gansu Province, China. A xylose isomerase (XylA) gene was cloned from the strain by PCR. The open reading frame of xylA (1 182 bp) encoded a protein of 394 amino acids,which showed high sequence homology (99% identity) with that of Geobacillus sp. Y412MC52. The intact coding region was subcloned into pET28a(+) vector and expressed in Escherichia coli BL21(DE3).The molecular weight of the recombinant protein was 45 kD based on SDS-PAGE and its xylose isomerase activity was detected through cysteine welts thiazole method after the induction of isopropyl β-D-1-thiogalactopyranoside (IPTG). The optimum temperature and pH for the partially purified recombinant XylA activity were 90 ℃ and pH 8.0, respectively.

  17. 化学抑制剂Woodward′s Reagent K对来源于Erwinia rhapontici NX 5蔗糖异构酶的抑制动力学%Inhibition kinetics of sucrose isomerase from Erwinia rhapontici NX-5 by Woodward′s Reagent K

    Institute of Scientific and Technical Information of China (English)

    王彦媛; 李莎; 姚忠; 徐虹

    2014-01-01

    从重组大肠杆菌E�coli BL21( pET22b palⅠ)中纯化得到来源于Erwinia rhapontici NX 5的蔗糖异构酶(sucrose isomerase,SIase,EC 5�4�99�11),以纯酶为对象考察其酶活力抑制动力学。结果表明:SIase 纯比酶活1512�77 U/mg,动力学常数 Km=260 mmol/L,Vmax=39�41μmol/(L·s)。以化学抑制剂 Woodward′s Reagent K (WRK)对重组蔗糖异构酶进行抑制反应,反应体系中随着WRK浓度的升高,SIase与底物蔗糖的亲和力常数Km增大,最大反应速度Vmax在一定范围内保持稳定。通过对SIase的抑制动力学分析可得到,WRK对SIase的抑制类型为可逆的竞争性抑制,这可能与WRK与蔗糖的结构类似,与可竞争性的结合SIase的活性中心有关。%Sucrose isomerase ( SIase,EC5�4�99�11) from Erwinia rhapontici NX⁃5 was purified from the extract of recombinant E�coli BL21 ( pET22b⁃palⅠ) culture,and the inhibition kinetics of the pure SIase was studied with chemical inhibitor Woodward′s Reagent K( WRK)�Results show that SIase had the high specific activity of 1 512�77 U/mg,as well as the Michaelis⁃Menten constants of Km=260 mmol/L and Vmax=39�41 μmol/( L·s)�Km increased as the concentration of inhibitor increased,but Vmax kept stable within limits�The inhibition of SIase by WRK was reversible and competitive, probably caused by the similar structure of WRK and sucrose.

  18. Endoglin、肽基脯氨酰顺反异构酶和微管不稳定蛋白在非小细胞肺癌组织中的表达及其临床意义%Expression and clinical significance of endoglin, peptidy1 proly1 cistrans isomerase and stathmin in non-small cell lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    潘丹; 杨小敏; 朱海乐

    2015-01-01

    Objective To investigate the expression of microvessel density (MVD) marked with endoglin,peptidy1 proly1 cis-trans isomerase (Pin1) and stathmin in non-small cell lung carcinoma (NSCLC) and to explore its relevance to the clinicopathologic features.Methods The expression of MVD marked with endoglin,Pin1 and stathmin was detected by immunohistochemistry in 42 cases of NSCLC tissues and 20 cases of non-cancerous adjacent lung tissues.Results The expression of MVD marked with endoglin was 41.26 ± 2.32 in NSCLC tissues,and 23.04 ± 1.44 in non-cancerous adjacent lung tissues (P <0.01).The expression of MVD marked with endoglin were related NSCLC to TNM stage and lymph node metastasis (P < 0.05).The expression rate of Pin1 in NSCLC tissues was higher than that in non-cancerous adjacent lung tissues (83.33% vs.25.00%,P < 0.05).The expressions of Pin1 was related NSCLC to TNM stage and lymph node metastasis (P < 0.05).The expression rate of stathmin in NSCLC tissues was higher than that in non-cancerous adjacent lung tissues (64.29% vs.30.00%,P < 0.05).The expressions of stathmin was related NSCLC to histologic grade,TNM stage and lymph node metastasis (P <0.05).Conclusion The overexpression of endoglin,Pin1 and stathmin may play important roles in the occurrence and development of NSCLC,and they can be used as reference index of the malignant degree and poor prognosis of NSCLC.%目的 探讨Endoglin标记的微血管密度计数(MVD)、肽基脯氨酰顺反异构酶(Pin1)和微管不稳定蛋白(Stathmin)在非小细胞肺癌(NSCLC)组织中的表达及与NSCLC临床病理特征的关系.方法 利用免疫组织化学方法检测42例NSCLC组织和20例癌旁组织中Endoglin标记的MVD、Pin1和Stathmin的表达.结果 Endoglin标记的MVD在NSCLC癌组织中表达强度为41.26±2.32,明显高于在癌旁组织中表达强度(23.04±1.44),两者差异有统计学意义(P<0.01),Endoglin标记的MVD表达强度与NSCLC的TNM分期、

  19. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018.

    Science.gov (United States)

    Li, Zhilin; Xiao, Han; Jiang, Weihong; Jiang, Yu; Yang, Sheng

    2013-10-01

    Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40% of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the D-xylose proton-symporter, D-xylose isomerase, and xylulokinase was able to completely utilize glucose and L-arabinose, and 88% xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50% enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone-butanol-ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.

  20. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    Science.gov (United States)

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains.

  1. Efficient production of D-tagatose using a food-grade surface display system.

    Science.gov (United States)

    Liu, Yi; Li, Sha; Xu, Hong; Wu, Lingtian; Xu, Zheng; Liu, Jing; Feng, Xiaohai

    2014-07-16

    D-tagatose, a functional sweetener, is commonly transformed from D-galactose by L-arabinose isomerase (L-AI). In this study, a novel type of biocatalyst, L-AI from Lactobacillus fermentum CGMCC2921 displayed on the spore surface of Bacillus subtilis 168, was developed for producing D-tagatose. The anchored L-AI, exhibiting the relatively high bioactivity, suggested that the surface display system using CotX as the anchoring protein was successfully constructed. The stability of the anchored L-AI was significantly improved. Specifically, the consolidation of thermal stability representing 87% of relative activity was retained even at 80 °C for 30 min, which remarkably favored the production of D-tagatose. Under the optimal conditions, the robust spores can convert 75% D-galactose (100 g/L) into D-tagatose after 24 h, and the conversion rate remained at 56% at the third cycle. Therefore, this biocatalysis system, which could express the target enzyme on the food-grade vector, was an alternative method for the value-added production of D-tagatose.

  2. Immunization with mixed peptides derived from glucose-6-phosphate isomerase induces rheumatoid arthritis in DBA/1 mice%葡萄糖-6-磷酸异构酶混合肽段诱导的 DBA/1小鼠类风湿性关节炎模型的建立

    Institute of Scientific and Technical Information of China (English)

    张雪娇; 刘嘉琳; 杨飞; 娄永富; 王强; 陈冬志; 孟明

    2016-01-01

    [ ABSTRACT] AIM:To establish an animal model of rheumatoid arthritis ( RA) in DBA/1 mice induced by im-munodominant mixed peptides derived from glucose-6-phosphate isomerase (GPI).METHODS: The DBA/1 mice were immunized with emulsified mixed peptide fragments of hGPI 325-339+hGPI469-483 or single peptide hGPI325-339 in com-plete Freund′s adjuvant by subcutaneous injection to induce the model of RA .Body weight , ankle joint symptom scores , the pathological change of the ankle joint , the levels of CD4 +T cells in the spleen and peripheral blood , the proportion of iNKT cells in the peripheral blood , and the levels of TNF-αand IL-6 in serum were detected to evaluate and analyze the model.RESULTS:The hind paw of the model mice appeared red swelling on the 8th day, and then aggravated gradually to the limbs.The red swelling reached peak on the 14th day, and then relieved gradually .Inflammation response dominated by lymphocytes and monocytes was observed in the ankle joint .The inflammatory effect of mixed peptides was more obvious than that of the single one (P<0.05).Compared with control group and the mice treated with single peptide , the weight gain was slow, the amount of CD4 +T cells in the peripheral blood and spleen were increased , the proportion of peripheral iNKT cells in the inflammatory peak was decreased (P<0.05), and the serum level of TNF-αwas increased significantly ( P<0.05) in the mice treated with mixed peptide fragments .CONCLUSION: The immunological characteristics of RA model induced by mixed GPI peptides in DBA/1 mice is closer to that in RA patients , especially in the immunopathology of iNKT cells.Therefore, this model can be used as a new tool for studying the mechanism and immunological intervention of RA.%目的:利用葡萄糖-6-磷酸异构酶( GPI)单一肽段及混合多肽片段免疫DBA/1小鼠,建立类风湿性关节炎( RA)模型,分析其主要评价指标及特点,为探讨RA的免疫机制及治疗提

  3. Las poblaciones de Phytophthora infestans presentes en papa en el altiplano Cundiboyacense en 1996 son monomórficas para la enzima glucosa-6-fosfato Isomerasa Populations of Phytophthora infestans present on potato in the Cundinamarca and Boyacá plateau in 1996 are monomorphic for glucose-6-phosphate isomerase

    Directory of Open Access Journals (Sweden)

    Gualtero Cúellar Elsa Janeth

    1998-06-01

    ólo genotipo. Esta homogeneidad, en lo que se refiere a GPI en la población, permite concluir que en esta zona predomina la reproducción asexual, a través de la cual la variación genética es mínima o no se presenta. Resultados alternativos como la aparición de genotipos nuevos apoyarían la existencia de migraciones de otras poblaciones o la recombinación sexual explicada por la presencia de los tipos de apareamiento A1 y A2.
    Potato late blight, a disease caused by the Oomycete Phytophthora infestans, is responsible in great proportion for severe decrements in potato production in the Cundinamarca and Boyacá plateaus. Until now, late blight control has been done mainly with fungicides. The widened genetic variability in populations of this organism for a number of traits, including sensitivity to commercially available fungicides, observed in a world-wide perspective, has shown the need to research the genetic structure of local populations. This study was launched to characterize the populations of P. infestans in Cundinamarca and Boyacá through the polymorphism of glucose-6-phosfate isomerase (GPI. The results pointed at a clonal nature of these populations. All the local isolates were homozygous monomorphic for GPI, with genotype 100/100. Isolate Ro showed genotype 86/100 that corresponds to lineage US-1. Isolate MT2 showed genotype 84/100. These iso lates correspond to heterozygous populations that may have resulted from sexual reproduction. Isolate HIN had genotype 100/100, coinciding with local isolates. This isolate belongs to mating type A1 and corresponds to lineage US-6. This lineage represents one of the earliest migrations from Mexico to the United States, Europe and the rest of the world. Prior to the migrations of mating type A2. Results indicate that local populations are not too diverse, and suggest a clonal orrqtn. These results agree with the evaluation of this same population as regards sensitivity to metalaxil and mating type (Gonzalez, 1997

  4. The effects of L-arabinose on intestinal sucrase activity

    DEFF Research Database (Denmark)

    Krog-Mikkelsen, Inger; Hels, Ole; Tetens, Inge;

    2011-01-01

    On the basis of results in cell cultures, rodents, and pigs, l-arabinose may inhibit intestinal sucrase activity and thereby delay sucrose digestion.......On the basis of results in cell cultures, rodents, and pigs, l-arabinose may inhibit intestinal sucrase activity and thereby delay sucrose digestion....

  5. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    Directory of Open Access Journals (Sweden)

    Jiang Mingguo

    2011-02-01

    Full Text Available Abstract Background Xylose mother liquor has high concentrations of xylose (35%-40% as well as other sugars such as L-arabinose (10%-15%, galactose (8%-10%, glucose (8%-10%, and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF, which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity. Conclusion In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa

  6. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus

    Science.gov (United States)

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-01-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries. PMID:28101462

  7. Bacterial utilization of L-sugars and D-amino acids

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Klyce, Brig; Davies, Paul C. W.; Davies, Pauline

    2006-08-01

    The fact that organotrophic organisms on Earth use L-amino acids and D-sugars as an energy source is recognized as one of the universal features of life. The chirality of organic molecules with asymmetric location of group-radicals was described a relatively long time ago. Louis Pasteur observed that abiotic (chemical) processes produced mixtures with equal numbers (racemic) of the two forms but that living organisms possessed a molecular asymmetry that included only one of the enantiomers (homochirality). He speculated that the origin of the asymmetry of chiral biomolecules might hold the key to the nature of life. All of the amino acids in proteins (except for Glycine which is symmetrical) exhibit the same absolute steric configuration as L-glyceraldehyde. D-amino acids are never found in proteins, although they do exist in nature and are often found in polypeptide antibiotics. Constitutional sugars of cells, opposite to the amino acids, are the D-enantiomers, and the appearance of L-sugars in Nature is extremely rare. Notwithstanding this fact, the metabolism of some bacteria does have the capability to use amino acids and sugars with alternative chirality. This property may be caused by the function of specific enzymes belonging to the class of isomerases (racemases, epimerases, isomerases, tautomerases). In our laboratory, we have investigated several anaerobic bacterial strains, and have found that some of these bacteria are capable of using D-amino acids and L-sugars. Strain BK1 is capable of growth on D-arginine, but its growth characteristics on L-arginine are approximately twice as high. Another alkaliphilic strain SCA T (= ATCC BAA-1084 T = JCM 12857 T = DSM 17722 T = CIP 107910 T) was found to be capable of growth on L-ribose and L-arabinose. It is interesting that this strain was incapable of growth on D-arabinose, which suggests the involvement of some alternative mechanism of enzyme activity. In this paper, we describe the preliminary results of

  8. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols

    NARCIS (Netherlands)

    Muir, S.R.; Collins, G.J.; Robinson, S.; Hughes, S.G.; Bovy, A.G.; Vos, de C.H.R.; Tunen, van A.J.; Verhoeven, M.E.

    2001-01-01

    Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel (|[sim]|5–10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Fl

  9. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been reporte

  10. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  11. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism

    NARCIS (Netherlands)

    Meijer, WG; deBoer, P; vanKeulen, G

    1997-01-01

    The expression of the cbb and gap-pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion betwee

  12. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    -type glycolytic flux in both strains. Homolactic product formation was preserved throughout the range of TPI activities studied, although a slight increase in the amount of acetate and formate production was observed in the strains with strongly reduced TPI activity for both IL1403 and MG1363. The upstream...

  13. Preparation of fluorescence quenched libraries containing interchain disulphide bonds for studies of protein disulphide isomerases

    DEFF Research Database (Denmark)

    Spetzler, J C; Westphal, V; Winther, Jakob R.

    1998-01-01

    the chemistry required for the generation of a split-synthesis library, two substrates containing an interchain disulphide bond, a fluorescent probe and a quencher were synthesized. The library consists of a Cys residue flanked by randomized amino acid residues at both sides and the fluorescent Abz group...... at the amino terminal. All the 20 natural amino acids except Cys were employed. The library was linked to PEGA-beads via methionine so that the peptides could be selectively removed from the resin by cleavage with CNBr. A disulphide bridge was formed between the bead-linked library and a peptide containing...

  14. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component

    NARCIS (Netherlands)

    Van Maris, A.J.A.; Winkler, A.A.; Kuyper, M.; De Laat, W.T.; Van Dijken, J.P.; Pronk, J.T.

    2007-01-01

    Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the ketoisomer d-xylulose can be metabolised slowly.

  15. Oxidative folding and reductive activities of EhPDI, a protein disulfide isomerase from Entamoeba histolytica.

    Science.gov (United States)

    Mares, Rosa E; Magaña, Paloma D; Meléndez-López, Samuel G; Licea, Alexei F; Cornejo-Bravo, José M; Ramos, Marco A

    2009-09-01

    PDI enzymes are oxidoreductases that catalyze oxidation, reduction and isomerization of disulfide bonds in polypeptide substrates. We have previously identified an E. histolytica PDI enzyme (EhPDI) that exhibits oxidase activity in vivo. However, little is known about the specific role of its redox-related structural features on the enzymatic activity. Here, we have studied the in vivo oxidative folding of EhPDI by mutagenic analysis and functional complementation assays as well as the in vitro oxidative folding and reductive activities by comparative kinetics using functional homologues in standard assays. We have found that the active-site cysteine residues of the functional domains (Trx-domains) are essential for catalysis of disulfide bond formation in polypeptides and proteins, such as the bacterial alkaline phosphatase. Furthermore, we have shown that the recombinant EhPDI enzyme has some typical properties of PDI enzymes: oxidase and reductase activities. These activities were comparable to those observed for other functional equivalents, such as bovine PDI or bacterial thioredoxin, under the same experimental conditions. These findings will be helpful for further studies intended to understand the physiological role of EhPDI.

  16. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been reporte

  17. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase

    CSIR Research Space (South Africa)

    O'Kennedy, MM

    2004-04-01

    Full Text Available for the world?s poorest and most food-insecure people in Africa and India. It is grown largely for its ability to produce grain under hot, dry conditions on infertile soils of low water-holding capac- ity, where other crops generally fail. Thus, it is produced... mainly in outlying areas peripheral to the major produc- tion and population centres of the developing world. Yearly, approximately 15 million tons of pearl millet is produced worldwide. The development of a reliable transformation protocol for this crop...

  18. Molecular probes for the evaluation of three isomerase enzyme mechanisms in secondary metabolism

    OpenAIRE

    Nasomjai, Pitak

    2010-01-01

    This thesis is focused on an investigation of the mechanisms of three enzymatically mediated carbon skeleton isomerisation reactions. Chapter 1 provides an overview of some representative examples of the carbon skeleton rearrangement reactions in enzymology. Chapter 2 describes the preparation and use of fluorolittorines to explore the mechanism of the rearrangement of the tropane alkaloid littorine to hyoscyamine which is a reaction mediated by the cytochrome P450 enzyme. Chapter ...

  19. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000.

  20. Chinese Traditional Arts Troupe Attends Festival of Spring of Comedians In France

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>At the invitation of the Festival of the Spring of Comedians of France and the European Cultural Action Institute (ECAI),Tea House-Chinese Traditional Arts,a Sino-French cultural exchange programme,toured 12 French cities in the

  1. Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase.

    Science.gov (United States)

    Wood, T M; McCrae, S I

    1996-05-01

    An alpha-L-arabinofuranosidase produced by the fungus Aspergillus awamori had a molecular mass of approximately 64 kDa on sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) and was optimally active at pH 4.6 and 50 degrees C. The enzyme, which chromatographed as a single component on SDS-PAGE, appeared to consist of two isoenzymes of pI 3.6 and 3.2. Acting in isolation, the alpha-L-arabinofuranosidase had only a very limited capacity to release L-arabinose (less than 11%) directly from arabinoxylans that had been extracted from a number of plant cell wall preparations using 18% alkali, but a much higher proportion of the L-arabinose (46%) was released from a wheat straw arabinoxylan that had been isolated by steam treatment. There was a marked synergistic effect between the alpha-L-arabinofuranosidase and an endo-(1 --> 4)-beta-D-xylanase produced by A. awamori in both the rate and extent of the release of L-arabinose from both oat straw and wheat straw arabinoxylans, suggesting that L-arabinose-substituted oligosaccharides generated by the endoxylanase action were better substrates for enzyme action. A novel property of the alpha-L-arabinofuranosidase was its capacity to release a substantial proportion (42%) of feruloyl L-arabinose from intact wheat straw arabinoxylan. The concerted action of the alpha-L-arabinofuranosidase and endoxylanase released 71% of the feruloyl L-arabinose and 69% of the p-coumaroyl L-arabinose substituents from wheat straw arabinoxylan.

  2. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases.

    Science.gov (United States)

    Park, Jung-Mi; Jang, Myoung-Uoon; Oh, Gyo Won; Lee, Eun-Hee; Kang, Jung-Hyun; Song, Yeong-Bok; Han, Nam Soo; Kim, Tae-Jip

    2015-02-01

    Two recombinant arabinosyl hydrolases, α-L-arabinofuranosidase from Geobacillus sp. KCTC 3012 (GAFase) and endo-(1,5)-α-L-arabinanase from Bacillus licheniformis DSM13 (BlABNase), were overexpressed in Escherichia coli, and their synergistic modes of action against sugar beet (branched) arabinan were investigated. Whereas GAFase hydrolyzed 35.9% of L-arabinose residues from sugar beet (branched) arabinan, endo-action of BlABNase released only 0.5% of L-arabinose owing to its extremely low accessibility towards branched arabinan. Interestingly, the simultaneous treatment of GAFase and BlABNase could liberate approximately 91.2% of L-arabinose from arabinan, which was significantly higher than any single exo-enzyme treatment (35.9%) or even stepwise exo- after endo-enzyme treatment (75.5%). Based on their unique modes of action, both exo- and endo-arabinosyl hydrolases can work in concert to catalyze the hydrolysis of arabinan to L-arabinose. At the early stage in arabinan degradation, exo-acting GAFase could remove the terminal arabinose branches to generate debranched arabinan, which could be successively hydrolyzed into arabinooligosaccharides via the endoaction of BlABNase. At the final stage, the simultaneous actions of exo- and endo-hydrolases could synergistically accelerate the L-arabinose production with high conversion yield.

  3. Sustainable Synthesis of Chiral Tetrahydrofurans through the Selective Dehydration of Pentoses.

    Science.gov (United States)

    Foster, Robert W; Tame, Christopher J; Bučar, Dejan-Krešimir; Hailes, Helen C; Sheppard, Tom D

    2015-11-01

    L-Arabinose is an abundant resource available as a waste product of the sugar beet industry. Through use of a hydrazone-based strategy, L-arabinose was selectively dehydrated to form a chiral tetrahydrofuran on a multi-gram scale without the need for protecting groups. This approach was extended to other biomass-derived reducing sugars and the mechanism of the key cyclization investigated. This methodology was applied to the synthesis of a range of functionalized chiral tetrahydrofurans, as well as a formal synthesis of 3R-3-hydroxymuscarine.

  4. ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation

    OpenAIRE

    Inoue, Takamasa; Dosey, Annie; Herbstman, Jeffrey F.; Ravindran, Madhu Sudhan; Skiniotis, Georgios; Tsai, Billy

    2015-01-01

    The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a r...

  5. Co-expression of sulphydryl oxidase and protein disulphide isomerase in Escherichia coli allows for production of soluble CRM197

    CSIR Research Space (South Africa)

    Roth, Robyn L

    2017-04-01

    Full Text Available The aim of this article is to investigate the production of soluble cross-reacting material 197 (CRM(sub197)) in Escherichia coli, a safe and effective T-cell-dependent protein carrier for polysaccharides used in the manufacture and application...

  6. Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization

    Directory of Open Access Journals (Sweden)

    Hall Johanna E

    2009-08-01

    Full Text Available Abstract Background Campylobacter jejuni is a gastrointestinal pathogen of humans, but part of the normal flora of poultry, and therefore grows well at the respective body temperatures of 37°C and 42°C. Proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 37°C of Cj0596, a predicted periplasmic chaperone that is similar to proteins involved in outer membrane protein folding and virulence in other bacteria. Results The cj0596 gene was highly conserved in 24 strains and species of Campylobacter, implying the importance of this gene. To study the role that Cj0596 plays in C. jejuni pathogenesis, a mutant derivative of strain 81–176 was constructed in which the cj0596 gene was precisely deleted. A revertant of this mutant was isolated by restoring the gene to its original chromosomal location using streptomycin counterselection. The cj0596 mutant strain demonstrated a slightly decreased growth rate and lower final growth yield, yet was more motile and more invasive of human intestinal epithelial cells than wild-type. In either single or mixed infections, the mutant was less able to colonize mice than 81–176. The cj0596 mutant also expressed altered levels of several proteins. Conclusion Mutation of cj0596 has an effect on phenotypes related to C. jejuni pathogenesis, probably due to its role in the proper folding of critical outer membrane proteins.

  7. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo

    DEFF Research Database (Denmark)

    Westphal, V; Darby, N J; Winther, Jakob R.

    1999-01-01

    to that of human PDI, both in rearrangement and oxidation reactions. However, while the a domain active site of the human enzyme is more active than the a'-site, the reverse is the case for yPDI. This prompted us to set up an assay to investigate whether the situation would be different with a native yeast...

  8. A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat.

    Science.gov (United States)

    Faheem, Muhammad; Li, Yingbo; Arshad, Muhammad; Jiangyue, Cheng; Jia, Zhao; Wang, Zongkuan; Xiao, Jin; Wang, Haiyan; Cao, Aizhong; Xing, Liping; Yu, Feifei; Zhang, Ruiqi; Xie, Qi; Wang, Xiue

    2016-04-13

    In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a') and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-V(C57A) did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function.

  9. Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages.

    Science.gov (United States)

    Santos, Célio X C; Stolf, Beatriz S; Takemoto, Paulo V A; Amanso, Angélica M; Lopes, Lucia R; Souza, Edna B; Goto, Hiro; Laurindo, Francisco R M

    2009-10-01

    PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss- or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi.

  10. Fruit color mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis

    Science.gov (United States)

    Isoprenoids are a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized in the cytoplasm from mevalonic acid via the “MVA pathway” a...

  11. Silencing of Entamoeba histolytica Glucosamine 6-Phosphate Isomerase by RNA Interference Inhibits the Formation of Cyst-Like Structures

    Directory of Open Access Journals (Sweden)

    Hugo Aguilar-Díaz

    2013-01-01

    Full Text Available Encystment is an essential process in the biological cycle of the human parasite Entamoeba histolytica. In the present study, we evaluated the participation of E. histolytica Gln6Pi in the formation of amoeba cyst-like structures by RNA interference assay. Amoeba trophozoites transfected with two Gln6Pi siRNAs reduced the expression of the enzyme in 85%, which was confirmed by western blot using an anti-Gln6Pi antibody. The E. histolytica Gln6Pi knockdown with the mix of both siRNAs resulted in the loss of its capacity to form cyst-like structures (CLSs and develop a chitin wall under hydrogen peroxide treatment, as evidenced by absence of both resistance to detergent treatment and calcofluor staining. Thus, only 5% of treated trophozoites were converted to CLS, from which only 15% were calcofluor stained. These results represent an advance in the understanding of chitin biosynthesis in E. histolytica and provide insight into the encystment process in this parasite, which could allow for the developing of new control strategies for this parasite.

  12. Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles.

    Science.gov (United States)

    Ettelaie, Camille; Collier, Mary E W; Featherby, Sophie; Greenman, John; Maraveyas, Anthony

    2017-09-26

    The exposure and release of TF is regulated by post-translational modifications of its cytoplasmic domain. Here, the potential of Pin1 to interact with the cytoplasmic domain of TF, and the outcome on TF function was examined. MDA-MB-231 and transfected-primary endothelial cells were incubated with either Pin1 deactivator Juglone, or its control Plumbagin, as well as transfected with Pin1-specific or control siRNA. TF release into microvesicles following activation, and also phosphorylation and ubiquitination states of cellular-TF were then assessed. Furthermore, the ability of Pin1 to bind wild-type and mutant forms of overexpressed TF-tGFP was investigated by co-immunoprecipitation. Additionally, the ability of recombinant or cellular Pin1 to bind to peptides of the C-terminus of TF, synthesised in different phosphorylation states was examined by binding assays and spectroscopically. Finally, the influence of recombinant Pin1 on the ubiquitination and dephosphorylation of the TF-peptides was examined. Pre-incubation of Pin1 with Juglone but not Plumbagin, reduced TF release as microvesicles and was also achievable following transfection with Pin1-siRNA. This was concurrent with early ubiquitination and dephosphorylation of cellular TF at Ser253. Pin1 co-immunoprecipitated with overexpressed wild-type TF-tGFP but not Ser258→Ala or Pro259→Ala substituted mutants. Pin1 did interact with Ser258-phosphorylated and double-phosphorylated TF-peptides, with the former having higher affinity. Finally, recombinant Pin1 was capable of interfering with the ubiquitination and dephosphorylation of TF-derived peptides. In conclusion, Pin1 is a fast-acting enzyme which may be utilised by cells to protect the phosphorylation state of TF in activated cells prolonging TF activity and release, and therefore ensuring adequate haemostasis. Copyright © 2017. Published by Elsevier B.V.

  13. Protein Disulfide Isomerase Chaperone ERP-57 Decreases Plasma Membrane Expression of the Human GnRH Receptor

    Science.gov (United States)

    Yánez, Rodrigo Ayala; Conn, P. Michael

    2012-01-01

    Retention of misfolded proteins by the endoplasmic reticulum (ER) is a quality control mechanism involving the participation of endogenous chaperones such as calnexin (CANX) which interact and restrict plasma membrane expression of gonadotropin releasing hormone receptor (GnRHR), a G protein coupled receptor. CANX also interacts with ERP-57, a thiol oxidoreductase chaperone present in the ER. CANX along with ERP-57, promotes the formation of disulfide bond bridges in nascent proteins. The human GnRH receptor (hGnRHR) is stabilized by two disulfide bond bridges (Cys14-Cys200 and Cys114-Cys196), that, when broken, its expression at plasma membrane decreases. To determine if the presence of chaperones CANX and ERP-57 exert an influence over membrane routing and second messenger activation, we assessed the effect of various mutants including those with broken bridges (Cys→Ala) along with the wild type hGnRHR. The effect of chaperones on mutants was insignificant, whereas the overexpression of ERP-57 led to a wild type hGnRHR retention which was further enhanced by cotransfection with CANX cDNA disclosing receptor retention by ERP-57 augmented by CANX, suggesting a quality control mechanism. PMID:20029959

  14. Using Online Algorithms to Solve NP-Hard Problems More Efficiently in Practice

    Science.gov (United States)

    2007-12-01

    Acknowledgments I would like to thank my advisor Stephen Smith, my co-author Daniel Golovin , my com- mittee members Avrim Blum, Carla Gomes, John Hooker, and...of the 13th European Conference on Artificial Intelligence (ECAI-98), pages 244–248, 1998. 4.2.2 [76] Matthew Streeter and Daniel Golovin . Online...algorithms for maximizing submodu- lar functions. Working paper, 2007. 1.1, 2.1.3 [77] Matthew Streeter, Daniel Golovin , and Stephen F. Smith. Combining

  15. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    NARCIS (Netherlands)

    Rutten, L.; Ribot, C.; Trejo-Aguilar, B.; Wosten, H.A.; De Vries, R.P.

    2009-01-01

    BACKGROUND: L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrat

  16. Induction, purification, and characterization of two extracellular alpha-L-arabinofuranosidases from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, E.; Economou, L.

    2003-01-01

    In the presence of L-arabinose as sole carbon source, Fusarium oxysporum produces two alpha-L-arabinofuranosidases (ABFs) named ABF1 and ABF2, with molecular masses of 200 and 180 kDa, respectively. The two F. oxysporum proteins have been purified to homogeneity. The purified enzymes are composed...

  17. Characterisation of palm wine yeast isolates for industrial utilisation

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... make this wine a veritable medium for the growth of a consortium of ... after isolation on glucose yeast agar (GYA) and yeast malt agar. (YMA) (Biolife). ... lactose, raffinose, soluble starch, D-xylose, L-arabinose, and D- ribose.

  18. Otariodibacter oris gen. nov., sp. nov., a member of the family Pasteurellaceae isolated from the oral cavity of pinnipeds

    DEFF Research Database (Denmark)

    Hansen, Mie Johanne; Bertelsen, Mads Frost; Christensen, Henrik

    2012-01-01

    from existing genera of the Pasteurellaceae by the following tests: positive reactions for catalase, oxidase, Voges-Proskauer and indole; no X- or V-factor dependency; and acid production from L-arabinose (slow), L-fucose, maltose and trehalose, but not from dulcitol, D-mannitol, D-mannose or sucrose...

  19. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.; Cort, John R.; Ahring, Birgitte K.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmed with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.

  20. Synthesis and characterization of arabinose-palmitic acid esters by enzymatic esterification

    NARCIS (Netherlands)

    Pappalardo, Valeria M.; Boeriu, Carmen G.; Zaccheria, Federica; Ravasio, Nicoletta

    2017-01-01

    The direct esterification of palmitic acid with L-(+)-arabinose has been carried out. The use of Candida antartica lipase B as the catalyst and the choice of suitable solvent and experimental conditions allowed carrying out the reaction successfully. In particular 10% dimethyl-sulfoxide in

  1. Arabinase induction and carbon catabolite repression in Aspergillus niger and Aspergillus nidulans.

    NARCIS (Netherlands)

    Veen, van der P.

    1995-01-01

    The first aim of this thesis was to get a better understanding of the properties and the induction features of arabinan degrading enzymes and enzymes involved in the intracellular L-arabinose catabolic pathway in Aspergillus niger. The second aim was to understand the which role carbon catabolite re

  2. N-Benzyl-3,5-dideoxy-3,5-imino-1,2-O-isopropylidene-β-l-lyxofuranose

    Directory of Open Access Journals (Sweden)

    David S. Edgeley

    2012-08-01

    Full Text Available X-ray crystallography confirmed the formation, structure and relative stereochemistry of the title compound, C15H19NO3, which contains a sterically congested four-membered azetidine ring system. The absolute configuration was determined by the use of l-arabinose as the starting material.

  3. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    Full Text Available Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment.

  4. Protein (Cyanobacteria): 145585 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available e isomerase, type 2 Halothece sp. PCC 7418 MSNVEALTIPSSIQFSTATETESRPWGSFSTLEEGQGYKIKRIEVKPGHRLSLQMHHHRSEHWIVVSGTAKVVCGDREEILTTNQSTYVPQCTSHRLENPGVINLVLIEVQNGEYLGEDDIIRFQDDYARSSK ...

  5. Triosephosphate isomerase gene promoter variation: -5G/A and -8G/A polymorphisms in clinical malaria groups in two African populations.

    Science.gov (United States)

    Guerra, Mónica; Machado, Patrícia; Manco, Licínio; Fernandes, Natércia; Miranda, Juliana; Arez, Ana Paula

    2015-06-01

    TPI1 promoter polymorphisms occur in high prevalence in individuals from African origin. Malaria-patients from Angola and Mozambique were screened for the TPI1 gene promoter variants rs1800200A>G, (-5G>A), rs1800201G>A, (-8G>A), rs1800202T>G, (-24T>G), and for the intron 5 polymorphism rs2071069G>A, (2262G>A). -5G>A and -8G>A variants occur in 47% and 53% in Angola and Mozambique, respectively while -24T>G was monomorphic for the wild-type T allele. Six haplotypes were identified and -8A occurred in 45% of the individuals, especially associated with the GAG haplotype and more frequent in non-severe malaria groups, although not significantly. The arising and dispersion of -5G>A and -8G>A polymorphisms is controversial. Their age was estimated by analyses of two microsatellite loci, CD4 and ATN1, adjacent to TPI1 gene. The -5G>A is older than -8G>A, with an average estimate of approximately 35,000 years. The -8A variant arose in two different backgrounds, suggesting independent mutational events. The first, on the -5G background, may have occurred in East Africa around 20,800 years ago; the second, on the -5A background, may have occurred in West Africa some 7500 years ago. These estimates are within the period of spread of agriculture and the malaria mosquito vector in Africa, which could has been a possible reason for the selection of -8A polymorphism in malaria endemic countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Prolyl isomerase Pin1 negatively regulates AMP-activated protein kinase (AMPK) by associating with the CBS domain in the γ subunit.

    Science.gov (United States)

    Nakatsu, Yusuke; Iwashita, Misaki; Sakoda, Hideyuki; Ono, Hiraku; Nagata, Kengo; Matsunaga, Yasuka; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Kamata, Hideaki; Takahashi, Shin-Ichiro; Katagiri, Hideki; Honda, Hiroaki; Kiyonari, Hiroshi; Uchida, Takafumi; Asano, Tomoichiro

    2015-10-02

    AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the β subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr(211)-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains

    Science.gov (United States)

    The Noctuid moth, Spodoptera frugiperda (the fall armyworm), is endemic to the Western Hemisphere and appears to be undergoing sympatric speciation to produce two subpopulations that differ in their choice of host plants. The diverging “rice strain” and “corn strain” are morphologically indistinguis...

  8. Role of the cysteinyl residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions

    OpenAIRE

    Laxa, Miriam; König, Janine; Dietz, Karl-Josef; Kandlbinder, Andrea

    2006-01-01

    Abstract Cyclophilins (Cyps) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved Cys-residues further suggest a role in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast located CYP20-3, site-directed mutagenised Cys->Ser-variants were generated and analyzed for enzymatic and conformatio...

  9. Escherichia coli phosphoglucose isomerase can be substituted by members of the PGI family, the PGI/PMI family, and the cPGI family.

    Science.gov (United States)

    Hansen, Thomas; Schönheit, Peter

    2005-09-01

    The Escherichia coli strain Pgi-UdhA, a mutant of the strain MG1655, is deficient in both the pgi gene and the udhA gene and cannot grow on glucose as carbon and energy source. This strain was transformed with different pET-plasmids containing archaeal or bacterial pgi, cpgi or pgi/pmi genes from the three known PGI families (PGI, PGI/PMI, cPGI). Growth could be restored upon plasmid-based expression of pgi, pgi/pmi or cpgi genes indicating that these heterologous proteins can substitute for E. coli PGI. However, complete restoration of the growth rate could not be obtained by any of the PGIs, PGI/PMIs, or cPGIs used. The data indicate that the PGI function of the three PGI families is functionally exchangeable in glycolysis.

  10. Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase.

    Science.gov (United States)

    Sha, Chong; Yu, Xiao-Wei; Lin, Nai-Xin; Zhang, Meng; Xu, Yan

    2013-12-10

    Pichia pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, but there is still a large room of improvement for this expression system. Two factors drastically influence the lipase r27RCL production from Rhizopus chinensis CCTCC M201021, which are gene dosage and protein folding in the endoplasmic reticulum (ER). Regarding the effect of gene dosage, the enzyme activity for recombinant strain with three copies lipase gene was 1.95-fold higher than that for recombinant strain with only one copy lipase gene. In addition, the lipase production was further improved by co-expression with chaperone PDI involved in the disulfide bond formation in the ER. Overall, the maximum enzyme activity reached 355U/mL by the recombinant strain with one copy chaperone gene PDI plus five copies lipase gene proRCL in shaking flasks, which was 2.74-fold higher than that for the control strain with only one copy lipase gene. Overall, co-expression with PDI vastly increased the capacity for processing proteins of ER in P. pastoris.

  11. Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI)

    DEFF Research Database (Denmark)

    Schaller, Monica; Stohl, William; Benoit, Vivian

    2006-01-01

    in the sera of most immune-based inflammatory arthritis patients are elevated and may reflect ongoing inflammation and cell destruction. The high serum levels of enzymatically inactive forms of G6PI in RA relative to those in other arthritic diseases are partially due to G6PI-containing immune complexes...... arthritides, serum and SF obtained concomitantly from 91 clinically well-defined arthritis patients were assessed in a blinded manner for G6PI enzymatic assay and for G6PI protein concentration by ELISA. Sera and SF from patients with immune-based inflammatory arthritis contained significantly higher levels...

  12. Pesquisa de assinaturas de selecção de malária na região do gene humano TPI (triosefosfato isomerase)

    OpenAIRE

    Guerra, Mónica

    2012-01-01

    A malária continua a ser a maior causa de doença e mortalidade no Mundo, sobretudo no continente Africano. Das cinco espécies do parasita causador de malária em humanos, Plasmodium falciparum é a mais letal. Em termos evolutivos a malária é um fenómeno recente com cerca de 10 000 anos, período onde tem atuado como importante pressão seletiva no genoma humano, contribuindo para a seleção de inúmeros polimorfismos que propiciam maior resistência ao protozoário parasita. Apesar da interação ...

  13. The role of protein disulfide isomerase (PDI) in vascular smooth muscle cell migration: possible interaction with Nox1 NADPH oxidase and RhoGTPases

    OpenAIRE

    2012-01-01

    A migração de células musculares lisas (VSMC) da camada média do vaso para a íntima é essencial para vasculogênese e contribui para o processo de aterosclerose e estenose após lesão por cateter-balão, caracterizando-se como um importante alvo terapêutico. Diversos trabalhos já demonstraram que fatores de crescimento (como PDGF e FGF) estimulam a migração de VSMC, inclusive, muitos desses fatores de crescimento induzem sinalização redox associadas à geração de espécies reativas de oxigênio (RO...

  14. 3rd Workshop on "Combinations of Intelligent Methods and Applications"

    CERN Document Server

    Palade, Vasile

    2013-01-01

    The combination of different intelligent methods is a very active research area in Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each of their components.  The 3rd Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2012) was intended to become a forum for exchanging experience and ideas among researchers and practitioners who are dealing with combining intelligent methods either based on first principles or in the context of specific applications. CIMA 2012 was held in conjunction with the 22nd European Conference on Artificial Intelligence (ECAI 2012).This volume includes revised versions of the papers presented at CIMA 2012.  .

  15. Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov., Antarctic basidioblastomycetes

    Science.gov (United States)

    Vishniac, H. S.

    1985-01-01

    New yeasts from the Ross Desert (dry valley area) of Antarctica include Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov. Cryptococcus socialis MYSW A801-3aY1 (= ATCC 56685) requires no vitamins, assimilates L-arabinose, cellobiose, D-glucuronate, maltose, melezitose, raffinose, soluble starch, sucrose, and trehalose, and may be distinguished from all other basidioblastomycetes by the combination of amylose production, cellobiose assimilation, and failure to utilize nitrate, D-galactose, myo-inositol, and mannitol. Its guanine-plus-cytosine content is 56 mol%. Cryptococcus consortionis MYSW A801-3aY92 (= ATCC 56686) requires thiamine, assimilates L-arabinose, D-glucuronate, 2-ketogluconate, salicin, succinate, sucrose, trehalose, and D-xylose, and may be distinguished from all other basidioblastomycetes by the combination of amylose production and failure to utilize nitrate, cellobiose, D-galactose, myo-inositol, and mannitol. Its guanine-plus-cytosine content is 56 mol%.

  16. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    -arabinose and D-xylose constituted the basis for the further investigations of L-arabinose. However, the use of higher dietary doses of sucrose would be unfeasible in terms of palatability in the human population. In paper 2, the purpose was to investigate if the positive effects of L-arabinose added to a sugar......The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...... activity and change of diet, which corresponds to the treatment of insulin resistance, IGT and obesity. Secondly, a variety of medicine is used. Within nutrition, one of the research areas is preventive or therapeutic aims against development of T2D. A better glycaemic control is one preventive target...

  17. Synthesis of S-linked oligoxylans

    DEFF Research Database (Denmark)

    Bonora, Beatrice

    a big challenge for thebiofuel industry. In particular, the enzymatic hydrolysis of lignocellulosicpolysaccharides is one of the limiting steps of the entire procedure and thereforethe enzymes involved in the degradation process must ideally be characterized andunderstood. This requires a detailed......-(1→4)-Dxylopyranosebackbone, which is branched by short carbohydrate chains. Thebranches include D-glucuronic acid and its methyl ether, L-arabinose and/or variousoligosaccharides like D-xylose, L-arabinose, D- or L-galactose and D-glucose. Thehydrolysis of these polysaccharides is catalyzed...... by several families of enzymes,collected under the name of Glycosyl Hydrolases (GHs). Among other methods,the use of enzyme inhibitors like thio-linked oligosaccharides has for a long timebeen a common tool to analyze and characterize these enzymes.In the present work the chemical synthesis of thio...

  18. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases.

    Science.gov (United States)

    Kim, Byoungjin; Sullivan, Ryan P; Zhao, Huimin

    2010-07-01

    L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD(+) reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L: -arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD(+)-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55-65 degrees C with the other LADs showed the maximum activity in the temperature range of 40-50 degrees C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP(+) was increased by 2.5 x 10(4)-fold, whereas the cofactor preference toward NADP(+) of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

  19. Changes in kenaf properties and chemistry as a function of growing time

    Science.gov (United States)

    Roger M. Rowell; James S. Han

    1999-01-01

    Kenaf Tainung 1 cultivar was grown in Madison, WI in 1994. The ratio of core to bast fiber, total plant yield, protein, ash, fiber length, extractives, lignin, and sugar content were determined as a function of growing age. Ash, protein, extractives, L-arabinose, L-rhamnose, D-galactose, and D-mannose contents decreased while lignin, D-glucose and D-xylose content...

  20. High paracellular nutrient absorption in intact bats is associated with high paracellular permeability in perfused intestinal segments.

    Science.gov (United States)

    Brun, Antonio; Price, Edwin R; Gontero-Fourcade, Manuel N; Fernandez-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2014-09-15

    Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular mechanisms. Based on a few previous studies, the capacity for paracellular nutrient absorption seems greater in flying mammals than in nonflying mammals, but there has been little investigation of the mechanisms driving this difference. Therefore, we studied three species each of bats (Artibeus lituratus, Sturnira lilium and Carollia perspicillata) and nonflying mammals (Akodon montensis, Mus musculus and Rattus norvegicus). Using standard pharmacokinetic techniques in intact animals, we confirmed the greater paracellular nutrient absorption in the fliers, comparing one species in each group. Then we conducted in situ intestinal perfusions on individuals of all species. In both approaches, we measured the absorption of 3OMD-glucose, a nonmetabolizable glucose analog absorbed both paracellularly and transcellularly, as well as L-arabinose, which has no mediated transport. Fractional absorption of L-arabinose was three times higher in the bat (S. lilium: 1.2±0.24) than in the rodent (A. montensis: 0.35±0.04), whereas fractional absorption of 3OMD-glucose was complete in both species (1.46±0.4 and 0.97±0.12, respectively). In agreement, bats exhibited two to 12 times higher l-arabinose clearance per square centimeter nominal surface area than rodents in intestinal perfusions. Using L-arabinose, we estimated that the contribution of the paracellular pathway to total glucose absorption was higher in all three bats (109-137%) than in the rodents (13-39%). These findings contribute to an emerging picture that reliance on the paracellular pathway for nutrient absorption is much greater in bats relative to nonflying mammals and that this difference is driven by differences in intestinal permeability to nutrient-sized molecules.

  1. Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum.

    Science.gov (United States)

    Zhang, Lei; Leyn, Semen A; Gu, Yang; Jiang, Weihong; Rodionov, Dmitry A; Yang, Chen

    2012-03-01

    The transcription factor AraR controls utilization of L-arabinose in Bacillus subtilis. In this study, we combined a comparative genomic reconstruction of AraR regulons in nine Clostridium species with detailed experimental characterization of AraR-mediated regulation in Clostridium acetobutylicum. Based on the reconstructed AraR regulons, a novel ribulokinase, AraK, present in all analyzed Clostridium species was identified, which was a nonorthologous replacement of previously characterized ribulokinases. The predicted function of the araK gene was confirmed by inactivation of the araK gene in C. acetobutylicum and biochemical assays using purified recombinant AraK. In addition to the genes involved in arabinose utilization and arabinoside degradation, extension of the AraR regulon to the pentose phosphate pathway genes in several Clostridium species was revealed. The predicted AraR-binding sites in the C. acetobutylicum genome and the negative effect of L-arabinose on DNA-regulator complex formation were verified by in vitro binding assays. The predicted AraR-controlled genes in C. acetobutylicum were experimentally validated by testing gene expression patterns in both wild-type and araR-inactivated mutant strains during growth in the absence or presence of L-arabinose.

  2. Demonstration of glycosomes (microbodies) in the Bodonid flagellate Trypanoplasma borelli (Protozoa, Kinetoplastida)

    NARCIS (Netherlands)

    Opperdoes, Fred R.; Nohynkova, Eva; Schaftingen, Emile Van; Lambeir, Anne-Marie; Veenhuis, Marten; Roy, Joris Van

    1988-01-01

    Homogenates of Trypanoplasma borelli were subjected to subcellular fractionation by sequential differential and isopycnic centrifugation in sucrose. Glycerol-3-phosphate dehydrogenase and the glycolytic enzymes, glucosephosphate isomerase and triosephosphate isomerase, as well as the peroxisomal mar

  3. AcEST: DK947818 [AcEST

    Lifescience Database Archive (English)

    Full Text Available eptidyl-prolyl cis-trans isomerase CYP19-... 223 6e-58 sp|Q5R8S7|PPIA_PONPY Peptidyl-prolyl cis-trans isomerase A OS=Po....lyl cis-trans isomerase OS=Po... 276 9e-73 tr|Q6TMX3|Q6TMX3_THEHA Peptidyl-prolyl cis-trans isomerase OS=Th...... 274 3e-72 tr|A9PIY0|A9PIY0_POPJC Peptidyl-prolyl cis-trans isomerase OS=Po... ...TR Peptidyl-prolyl cis-trans isomerase OS=Po... 272 1e-71 tr|A9PJ47|A9PJ47_POPJC Peptidyl-prolyl cis-trans isomerase OS=Po....|A9P9C8|A9P9C8_POPTR Peptidyl-prolyl cis-trans isomerase OS=Po... 271 2e-71 tr|Q8

  4. InterProScan Result: CN379493 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available logical Process: gluconeogenesis (GO:0006094)|Biological Process: glycolysis (GO:0006096) ... ...MERASE 1.1e-18 T IPR001672 Phosphoglucose isomerase (PGI) Molecular Function: glucose-6-phosphate isomerase activity (GO:0004347)|Bio

  5. Xylose utilization in recombinant Zymomonas

    Science.gov (United States)

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  6. InterProScan Result: FS918392 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS918392 FS918392_3_ORF2 F53AAC8941803773 PANTHER PTHR10885 ISOPENTENYL-DIPHOSPHATE... DELTA ISOMERASE 1e-78 T IPR011876 Isopentenyl-diphosphate delta-isomerase, type 1 Molecular Function: isope...ntenyl-diphosphate delta-isomerase activity (GO:0004452)|Biological Process: isoprenoid biosynthetic process (GO:0008299) ...

  7. InterProScan Result: FS781039 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS781039 FS781039_4_ORF2 9789EAFD23D70615 PANTHER PTHR10885 ISOPENTENYL-DIPHOSPHATE... DELTA ISOMERASE 1.1e-78 T IPR011876 Isopentenyl-diphosphate delta-isomerase, type 1 Molecular Function: isop...entenyl-diphosphate delta-isomerase activity (GO:0004452)|Biological Process: isoprenoid biosynthetic process (GO:0008299) ...

  8. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones.

    Science.gov (United States)

    Wild, Jadwiga; Hradecna, Zdenka; Szybalski, Waclaw

    2002-09-01

    The widely used, very-low-copy BAC (bacterial artificial chromosome) vectors are the mainstay of present genomic research. The principal advantage of BACs is the high stability of inserted clones, but an important disadvantage is the low yield of DNA, both for vectors alone and when carrying genomic inserts. We describe here a novel class of single-copy/high-copy (SC/HC) pBAC/oriV vectors that retain all the advantages of low-copy BAC vectors, but are endowed with a conditional and tightly controlled oriV/TrfA amplification system that allows: (1) a yield of ~100 copies of the vector per host cell when conditionally induced with L-arabinose, and (2) analogous DNA amplification (only upon induction and with copy number depending on the insert size) of pBAC/oriV clones carrying >100-kb inserts. Amplifiable clones and libraries facilitate high-throughput DNA sequencing and other applications requiring HC plasmid DNA. To turn on DNA amplification, which is driven by the oriV origin of replication, we used copy-up mutations in the gene trfA whose expression was very tightly controlled by the araC-P(araBAD) promoter/regulator system. This system is inducible by L-arabinose, and could be further regulated by glucose and fucose. Amplification of DNA upon induction with L-arabinose and its modulation by glucose are robust and reliable. Furthermore, we discovered that addition of 0.2% D-glucose to the growth medium helped toward the objective of obtaining a real SC state for all BAC systems, thus enhancing the stability of their maintenance, which became equivalent to cloning into the host chromosome

  9. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.

    Science.gov (United States)

    Sukpipat, Wiphat; Komeda, Hidenobu; Prasertsan, Poonsuk; Asano, Yasuhisa

    2017-01-01

    Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with Km=16.1 mM and kcat/Km=67.0 min(-1)mM(-1), while l-arabitol was also a substrate for the enzyme with Km=31.1 mM and kcat/Km=6.5 min(-1) mM(-1). Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae.

  10. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    digestive enzymes. In paper 3, D-xylose and L-arabinose was investigated in vitro and in vivo. This study found that D-xylose and Larabinose inhibit both sucrase and maltase when tested in a Caco-2 cell model. In addition, 13 healthy subjects completed a randomized double-blinded cross-over study......The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...

  11. Inhibition by natural dietary substances of gastrointestinal absorption of starch and sucrose in rats and pigs: 1. Acute studies.

    Science.gov (United States)

    Preuss, Harry G; Echard, Bobby; Bagchi, Debasis; Stohs, Sidney

    2007-08-06

    Rapid gastrointestinal absorption of refined carbohydrates (CHO) is linked to perturbed glucose-insulin metabolism that is, in turn, associated with many chronic health disorders. We assessed the ability of various natural substances, commonly referred to as "CHO blockers," to influence starch and sucrose absorption in vivo in ninety-six rats and two pigs. These natural enzyme inhibitors of amylase/sucrase reportedly lessen breakdown of starches and sucrose in the gastrointestinal tract, limiting their absorption. To estimate absorption, groups of nine SD rats were gavaged with water or water plus rice starch and/or sucrose; and circulating glucose was measured at timed intervals thereafter. For each variation in the protocol a total of at least nine different rats were studied with an equal number of internal controls on three different occasions. The pigs rapidly drank CHO and inhibitors in their drinking water. In rats, glucose elevations above baseline over four hours following rice starch challenge as estimated by area-under-curve (AUC) were 40%, 27%, and 85% of their internal control after ingesting bean extract, hibiscus extract, and l-arabinose respectively in addition to the rice starch. The former two were significantly different from control. L-Arabinose virtually eliminated the rising circulating glucose levels after sucrose challenge, whereas hibiscus and bean extracts were associated with lesser decreases than l-arabinose that were still significantly lower than control. The glucose elevations above baseline over four hours in rats receiving sucrose (AUC) were 51%, 43% and 2% of control for bean extract, hibiscus extract, and L-arabinose, respectively. Evidence for dose-response of bean and hibiscus extracts is reported. Giving the natural substances minus CHO challenge caused no significant changes in circulating glucose concentrations, indicating no major effects on overall metabolism. A formula combining these natural products significantly

  12. Inhibition by Natural Dietary Substances of Gastrointestinal Absorption of Starch and Sucrose in Rats and Pigs: 1. Acute Studies

    Directory of Open Access Journals (Sweden)

    Harry G. Preuss, Bobby Echard, Debasis Bagchi, Sidney Stohs

    2007-01-01

    Full Text Available Rapid gastrointestinal absorption of refined carbohydrates (CHO is linked to perturbed glucose-insulin metabolism that is, in turn, associated with many chronic health disorders. We assessed the ability of various natural substances, commonly referred to as “CHO blockers,” to influence starch and sucrose absorption in vivo in ninety-six rats and two pigs. These natural enzyme inhibitors of amylase/sucrase reportedly lessen breakdown of starches and sucrose in the gastrointestinal tract, limiting their absorption. To estimate absorption, groups of nine SD rats were gavaged with water or water plus rice starch and/or sucrose; and circulating glucose was measured at timed intervals thereafter. For each variation in the protocol a total of at least nine different rats were studied with an equal number of internal controls on three different occasions. The pigs rapidly drank CHO and inhibitors in their drinking water. In rats, glucose elevations above baseline over four hours following rice starch challenge as estimated by area-under-curve (AUC were 40%, 27%, and 85% of their internal control after ingesting bean extract, hibiscus extract, and l-arabinose respectively in addition to the rice starch. The former two were significantly different from control. L-Arabinose virtually eliminated the rising circulating glucose levels after sucrose challenge, whereas hibiscus and bean extracts were associated with lesser decreases than l-arabinose that were still significantly lower than control. The glucose elevations above baseline over four hours in rats receiving sucrose (AUC were 51%, 43% and 2% of control for bean extract, hibiscus extract, and L-arabinose, respectively. Evidence for dose-response of bean and hibiscus extracts is reported. Giving the natural substances minus CHO challenge caused no significant changes in circulating glucose concentrations, indicating no major effects on overall metabolism. A formula combining these natural products

  13. Cryptococcus friedmannii, a new species of yeast from the Antarctic

    Science.gov (United States)

    Vishniac, H. S.

    1985-01-01

    Cryptococcus friedmannii Vishniac sp. nov. from an Antarctic cryptoendolithic community is a psychrophilic basidioblastomycete characterized by cream-colored colonies of cells with smooth, layered walls, budding monopolarly, producing amylose and extracellular proteinase, utilizing nitrate and D-alanine (inter alia) as nitrogen sources and L-arabinose, arbutin, cellobiose, D-glucuronate, maltose, melezitose, salicin, soluble starch, trehalose, and D-xylose as carbon sources. This species differs from all other basidiomycetous yeasts in possessing the following combination of characters: amylose production (positive), assimilation of cellobiose (positive), D-galactose (negative), myo-inositol (negative), D-mannitol (negative), and sucrose (negative).

  14. Total Synthesis of 4"-O-Acetylmananthoside B Part Ⅱ: Synthesis of the Disaccharide Fragment

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Gui-Long; YU,Zhao-Yun; LI,Yan; PANG,Li-Na; WANG,Jian-Wu

    2008-01-01

    A disaccharide compound, p-methoxyphenyl 2,3,4-tri-O-benzyl-β-L-arabinopyranosyl-(1→6)-2-O-benzyl-3,4-di-O-acetyl-β-D-galactopyranoside (17), was successfully synthesized from two monosaccharides L-arabinose and D-galactose and fully characterized. This compound can be used to build a natural product 4"-O-acetylmanan thoside B, which was isolated from the leaves and stems of a kind of Vietnamese Acanthaceae Justicia patentiflora.

  15. Cultivation Conditions for Phytase Production from Recombinant Escherichia coli DH5α

    OpenAIRE

    Rafidah Mohd Ariff; Anwar Fitrianto; Mohd Yazid Abd. Manap; Aini Ideris; Azhar Kassim; Afinah Suhairin; Anis Shobirin Meor Hussin

    2013-01-01

    Response surface methodology (RSM) was used to optimize the cultivation conditions for the production of phytase by recombinant Escherichia coli DH5α. The optimum predicted cultivation conditions for phytase production were at 3 hours seed age, a 2.5% inoculum level, an L-arabinose concentration of 0.20%, a cell concentration of 0.3 (as measured at 600 nm) and 17 hours post-induction time with a predicted phytase activity of 4194.45 U/mL. The model was validated and the results showed no sign...

  16. Isomerisation of aldoses in pyridine in the presence of aluminium oxide.

    Science.gov (United States)

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve

    2005-02-28

    Addition of aluminium oxide to boiling pyridine solutions of D-xylose, L-arabinose, D-mannose and D-glucose strongly increased the reaction rate of the aldose-ketose transformation. The maximum content of 2-ketose was reached after less than 2h for the aldopentoses and 3h for the aldohexoses. D-Threo-2-pentulose (xylulose) was prepared from D-xylose, and isolated as its O-isopropylidene derivative, the yield was nearly twice that compared to that usually obtained in the classical Lobry de Bruyn-Alberda van Ekenstein transformation in pyridine.

  17. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Chandra, Krishnendu; Ghosh, Kaushik; Ojha, Arnab K; Islam, Syed S

    2009-11-02

    A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of D-galactose, D-methyl galacturonate, D-arabinose, L-arabinose, and L-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as: [structure: see text].

  18. Development of microbial biosensors for food analysis

    DEFF Research Database (Denmark)

    Lukasiak, Justyna

    Microbial biosensors are analytical devices composed of a biological recognition element (microorganism) integrated to a signal transduction element (i.e. bioluminescence), converting a biochemical signal into quantifiable response. Due to their molecular properties they can be diversely designed...... grains. It is a dietary fiber, with potential as a functional food ingredient. In this study, reporter strains targeting specifically L-rhamnose, L-arabinose and Dxylose using three different signal transducers: bioluminescence (luxCDABE), fluorescence (gfp) and ice nucleation (inaZ) were developed...

  19. Transformation of aldose formazans. Novel synthesis of 2-acetamido-2-deoxypentonolactones and a new pent-2-enose formazan.

    Science.gov (United States)

    Zsoldos-Mády, Virág; Pintér, István; Peredy-Kajtár, Mária; Perczel, András

    2011-09-06

    2-Acetamido-2-deoxypentonolactones were synthesized from per-O-acetylated formazans of D-ribose, D- and L-arabinose, respectively. In dimethyl sulfoxide, a novel spontaneous transformation of the per-O-acetyl-pentose formazans into new 3,4,5-tri-O-acetyl-pent-2-enose formazans has been recognized. Additional examples for the occurrence of the isomerism between pseudo-aromatic chelate and open phenylazo-phenylhydrazone system were demonstrated by (1)H NMR spectroscopy in both the unprotected pentose formazans and 3,4,5-tri-O-acetyl-pent-2-enose formazans. Computational calculations supported higher stability of the ring form.

  20. Development of a mariner-Based Transposon and Identification of Listeria monocytogenes Determinants, Including the Peptidyl-Prolyl Isomerase PrsA2, That Contribute to Its Hemolytic Phenotype▿

    OpenAIRE

    2009-01-01

    Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mu...

  1. Purification and Characterization of a Linoleic Acid Isomerase from a Lactobacillus plantarum Bateria%植物乳杆菌亚油酸异构酶的分离纯化及其性质研究

    Institute of Scientific and Technical Information of China (English)

    苗士达; 张中义; 刘萍; 柴秋儿; 胡锦荣; 孙君社

    2005-01-01

    经硫酸铵分级沉淀、阴离子交换层析和凝胶过滤,由植物乳杆菌(Lactobacillus plantarum L-29)分离纯化得到亚油酸异构酶,分子量为43 ku.对其酶学性质进行研究,结果表明,温度37℃、pH 6.0时酶活性较高;Co2+、Fe2+可提高酶的活性,Cu2+、Zn2+则对酶活力有抑制作用;该酶作用于亚油酸的Km=2.53×10-5mol/L,Vmax=2.57×10-8mol/(min·mg).

  2. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    OpenAIRE

    Nara Gavini; Sinny Delacroix; Kelvin Harris Jr.; Lakshmi Pulakat

    2011-01-01

    Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR) that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide) reductase (ChlL) that shares some structural similarity with Nitrog...

  3. 玉米蛋白质二硫键异构酶(PDI)基因的特征和表达%Expression and Characterization of a Prtein Disulfide Isomerases in Maize(Zea Mays L.)

    Institute of Scientific and Technical Information of China (English)

    刘颖慧; 王秀堂; 石云素; 黄亚群; 宋燕春; 王天宇; 黎裕

    2009-01-01

    Protein disulfide isomemses(PDIs)play an important roles in protein folding and redox signaling in plants.In this paper,we analyzed the characteristics and functions of a PDI from maize.The maize PDI gene included an open reading frame of 513 amino acids,which showed a significant conservation with PDIs from wheat and rice.All 3 PDIs have typical structures of two thioredoxin-like active sites(CGHC)and an endoplasmic reticuhm-retention signal at its C-terminus(KDEL).Northem blotting showed that maize PDI had a higher expression level in developing seeds and could be strongly induced under dehydration,cold,salt and absci8ic acid(ABA)stresses.The expression of PDI-GFP fusion protein revealed its localization in both nuclear and cytoplasm compartments.%蛋白质二硫键异构酶(PDI)对蛋白的折叠和二硫键的形成起重要的作用.此外,PDI还执行许多其他的生物功能,是1个多功能酶.本文通过研究玉米中1个PDI基因的特征和表达,探讨它的功能作用.玉米中的PDI基因编码513个氨基酸.同源分析表明,该基因和水稻、小麦的PDI基因聚为一类,有很高的蛋白相似性.蛋白结构分析表明,该基因具有明显的PDI基因的结构特点,包括硫氧还蛋白活性位点(CGHC)以及内质网定位信号(KDEL).Northem杂交分析显示,该基因在发育种子的表达量高,同时受干旱、冷、ABA和盐等逆境胁迫诱导表达.PDI与GFP融合表达研究基因的亚细胞定位,表明该基因定位在除细胞膜外的细胞质和细胞器上.

  4. Spectral analyses on tryptophan environment in phycoerythrocyanin isomerase/lyase of Mastigocladus laminosus%层理鞭枝藻藻红蓝蛋白裂合异构酶色氨酸环境的光谱探测

    Institute of Scientific and Technical Information of China (English)

    周明; 武栋

    2007-01-01

    应用N-溴化琥珀酰亚胺(N-bromosuccinimide)研究了层理鞭枝藻藻红蓝蛋白裂合异构酶(PecE、PecF)色氨酸的化学修饰,用紫外吸收光谱、圆二色光谱和荧光光谱探测了色氨酸化学修饰过程中蛋白质结构微观环境,发现PecE和PecF的色氨酸都处在疏水区域或带负电荷区域,PecE的色氨酸残基更靠近分子表面.由于色氨酸是藻红蓝蛋白裂合异构酶的必需氨基酸,这些分析加深了解了色氨酸在藻红蓝蛋白裂合异构酶催化过程中的作用.

  5. 藻红蓝蛋白裂合异构酶对几种脱辅基藻胆蛋白的催化作用%Catalysis of Lyase-isomerase PecE/PecF for Seve ral Apophycobiliproteins

    Institute of Scientific and Technical Information of China (English)

    朱菁萍; 周明; 赵开弘; 曾志雄; 周宜开

    2002-01-01

    PecE/PecF是层理鞭枝藻藻红蓝蛋白α亚基(α-PEC)生物合成的裂合异构酶.以4种脱辅基藻胆蛋白为底物,初步研究了PecE/PecF对底物蛋白的催化专一性.结果表明,PecE/PecF可催化藻蓝胆素(PCB)与高度同源的层理鞭枝藻不同亚种的α-PEC脱辅基蛋白的体外重组,也可催化经128位Trp定点突变到Phe而得到的α-PEC脱辅基蛋白的体外重组,但PecE/PecF对PCB与藻蓝蛋白α亚基(α-CPC)脱辅基蛋白的体外重组无催化作用.α-PEC脱辅基蛋白的重组不受表面活性剂Triton X-100的影响,而Triton X -100可改进PCB与α-CPC脱辅基蛋白的重组.

  6. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    OpenAIRE

    Nara Gavini; Sinny Delacroix; Kelvin Harris Jr.; Lakshmi Pulakat

    2011-01-01

    Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR) that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide) reductase (ChlL) that shares some structural similarity with Nitrog...

  7. Cloning and Sequence Analysis of Chalcone Isomerase Gene (CHI) from Brunfelsia acuminata Flowers%鸳鸯茉莉查尔酮异构酶基因(CHI)cDNA的克隆与生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    曹玉婷; 邱栋梁

    2012-01-01

    采用RT-PCR与RACE技术克隆了鸳鸯茉莉(Brunfelsia acuminata)花瓣中查尔酮异构酶基因(CHI)的全长cDNA,GenBank登录号为JN887637.该基因全长1051 bp,含有1个792 bp的开放阅读框,编码263个氨基酸,为不稳定蛋白.对保守区功能区的分析,推导CHI蛋白具有查尔酮超级家族的保守结构域,二级结构预测显示其主要以α螺旋和β折叠为主.氨基酸同源性分析表明,鸳鸯茉莉CHI蛋白与矮牵牛(Petunia hybrida)、金花茶(Camellia nitidissima)、甜樱桃(Prunus avium)、芍药(Paeonia lactiflora)、牡丹(P.suffruticosa)、菊花(Chry santhemum morifolium)等植物的同源性分别达到90%、89%、84%、85%、84%、80%.因此,CHI基因可能与鸳鸯茉莉的花色形成有关.

  8. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    Directory of Open Access Journals (Sweden)

    Nara Gavini

    2011-01-01

    Full Text Available Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide reductase (ChlL that shares some structural similarity with Nitrogenase Reductase (NifH could complement the functions of NifH in biological nitrogen fixation of Azotobacter vinelandii. Approach: Genetic complementation studies were performed to test if the chlL gene and its mutants cloned under transcriptional control of nifH promoter (nifHp in a broad-host range low copy plasmid pBG1380 could render a Nif+ phenotype to NifH-deficient A. vinelandii strains. Results: Expression of ChlL could render Nif+ phenotype to NifH-deficient A. vinelandii only in the absence of NifM, a nif-specific PPIase essential for biogenesis of NifH. The ChlL mutants Cys95Thr and Cys129Thr were unable to substitute for NifH. Thus, the conserved cysteine ligands of [4Fe-4S] cluster in ChlL are essential for successful substitution of NifH by ChlL. Since C-termini of NifH and ChlL demonstrated the least similarity and Pro258, a substrate for the PPIase activity of NifM, is located in the C-terminus of NifH, we posited that replacing the C-terminus of NifH with that of ChlL would render NifM-independence to NifH. The NifH-ChlL chimera could support the growth of NifH- and NifM-deficient A. vinelandii in nitrogen limiting conditions implying that it has acquired NifM-independence. Conclusion/Recommendations: Collectively, these observations suggest that NifM, an evolutionarily conserved nif-specific PPIase, could have contributed to the functional divergence of biological nitrogen fixation and photosynthesis during evolution by virtue of its ability to exert opposing effects on structurally similar substrates, ChlL and NifH.

  9. Transformação genética de citrumelo Swingle (Citrus paradisi Macf. × Poncirus trifoliata L. Raf.) com o gene marcador fosfomanose isomerase (pmi) - DOI: 10.4025/actasciagron.v27i3.1473

    OpenAIRE

    Vieira, José Geraldo Zaparoli; UEL; Faria, Ricardo Tadeu de; UEL; Vieira, Luiz Gonzaga Esteves; IAPAR; Molinari, Hugo Bruno Correa; IAPAR

    2008-01-01

    Um protocolo de transformação usando manose como agente seletivo foi avaliado para transformação genética do porta-enxerto citrumelo Swingle. Dois experimentos independentes foram conduzidos visando definir a curva de resposta para determinar a menor concentração de manose capaz de inibir a multiplicação de brotos. Baseando-se nesses resultados, 5,0 mM de manose foi utilizado para a transformação genética de citrumelo Swingle. Plantas transgênicas foram obtidas via Agrobacterium tumefaciens, ...

  10. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    Science.gov (United States)

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  11. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    Science.gov (United States)

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery.

  12. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems

    DEFF Research Database (Denmark)

    Gutu, Alina D; Sgambati, Nicole; Strasbourger, Pnina

    2013-01-01

    systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-L-arabinose addition to lipid A, consistent...... with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for Pho......PQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa...

  13. Recombinant methods in protein and whole-cell biosensing

    Science.gov (United States)

    Shetty, R. S.; Salins, Lyndon L.; Ramanathan, S.; Daunert, Sylvia

    1999-12-01

    In this paper, we investigate the use of fluorescently- labeled binding proteins and genetically engineered bacterial cells for sensing of phosphate, glucose, and L- arabinose. To optimize the performance of the labeled binding proteins for biosensing purposes, a few key considerations were taken into account. A site-selective labeling protocol of the fluorescent reporter to the protein was used to ensure that the probe reported from a specific domain of the protein. The labeling sites chosen were hypothesized to undergo a physicochemical change when the biorecognition element binds the analyte. Cysteine mutations were introduced into the binding proteins by site-directed mutagenesis using the polymerase chain reaction. The residues selected were all in close proximity to the binding cleft, a region that is affected the most by the conformational change that accompanies ligand binding. The cysteine residues were then labeled with environment- sensitive fluorophores and changes in the fluorescence properties of the conjugates were monitored and related to the amount of ligand present. The application of microorganisms in sensing systems represent new advances in the development of novel analytical techniques for the detection of a target analyte. In these systems, a genetically engineered organism generates an analytically useful signal when it encounters a specific target substance due to selective recognition and binding properties towards that particular compound. This concept has been demonstrated using an optical bacteria-based sensing system capable of detecting the monosaccharide L-arabinose that employed the green fluorescent protein as a reporter protein.

  14. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

    Science.gov (United States)

    Tai, Yi-Shu; Xiong, Mingyong; Jambunathan, Pooja; Wang, Jingyu; Wang, Jilong; Stapleton, Cole; Zhang, Kechun

    2016-04-01

    Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies.

  15. O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans.

    Science.gov (United States)

    Wende, G; Fry, S C

    1997-03-01

    Partial acid hydrolysis of cell wall material from Festuca arundinacea cell cultures yielded a novel O-feruloylated trisaccharide (3). Treatment of 3 with Driselase, which contains beta- but not alpha-D-xylosidase, released xylose plus the known compound, beta-D-xylopyranosyl-(1-->2)-(5-O-feruloyl)-L-arabinose. Since 3 contained one NaIO4-resistant xylose residue, it was concluded to be beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1--> 2)-(5-O-feruloyl)-L-arabinose. Partial acid hydrolysis of Festuca cell walls also yielded several higher-M(r) feruloylated oligosaccharides, including a feruloylated pentasaccharide, 4 (sugar composition: Ara + Xyl2 + two non-pentose residues) and a feruloylated heptasaccharide, 5 (Ara + Xyl3 + three non-pentose residues). Compounds 4 and 5 were endogenously O-acetylated but 3 was not. Similar or identical compounds were found in hydrolysates of 20 additional species of the Gramineae. These products represent a series of complex side-chains which, in vivo, are attached via Araf residues to the parent xylan. Their possible biological roles are discussed.

  16. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar.

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1977-02-15

    During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.

  17. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Abbas El Sahili

    2015-08-01

    Full Text Available Periplasmic binding proteins (PBPs in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the

  18. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

    Science.gov (United States)

    El Sahili, Abbas; Li, Si-Zhe; Lang, Julien; Virus, Cornelia; Planamente, Sara; Ahmar, Mohammed; Guimaraes, Beatriz G; Aumont-Nicaise, Magali; Vigouroux, Armelle; Soulère, Laurent; Reader, John; Queneau, Yves; Faure, Denis; Moréra, Solange

    2015-08-01

    Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of

  19. AcEST: BP913577 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ans isomerase slr1251... 179 1e-44 sp|Q5R8S7|PPIA_PONPY Peptidyl-prolyl cis-trans isomerase A OS=Po... 178 2...rolyl cis-trans isomerase OS=Po... 221 3e-56 tr|A9P8L4|A9P8L4_POPTR Peptidyl-prolyl cis-trans isomerase OS=Po...... 220 4e-56 tr|A9P8B6|A9P8B6_POPTR Peptidyl-prolyl cis-trans isomerase OS=Po.....isomerase OS=Vi... 213 9e-54 tr|A9PJ47|A9PJ47_POPJC Peptidyl-prolyl cis-trans isomerase OS=Po...... 212 1e-53 tr|A9P9C8|A9P9C8_POPTR Peptidyl-prolyl cis-trans isomerase OS=Po... 212 2e-53 tr|Q

  20. AcEST: DK945695 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TH Peptidyl-prolyl cis-trans isomerase CYP19-... 223 6e-58 sp|Q5R8S7|PPIA_PONPY Peptidyl-prolyl cis-trans isomerase A OS=Po....-prolyl cis-trans isomerase OS=Po... 276 9e-73 tr|Q6TMX3|Q6TMX3_THEHA Peptidyl-prolyl cis-trans isomerase OS...=Th... 274 3e-72 tr|A9PIY0|A9PIY0_POPJC Peptidyl-prolyl cis-trans isomerase OS=Po...._POPTR Peptidyl-prolyl cis-trans isomerase OS=Po... 272 1e-71 tr|A9PJ47|A9PJ47_POPJC Peptidyl-prolyl cis-trans isomerase OS=Po....1 tr|A9P9C8|A9P9C8_POPTR Peptidyl-prolyl cis-trans isomerase OS=Po... 271 2e-71 t