WorldWideScience

Sample records for l-alanine difracao multipla

  1. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase

    International Nuclear Information System (INIS)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-01-01

    Synthesis of 3-fluoro-[2- 2 H]-L-alanine (3-F-[ 2 H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H 2 O - KIE’s on V max : 1.1; on V max /K M : 1.2; for 3-F-L-Ala in 2 H 2 O – on V max : 1.4; on V max /K M : 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE’s on V max : 1.0; on V max /K M : 0.87; for 3-F-[2- 2 H]-L-Ala – on V max : 1.4; on V max /K M : 1.5). Studies explain some details of reaction mechanism. - Highlights: • Synthesis of 3-fluoro-[2- 2 H]-L-alanine was performed. • The reactions were catalysed using the enzyme L-alanine dehydrogenase. • Performed reactions involved fluorinated analogues of L-alanine. • Solvent isotope effects of deuterium were determined. • Kinetic isotope effects were determined for obtained 3-fluoro-L-alanine. • The mechanism of reaction catalysed by L-alanine dehydrogenase was proposed.

  2. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. beta-Chloro-L-alanine inhibition of the Escherichia coli alanine-valine transaminase.

    OpenAIRE

    Whalen, W A; Wang, M D; Berg, C M

    1985-01-01

    beta-Chloro-L-alanine, an amino acid analog which inhibits a number of enzymes, reversibly inhibited the Escherichia coli K-12 alanine-valine transaminase, transaminase C. This inhibition, along with the inhibition of transaminase B, accounted for the isoleucine-plus-valine requirement of E. coli in the presence of beta-chloro-L-alanine.

  4. On the existence of 'L-alanine cadmium bromide'.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A study of the irradiation temperature coefficient for L-alanine and DL-alanine dosemeters

    International Nuclear Information System (INIS)

    Desrosiers, M. F.; Lin, M.; Cooper, S. L.; Cui, Y.; Chen, K.

    2006-01-01

    Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between L-alanine and DL-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the DL-alanine temperature coefficient is more than 50% higher than the L-alanine temperature coefficient. (authors)

  6. Transport of the alpha-amino-mono-carboxylic acid L-alanine by the beta-alanine carrier of the rabbit ileum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G

    1987-01-01

    The proposal that the beta-alanine carrier of the rabbit ileum is a high affinity carrier of the neutral amino acids was examined by means of measurements of influx across the brush border membrane of the intact epithelium using L-alanine as a representative of the neutral amino acids. Confirming...... the proposal, evidence was provided for mutual competitive inhibition between beta-alanine and L-alanine; and it was also demonstrated that a process contributes to the influx of L-alanine, which is characterized by a maximum rate of transport equal to that of beta-alanine and a Kt, which is equal to the Ki...... of L-alanine against the influx of beta-alanine. In the concentration range 0.01 to 0.125 mM the influx of L-alanine was found to be linearly related to the concentration indicating a significant unstirred layer influence on present and previous estimates of the Kt values for influx of amino acids...

  7. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  9. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    Science.gov (United States)

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  10. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    Science.gov (United States)

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  11. L-alanine as a precursor of ethylamine in camellia sinensis

    International Nuclear Information System (INIS)

    Takeo, Tadakazu

    1975-01-01

    After absorption of ammonium nitrogen, nitrogen-deficient Camellia sinensis synthesized theanine following synthesis of glutamic acid and alanine. The rate of incorporation of 14 C from L-alanine U- 14 C into theanine was faster than from acetaldehyde 1-2 14 C. Incorporation of 14 C from L-alanine U- 14 C into the ethylamide of theanine was prevented by adding an excess of ethylamine to the culture solution. Green seedlings converted alanine to ethylamine more rapidly than did etiolated seedlings. (auth.)

  12. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru; Kobayashi, Michihiko; Shimizu, Sakayu

    2003-01-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4- 11 C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  13. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming {beta}-cyano-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru [Gifu Univ. (Japan). Dept. of Biomolecular Science; Kuroda, Masako [Ikeda Food Research Co., Ltd., Fukuyama, Hiroshima (Japan); Kobayashi, Michihiko; Shimizu, Sakayu [Kyoto Univ. (Japan). Agricultural Sciences

    2003-10-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable {beta}-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of {beta}-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various {beta}-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the {beta}-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the {beta}-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed {beta}-cyano-L-alanine synthase. Heat stable {beta}-cyano-L-alanine synthase can be applied to the synthesis of [4-{sup 11}C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  14. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    OpenAIRE

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intr...

  15. Sensitivity comparison of two L-alanine doped blends to different photon energies

    International Nuclear Information System (INIS)

    Chen, Felipe; Vega Ramirez, Jose; Nicolucci, Patricia; Baffa, Oswaldo

    2008-01-01

    Full text: Blends of L-alanine (85% weight proportion) with KI (10%) and with PbI 2 (10%), these last two compounds acting as dopants, and with PVA (5%) acting as binder, were prepared in water at 80 C degrees. A blend of pure L-alanine (95%) with PVA (5%) was also prepared. The three blends were irradiated with photon beams of different energies (120 kV, 60 Co and 10 MV) with a unique dose of 30 Gy to compare their sensitivities for those three energies. EPR spectra of the three irradiated blends were recorded in a K-Band spectrometer (24 GHz) taking aliquots of about 4 mg for each blend. The energy sensitivity of a blend was defined as the peak-to-peak amplitude of its EPR spectrum central line. For the 60 Co energy (1.25 MeV) the blends presented practically the same sensitivity indicating that the presence of the dopants does not affect the sensitivity of L-alanine. For 10 MV X-rays there was an increment (around 20% - 30 %) in sensitivity for the two L-alanine doped blends compared with the pure L-alanine blend (not doped). In the case of 120 kV X-rays, the blends ala+KI and ala+PbI 2 showed an increment of 10 and 20 times, respectively, more sensitivity than the pure L-alanine blend. It is concluded that the dopants KI and PbI 2 produce a great enhance of the L-alanine sensitivity to low-energy photons. For the same dopant's content (10%) in the blend, PbI 2 showed a better performance. These results encourage us to try to enhance the sensitivity of L-alanine even more increasing the dopant's content in the blend. Application of these L-alanine doped blends in the dosimetry in diagnostic radiology could be possible. (author)

  16. Sequential enzymatic synthesis and separation of 13N-L-glutamic acid and 13N-L-alanine

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; MacDonald, M.; Chang, C.C.; Takahashi, J.

    1975-01-01

    The sequential enzymatic synthesis and separation of 13 N-L-glutamic acid and 13 N-L-alanine are described. Basically, that involves the synthesis of 13 N-L-glutamic acid by one enzyme, the transamination of the labeled glutamic acid to form 13 N-L-alanine by a second enzyme, and the separation of the two amino acids by rapid column chromatography. The 13 N-L-alanine was evaluated in animals by imaging and tissue distribution studies and showed good potential as a pancreatic imaging agent

  17. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury.

    Science.gov (United States)

    Nägeli, Mirjam; Fasshauer, Mario; Sommerfeld, Jutta; Fendel, Angela; Brandi, Giovanna; Stover, John F

    2014-07-02

    Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. Clinicaltrials.gov NCT02130674. Registered 5 April 2014.

  18. Role of L-alanine for redox self-sufficient amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  19. The features of radiation damages in L-alanine crystals

    International Nuclear Information System (INIS)

    Zaitov, V.R.; Onischuk, V.A.

    1996-01-01

    The method of the ESR alanine dosimetry has appeared the most convenient one for measurement of radiation dose in the range 1-10 6 Gy. Its peculiarities are the wide dose range, the high accuracy, the absence fading at room temperature, the possibility of many times repeated measurements as dosemeter accumulates dose, the simplicity of measurements. Because of this performance ESR alanine dosimetry technique can be applied to continuous monitoring radiation doses absorbed by materials on nuclear power stations as well as of dose fields and restoration doses after an accident situation. In order to determine accurately the absorbed dose in an accident on background of accumulated dose for previous period, it is necessary to the utmost increase the accuracy of dosimetry system. For this reason it is necessary to know how the properties of free radicals which formings in irradiated L-alanine are displayed in signal ESR. With the purpose to detect the structure of the free radicals the ESR spectra the L-alanine and L-alanine-d 3 single crystals were studied. The samples were grown by slow evaporation of the saturated aqueous solution. For obtain the L-alanine-d 3 the three-divisible recrystallization in heavy water had been used. The samples were irradiated with 60 Co at room temperature and in liquid nitrogen. The irradiation doses were 10 kGy and dose rate was 8,3 Gy/s. To increase the resolution of the ESR spectra hyperfine structure the second derivative for the absorption curve was registered. The measurements were conducted in X-range at temperatures 77-430 K. (author)

  20. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    International Nuclear Information System (INIS)

    Pajor, A.M.; Wright, S.H.

    1986-01-01

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for α-neutral amino acids. This uptake occurs against chemical gradients in excess of 10 6 to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: γ-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K + -dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of 14 C-L-alanine uptake in the presence of inwardly-directed Na + gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na + gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 μM L-alanine was inhibited more than 80% by 100 μM α-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a β-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na +

  1. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    Science.gov (United States)

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  2. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  3. L-alanine-induced germination in Bacillus licheniformis -the impact of native gerA sequences.

    Science.gov (United States)

    Madslien, Elisabeth H; Granum, Per Einar; Blatny, Janet M; Lindbäck, Toril

    2014-04-22

    L-alanine, acting through the GerA receptor, was recently found to be an efficient germinant in Bacillus licheniformis ATCC14580/DSM13. In this study, we show that several of 46 examined B. licheniformis strains germinate remarkably slower than the type strain when exposed to L-alanine. These strains are not necessarily closely related, as determined by MLST (multi-locus sequence typing). Three of the slow-germinating strains were further examined in order to see whether nucleotide substitutions in the gerA sequences were responsible for the slow L-alanine germination. This was performed by complementing the transformable type strain derivate MW3ΔgerAA with gerA variants from the three slow-germinating strains; NVH1032, NVH1112 and NVH800. A wide selection of B. licheniformis strains was evaluated for L-alanine-induced germination efficiency. Our results show that gerA substitutions could only partially explain why spores of some B. licheniformis strains responded slower than others in the presence of L-alanine.

  4. Synthesis and Analysis of Methacryloyl-L-Alanine Methyl Ester using fourier Transform Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Tri Darwinto

    2008-01-01

    Methacryloyl-L-alanine methyl ester was synthesized by reacting methacrylic acid with L-alanine methyl ester hydrochloride in triethylamine at temperature of 90 o C. Hydrogel polymer of poly(methacryloyl-L-alanine methyl ester) was much used for diagnosis and therapy of vascular tumor. The molecular structure methacryloyl-L-alanine methyl ester analyzed by fourier transform nuclear magnetic resonance (FT-NMR) for analyzing of carbon atom ( 13 C) using Distortionless Enhancement by Polarization Transfer (DEPT) measurement mode with coupling as well as without coupling from proton atom ( 1 H). Molecular structure analysis result showed that DEPT FT-NMR measurement mode with coupling as well as without coupling from 1 H was very fast, exact and accurate method for molecular analysis of organic compound especially methacryloyl-L-alanine methyl ester. (author)

  5. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  6. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  7. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    OpenAIRE

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine.

  8. Secretion of d-alanine by Escherichia coli.

    Science.gov (United States)

    Katsube, Satoshi; Sato, Kazuki; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2016-07-01

    Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.

  9. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    Science.gov (United States)

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  10. A comparison of three materials used in ESR dosimetry: L-α-alanine, DL-α-alanine and standard bone powder. Response to Co-60 gamma radiation

    International Nuclear Information System (INIS)

    Stuglik, Z.; Sadlo, J.

    1995-01-01

    Three solid state materials: L-α-alanine, DL-α-alanine and standard bone powder were irradiated with gamma analyzed with ESR method. It was stated that the G-value of paramagnetic centres in L-α-alanine is practically the same as in DL-alpha-alanine and about 50 times higher than in non-deproteinized bone powder. The sensitivities of investigated materials are proportional to their G-values if double integrals of ESR signals are chosen as a measure of radiation effects. When first derivatives of ESR absorption bands are used to the construction of dose-response curves (peak-to-peak method) the sensitivities of all investigated materials are comparable. (author). 14 refs, 1 fig., 3 tabs

  11. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    Science.gov (United States)

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  12. Solid-state conformation of copolymers of ß-benzyl-L-aspartate with L-alanine, L-leucine, L-valine, γ-benzyl-L-glutamate, or ε-carbobenzoxy-L-lysine

    NARCIS (Netherlands)

    Sederel, Willem L.; Bantjes, Adriaan; Feijen, Jan; Anderson, James M.

    1980-01-01

    The solid-state conformation of copolymers of ß-benzyl-L-aspartate [L-Asp(OBzl)] with L-leucine (L-Leu), L-alanine (L-Ala), L-valine (L-Val), γ-benzyl-L-glutamate [L-Glu(OBzl)], or ε-carbobenzoxy-L-lysine (Cbz-L-Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in

  13. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  14. Isotope effect of optical activity measurements on L-α-alanine

    International Nuclear Information System (INIS)

    Darge, W.; Laczko, I.; Thiemann, W.

    1976-01-01

    If an optically active organic substance is labelled in the chirality center with another isotopic species (such as 15 N for 14 N) a pronounced variation of rotatory power is predicted. It was tried to varify this idea experimentally on L-α-alanine and found an isotope effect in ORD (optical rotatory dispersion). The magnitude of the rotation is mainly dependent on the pH of the solvent. The ratio of the optical activity alanine- 14 N/alanine- 15 N is about 1.02. It can be seen that the ratios of the molecular rotations are consistently lower than the corresponding ratios of the specific rotations. This is of course due to the fact that the molecular mass 15 M is larger than 14 M. This means tthat the mass difference is already taken into account so that the ratio of the molecular rotations could be defined as the ''net'' isotope effect in the ORDs of 15 N-substitued alanine. From the fact the ORD is different for the isotope-substitued alanine, one can reasonably assume that the absorption coefficient is also different. This leads to speculations about certain problems in the chemical evolution of the biosphere, such as the origin of optical activity. (T.G.)

  15. Global Transcriptional and Physiological Responses of Saccharomyces cerevisiae to Ammonium, L-Alanine, or L-Glutamine Limitation

    DEFF Research Database (Denmark)

    Usaite, Renata; Patil, Kiran Raosaheb; Grotkjær, Thomas

    2006-01-01

    -ammonium in limitation and by growing cells in an excess of ammonium. Cells grown in L-alanine-limited cultures had higher biomass yield per nitrogen mole (19%) than those from ammonium-limited cultures. Whole-genome transcript profiles were analyzed with a genome-scalle metabolic model that suggested increased anabolic...... activity in L-alanine-limited cells. The changes in these cells were found to be focused around pyruvate, acetyl coenzyme A, glyoxylate, and alpha-ketoglutarate via increased levels of ALT1, DAL7, PYC1, GDH2, and ADH5 and decreased levels of GDH3, CIT2, and ACS1 transcripts. The transcript profiles were...

  16. Production of D-alanine from DL-alanine using immobilized cells of Bacillus subtilis HLZ-68.

    Science.gov (United States)

    Zhang, Yangyang; Li, Xiangping; Zhang, Caifei; Yu, Xiaodong; Huang, Fei; Huang, Shihai; Li, Lianwei; Liu, Shiyu

    2017-09-13

    Immobilized cells of Bacillus subtilis HLZ-68 were used to produce D-alanine from DL-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher L-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on L-alanine consumption were examined. Maximum L-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of DL-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete L-alanine degradation within 60 h, leaving 185 g of D-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. D-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted D-alanine was 99.1 and 99.6%, respectively.

  17. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Directory of Open Access Journals (Sweden)

    Løvdal Irene S

    2012-03-01

    Full Text Available Abstract Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate.

  18. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Science.gov (United States)

    2012-01-01

    Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate. PMID:22420404

  19. High-pressure X-ray diffraction of L-ALANINE crystal

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Souza, A.G.

    2006-01-01

    L-ALANINE has been studied by X-ray diffraction at ambient temperature and pressure up to 10.3 GPa. The material is found to transform to a tetragonal structure between 2 and 3 GPa. and to a monoclinic structure between 8 and 10 GPa. The experimental bulk modulus is 25(5) GPa for the orthorhombic...

  20. ESR investigation of L-α-alanine and sucrose radicals produced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Nakagawa, K.; Sato, Y.

    2005-01-01

    We investigated sucrose and L-α-alanine radicals produced by heavy (particle) ion irradiation with various LETs (linear energy transfer). The impact of the heavy ions on the samples produced stable free radicals, which were analyzed by ESR (electron spin resonance). Identical spectra were measured after one year. The obtained spectral patterns were the same as those for helium (He), carbon (C), and neon (Ne) ions irradiation. The absorbed dose dependences for the irradiated sucrose and alanine samples were examined. The ESR response has a linear relation with the absorbed dose. The ESR response at 60 Gy was slightly lower than a linear line for sucrose; however, the response showed good linearity for the alanine. In addition, the total spin concentration obtained by heavy-ion irradiation correlated logarithmically with the LET. Qualitative ESR analyse showed that the production of sucrose and alanine radicals depended on both different particle irradiation and the LET under the same dose. Thus, the present ESR results imply that sucrose together with L-α-alanine can be used to monitor LET as well as the number of ionizing particle for the production of stable free radicals. (author)

  1. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    Solubilities of glycylglycine and glycyl-L-alanine in aqueous electrolyte solutions containing 0-6 molal NaCl, 0-1 molal Na2SO4, and 0-1 molal (NH4)(2)SO4, have been determined experimentally at 298.15 K and atmospheric pressure. The solubility of glycylglycine and glycyl-L-alanine in pure water...... is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...... at higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....

  2. Radiation-induced reactions in D, L-α-alanine adsorbed in solid surfaces

    International Nuclear Information System (INIS)

    Aguilar, E; Negrón-Mendoza, A.; Camargo, C.

    2013-01-01

    The aim of this work is to study the behavior under irradiation of D, L and D-L α-alanine adsorbed in solid surfaces, as possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments and to evaluate the contribution of solids (a clay mineral) as shields for the adsorbed amino acids against a external energy source. The results show that α-alanine is adsorbed in the surfaces as function of pH and its yield of decomposition in mineral suspension is lower than the system without the solid surface. These results show the importance of nuclear techniques in these types of studies. (author)

  3. Staphylococcus aureus MurC participates in L-alanine recognition via histidine 343, a conserved motif in the shallow hydrophobic pocket.

    Science.gov (United States)

    Kurokawa, Kenji; Nishida, Satoshi; Ishibashi, Mihoko; Mizumura, Hikaru; Ueno, Kohji; Yutsudo, Takashi; Maki, Hideki; Murakami, Kazuhisa; Sekimizu, Kazuhisa

    2008-03-01

    UDP-N-acetylmuramic acid:L-alanine ligase that is encoded by the murC gene, is indispensable for bacterial peptidoglycan biosynthesis and an important target for the development of antibacterial agents. Structure of MurC ligase with substrates has been described, however, little validation via studying the effects of mutations on the structure of MurC has been performed. In this study, we carried out a functional in vitro and in vivo characterization of Staphylococcus aureus MurCH343Y protein that has a temperature-sensitive mutation of a conserved residue in the predicted shallow hydrophobic pocket that holds a short L-alanine side chain. Purified H343Y and wild-type MurC had K(m) values for L-alanine of 3.2 and 0.44 mM, respectively, whereas there was no significant difference in their K(m) values for ATP and UDP-N-acetylmuramic acid, suggesting the specific alteration of L-alanine recognition in MurCH343Y protein. In a synthetic medium that excluded L-alanine, S. aureus murCH343Y mutant cells showed an allele-specific slow growth phenotype that was suppressed by addition of L-alanine. These results suggest that His343 of S. aureus MurC is essential for high-affinity binding to L-alanine both in vitro and in vivo and provide experimental evidence supporting the structural information of MurC ligase.

  4. Revision of standard molar enthalpies of formation of glycine and L-alanine in the gaseous phase on the basis of theoretical calculations

    International Nuclear Information System (INIS)

    Dorofeeva, Olga V.; Ryzhova, Oxana N.

    2009-01-01

    The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed

  5. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    Science.gov (United States)

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  6. A thermodynamic study of La(III)L-alanine complexes

    International Nuclear Information System (INIS)

    Elzawawy, F.M.

    1991-01-01

    The protonation constants of L-alanine and the complex formation constants of its La(III) complexes were determined by potentiometric studies at ionic strengths 0.06, 0.1, and 0.15 mol dm -3 (NaClO 4 ) and at different temperatures 20, 27, and 35 O C. The data together with the derived thermodynamic parameters ΔH O , ΔS O , and ΔG O are reported and discussed. (author)

  7. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....

  8. 21 CFR 582.5118 - Alanine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5118 Alanine. (a) Product. Alanine (L- and DL-forms). (b) Conditions of use. This substance is...

  9. 21 CFR 172.540 - DL-Alanine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and L-alanine...

  10. Alanine increases blood pressure during hypotension

    Science.gov (United States)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  11. Electronic structure and first hyperpolarizability of poly (μ2-L-alanine ...

    Indian Academy of Sciences (India)

    Poly(2-L-alanine-3-sodium nitrate (I)), -LASN, crystals have been grown by slow evaporation at room temperature. The nominal size of the crystals obtained by the method was of 500 nm. The UV–Vis spectrum shows a wide range, where absorption is lacking around 532 nm, which is required in order to have the ...

  12. The mechanisms of radical formation in L-α-alanine

    International Nuclear Information System (INIS)

    Bugay, A.A.; Onischuk, V.A.; Petrenko, T.L.; Teslenko, V.V.

    2000-01-01

    Modeling of radical transformations in L-α-alanine after irradiation was performed for isolated radicals and for clusters. Special attention was devoted to the explanation of the experimental results concerning selective proton transfer and behavior of cation-radicals because a unique interpretation of the corresponding experiments is very difficult. Both semi-empirical and ab initio methods were used depending on the size of system under investigation. The results obtained show the usefulness of the computer simulation for processes in rather complex materials used in dosimetry

  13. Volumetric properties of l-alanine, and l-valine in aqueous sucrose solutions at T=(288.15 and 308.15) K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Kumar, Suresh

    2005-01-01

    Densities of l-alanine, and l-valine have been measured at T=(288.15 and 308.15) K in aqueous sucrose solutions ranging from pure water to 25 mass% of sucrose. From these densities, apparent molar volumes (V φ ) and limiting partial molar volumes (V φ 0 ) of each amino acid in various aqueous sucrose solutions have been evaluated. These data were combined with the earlier reported V φ 0 values of l-alanine, and l-valine in aqueous sucrose solutions at T=298.15 K to calculate the (-bar V φ 0 /-bar T) P values. The partial molar properties of transfer (ΔV φ 0 ) from water to aqueous sucrose solutions at infinite dilution has been calculated. Transfer parameters have been interpreted in terms of solute-cosolute interactions on the basis of a cosphere overlap model. Pair and triplet interaction coefficients have also been calculated from transfer volume data

  14. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  15. Alanine flux in obese and healthy humans as evaluated by 15N- and 2H3-labeled alanines

    International Nuclear Information System (INIS)

    Hoffer, L.J.; Yang, R.D.; Matthews, D.E.; Bistrian, B.R.; Bier, D.M.; Young, V.R.

    1988-01-01

    Estimates of plasma alanine flux as measured in humans using L-[ 15 N]-alanine or L-[3,3,3- 2 H 3 ]alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the 2 H tracer was two to three times greater than that obtained with [ 15 N]alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined

  16. Accumulation of D- vs. L-isomers of alanine and leucine in rat prostatic adenocarcinoma

    International Nuclear Information System (INIS)

    Conti, P.S.; Schmall, B.; Bigler, R.E.; Zanzonico, P.B.; Kleinert, E.; Whitmore, W.F. Jr.

    1985-01-01

    It has been reported that tumor tissue may accumulate some D-amino acids preferentially over the L-isomers. In order to investigate the potential use of carbon-11 labeled amino acid isomers for in vivo tumor studies with positron emission tomography in patients, the tissue distributions of alanine and leucine, substrates for the A-type and L-type amino acid transport systems, respectively, were studied in Copenhagen rates bearing the Dunning R3327G prostatic adenocarcinoma. The authors have previously reported differences in the accumulation of A-type vs. L-type amino acids in rat prostatic adenocarcinoma and normal tissues. All compounds were labeled with C-14 in the carboxyl position with specific activities of 30.0-56.6 mCi/mmol. Higher levels of C-14 activity (Relative Concentration (RC)=dpm found per gm tissue + dpm inject per gm animal mass) were observed in tumor tissue using D-alanine (0.71) compared to L- (0.21) or DL-alanine (0.27) at 45 min post-injection. While tumor/prostate and tumor/liver ratios were above 2 for all three substrates, tumor/blood and tumor/muscle were above one for only the D-isomer. Comparisons made with D-, L-, and DL-leucine also demonstrated a higher level of RC in tumor tissue with the D-isomer (0.84) vs. the L-(0.66) and DL-leucine (0.63). In this case, however, tumor/blood, tumor/prostate, and tumor/muscle ratios were above one for all three substrates, while tumor/liver ratios were below one. These results support the observation of a preferential accumulation of D-amino acids in tumor tissue over the natural L-isomers. Observed differences in the accumulation of the isomers in normal tissues are discussed

  17. Effect of Exogenous _D-Alanine on _D-Alanyl-_D-alanine Content in Leaf Blades of Oryza australiensis Domin

    OpenAIRE

    Hisashi, Manabe; Aizu Junior College of Fukushima Prefecture

    1986-01-01

    In seedlings of Oryza australiensis Domin (W0008), most of the D-alanyl-D-alanine was distributed in the leaf blades. In excised leaf blades of W0008, exogenous D-alanine was incorporated into D-alanyl-D-alanine irrespective of the light condition as in Sasanishiki. With cultivation in D-alanine medium for several days, the D-alanyl-D-alanine content in W0008 leaf blades was found to increase, but no other D-alanine-containing dipeptides such as D-alanylglycine or D-alanyl-L-alanine were dete...

  18. L-alanine distribution in the growth pyramids of TGS crystals and its influence on the growth, switching and domain structure

    International Nuclear Information System (INIS)

    Brezina, B.; Havrankova, M.

    1985-01-01

    The full-faced crystals of triglycine sulphate (TGS) and deuterated homologs substituted by L-alanine (LATGS and LADTGS, resp.) were grown from growth solutions with various concentrations of the substituent. The distribution of L, alanine (L,al) in various growth pyramids of crystals was measured by the electrical switching method. The stability of domain structure of doped crystals was studied by the liquid crystal method. (author)

  19. Study on the EPR/dosimetric properties of some substituted alanines

    International Nuclear Information System (INIS)

    Gancheva, Veselka; Sagstuen, Einar; Yordanov, Nicola D.

    2006-01-01

    Polycrystalline phenyl-alanine and perdeuterated l-α-alanine (l-α-alanine-d 4 ) were studied as potential high-energy radiation-sensitive materials (RSM) for solid state/EPR dosimetry. It was found that phenyl-alanine exhibits a linear dose response in the dose region 0.1-17kGy. However, phenyl-alanine is about 10 times less sensitive to γ-irradiation than standard l-α-alanine irradiated at the same doses. Moreover, the EPR response from phenyl-alanine is unstable and, independent of the absorbed dose, decreases by about 50% within 20 days after irradiation upon storage at room temperature. γ-irradiated polycrystalline perdeuterated l-α-alanine (CD 3 CD(NH 2 )COOH) has not previously been studied at room temperature by EPR spectroscopy. The first part of the present analysis was with respect to the structure of the EPR spectrum. By spectrum simulations, the presence of at least two radiation induced free radicals, R 1 =CH 3 C*(H)COOH and R 2 =H 3 N + -C*(CH 3 )COO - , was confirmed very clearly. Both these radicals were suggested previously from EPR and ENDOR studies of standard alanine crystals. The further investigations into the potential use of alanine-d 4 as RSM, after choosing optimal EPR spectrometer settings parameters for this purpose, show that it is ca. two times more sensitive than standard l-α-alanine

  20. N-[(2S-4-Chloro-2-(l-menthyloxy-5-oxo-2,5-dihydro-3-furyl]-l-alanine

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2009-05-01

    Full Text Available The title compound, C17H26ClNO5, was prepared via a tandem asymmetric Michael addition–elimination reaction of (5S-3,4-dichloro-5-(l-menthyloxyfuran-2(5H-one and l-alanine in the presence of potassium hydroxide. The five-membered furanone ring is approximately planar while the six-membered menthyloxy ring adopts a chair conformation. The crystal packing is stabilized by intermolecular O—H...O and N—H...O hydrogen bonds.

  1. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    Science.gov (United States)

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    OpenAIRE

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmo...

  3. A response of L-α-alanine and standard bone powder on 3.4 MeV/amu 59Co ion beams

    International Nuclear Information System (INIS)

    Stuglik, Z.; Sadlo, J.

    1997-01-01

    Dosimetric response of microcrystaline L-α-alanine and standard bovine bone powder on 3.4 MeV/amu 59 Co ions (LET ∼5500 eV/nm) was investigated. The long-lived paramagnetic centers created by ion beams were measured after 51 and 420 days. Relative sensitivity compared to gamma rays was estimated at 0.2 for L-α-alanine and 0.15 for standard bovine bone powder. (Author)

  4. Protection against hyperthermic cell killing by alanine

    International Nuclear Information System (INIS)

    Cunningham, A.; Henle, K.J.; Moss, A.J.; Nagle, W.A.

    1987-01-01

    Compounds capable of protecting cells against hyperthermia may provide new insights into potential mechanisms of thermotolerance and cellular heat death. The authors characterized heat protection by alanine and related compounds as a function of concentration, temperature and preincubation time. Alanine was added either to complete medium or to HBSS before hyperthermia. Maximal heat protection required 3 hr, 37 0 ; longer preincubation intervals resulted in lower levels of protection. Addition of alanine to medium after hyperthermia had no protective effect. Protection was concentration dependent with a 20- or 200-fold increase in cell survival after 40 min, 45 0 C at 60 mM in medium or in HBSS, respectively. Higher alanine concentrations up to 120mM did not significantly increase heat protection. A 45 0 -heat survival curve showed that 100mM alanine increased the D/sub q/ by approx. 12 min with little change in the D/sub o/. Hyperthermia of 1 hr at temperatures between 42 0 and 45 0 indicated that 100mM alanine shifted the isotoxic temperature by 0.5 Celsius degrees. Polymers of either L or D,L alanine and related compounds, like pyruvate, also protected cells against heat killing. These results indicate that heat protection by alanine shows characteristics that are not shared by polyhydroxy compounds

  5. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  6. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  7. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    International Nuclear Information System (INIS)

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-01-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies

  8. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    International Nuclear Information System (INIS)

    Faraci, W.S.; Walsh, C.T.

    1988-01-01

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L → D and D→ L directions for all three enzymes to assess the degree to which abstraction of the α-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of α- 3 H from substrate to product and solvent exchange/substrate conversion experiments in 3 H 2 O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis

  9. Study on the source of optical activity: Pt. 6. ESR spectroscopy on the asymmetrical radical yields in 90Sr-90Y β irradiated D-and L-alanine

    International Nuclear Information System (INIS)

    Wang Wenqing; Zhao Jian; Ding Xiang

    1993-01-01

    Free radical formation in 90 Sr- 90 Y β irradiated D- and L-alanine is studied by ESR spectroscopy. To calibrate the probable differences in the size of ESR tubes, the different densities of alanine and the incidental different impurities, samples are firstly irradiated with 60 Co γ rays. Then the D- and L- alanine samples are irradiated with 90 Sr- 90 Y source at 77 K. Soon after irradiation, ESR measurement is performed on each sample. The average ratio H β+γ /H γ of D- alanine is 0.147 higher than that of L- alanine, indicating that more free radicals are induced in D- alanine by β irradiation. Irradiation at 77 K is capable of diminishing the effect of thermal movement on the polarization of β electrons and freezing the free radical formation. The experiments show the stereoselective interaction of β electrons with D- and L- amino acids, and so supports the Vester-ulbricht hypothesis

  10. The VA and VCD spectra of various isotopomers of L-alanine in aqueous solution

    DEFF Research Database (Denmark)

    Abdali, Salim; Jalkanen, Karl J.; Bohr, Henrik

    2002-01-01

    Density functional theory (DFT) at the Becke 3LYP level has been used to calculate the vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of various deuterated species Of L-alanine. The effect of replacing the methine hydrogen, CH1, the methyl group, CH3, and both...

  11. Procedure for preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine and their salts

    International Nuclear Information System (INIS)

    Kollonitsch, J.; Kahan, F.M.

    1971-01-01

    Procedures for the preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine, and salts of these compounds, are described. These new compounds are useful antibacterial substances not only applicable in the disinfection of pharmaceutical, dental and medical equipment, but also in the treatment of diseases caused by bacteria, and may be administered orally. While 3-fluor-L-alanine metabolises rapidly with toxic results, 3-fluor-D-alanine is much more slowly broken down in vivo and is not harmful in normal doses. Further it has been found that deuteration gives new deutero-analogues which are less subject to metabolic breaking down and still retain the antibacterial strength of the original compound. The in vivo activity is thereby increased and maintained. (JIW)

  12. Investigation of the biosynthesis of acetyl-CoA and oxaloacetic acid from pyruvic acid and the quantitative evaluation of incorporated 13C-labeled l-alanine in Arthrobacter hyalinus

    International Nuclear Information System (INIS)

    Katsumi Iida

    2014-01-01

    Studies on the contribution to acetyl-CoA and oxaloacetic acid from the pyruvic acid transformation from l-alanine in Arthrobacter hyalinus were conducted by means of feeding experiments with l-[1- 13 C]alanine and l-[3- 13 C]alanine, followed by an analysis of the labeling patterns of coproporphyrinogen III using 13 C NMR spectroscopy. The results demonstrated that l-alanine was transformed via pyruvic acid to both acetyl-CoA and oxaloacetic acid. Additionally, the quantitative analysis indicated that pyruvic acid was transformed to acetyl-CoA and oxaloacetic acid in the ratio of 1:0.8. (author)

  13. Excitatory amino acid b-N-methylamino-L-alanine is a putative environmental neurotoxin

    Directory of Open Access Journals (Sweden)

    VLADIMIR NEDELJKOV

    2011-04-01

    Full Text Available The amino acid b-N-methylamino-L-alanine (L-BMAA has been associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex in three distinct western Pacific populations. The putative neurotoxin is produced by cyanobacteria, which live symbiotically in the roots of cycad trees. L-BMAA was thought to be a threat only to those few populations whose diet and medicines rely heavily on cycad seeds. However, the recent discovery that cyanobacteria from diverse terrestrial, freshwater, and saltwater ecosystems around the world produce the toxin requires a reassessment of whether it poses a larger health threat. Therefore, it is proposed that monitoring L-BMAA levels in cyanobacteria-contaminated water supplies might be prudent.

  14. In vivo dose evaluation during gynaecological radiotherapy using L-alanine/ESR dosimetry

    International Nuclear Information System (INIS)

    Burg Rech, Amanda; Baffa, Oswaldo; Barbi, Gustavo Lazzaro; Almeida Ventura, Luiz Henrique; Silva Guimaraes, Flavio; Oliveira, Harley Francisco

    2014-01-01

    The dose delivered by in vivo 3-D external beam radiation therapy (EBRT) was verified with L-alanine/electron spin resonance (ESR) dosimetry for patients diagnosed with gynaecological cancer. Measurements were performed with an X-band ESR spectrometer. Dosemeters were positioned inside the vaginal cavity with the assistance of an apparatus specially designed for this study. Previous phantom studies were performed using the same conditions as in the in vivo treatment. Four patients participated in this study during 20-irradiation sessions, giving 220 dosemeters to be analysed. The doses were determined with the treatment planning system, providing dose confirmation. The phantom study resulted in a deviation between -2.5 and 2.1 %, and for the in vivo study a deviation between -9.2 and 14.2 % was observed. In all cases, the use of alanine with ESR was effective for dose assessment, yielding results consistent with the values set forth in the International Commission on Radiation Units and Measurements (ICRU) reports. (authors)

  15. Influence of l-Leucine and l-Alanine on Lrp Regulation of foo, Coding for F1651, a Pap Homologue

    OpenAIRE

    Berthiaume, Frédéric; Crost, Cécile; Labrie, Vincent; Martin, Christine; Newman, Elaine B.; Harel, Josée

    2004-01-01

    The foo operon encodes F1651 fimbriae that belong to the P-regulatory family and are synthesized by septicemic Escherichia coli. Using an Lrp-deficient host and the lrp gene cloned under the arabinose pBAD promoter, we demonstrated that foo was transcribed proportionally to the amount of Lrp synthesized. l-Leucine and l-alanine decreased drastically the steady-state transcription of foo and modified phase variation, independently of the presence of FooI. Specific mutations in the C-terminal r...

  16. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    Science.gov (United States)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  17. A conserved residue of l-alanine dehydrogenase from Bacillus pseudofirmus, Lys-73, participates in the catalytic reaction through hydrogen bonding.

    Science.gov (United States)

    He, Guangzheng; Xu, Shujing; Wang, Shanshan; Zhang, Qing; Liu, Dong; Chen, Yuling; Ju, Jiansong; Zhao, Baohua

    2018-03-01

    A multiple protein sequence alignment of l-alanine dehydrogenases from different bacterial species revealed that five highly conserved amino acid residues Arg-15, Lys-73, Lys-75, His-96 and Asp-269 are potential catalytic residues of l-alanine dehydrogenase from Bacillus pseudofirmus OF4. In this study, recombinant OF4Ald and its mutants of five conserved residues were constructed, expressed in Escherichia coli, purified by His 6 -tag affinity column and gel filtration chromatography, structure homology modeling, and characterized. The purified protein OF4Ald displayed high specificity to l-alanine (15Umg -1 ) with an optimal temperature and pH of 40°C and 10.5, respectively. Enzymatic assay and activity staining in native gels showed that mutations at four conserved residue Arg-15, Lys-75, His-96 and Asp-269 (except residue Lys-73) resulted in a complete loss in enzymatic activity, which signified that these predicted active sites are indispensable for OF4Ald activity. In contrast, the mutant K73A resulted in 6-fold improvement in k cat /K m towards l-alanine as compared to the wild type protein. Further research of the residue Lys-73 substituted by various amino acids and structural modeling revealed that residue Lys-73 might be involved in the catalytic reaction of the enzyme by influencing the enzyme-substrate binding through the hydrogen-bonding interaction with conserved residue Lys-75. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Robert W. [Department of Biomedical Informatics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20815 (United States)], E-mail: bob@bob.usuhs.mil; Schluecker, Sebastian [Institute of Physical Chemistry, University of Wuerzburg, Wuerzburg (Germany); Hudson, Bruce S. [Department of Chemistry, Syracuse University, Syracuse, NY (United States)

    2008-01-22

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  19. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    International Nuclear Information System (INIS)

    Williams, Robert W.; Schluecker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes

  20. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  1. Investigation of Mixed Chiral Selectors of Different Metal Ion-L-Alanine Complex and β-Cyclodextrin on the Chiral Separation of Dansyl Amino Acids with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    郑志侠; 屈锋; 林金明

    2003-01-01

    Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.

  2. Complexation of vanadium (v) with alanine in different ionic strength

    International Nuclear Information System (INIS)

    Garib, F.; Zare, K.; Fekri, H

    2002-01-01

    The formation constants of species formed in the system H ++ alanine and VO 2 + alanine have be determined in aqueous solution for 1.0 3 NaCIO 4 ,using a combination of pramiracetam and spectrophotometric techniques. The compositions of the formed complexes and their stability constants were determined ny curve fitting method and it was shown that di oxovanadium(V) forms two mononuclear 1:1 and 1:2 species with alanine of the type VO 2 L and VO 2 L 2 The protonation constant of the amino group of alanine has been determined using a computer program which employ a least-squares method. The defence of the protonation of alanine and the stability constant of the species on ionic strength are described by a Debby-huckel type equation

  3. Conductivity of alanine solution for high level dosimetry

    International Nuclear Information System (INIS)

    Wieser, A.; Figel, M.; Regulla, D.F.

    1993-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. The free radicals are earlier detected by electron spin resonance (ESR) spectroscopy or chemically after dissolving the irradiated samples. Of all these methods the ESR/alanine system is the most advanced and is suggested for reference dosimetry. At present, however, the high cost of the system is a serious handicap for a large scale routine application in radiation plants. In this study the variation of electrical conductivity of L-alanine solution with applied dose is investigated in the range from 0.5-200 kGy. The conductivity was measured with a 50 MHz RF oscillator. This readout method is uncomplicated and may be suitable for routine application. The experiments were performed with L-alanine solution in glass ampoules. (Author)

  4. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  5. Braked rotation of CH3 group in L-alanine monocrystals: temperature transformation of EPR spectrum

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Sochava, L.S.

    2003-01-01

    EPR spectra temperature transformation of the irradiated alanine crystals is used for studying rotation of CH 3 methyl group in L-alamine monocrystals. 60 Co (2 x 10 4 Gy dose) was applied as a γ-radiation source. The simple method of experimental data processing which is reduced to obtaining the resonance lines width dependence on the temperature is used for the quantitative analysis of the spectrum temperature transformation. Temperature dependence of the CH 3 group rotation frequency is identified on the basis of these data. Activation energy U = 0.18 eV and pre-exponential multiplier ω 0 = 10 13 s -1 are determined from the EPR spectra temperature transformation which are in good agreement with values obtained earlier from the measurements of the proton spin-lattice relaxation in alanine polycrystal samples [ru

  6. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid

    OpenAIRE

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S.; Morrison, Louise F.; Codd, Geoffrey A.; Bergman, Birgitta

    2005-01-01

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, β-N-methylamino-l-alanine, may be produced by all known groups of cyanobacteria...

  7. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  8. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    Science.gov (United States)

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  9. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  10. Growth, optical, thermal and dielectric studies of an amino acid organic nonlinear optical material: L-Alanine

    International Nuclear Information System (INIS)

    Caroline, M. Lydia; Sankar, R.; Indirani, R.M.; Vasudevan, S.

    2009-01-01

    Good transparent bulk single crystals of L-alanine (nonlinear optical material) have been grown successfully by slow cooling technique from aqueous solution at pH value of 2.0. Optically transparent crystals with dimensions 2.4 cm x 1.2 cm x 1.6 cm, were grown by optimizing the growth parameters within a growth period of 2 weeks. The crystallinity of L-alanine crystal was confirmed by the powder X-ray diffraction study and diffraction peaks are indexed. The vibrational structure of the molecule is elucidated from FTIR spectra. The thermal behaviour of the grown crystal was investigated by thermogravimetric (TG) and differential thermal analyses (DTA) techniques in a nitrogen atmosphere. The result showed that the material starts decomposing at 297 deg. C. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance between the wavelengths ranging from 200 to 1200 nm. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time

  11. Pancreatic α- and β-Cell Function and Metabolic Changes during Oral L-Alanine and Glucose Administration: Comparative Studies between Normal, Diabetic and Cirrhotic Subjects

    OpenAIRE

    HATTORI, TADAKAZU; HOTTA, NIGISHI; OHARA, KIYOJI; SHINODA, HIROSHI; KUNIEDA, TAKEHIDE; NOMURA, TAKAHIDE; KAKUTA, HIRONOBU; TAMAGAWA, TATSUO; SAKAMOTO, NOBUO

    1989-01-01

    The present study investigated whether or not, in addition to the oral glucose tolerance test, oral alanine loading was a useful diagnostic tool for hormonal and metabolic diseases. Fifty g of L-alanine was administered orally in 14 normal, 12 diabetic, and 8 liver cirrhotic subjects. The influence of oral alanine loading on hormones and metabolites was compared with the results of 100g oral glucose loading. The results obtained were as follows: 1) In the normal subjects and cirrhotics, lacta...

  12. Asymmetric adsorption of alanine by quartz powder from ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Shozo; Sawada, Michio; Hachiya, Kinji; Morimoto, Tetsuo (Okayama Univ. (Japan). Faculty of Science)

    1982-11-01

    The asymmetric adsorption of the racemic alanine by the optically active quartz from ethanol solution at 8/sup 0/C was studied by the /sup 14/C-tracer method and the newly developed /sup 14/C-tracer ninhydrin-colorimetry combination method. The preferential adsorption of L-alanine by levorotatory quartz (l-quartz) and D-alanine by dextrorotatory quartz (d-quartz) was confirmed. The asymmetric adsorptivity (Asub(s)) falls in the range of 1.1 - 1.3, which is comparable with the value determined at - 80/sup 0/C in the previous paper. The effects of water content in the ethanol solution and of the adsorption temperature upon the adsorption affinity of alanine to quartz were also measured. The cause for the asymmetric adsorption is discussed from the crystallographic point of view.

  13. A new synthesis of [3-11C]pyruvic acid using alanine racemase

    International Nuclear Information System (INIS)

    Ikemoto, M.; Okamoto, E.; Sasaki, M.; Haradahira, T.; Omura, H.; Furuya, Y.; Suzuki, K.; Watanabe, Y.

    1998-01-01

    The synthesis of [3- 11 C]pyruvic acid was attempted by two reaction systems (A: alanine racemase and D-amino acid oxidase, B: alanine racemase and L-alanine dehydrogenase) utilizing a new thermostable enzyme, alanine racemase. Conversion rates from D,L-[3- 11 C]alanine to [3- 11 C]pyruvic acid were almost 100% in both methods. Similar results were obtained with immobilized enzymes packed in a single column. Furthermore, the same column could be used repeatedly without a remarkable decrease of the [3- 11 C]pyruvic acid yield. Various matrices were tested for the immobilizing enzyme, and Aminopropyl-CPG was concluded to be the most suitable since the loss of the enzyme activity was the least in the studied matrices

  14. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    Science.gov (United States)

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay. © The Author(s) 2016.

  16. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein

    International Nuclear Information System (INIS)

    Ayala, Isabel; Sounier, Remy; Use, Nathalie; Gans, Pierre; Boisbouvier, Jerome

    2009-01-01

    A strategy for the introduction of ( 1 H, 13 C-methyl)-alanine into perdeuterated proteins is described. Specific protonation of alanine methyl groups to a level of 95% can be achieved by overexpressing proteins in M9/D 2 O based bacterial growth medium supplemented with 800 mg/l of 2-[ 2 H], 3-[ 13 C] l-alanine. However, though simple, this approach results in undesired, non-specific background labeling due to isotope scrambling via different amino acid metabolic pathways. Following a careful analysis of known metabolic pathways we found that co-addition of perdeuterated forms of α-ketoisovalerate-d 7 , succinate-d 4 and l-isoleucine-d 10 with labeled l-alanine, reduces undesired background labeling to <1%. When combined with recently developed methyl TROSY experiments, this methyl-specific labeling protocol permits the acquisition of excellent quality correlation spectra of alanine methyl groups in high molecular weight proteins. Our cost effective strategy offers a significant enhancement in the level of incorporation of methyl-labeled alanine in overexpressed proteins over previously reported methods

  17. Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine

    Science.gov (United States)

    Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.

    2012-07-01

    Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.

  18. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Rakvin, B.; Maltar-Strmecki, N.; Nakagawa, K.

    2007-01-01

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, T M , was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  19. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    OpenAIRE

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respective...

  20. L-alanine detector characterization for dosimetry of small fields in SBRT with VMAT techniques; Caracterizacao do detector de L-alanina para dosimetria de campos pequenos em SBRT com a tecnica de VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Mazaro, Sarah J.; Peres, Leonardo [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Baffa, Oswaldo, E-mail: sarahmazaro@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Departamento de Fisica

    2016-07-01

    New radiotherapy treatment techniques have some problems such as: the dosimetric and geometric of the beam and small fields. Determination of the prescribed dose on the target volume in small fields is hampered due to lack of lateral electronic equilibrium and steep dose gradient along the edges of fields. The choice of radiation better detector becomes important in the dosimetry of small fields. Alanine detector has been shown to be a good choice for measurements of high doses of radiation in small fields. This study aims to characterize the L-alanine detector through the dosimetric tests for SBRT in VMAT techniques. L-alanine response showed a strong linear correlation with the dose (R ² = 0.9865), with significant angles and dose rate dependencies (14%) and (15%) respectively, and minor with the small field size (maximum 4% deviation). (author)

  1. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    Science.gov (United States)

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  2. Volumetric property of glycine, L-serine, L-alanine and L-proline in aqueous solutions of 1-phenylpiperazinium tetrafluoroborate

    International Nuclear Information System (INIS)

    Xie, Hujun; Zhao, Lijiang; Liu, Chengcheng; Cao, Yifan; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Volumetric property of four amino acids in aqueous solutions of [Phpi][BF_4] were measured. • The standard partial molar volume, transparent partial molar volume and hydration number were calculated. • [Phpi][BF_4] interacts strongly with four kinds of amino acids. • Hydrophilic–hydrophobic and hydrophobic–hydrophobic interactions play the dominant roles in ternary systems. • The ternary systems are generated via multiple hydrogen bond interactions. - Abstract: The densities of aqueous solutions of glycine, L-serine, L-alanine, L-proline with the ionic liquid (IL), 1-phenylpiperazinium tetrafluoroborate ([Phpi][BF_4]) at the IL concentrations of (0.025, 0.055 and 0.100) mol·kg"−"1 have been measured at the temperatures of (298.15, 303.15 and 308.15) K. On the basis of the experimental results, the apparent molar volume (V_Φ), standard partial molar volume (V_Φ"0), transfer partial molar volume (Δ_t_rV_Φ"0) and hydration number (n_H) have been calculated. The hydrophilic–hydrophilic, hydrophobic–hydrophilic and hydrophobic–hydrophobic interactions are involved in the studied systems of {[Phpi][BF_4] + amino acids + H_2O. These volumetric parameters can help to understand the mixing effects and other complex biological processes between amino acids and ionic liquid aqueous solution.

  3. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function.

    OpenAIRE

    Wasserman, S A; Walsh, C T; Botstein, D

    1983-01-01

    Mutations were isolated in a previously undescribed Salmonella typhimurium gene encoding an alanine racemase essential for utilization of L-alanine as a source of carbon, energy, and nitrogen. This new locus, designated dadB, lies within one kilobase of the D-alanine dehydrogenase locus (dadA), which is also required for alanine catabolism. The dadA and dadB genes are coregulated. Mutants (including insertions) lacking the dadB alanine racemase do not require D-alanine for growth unless a mut...

  4. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  5. EPR structure of the gamma irradiated alanine spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A; Jimenez D, H; Urena N, F; Galindo, S; Bosch, P

    1992-03-15

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of {gamma}-irradiated powder DL- and L-alanine. (Author)

  6. EPR structure of the gamma irradiated alanine spectrum

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Urena N, F.; Galindo, S.; Bosch, P.

    1992-03-01

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of γ-irradiated powder DL- and L-alanine. (Author)

  7. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  8. Comparison of the Tastes of L-Alanine and Monosodium Glutamate in C57BL/6J Wild Type and T1r3 Knockout Mice.

    Science.gov (United States)

    Eddy, Meghan C; Eschle, Benjamin K; Delay, Eugene R

    2017-09-01

    Previous research showed that L-alanine and monosodium L-glutamate elicit similar taste sensations in rats. This study reports the results of behavioral experiments designed to compare the taste capacity of C57BL/6J wild type and T1r3- mice for these 2 amino acids. In conditioned taste aversion (CTA) experiments, wild-type mice exhibited greater sensitivity than knockout mice for both L-amino acids, although knockout mice were clearly able to detect both amino acids at 50 mM and higher concentrations. Generalization of CTA between L-alanine and L-glutamate was bidirectionally equivalent for both mouse genotypes, indicating that both substances elicited similar tastes in both genotypes. This was verified by the discrimination experiments in which both mouse genotypes performed at or near chance levels at 75 and 150 mM. Above 150 mM, discrimination performance improved, suggesting the taste qualities of the 2 L-amino acids are not identical. No differences between knockout and wild-type mice in discrimination ability were detected. These results indicate that while the T1r3 receptor is important for tasting L-alanine and L-glutamate, other receptors are also important for tasting these amino acids. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Theoretical study of the effective chemical shielding anisotropy (CSA) in peptide backbone, rating the impact of CSAs on the cross-correlated relaxations in L-alanyl-L-alanine

    Czech Academy of Sciences Publication Activity Database

    Benda, Ladislav; Bouř, Petr; Müller, N.; Sychrovský, Vladimír

    2009-01-01

    Roč. 113, č. 15 (2009), s. 5273-5281 ISSN 1520-6106 R&D Projects: GA AV ČR IAA400550701; GA AV ČR IAA400550702; GA MŠk MEB060705 Institutional research plan: CEZ:AV0Z40550506 Keywords : chemical shielding anisotropy * CSA * L-alanyl-L-alanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.471, year: 2009

  10. Theoretical investigation of radical species formed from L-α-alanine under gamma-irradiation

    International Nuclear Information System (INIS)

    Simion, C.

    2008-01-01

    Gamma-irradiated L-α-alanine used in EPR-coupled dosimetry has a complex EPR spectrum at room temperature. Changing the temperature or other conditions of the irradiated samples leads to varied EPR spectrum, i.e., some components disappear and/or new ones are formed. We used both molecular mechanics (MM+) and semiempirical (AM1) methods to perform a theoretical investigation of the seven radical species that have been experimentally detected. We established their order of priority in the given simulation conditions (at 0 K, in vacuo). The formation stages advanced for these long-lived radical species were characterized by a theoretical determination of the reaction enthalpies. (author)

  11. Thiophenyl-substituted triazolyl-thione L-alanine: asymmetric synthesis, aggregation and biological properties.

    Science.gov (United States)

    Saghyan, Ashot S; Simonyan, Hayarpi M; Petrosyan, Satenik G; Geolchanyan, Arpine V; Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina

    2014-10-01

    In this work, we report the asymmetric synthesis and characterization of an artificial amino acid based on triazolyl-thione L-alanine, which was modified with a thiophenyl-substituted moiety, as well as in vitro studies of its nucleic acid-binding ability. We found, by dynamic light scattering studies, that the synthetic amino acid was able to form supramolecular aggregates having a hydrodynamic diameter higher than 200 nm. Furthermore, we demonstrated, by UV and CD experiments, that the heteroaromatic amino acid, whose enzymatic stability was demonstrated by HPLC analysis also after 24 h of incubation in human serum, was able to bind a RNA complex, which is a feature of biomedical interest in view of innovative antiviral strategies based on modulation of RNA-RNA molecular recognition.

  12. Investigation on the chirality of positrons from 22Na decay and their asymmetrical interactions with D-, L- and DL-alanines

    International Nuclear Information System (INIS)

    Conte, E.; Pieralice, M.

    1987-01-01

    An investigation on the chirality of the positrons from 22 Na and on their asymmetrical interactions with D-, L-, and DL-alanines was carried out. By using nuclear gamma-spectroscopy, the asymmetrical interaction was proved to be induced with a distinguishably asymmetrical effect

  13. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

    Science.gov (United States)

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S; Morrison, Louise F; Codd, Geoffrey A; Bergman, Birgitta

    2005-04-05

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.

  14. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid

    Science.gov (United States)

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S.; Morrison, Louise F.; Codd, Geoffrey A.; Bergman, Birgitta

    2005-01-01

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, β-N-methylamino-l-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure. PMID:15809446

  15. Alanine water complexes.

    Science.gov (United States)

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  16. [Establishing biological reference intervals of alanine transaminase for clinical laboratory stored database].

    Science.gov (United States)

    Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen

    2015-08-25

    To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.

  17. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter

  18. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    International Nuclear Information System (INIS)

    Darmaun, D.; Matthews, D.E.; Bier, D.M.

    1988-01-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-[1- 13 C]leucine, L-phenyl[ 2 H 5 ]phenylalanine, L-[2- 15 N]glutamine, and L-[1- 13 C]alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 ± 1 to 32 ± 4 μg/dl, leucine flux from 83 ± 3 to 97 ± 3 μmol·kg -1 ·h -1 , and phenylalanine flux from 34 ± 1 to 39 ± 1 (SE) μmol·kg -1 ·h -1 after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h

  19. Solved? The reductive radiation chemistry of alanine.

    Science.gov (United States)

    Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar

    2014-02-14

    The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.

  20. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  1. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    Science.gov (United States)

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  2. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  3. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  4. Application of a Biodegradable Polyesteramide Derived from L-Alanine as Novel Excipient for Controlled Release Matrix Tablets.

    Science.gov (United States)

    Bonillo Martínez, Ana Dora; Galán, Inés Carmen Rodríguez; Bellver, María Victoria Margarit

    2017-11-01

    This pre-formulation study assays the capacity of the polyesteramide PADAS, poly (L-alanine-dodecanediol-L-alanine-sebacic), as an insoluble tablet excipient matrix for prolonged drug release. The flow properties of PADAS were suitable for tableting, and the compressibility of tablets containing exclusively PADAS was evaluated by ESEM observation of the microstructure. The tablets were resistant to crushing and non-friable and they did not undergo disintegration (typical features of an inert matrix). Tablets containing 33.33% sodium diclofenac (DF), ketoprofen (K) or dexketoprofen trometamol (DK-T) as a model drug, in addition with 66.67% of polymer, were formulated, and the absence of interactions between the components was confirmed by differential scanning calorimetry. Dissolution tests showed that PADAS retained DF and K and prolonged drug release, following a Higuchi kinetic. The tablets containing DK-T did not retain the drug sufficiently for prolonged release to be established. Tablets containing DK-T and 66.67, 83.33 or 91.67% PADAS, compressed at 44.48 or 88.96 kN, were elaborated to determine the influence of the polymer amount and of the compression force on DK-T release. Both parameters significantly delayed drug release, except when the proportion of polymer was 91.67%.

  5. Dose response of alanine and methyl alanine towards gamma and in-situ alpha irradiation

    International Nuclear Information System (INIS)

    Mohapatra, M.; Rajeswari, B.; Bhide, M.K.; Rane, Vinayak; Kadam, R.M.

    2017-01-01

    In situ alpha and external gamma dose response of two ESR (electron spin resonance) dosimetric materials namely alanine and methyl alanine were investigated. It was observed that alanine dosimeter had a better dose response in comparison to methyl alanine for the in-situ alpha irradiation by using 239 Pu powder. On the other hand, in case of gamma radiation, methyl alanine was found to have the sensitivity as twice that of alanine. (author)

  6. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  7. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Rakvin, B.

    2005-01-01

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν 0 is 24.1±0.4min -1 . The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  8. Bulk monocrystal growth, optical, dielectric, third order nonlinear, thermal and mechanical studies on HCl added L-alanine: An organic NLO material

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Al-Qahtani, A.M.A. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia)

    2016-12-01

    In the current work, good quality bulk size (∼32 mm × 23 mm × 10 mm) single crystals of HCl added L-alanine with well-defined morphology are successfully grown using slow evaporation technique. Crystal structure and other structural parameters were evaluated from X-ray diffraction data. Vibrational assessment of the grown crystal was done by FT-Raman analysis. The presence of chlorine and good quality of the grown crystal was confirmed by SEM/EDX analysis. Solid state UV–Vis–NIR diffused reflectance was measured and direct and indirect optical band gap was calculated using Kubelka-Munk relation and found to be 5.64 and 5 eV respectively. Dielectric measurement was carried out in high frequency range. Third order nonlinear optical susceptibility value was found to be enhanced from 1.91 × 10{sup −6} (pure) to 8.6 × 10{sup −6} esu (LAHCl). Good thermal stability of grown crystals was confirmed from DSC analysis. The enhancement in mechanical strength and crystalline perfection was also observed. - Highlights: • Bulk size (32 mm × 23 mm × 10 mm), good crystalline perfection HCl added L-alanine monocrystal is grown. • The shift in X-ray diffraction and vibrational peaks confirms the interaction of HCl. • The high optical transparency and band gap confirms its application in optoelectronic devices. • Third order NLO properties are found to be enhanced in HCl added L-alanine crystals. • The mechanical strength of the grown crystals is found to be enhanced due HCl addition.

  9. In vivo dosimetry with L-alpha-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Boey, R; Van Der Velden, K [Industriele Hogeschool van het Gemeenschapsonderwijs Limburg, Hasselt (Belgium); Schaeken, B [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Radiotherapy

    1995-12-01

    When organic substances are irradiated, stable electrons can be formed. The concentration of these electrons is detected via electron paramagnetic resonance (EPR), a non-destructive form of dosimetry. L-alpha-alanine is extremely suited as a detector because of its high stability and high yield of unpaired electrons. With an EMS 104 spectrometer, we measure the peak-to-peak value of the first derivate of the resonance-spectrum. This value is proportional to the concentration of unpaired electrons and therefore with the absorbed dose. Prior to the in vivo measurements in teletherapy, a calibration curve had to be established. This clearly showed a linear relationship between the EPR-signal and the absorbed dose, except for very low dose where precision was low (20% 1 sd). This indicates that the background signal of the dosimeter is strongly orientation dependent. For this reason it was decided to use pre-irradiated detectors. A number of in vivo measurements has been performed. It was found that the error propagation plays a major role in the calculation of the measured absorbed dose, in the range 1 Gy-6 Gy. Contrary to in vivo measurements in brachytherapy, where higher doses are measured, large uncertainties (30% 1 sd) on the entry dose calculations were observed. For this reason, it is recommended to use a statistical method of reducing this standard deviation to an acceptable level. The proposed method, consisting of 2 detectors and the usage of weight coefficients on our standard deviations, gave promising results. However, theoretical calculations and in vivo measurements show that this method is still not satisfactory to reduce the uncertainty to an acceptable standard in clinical situations.

  10. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    Science.gov (United States)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  11. A comparative study of the adsorption and oxidation of L-alanine and L-serine on Au(1 0 0), Au(1 1 1) and gold thin film electrodes in acid media

    International Nuclear Information System (INIS)

    Sandoval, Andrea P.; Orts, José Manuel; Rodes, Antonio; Feliu, Juan M.

    2013-01-01

    The adsorption and oxidation of L-alanine and L-serine at Au(1 1 1) and Au(1 0 0) single crystal and evaporated thin-film electrodes with preferential (1 1 1) orientation was studied in perchloric acid solutions. For this purpose, cyclic voltammetry experiments were combined with external reflection infrared spectroscopy (gold single crystals) and surface-enhanced infrared reflection–absorption spectroscopy under attenuated total reflection conditions (ATR-SEIRAS) (gold thin films). In addition, theoretical harmonic vibrational frequencies, obtained from B3LYP/LANL2DZ, 6-31+G(d) calculations for the zwitterionic species adsorbed on Au clusters with (1 1 1) orientation, were used to interpret the experimental spectra. The optimized geometry obtained from DFT calculations for the corresponding zwitterion plus a water molecule, under the application of an external electric field of 0.01 a.u. corresponds to a bidentate asymmetrical bridge adsorption configuration. The absence of an adsorbate band for the asymmetric OCO stretching in the experimental infrared spectra confirms the bidentate bonding of the adsorbed zwitterion through the oxygen atoms of the carboxylate group irrespective of the crystallographic orientation of the electrode surface, the adsorbate coverage and the electrode potential. In addition to typical interfacial water bands associated to perchlorate anions, which are co-adsorbed in order to compensate the positive charge of the ammonium group, the ATR-SEIRA spectra also show bands around 2950 cm −1 that can be related to the formation of hydrogen bonds between interfacial water and the ammonium group of the adsorbed zwitterion. The voltammetric experiments have shown that, as in the case of platinum electrodes, L-serine oxidizes at lower potentials than L-alanine. Under these conditions, the in situ infrared experiments show the formation of carbon dioxide and adsorbed cyanide as oxidation products of L-serine. In the case of L-alanine, only

  12. Radical formation of irradiated α-alanine and N-acetyl alanine with heavy ion beams. Effects of the irradiation temperature

    International Nuclear Information System (INIS)

    Minegishi, Atsuko; Nagasaki, Jun; Mori, Wasuke; Amano, Chikara; Takagi, Shinji; Murakami, Takeshi; Kanai, Tatsuaki; Furusawa, Yoshiya; Iwata, Yoshiyuki

    2003-01-01

    The characteristics of irradiation with C290 MeV/u ion beams were investigated using X-band electron spin resonance (ESR) spectroscopy for a polycrystalline powder of L-α-alanine at from 77K to 310K. The formed main radicals at 190K∼310K were the deamino radical and the decarboxyl radical. Because of the first-derivative ESR, decarboxyl radical showed an expanded spectral width and a lower peak height because of its amino hydrogen and nitrogen than that of the same amount of deamino radical. The ESR of irradiated L-α-alanine predominantly indicates the spectrum of the deamino radical. On the irradiated, L-α-alanine at from 77K to 310K ESR showed 1:4:6:4:1 lines at 220K and at room temperature, which indicate that the methyl group of the radical was rotating. On the other hand, at 77K ESR the spectrum showed nearly 1:5:5:5:1 lines, like the teeth of a saw, on samples irradiated at 270K∼350K (range IV), and 1:4:6:4:1 lines for those irradiated at 180K∼260K (range II and III), respectively. It is considered that the radical conformation of the deamino radical is planar (most stable conformation) on an irradiated sample in range IV, and a pyramidal structure on the irradiated sample in ranges II and III. (author)

  13. Earthworms accumulate alanine in response to drought.

    Science.gov (United States)

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    Science.gov (United States)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  15. Spectrophotometric readout for alanine dosimeter to be used for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Eid, S.

    2002-01-01

    The electron spin resonance (EPR) readout of radical concentration produced upon irradiation of L-alanine is well known as a transfer dosimetry system for high dose level. The highly cost of EPR/alanine dosimetry system is a serious handicap for large scale routine application to be used in irradiation facilities. In this study, the reaction between L-alanine and 1,4-phenyl diammonium dichloride (PAC) solution produces a complex has a purple color. This complex has a variable absorbance with applied doses in the range from 1-20 kGy. Spectrophotometric evaluation at 368 and 505 nm for the absorbance intensity of this color as well as fluorimetric emission wavelength 435 nm were investigated, as a function of dose. The used method is uncomplicated and very easy for routine application. Evaluation of the dye concentration and the suitable amount of alanine has been studied. Stability of the product complex, for long period of time after the reaction had taken place, was also investigated

  16. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    Science.gov (United States)

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  18. X-ray diffraction study on the structure of concentrated aqueous solutions involving alanine molecules with different optical activities

    International Nuclear Information System (INIS)

    Kameda, Yasuo; Okuyama, Aya; Amo, Yuko; Usuki, Takeshi; Kohara, Shinji

    2007-01-01

    X-ray diffraction measurements on aqueous 2.5 mol% DL-, L-, and D-alanine solutions in D 2 O were carried out at 26±2degC in order to obtain information concerning the difference in the hydrogen-bonded structure between aqueous solutions involving amino acid molecules with different optical activities. The difference function, Δi inter (Q), between intermolecular interference term observed for DL- and L-alanine and between DL- and D-alanine solutions both exhibited a first peak at Q=1.6 A -1 , followed by oscillatory features extending to higher-Q region, implying that there is a difference in the intermolecular structure is present between these solutions. The difference distribution function, Δg inter (r), obtained from the Fourier transform of the Δi inter (Q) between DL- and L-, and between DL- and D-alanine solutions showed an obvious negative peak at r=2.8 A, which was attributed to the nearest neighbor hydrogen-bonded O...O interaction. The least squares fitting analysis of the observed Δi inter (Q) showed that the intermolecular O...O distance and the difference in the coordination number between DL- and L-, and between DL- and D-alanine solutions are 2.76(2) A and -0.18(1), and 2.81(3) A and -0.18(1), respectively. It was concluded that the intermolecular hydrogen-bonded network in aqueous L- and D-alanine solutions is stronger than that in the DL-alanine solution. (author)

  19. Beta-alanine and dopamine in the reddish brown scales of Papilio butterflies

    International Nuclear Information System (INIS)

    Umebachi, Yoshishige; Ishizaki, Yumi

    1983-01-01

    (1) Reddish brown scales of the anal eye spot in the hind-wings of P. demoleus and P. machaon have been examined for β-alanine and dopamine. (2) The scales were fractionated into 70% ethanol-soluble fraction, 4% HCl-methanol-soluble fraction, and the residua l scales, and the β-alanine content of each fraction was determined. Most of the β-alanine present in the scales has been found in the residual scales. On acid hydrolysis of the residual scales, the β-alanine has been rather rapidly released, and the hydrolysate has contained a large amount of β-alanine. (3) The protein-bound brown pigment (HCl-ppt fraction), which was extracted with 1 N NaOH and precipitated by being acidified with HCl, has contained a large amount of β-alanine. In most or at least some of the β-alanine, the NH 2 -group has been proved to be free. (4) 14 C-Labelled β-alanine and 14 C-dopamine, which were injected at prepupal or pupal stage, have been incorporated in the highest degree into the residual scales. And the 14 C has been confirmed to be present in the HCl-ppt fraction. (5) All these results indicate that the pigment of the reddish brown scales contains β-alanine and dopamine. (author)

  20. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA in Shark Fins

    Directory of Open Access Journals (Sweden)

    John Pablo

    2012-02-01

    Full Text Available Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.

  1. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Jin-zhou Ye

    2018-01-01

    Full Text Available Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

  2. Electron paramagnetic resonance radiation dosimetry: possible inorganic alternatives to the EPR/alanine dosimeter

    International Nuclear Information System (INIS)

    Keizer, P.N.; Morton, J.R.; Preston, K.F.

    1991-01-01

    The intensity of the EPR spectrum of γ-irradiated L-α-alanine has been accepted by the International Atomic Energy Agency as a secondary standard for high-dose (10-100 000 Gy) dosimetry. The alanine dosimeter is not without its disadvantages, however, and in this article alternative EPR dosimeters are explored. These include SO 3 - in irradiated K 2 CH 2 (SO 3 ) 2 and CO 2 - in irradiated sodium formate (NaHCO 2 ), both of which have some advantages over CH 3 CHCO 2 - in L-α-alanine. Using as a readout parameter the peak-to-peak excursion of the strongest line, these systems have a four-fold sensitivity advantage over alanine. The radicals SO 3 - and CO 2 - are, moreover, found in a wide variety of matrices, and it may be possible to find one in which they are even stronger. The need to discover a dosimeter material sensitive enough to function in the 'clinical' dose range (below 10 Gy) is emphasized. (author)

  3. Spectrophotometric readout for alanine dosimeter to be used for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Sobhy, R.; Kovacs, A.; Wojnarovits, L.

    2002-01-01

    Complete text of publication follows. The electron spin resonance (EPR) readout of radical concentration produced upon irradiation of L-alanine is well known as a transfer dosimetry system for high dose range. The high cost of EPR/alanine dosimetry system is a serious handicap for large-scale routine application for use in irradiation facilities. In this study the irradiated L-alanine was dissolved in 1,4 -phenyl diammonium dichloride (PAC) solution resulting a complex of a purple colour. This complex has a variable absorbance with applied dose in the range from 1 - 20 kGy. The absorbance of this complex using spectrophotometric evaluation was investigated at 401 and 478 nm with increasing dose. The fluorimetric emission was also studied at the wavelength of 475 nm as a function of dose. This methos for dose evaluation is uncomplicated and very easy for routine application. The effect of the dye concentration as well as the suitable amount of alanine has been studied with respect to practical use. The stability of the complex for long period of time was also investigated

  4. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol.

    Science.gov (United States)

    Hoser, Anna A; Madsen, Anders Ø

    2017-03-01

    In the first paper of this series [Hoser & Madsen (2016). Acta Cryst. A72, 206-214], a new approach was introduced which enables the refinement of frequencies of normal modes obtained from ab initio periodic computations against single-crystal diffraction data. In this contribution, the performance of this approach is tested by refinement against data in the temperature range from 23 to 205 K on the molecular crystals of L-alanine, naphthalene and xylitol. The models, which are lattice-dynamical models derived at the Γ point of the Brillouin zone, are able to describe the atomic vibrations of L-alanine and naphthalene to a level where the residual densities are similar to those obtained from the independent atom model. For the more flexible molecule xylitol, larger deviations are found. Hydrogen ADPs (anisotropic displacement parameters) derived from the models are in similar or better agreement with neutron diffraction results than ADPs obtained by other procedures. The heat capacity calculated after normal mode refinement for naphthalene is in reasonable agreement with the heat capacity obtained from calorimetric measurements (to less than 1 cal mol -1  K -1 below 300 K), with deviations at higher temperatures indicating anharmonicity. Standard uncertainties and correlation of the refined parameters have been derived based on a Monte Carlo procedure. The uncertainties are quite small and probably underestimated.

  5. Robotized synthesis of [3-11C]-L-alanine using reaction of asymmetric alkylation of 11CH3I nickel complex of glycine Schiff base with S-2-N-(N'-benzylpropyl)aminobenzophenone

    International Nuclear Information System (INIS)

    Mosevich, I.K.; Kuznetsova, O.F.; Vasil'ev, D.A.; Anichkov, A.A.; Korsakov, M.V.

    1999-01-01

    Synthesis of [3- 11 C]-L-alanine based on 11 CH 3 I nickel complex (1) alkylation using different solvents (tetrahydrofuran, dimethylformamide, acetonitrile, acetone) and catalysts (potassium butylate, sodium hydride) was investigated. It was shown that synthesis of amino acids labelled with 11 C based on complex (1) use permits to obtain preparations with high degree of enantiomeric enrichment. The best results (enantiomeric excess of L-alanine up to 99 %) were obtained in reaction with acetonitrile as a solvent and potassium tret-butylate as a catalyst

  6. Comparison of alanine dosimeters using silicone as their binder to a commercial, polystyrene-bound, alanine dosimeter

    International Nuclear Information System (INIS)

    Galindo, S.; Urena-Nunez, F.

    1997-01-01

    The feasibility of practical boron-containing alanine ESR dosimeters for gamma-neutron mixed field irradiation dosimeters depends in part on whether the γ response characteristics of these silicone-bound dosimeters are comparable to those of a commercially available dosimeter that has been used by the International Atomic Energy Agency (International Dose Assurance Service) as a transfer reference dosimeter. This work presents the results of the comparison of 3 batches of silicone-bound alanine dosimeters. The first batch consists of a mixture of alanine and boric acid; the second, alanine and borax; and the last contains only alanine. Results indicate that γ response characteristics of the silicone-bound samples are comparable to those of the commercial, polystyrene-bound, alanine dosimeter and that silicone has a strong potential as a binding substance for alanine ESR dosimetry. (Author)

  7. Selection of D-Alanine-Tolerant Rice Cells

    OpenAIRE

    Hisashi, Manabe; Koji, Ohira; Aizu Junior College of Fukushima Prefecture; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University

    1984-01-01

    By repeating subculture of rice cells (parent cells) in a D-alanine containing medium, we could select rice cells which grew well in the D-alanine medium. The D-alanine-tolerant cells absorbed a fairly small amount of D-alanine from the medium and did not accumulate much D-alanine in the cells. Aggregation of D-alanine-tolerant cells was greater than that of parent cells. D-Alanine metabolism of D-alanine.-tolerant cells did not increase in comparison with parent cells.

  8. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    Science.gov (United States)

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  9. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    Science.gov (United States)

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamics of solid alanine by means of nuclear magnetic resonance relaxometry

    Science.gov (United States)

    Kubica-Misztal, A.; Rochowski, P.; Florek-Wojciechowska, M.; Kruk, D.

    2017-04-01

    1H nuclear magnetic resonance relaxometry was applied to investigate the dynamics of l-alanine in the solid phase (powder). The experimental studies were carried out in a very broad frequency range, covering four orders of magnitude—from 4 kHz to 40 MHz (referring to the 1H resonance frequency) in order to probe motional processes of much different time scales by a single experiment. To get access to the dynamics of different proton groups of alanine, the 1H spin-lattice relaxation measurements were performed for non-deuterated and partially deuterated alanine. The experiments were carried out in the temperature range of 293 K-370 K (non-deuterated alanine) and 318 K-370 K (partially deuterated alanine). As a result of a thorough theoretical analysis of the extensive set of experimental results, three motional processes occurring on different time scales are identified and quantitatively described. The slowest process occurs on a time scale of μs and it is attributed to the collective dynamics of a 3D hydrogen bond network of alanine, while the intermediate, attributed to the dynamics of the NH3 group, corresponds to the range of tenths of ns. The fast process describes the rotation of the CH3 group.

  11. Accurate measurement of the optical activity of alanine crystals and the determination of their absolute chirality

    Science.gov (United States)

    Ishikawa, Kazuhiko; Terasawa, Yukana; Tanaka, Masahito; Asahi, Toru

    2017-05-01

    Wavelength dependence measurements of the chiroptical properties in alanine crystals have so far been unsuccessful using conventional spectroscopic techniques. We describe our attempts to measure the wavelength dependence of the optical activity in L- and D-alanine crystals along each crystallographic axis, and to determine the absolute chirality of alanine crystals by correlating the absolute structure to the optical activity using an x-ray diffractometer and a generalized high accuracy universal polarimeter. We have succeeded in accurately measuring the optical rotatory dispersion in the direction, which shows that the optical rotation of the D-alanine crystal is dextrorotatory and that of the L-alanine crystal is laevorotatory, thereby determining the absolute chirality. Furthermore, comparison with the optical activity in solution shows that the optical activity in alanine crystals is different not only in value, but also in the sign. These results have led us to conclude that the optical rotatory power in the crystalline state should not be simply the summation of molecular optical rotatory power values. We propose the necessity of a theory, which contains the contribution of molecular interactions within the crystal, in order to calculate the optical rotatory power of the crystalline state.

  12. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    Science.gov (United States)

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  13. Effect of the ionizing radiation on alanine solution for a dosimeter application

    International Nuclear Information System (INIS)

    Abdessamad, Nour El Houda

    2007-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. In this study the effect of several parameters such as: the ionising radiation, the concentration, the dose on the pH, conductivity and the oscillotitrometric answer of L a lanine solution was investigated. The results show that there is a significant production of new species. The formation of these species increases upon increasing dose. The comparison between the repeatability of the used techniques led us to choose of the system alanine/pH and the alanine/conductivity as the most adapted. (Author)

  14. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Eid, S.; Sobhy, R.; Kovacs, A.

    2003-01-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex--having a purple colour--has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated

  15. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    Science.gov (United States)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  16. Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney

    Science.gov (United States)

    Robson, L; Hunter, M

    1999-01-01

    The swelling induced by Na+-alanine cotransport in proximal tubule cells of the frog kidney is followed by regulatory volume decrease (RVD). This RVD is inhibited by gadolinium (Gd3+), an inhibitor of stretch-activated channels, but is independent of extracellular Ca2+. In this study, the whole cell patch clamp technique was utilized to examine the effect of Na+-alanine cotransport on two previously identified volume- and Gd3+-sensitive conductances. One conductance is voltage dependent and anion selective (GVD) whilst the other is voltage independent and cation selective (GVI). Addition of 5 mM L-alanine to the bathing solution increased the whole cell conductance and gave a positive (depolarizing) shift in the reversal potential (Vrev, equivalent to the membrane potential in current-clamped cells) consistent with activation of Na+-alanine cotransport. Vrev shifted from -36 ± 4·9 to +12·9 ± 4·2 mV (n= 15). In the presence of alanine, the total whole cell conductance had several components including the cotransporter conductance and GVD and GVI. These conductances were separated using Gd3+, which inhibits both GVD and GVI, and the time dependency of GVD. Of these two volume-sensitive conductances, L-alanine elicited a specific increase in GVD, whereas GVI was unaffected. The L-alanine-induced activation of GVD was significantly reduced when cells were incubated in a hypertonic bathing solution. In summary, in single proximal tubule cells isolated from frog kidney, on stimulation of Na+-alanine cotransport GVD is activated, while GVI is unaffected. Taken with other evidence, this suggests that GVD is activated by cell swelling, consequent upon alanine entry, and may play a role as an anion efflux pathway during alanine-induced volume regulation. PMID:10226159

  17. Identification and partial characterization of a novel UDP-N-acetylenolpyruvoylglucosamine reductase/UDP-N-acetylmuramate:L-alanine ligase fusion enzyme from Verrucomicrobium spinosum DSM 4136T

    Directory of Open Access Journals (Sweden)

    Kubra F Naqvi

    2016-03-01

    Full Text Available The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF annotated by the locus tag (VspiD_010100018130. The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB and UDP-N-acetylmuramate:L-alanine ligase (MurC that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement E. coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs was shown to be endowed with UDP-N-acetylmuramate:L-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46 oC. Its apparent Km values for ATP, UDP-MurNAc and L-alanine were 470, 90 and 25 µM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  18. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    Science.gov (United States)

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  19. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    Science.gov (United States)

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  20. Mineralization of alanine enantiomers in soil treated with heavy metals and nutrients

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2011-01-01

    Full Text Available This work deals with the determination of the effect of heavy metals and nutrients applied to the soil on alanine enatiomers mineralization with the main focus on evaluating the effect on L/D alanine respiration rate ratio. This study was initiated because previous research works revealed a change in L/D amino acid respiration under acid- or heavy metal-stress in soil. Generally, D-amino acids artificially supplied to soil are less utilized by microorganisms compared with their L-enantiomers. Stress of soil microorganisms cause decreased discrimination of D-amino acids utilization. Also, previous research showed that an application of fertilizers or combinations of fertilizers may affect the mineralization rate of L-amino acids differently, compared with their D-enantiomers. The results of this study show, that the effect of both heavy metals and nutrients on the L/D ratio was not clear, increasing or decreasing this ratio. Further research is necessary to broaden this study.

  1. Neonatal taurine and alanine modulate anxiety-like behavior and decelerate cortical spreading depression in rats previously suckled under different litter sizes.

    Science.gov (United States)

    Francisco, Elian da Silva; Guedes, Rubem Carlos Araújo

    2015-11-01

    The amino acids taurine and alanine play a role in several physiological processes, including behavior and the electrical activity of the brain. In this study, we investigated the effect of treatment with taurine or alanine on anxiety-like behavior and the excitability-dependent phenomenon known as cortical spreading depression (CSD), using rats suckled in litters with 9 and 15 pups (groups L9 and L15). From postnatal days 7 to 27, the animals received per gavage 300 mg/kg/day of taurine or alanine or both. At 28 days, we tested the animals in the elevated plus maze, and at 33-35 days, we recorded CSD and analyzed its velocity of propagation, amplitude, and duration. Compared with water-treated controls, the L9 groups treated with taurine or alanine displayed anxiolytic behavior (higher number of entries in the open arms; p taurine, alanine, or both) treated at adulthood (90-110 days). The L15 condition resulted in smaller durations and higher CSD velocities compared with the L9 condition. Besides reinforcing previous evidence of behavioral modulation by taurine and alanine, our data are the first confirmation that treatment with these amino acids decelerates CSD regardless of lactation conditions (normal versus unfavorable lactation) or age at amino acid administration (young versus adult). The results suggest a modulating role for both amino acids on anxiety behavior and neuronal electrical activity.

  2. Interactions of glycine, L-alanine and L-valine with aqueous solutions of trisodium citrate at different temperatures: A volumetric and acoustic approach

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Jindal, Rajeev

    2013-01-01

    Highlights: • Densities and speeds of sound of amino acids in aqueous trisodium citrate. • Positive values of transfer volume indicates interactions between ions of amino acids and TSC. • Ion–hydrophilic and hydrophilic–hydrophilic interactions are present. • Pair-wise interactions are dominant in the mixtures. -- Abstract: Densities, ρ, and speed of sound, u for glycine, L-alanine and L-valine in (0.2, 0.4, 0.6, and 0.8) mol · kg −1 aqueous solutions of trisodium citrate at T = (288.15, 298.15, 308.15 and 318.15) K have been measured. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, have been derived from density data. Experimental values of the speed of sound were used to estimate apparent molar apparent molar isentropic compression, limiting apparent molar isentropic compression, and transfer parameter. The pair and triplet interaction coefficient have been calculated from transfer parameters

  3. Optical, thermal and magnetic studies of pure and cobalt chloride doped L-alanine cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Benila, B.S., E-mail: benjane.benila@gmail.com [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India); Bright, K.C. [Department of Physics, St. John' s College, Anchal, Kollam 691 306 (India); Delphine, S. Mary [Department of Physics, Holy Cross College (Autonomous), Nagercoil 629 004 (India); Shabu, R. [Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629 003 (India)

    2017-03-15

    Single crystals of L-alanine cadmium chloride (LACC) and cobalt chloride (Co{sup 2+}) doped LACC have been grown by the slow evaporation solution growth technique. The grown crystals were subjected to various characterizations such as powder XRD, SXRD, FTIR, UV–vis, EDAX, TG/DTA, VSM, Dielectric and Second Harmonic Generation (SHG) measurements. The lattice parameters of the grown crystals were determined by single crystal X-ray analysis. EDAX analysis confirms the presence of Co{sup 2+} ion in the host material. The functional group and optical behavior of the crystals were identified from FTIR and UV-vis spectrum analysis. Electrical parameters such as dielectric constant, dielectric loss have been studied. The thermal stability of the compound was found out using TGA/DTA analysis. Second Harmonic Generation of the samples was confirmed by Kurtz-Perry powder technique. Magnetic properties of the crystals studied by VSM were also reported. The encouraging results show that the cobalt chloride doped LACC crystals have greater potential applications in optical devices. - Graphical abstract: Fig (a) and (b) shows the transparent, stable single crystals of pure and doped crystals were obtained using slow evaporation technique. The sizes of pure and doped crystals are 20×9×2 mm{sup 3} and 18×15×1 mm{sup 3} respectively. Fig (c) is the Hysteresis loop traced at room temperature for the pure and doped crystals explains the soft ferromagnetic nature of the doped crystal. The provision for changing the value of coercivity can be used for security, switching and sensing applications. - Highlights: • Defect free crystals of pure and Co{sup 2+} ion doped L-alanine cadmium chloride were grown. • The optical, dielectric and magnetic properties of pure crystals were enhanced by adding Co{sup 2+} ion. • High optical transmittance was obtained in the entire visible and IR region. • Addition of dopant to the pure crystal altered the coercivity. • Low dielectric

  4. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    Science.gov (United States)

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  5. Glutamine and alanine-induced differential expression of intracellular IL-6, IL-8, and TNF-α in LPS-stimulated monocytes in human whole-blood.

    Science.gov (United States)

    Raspé, C; Czeslick, E; Weimann, A; Schinke, C; Leimert, A; Kellner, P; Simm, A; Bucher, M; Sablotzki, A

    2013-04-01

    To investigate the effects of the commonly-used immunomodulators l-glutamine, l-alanine, and the combination of both l-alanyl-l-glutamine (Dipeptamin(®)) on intracellular expression of IL-6, IL-8, and TNF-α during endotoxemia, lipopolysaccharide (LPS)-stimulated human monocytes in a whole blood system were investigated by flow cytometry. Whole blood of twenty-seven healthy volunteers was stimulated with LPS and incubated with three different amino acid solutions (1. l-glutamine, 2. l-alanine, 3. l-alanyl-l-glutamine, each concentration 2 mM, 5 mM, incubation time 3 h). CD14(+) monocytes were phenotyped in whole-blood and intracellular expression of cytokines was assessed by flow cytometry. Our investigations showed for the first time in whole blood probes, imitating best physiologically present cellular interactions, that l-glutamine caused a dose-independent inhibitory effect on IL-6 and TNF-α production in human monocytes stimulated with LPS. However, l-alanine had contrary effects on IL-6 expression, significantly upregulating expression of IL-6 in LPS-treated monocytes. The impact of l-alanine on the expression of TNF-α was comparable with glutamine. Neither amino acid was able to affect IL-8 production in LPS-stimulated monocytes. The combination of both did not influence significantly IL-6 and IL-8 expression in monocytes during endotoxemia, however strongly reduced TNF-α production. For the regulation of TNF-α, l-glutamine, l-alanine and the combination of both show a congruent and exponentiated downregulating effect during endotoxemia, for the modulation of IL-6, l-glutamine and l-alanine featured opposite regulation leading to a canceling impact of each other when recombining both amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. L-β-N-methylamino-l-alanine (BMAA) nitrosation generates a cytotoxic DNA damaging alkylating agent: An unexplored mechanism for neurodegenerative disease.

    Science.gov (United States)

    Potjewyd, G; Day, P J; Shangula, S; Margison, G P; Povey, A C

    2017-03-01

    L-β-N-methylamino-l-alanine (BMAA) is a non-proteinic amino acid, that is neurotoxic in vitro and in animals, and is implicated in the causation of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC) on Guam. Given that natural amino acids can be N-nitrosated to form toxic alkylating agents and the structural similarity of BMAA to other amino acids, our hypothesis was that N-nitrosation of BMAA might result in a toxic alkylating agent, providing a novel mechanistic hypothesis for BMAA action. We have chemically nitrosated BMAA with sodium nitrite to produce nitrosated BMAA (N-BMAA) which was shown to react with the alkyl-trapping agent, 4-(p-nitrobenzyl)pyridine, cause DNA strand breaks in vitro and was toxic to the human neuroblastoma cell line SH-SY5Y under conditions in which BMAA itself was minimally toxic. Our results indicate that N-BMAA is an alkylating agent and toxin suggesting a plausible and previously unrecognised mechanism for the neurotoxic effects of BMAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    Science.gov (United States)

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    Science.gov (United States)

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  9. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    Science.gov (United States)

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The application of Alanine/ESR dosimetry in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Lee, Byung Il [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2014-05-15

    Alanine/Electron spin resonance(ESR) has been proven very effective tool which dosimetric characteristics is better suitable than generally used personnel dosimeter for long term dose estimation. L-α-alanine has unusual stability of radiation induced radicals. The fading is known as about 1% a year by IAEA technical documentary. It also has linear signal response on gamma rays over the wide range of dose quantity. Alanine is a kind of unnecessary amino acid in 20 amino acids. Estimation of the accumulated gamma dose is important to predict the life expectancy of cables. However, exact estimation of gamma dose at containment building of NPP is very difficult, because the variability of estimation value is apparently depending on the each installation position in containment building. Especially, some installation positions near reactor change extremely. So, the data from ESR measurement should be checked to the details on referring installation map and pictures.

  11. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Science.gov (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  12. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Gholamireza, Afsaneh

    2011-01-01

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg -1 di-ammonium hydrogen citrate {(NH 4 ) 2 HCit} and those of (NH 4 ) 2 HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH 4 ) 2 HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH 4 ) 2 HCit}, {alanine + (NH 4 ) 2 HCit}, and {serine + (NH 4 ) 2 HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  13. The Cyanobacteria Derived Toxin Beta-N-Methylamino-L-Alanine and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Elijah W. Stommel

    2010-12-01

    Full Text Available There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis. The non-protein amino acid beta-N-methylamino-L-alanine (BMAA was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.

  14. β-N-methylamino-L-alanine induces neurological deficits and shortened life span in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Zhai, R Grace

    2010-11-01

    The neurotoxic non-protein amino acid, β-N-methylamino-L-alanine (BMAA), was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam. Recently, BMAA has been implicated as a fierce environmental factor that contributes to the etiology of Alzheimer's and Parkinson's diseases, in addition to ALS. However, the toxicity of BMAA in vivo has not been clearly demonstrated. Here we report our investigation of the neurotoxicity of BMAA in Drosophila. We found that dietary intake of BMAA reduced life span, locomotor functions, and learning and memory abilities in flies. The severity of the alterations in phenotype is correlated with the concentration of BMAA detected in flies. Interestingly, developmental exposure to BMAA had limited impact on survival rate, but reduced fertility in females, and caused delayed neurological impairment in aged adults. Our studies indicate that BMAA exposure causes chronic neurotoxicity, and that Drosophila serves as a useful model in dissecting the pathogenesis of ALS/PDC.

  15. Simultaneous determination of F-beta-alanine and beta-alanine in plasma and urine with dual-column reversed-phase high-performance liquid chromatography

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; Stroomer, A. E.; Peters, G. J.; van Gennip, A. H.

    2001-01-01

    F-beta-Alanine and beta-alanine were detected in plasma and urine samples with fluorescence detection of orthophthaldialdehyde derivatives of F-beta-alanine and beta-alanine after separation with dual-column reversed-phase HPLC. The detection limits of F-beta-alanine and beta-alanine in the HPLC

  16. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  17. Hydrogen bonds in crystalline d-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    Directory of Open Access Journals (Sweden)

    Ezequiel A. Belo

    2018-01-01

    Full Text Available Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of d-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of d-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of d-alanine compared with l-alanine.

  18. Alanine-polymer dosemeter of ionizing radiation

    International Nuclear Information System (INIS)

    Tomasinski, Z.; Mirkowski, K.; Panta, P.; Stachowicz, W.

    1994-01-01

    The method of chemical preparation of alanine-copolymer of ethylene and vinyl acetate has been worked out. The material has been in a form of rods. The content of alanine has not exceeded 30%. The ESR signal of alanine radicals has been detected after exposition to ionizing radiation. The dose-response relationship has been presented

  19. Effect of the ionizing radiation on alanine solution for a dosimeter application

    International Nuclear Information System (INIS)

    Ketata, Ameni

    2011-01-01

    The electron spin resonance spectroscopy is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application. In this study, the use of irradiated L-alanine dissolved in color indicator solutions (bromothymol blue and fuchsin) was investigated for dosimetry purposes. This solution has an absorbance varies linearly with the absorbed dose in the dose range of 0-25 kGy for the bromothymol blue, and 0-45 kGy for the fuchsin. The effects of the dye and the alanine concentration, the p H value as well as of the solvent have been studied. With respect to routine application, the stability of dosimeters was also investigated

  20. Alanine transaminase (ALT) blood test

    Science.gov (United States)

    ... gov/ency/article/003473.htm Alanine transaminase (ALT) blood test To use the sharing features on this page, please enable JavaScript. The alanine transaminase (ALT) blood test measures the level of the enzyme ALT in ...

  1. Optical resolution of DL-amino acids by ligand exchange : I. a study of the resolution of DL-aspartic acid with the aid of copper complexes of L(a)-alanine

    NARCIS (Netherlands)

    Kan, Van J.J.H.; Bachus, J.J.P.M.

    1970-01-01

    Spectrophotometric studies were made of the reaction of the Cu complexes of L-alanine with DL-aspartic acid to give a ppt. of a Cu-D-aspartic acid complex, and the effects of stirring, addn. of NaClO4 as supporting electrolyte, pH, and temp. on the quantity of the complex pptd. were detd. Both L-

  2. Alanine metabolism in pyridoxine-depleted rat liver

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Abe, Midori

    1976-01-01

    Alanine metabolism in normal and pyridoxine-deficient rats was studied in vivo and in vitro. Incorporation of 14 C-alanine into various liver components was determined and no difference was shown between normal and deficient animals in the incorporation into liver homogenates, lipid, protein and plasma glucose. Using the liver slice system, gluconeogenic activity from alanine or pyruvate was 40% lower in deficient rats compared with the activity of normal rats. However, inhibition was completely removed by the addition of 2-oxoglutarate to alanine. Penicillamine did not affect glucose formation from alanine in the liver slice. (auth.)

  3. A Novel Synthetic Approach to C-Glycosyl-D- and L-Alanines

    Directory of Open Access Journals (Sweden)

    Miroslava Martinková

    2008-12-01

    Full Text Available C-Glycosyl-(S- and (R-alanines 12a and 12b were synthesized from the known β-C-glycoside 1. The nitrogen function was introduced by aza-Claisen rearrangement of the allylic thiocyanate 7, derived from the corresponding alcohol 6. The absolute configuration of the newly created chiral carbon center (C-3 was assigned by X-ray diffraction analysis of the intermediate 3(S-isothiocyanato-D-glycero-D-galacto-decose 8a.

  4. Synthesis and characterization of some metal complexes of a Schiff base derived from ninhydrin and α,L-alanine

    Directory of Open Access Journals (Sweden)

    Mehabaw Getahun Derebe

    2002-06-01

    Full Text Available Complexes of Mn(II, Fe(III, Co(II, Ni(II and Zn(II with an intermediate Schiff base derived from ninhydrin and α,L-alanine (indane-1,3-dione-2-imine-N-2-propionate, IDIP were successfully synthesized. All complexes were distinctly colored and were characterized by elemental analysis, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The ligand (Schiff base was shown to behave as a monobasic tridentate ONO donor. The Mn(II and Fe(III complexes contain only one ligand molecule plus water and chloride(s per metal ion, while all the others contain two ligand molecules per metal ion. An octahedral geometry is proposed for the metal complexes.

  5. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems.

    Science.gov (United States)

    Popova, A A; Koksharova, O A

    2016-08-01

    Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.

  6. Alanine dosimetry using a spectrophotometric ferric-xylenol orange complex readout

    International Nuclear Information System (INIS)

    Laere, K. van; Buysse, J.; Berkvens, P.

    1989-01-01

    The spectrophotometric dosimetric method using the indirect oxidation of ferrous ions after dissolution of irradiated DL-and L-alanine has been thoroughly investigated with respect to its composition, read-out procedure and dose-response. Optimal concentration of 0.10 N H 2 SO 4 , 0.2 mM xylenol orange and 0.2 mM Fe 2+ were found, giving an absorption maximum at 547 nm. Standardization of chemical processing procedures allows a reproducibility better than 0.5%. The useful dose range has been extended to 0.03-12 kGy by means of slightly different read-out procedure. The quantitative concept of ''indirect yield'', G id , was introduced for this procedure as a measure of the indirect oxidation capacity of the radicals. It was found to be G id,0 (Fe 3+ ) 7.1 ions/100 eV transferred into the alanine. The spectrophotometric readout combines the highly advantageous use of alanine as a dosemeter with the straightforwardness, accuracy and low costs of the chemical procedure. (author)

  7. Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria

    OpenAIRE

    Esterhuizen-Londt, M; Downing, S; Downing, TG

    2011-01-01

    β-N-methylamino-L-alanine (BMAA) is a difficult molecule to detect, primarily due to its presence in low concentrations in complex matrices. This has resulted in contradictory reports on the presence of BMAA in cyanobacteria. We report improved sensitivity of detection using propyl chloroformate derivatisation, liquid chromatographic (LC) separation, and single quadrupole mass spectrometry (MS) detection. Triple quadrupole mass spectrometry (MS/MS) was used to confirm the identity of BMAA in ...

  8. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  9. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit

  10. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation.

    Science.gov (United States)

    Contardo-Jara, Valeska; Schwanemann, Torsten; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2018-04-01

    Bioaccumulation of several cyanotoxins has been observed in numerous food webs. More recently, the neurotoxic, non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) was shown to biomagnify in marine food webs. It was thus necessary to assess whether a human exposure risk via a terrestrial food source could exist. As shown for other cyanotoxins, spray irrigation of crop plants with cyanobacterial bloom-contaminated surface water poses the risk of toxin transfer into edible plant parts. Therefore, in the present study, we evaluated a possible transfer of BMAA via spray irrigation into the seeds of one of the world's most widely cultivated crop plants, Triticum aestivum. Wheat plants were irrigated with water containing 10 µg L -1 BMAA until they reached maturity and seed-bearing stage (205 days). Several morphological characteristics, such as germination rate, number of roots per seedling, length of primary root and cotyledon, and diameter of the stems were evaluated to assess the effects of chronic exposure. After 205 days, BMAA bioaccumulation was quantified in roots, shoots, and mature seeds of T. aestivum. No adverse morphology effects were observed and no free intracellular BMAA was detected in any of the exposed plants. However, in mature seeds, protein-associated BMAA was detected at 217 ± 150 ng g FW -1 ; significantly more than in roots and shoots. This result demonstrates the unexpected bioaccumulation of a hydrophilic compound and highlights the demand to specify in addition to limit values for drinking water, tolerable daily intake rates for the cyanobacterial-neurotoxin BMAA.

  11. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    2015-01-01

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm 3 solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10 cm 2 field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films

  12. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2013-01-01

    Highlights: • Enthalpies of β-alanine dissolution have been measured in aqueous solution of MeOH, EtOH, 1-PrOH and 2-PrOH. • Measured data were reported as functions of composition of water + alcohol mixtures. • Enthalpy coefficients of pairwise interactions have been analyzed in terms of McMillan–Mayer theory. - Abstract: The enthalpies of the solution of β-alanine in H 2 O + (methanol, ethanol, 1-propanol and 2-propanol) mixtures with alcohol content up to 0.4 mol fractions, have been determined calorimetrically at T = 298.15 K. The standard enthalpies of the solution and transfer of β-alanine from water to aqueous alcohol have been calculated. The effect of structure properties of a mixed solvent on specified enthalpy characteristics of β-alanine is discussed. The enthalpy coefficients of pairwise interactions between β-alanine and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in methanol, ethanol, 1-propanol, and 2-propanol sequence. A comparative analysis of thermodynamic characteristics of dissolution of β-alanine and D,L-α-alanine in the mixtures studied has been made

  13. The environmental neurotoxin β-N-methylamino-l-alanine (l-BMAA) is deposited into birds' eggs.

    Science.gov (United States)

    Andersson, Marie; Karlsson, Oskar; Brandt, Ingvar

    2018-01-01

    The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disorders. BMAA is also a known developmental neurotoxin and research indicates that the sources of human and wildlife exposure may be more diverse than previously anticipated. The aim of the present study was therefore to examine whether BMAA can be transferred into birds' eggs. Egg laying quail were dosed with 14 C-labeled BMAA. The distribution of radioactivity in the birds and their laid eggs was then examined at different time points by autoradiography and phosphoimaging analysis. To evaluate the metabolic stability of the BMAA molecule, the distribution of 14 C-methyl- and 14 C-carboxyl-labeled BMAA were compared. The results revealed a pronounced incorporation of radioactivity in the eggs, predominantly in the yolk but also in the albumen. Imaging analysis showed that the concentrations of radioactivity in the liver decreased about seven times between the 24h and the 72h time points, while the concentrations in egg yolk remained largely unchanged. At 72h the egg yolk contained about five times the concentration of radioactivity in the liver. Both BMAA preparations gave rise to similar distribution pattern in the bird tissues and in the eggs, indicating metabolic stability of the labeled groups. The demonstrated deposition into eggs warrants studies of BMAAs effects on bird development. Moreover, birds' eggs may be a source of human BMAA exposure, provided that the laying birds are exposed to BMAA via their diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  15. Effect of Nickel sulphate on Growth, Structural, Optical, Mechanical and thermal properties of L-alanine Single Crystals (LANS)

    Science.gov (United States)

    Jothimani, R.; Selvarajan, P.

    2017-08-01

    The nonlinear optical materials find excellent place in frequency conversion, optical telecommunication, image processing, optical computing, and data storage. Due to possessing chiral symmetry and nature of crystallize in noncentro-symmetric space groups, the amino acids are applicable in NLO applications. A transparent nickel sulphate admixtured L-alanine crystal has been developed by solution method. X ray diffraction analysis depicts the orthorhombic crystal system of the sample. NLO efficiency of the sample was found to be highly pronounced compare to KDP. An enhanced linear optical property of the sample shows its suitability for NLO applications. Thermal behaviour of the sample was found by TGA/DTA analysis. Hardness parameters were also found for the sample by microhardness measurements. Laser damage threshold were also measured using Nd: YAG laser.

  16. Occurrence of β-N-methylamino-l-alanine (BMAA and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    Directory of Open Access Journals (Sweden)

    Emilie Lance

    2018-02-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA, a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC. The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB, β-amino-N-methyl-alanine (BAMA and N-(2-aminoethyl glycine (AEG. This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  17. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans.

    Science.gov (United States)

    Lance, Emilie; Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-02-14

    The neurotoxin β- N -methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino- N -methyl-alanine (BAMA) and N -(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  18. Dosimetry in non-homogeneous media with alanine/EPR mini dosemeters and simulation with PENELOPE Monte Carlo code

    International Nuclear Information System (INIS)

    Vega Ramirez, J.L.; Chen, F.; Nicolucci, P.; Baffa, O.

    2009-01-01

    The dosimetric system of L-alanine mini dosimeter and K-Band EPR spectrometer was tested for the dosimetry in non-homogeneous media through the determination of the Percentage Depth Dose (PDD) curve for a small radiation field. The alanine mini dosimeters were produced by mechanical pressure of a mixture of L-alanine (95%) and PVA (5%) to nominal dimensions of 1 mm diameter and 3 mm length and 3 - 4 mg. For detecting the EPR signal of the mini dosimeters irradiated to 25 Gy, a K-Band (24 GHz) spectrometer was used. The dosimeters were irradiated in a 60 Co radiotherapy unit using 80 cm source skin distance and field sizes of 2.5 x 2.5 cm 2 . The inhomogeneous phantom consisted of acrylic and cork sheets of 30 x 30 x 1 cm 3 ; six cork sheets were sandwiched between five and nine acrylic sheets, which were placed at the top and bottom regions respectively. PDD curves with radiographic film and PENELOPE simulation were also determined. The PDD results for alanine mini dosimeters agreed better than 5.9% with film and PENELOPE. (author)

  19. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  20. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea

    International Nuclear Information System (INIS)

    Sellinger, M.; Ballatori, N.; Boyer, J.L.

    1991-01-01

    In mammalian hepatocytes the L-alanine carrier contains a sulfhydryl group that is essential for its activity and is inhibited by mercurials. In hepatocytes of the evolutionarily primitive little skate (Raja erinacea), HgCl2 inhibits Na(+)-dependent alanine uptake and Na+/K(+)-ATPase and increase K+ permeability. To distinguish between direct effects of HgCl2 on the Na(+)-alanine cotransporter and indirect effects on membrane permeability, [3H]alanine transport was studied in plasma membrane vesicles. [3H]Alanine uptake was stimulated by an out-to-in Na+ but not K+ gradient and was saturable confirming the presence of Na(+)-alanine cotransport in liver plasma membranes from this species. Preincubation of the vesicles with HgCl2 for 5 min reduced initial rates of Na(+)-dependent but not Na(+)-independent alanine uptake in a dose-dependent manner (10-200 microM). In the presence of equal concentrations of NaCl or KCl inside and outside of the vesicles, 75 microM HgCl2 directly inhibited sodium-dependent alanine-[3H]alanine exchange, demonstrating that HgCl2 directly affected the alanine cotransporter. Inhibition of Na(+)-dependent alanine uptake by 30 microM HgCl2 was reversed by dithiothreitol (1 mM). HgCl2 (10-30 microM) also increased initial rates of 22Na uptake (at 5 sec), whereas 22Na uptake rates were decreased at HgCl2 concentrations greater than 50 microM. Higher concentrations of HgCl2 (100-200 microM) produced nonspecific effects on vesicle integrity. These studies indicate that HgCl2 inhibits Na(+)-dependent alanine uptake in skate hepatocytes by three different concentration-dependent mechanisms: direct interaction with the transporters, dissipation of the driving force (Na+ gradient), and loss of membrane integrity

  1. Determination of isodose curves in Radiotherapy using an Alanine/ESR dosemeter

    International Nuclear Information System (INIS)

    Chen, F.; Baffa, O.; Graeff, C.F.O.

    1998-01-01

    It was studied the possible use of an Alanine/ESR dosemeter in the isodose curves mapping in normal treatments of Radiotherapy. It was manufactured a lot of 150 dosemeters with base in a mixture of D-L Alanine dust (80 %) and paraffin (20 %). Each dosemeter has 4.7 mm diameter and 12 mm length. A group of 100 dosemeters of the lot were arranged inside 50 holes of the slice 25 of the phantom Rando Man. The phantom irradiation was realized in two opposed projections (AP and PA) in Co-60 equipment. A group of 15 dosemeters was take of the same lot for obtaining the calibration curve in a 1-20 Gy range. After irradiation the signal of each dosemeter was measured in an ESR spectrometer operating in the X-band (∼ 9.5 GHz) and the wideness of Alanine ESR spectra central line was correlated with the radiation dose. The wideness dose calibration curve resulted linear with a correlation coefficient 0.9996. The isodose curves obtained show a profile enough similar at comparing with the theoretical curves. (Author)

  2. Expression, crystallization and preliminary X-ray crystallographic analysis of Xoo0352, d-alanine-d-alanine ligase A, from Xanthomonas oryzae pv. oryzae

    International Nuclear Information System (INIS)

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Kim, Hyesoon; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-01-01

    Xoo0352, which encodes d-alanine-d-alanine ligase A (DdlA), from X. oryzae pv. oryzae was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of DdlA crystals was performed. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), which is one of the most devastating diseases of rice in most rice-growing countries. d-Alanine-d-alanine ligase A (DdlA), coded by the Xoo0352 gene, was expressed, purified and crystallized. DdlA is an enzyme that is involved in d-alanine metabolism and the biosynthesis of an essential bacterial peptidoglycan precursor, in which it catalyzes the formation of d-alanyl-d-alanine from two d-alanines, and is thus an attractive antibacterial drug target against Xoo. The DdlA crystals diffracted to 2.3 Å resolution and belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 83.0, c = 97.6 Å. There is one molecule in the asymmetric unit, with a corresponding V M of 1.88 Å 3 Da −1 and a solvent content of 34.6%. The initial structure was determined by molecular replacement using d-alanine-d-alanine ligase from Staphylococcus aureus as a template model

  3. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  4. Imaging analysis of direct alanine uptake by rice seedlings

    International Nuclear Information System (INIS)

    Nihei, Naoto; Masuda, Sayaka; Rai, Hiroki; Nakanishi, Tomoko M.

    2008-01-01

    We presented alanine, a kind of amino acids, uptake by a rice seedling to study the basic mechanism of the organic fertilizer effectiveness in organic farming. The rice grown in the culture solution containing alanine as a nitrogen source absorbed alanine approximately two times faster than that grown with NH 4 + from analysis of 14 C-alanine images by Imaging Plate method. It was suggested that the active transport ability of the rice seeding was induced in roots by existence of alanine in the rhizosphere. The alanine uptake images of the rice roots were acquired every 5 minutes successively by the real-time autoradiography system we developed. The analysis of the successive images showed that alanine uptake was not uniform throughout the root but especially active at the root tip. (author)

  5. Alanine metabolism in acute falciparum malaria

    NARCIS (Netherlands)

    Pukrittayakamee, S.; Krishna, S.; ter Kuile, F.; Wilaiwan, O.; Williamson, D. H.; White, N. J.

    2002-01-01

    We investigated the integrity of the gluconeogenic pathway in severe malaria using alanine metabolism as a measure. Alanine disposition and liver blood flow, assessed by indocyanine green (ICG) clearance, were measured simultaneously in 10 patients with falciparum malaria (six severe and four

  6. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  7. The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II.

    Science.gov (United States)

    Brunt, Jason; Carter, Andrew T; Pye, Hannah V; Peck, Michael W

    2018-05-04

    Clostridium botulinum is an anaerobic spore forming bacterium that produces the potent botulinum neurotoxin that causes a severe and fatal neuro-paralytic disease of humans and animals (botulism). C. botulinum Group II is a psychrotrophic saccharolytic bacterium that forms spores of moderate heat resistance and is a particular hazard in minimally heated chilled foods. Spore germination is a fundamental process that allows the spore to transition to a vegetative cell and typically involves a germinant receptor (GR) that responds to environmental signals. Analysis of C. botulinum Group II genomes shows they contain a single GR cluster (gerX3b), and an additional single gerA subunit (gerXAO). Spores of C. botulinum Group II strain Eklund 17B germinated in response to the addition of L-alanine, but did not germinate following the addition of exogenous Ca 2+ -DPA. Insertional inactivation experiments in this strain unexpectedly revealed that the orphan GR GerXAO is essential for L-alanine stimulated germination. GerX3bA and GerX3bC affected the germination rate but were unable to induce germination in the absence of GerXAO. No role could be identified for GerX3bB. This is the first study to identify the functional germination receptor of C. botulinum Group II.

  8. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  9. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc 2 155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc 2 155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  10. Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of alanine racemase as a non-antibiotic-based selectable marker.

    Directory of Open Access Journals (Sweden)

    Sheryl L W Zajdowicz

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711, and B. mallei ATCC 23344 has one (bma1575. Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine

  11. Alanine Racemase Mutants of Burkholderia pseudomallei and Burkholderia mallei and Use of Alanine Racemase as a Non-Antibiotic-Based Selectable Marker

    Science.gov (United States)

    Zajdowicz, Sheryl L. W.; Jones-Carson, Jessica; Vazquez-Torres, Andres; Jobling, Michael G.; Gill, Ronald E.; Holmes, Randall K.

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous d-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for d-alanine. During log phase growth without d-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages

  12. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    International Nuclear Information System (INIS)

    Faghihi, K.; Soleimani, M.; Shabanian, M.

    2011-01-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl 2 , pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  13. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Soleimani, M. [Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Shabanian, M., E-mail: k-faghihi@araku.ac.ir [Young Researches Club, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of)

    2011-07-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl{sub 2}, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  14. Investigating β-N-Methylamino-l-alanine Misincorporation in Human Cell Cultures: A Comparative Study with Known Amino Acid Analogues

    Directory of Open Access Journals (Sweden)

    Rianita van Onselen

    2017-12-01

    Full Text Available Misincorporation of β-N-methylamino-l-alanine (BMAA into proteins has been proposed to be a mechanism of toxicity to explain the role of BMAA in neurodegenerative disease development. However, studies have shown that all detectable BMAA can be removed from proteins by SDS-PAGE purification and that the toxicity of l-canavanine cannot be reproduced in prokaryotes or in a rat pheochromocytoma cell line, strongly indicating that the misincorporation hypothesis of BMAA should be re-investigated. The aim of this study was therefore to determine if BMAA misincorporates into proteins in cells of human origin with subsequent misincorporation-type toxicity. Almost complete loss of viability in response to exposure to l-4-fluorophenylalanine and l-m-tyrosine was observed in all of the cell lines, corresponding to a concentration-dependent increase of the analogues in protein extracts from exposed cells. In contrast, BMAA exposure resulted in slight toxicity in one of the cell lines but the observed toxicity was not the result of misincorporation of BMAA into proteins, as no BMAA was detected in any of the SDS-PAGE purified protein extracts that were obtained from the cells following BMAA exposure. The results show that BMAA is not misincorporated into human proteins and that misincorporation is not a valid mechanism of toxicity.

  15. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    Science.gov (United States)

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-06

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.

  16. Nuclear reaction of 10 B (n, α) 7 Li and grain size effects on the production of free radicals in alanine

    International Nuclear Information System (INIS)

    Zurita Petatan, S.L.

    1993-01-01

    In general, it is important to know the physical and chemical properties of any material that is exposed to ionizing radiation. In particular, in dosimetric work, the amount of the absorbed doses by these materials is of much interest, in such a way that several methods have been developed in the past. An important and quantitatively accessible radiation effect in organic substances is the production of free radicals that can be easily measured by 'ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY (EPR)'. Numerous studies have been now been made on pure D L-Alanine irradiated with different radiation sources. Examination of the irradiated samples reveals the production of a stable free radical (CH 3 - CH. -COOH). In particular, gamma and electron irradiated D L-Alanine has received wide attention in the high doses interval (10 - 10 5 Gy). In contrast, there are very few EPR studies on thermal neutron radiation induced free radicals in pure D L-alanine. This may be due to the weak EPR signals observed in the irradiated samples. The objective of this work is to study for the first time the increase of the radical yield produced in neutron irradiated borated alanine by the EPR technique. For this purpose alanine has been mixed with borax in different stoichiometric proportions and grain sizes. When the mixture is neutron irradiated, the boron of the borax may experience a neutron capture reaction, 10 B (n, α) 7 Li. With this nuclear reaction it is supposed that the α particles will may impinge on the alanine molecules, producing in this way extra free radicals. Samples were irradiated in the thermal column of a Triga Mark III nuclear reactor with a thermal neutron flux of 5 x 10 7 n/Cm 2 -s. A signal enhancement of up to 1260 % is observed when samples of alanine-borax were intimately mixed in a stoichiometric ratio of 1:1. We also studied dosimetric characteristics of the mixed samples such as: a) Sensibility. b) Accuracy. c) Traceability. d) Stability. e)Fading. f

  17. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  18. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....... dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition......, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence...

  19. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    Science.gov (United States)

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  20. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA and Its Carbamate Adducts at Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    David Zimmerman

    Full Text Available Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC is associated with β-methylamino-L-alanine (BMAA, a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY. The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin.

  1. Purification and characterization of l,(l/d)-aminopeptidase from Guinea pig serum.

    Science.gov (United States)

    Krstanović, Marina; Brgles, Marija; Halassy, Beata; Frkanec, Ruza; Vrdoljak, Anto; Branović, Karmen; Tomasić, Jelka; Benedetti, Fabio

    2006-01-01

    Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-D-iso-Gln-meso-DAP(omegaNH(2))-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (K(M) 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (K(M)=0.6 mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin.

  2. Alanine-ESR dosimetry for radiotherapy IAEA experience

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.; )

    1997-01-01

    At present, the most commonly used transfer dosimeters for radiotherapy applications are TL dosemeters. They are being used for intercomparison between SSDLs (about 70) and the IAEA dosimetry laboratory. However, there are some undesirable characteristics of this dosimetry system. We have a study in progress at the IAEA to evaluate the alanine-ESR systems as an alternative to TLDs. There are several desirable qualities which make alanine an attractive dosemeter. Preliminary data suggest that the alanine-ESR dosimetry system has the potential to replace TLDs for intercomparison amongst SSDLs in the therapy-level dose regions. (Author)

  3. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    Science.gov (United States)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  4. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  5. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    Science.gov (United States)

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  6. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    Science.gov (United States)

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  7. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    Science.gov (United States)

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.

  8. Alanine - Valine dynamics in pregnant rabbits | Emudianughe ...

    African Journals Online (AJOL)

    [15N]-alanine and [15N]–valine dynamics were studied in 29 -30 days pregnant New-Zealand rabbits. Over the experimental period, there was no detectable significant difference of mean ± SD of alanine concentrations within the sampling intervals in maternal, umbilical venous and arterial blood samples suggesting that ...

  9. Role of H2O2 on the kinetics of low-affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial cells

    International Nuclear Information System (INIS)

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-01-01

    Research highlights: → H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. → It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na + -dependent [ 14 C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H 2 O 2 on the Na + -dependent [ 14 C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na + dependence of [ 14 C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na + removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H 2 O 2 levels in the extracellular medium significantly reduced Na + -K m and V max values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na + -dependent [ 14 C]-L-alanine uptake. After removal of apocynin from the culture medium, H 2 O 2 levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na + -K m and V max of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

  10. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  11. Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties

    Science.gov (United States)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-09-01

    In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).

  12. EPR/alanine dosimetry for two therapeutic proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio, E-mail: maurizio.marrale@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Carlino, Antonio [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700 Wiener Neustadt (Austria); Gallo, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Laboratorio PH3DRA, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Longo, Anna; Panzeca, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony [Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  13. EPR/alanine dosimetry for two therapeutic proton beams

    International Nuclear Information System (INIS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-01-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  14. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The result of Alanine/ESR dosimetry at Wolsung unit 1

    International Nuclear Information System (INIS)

    Park, Byeong Ryong; Choi, Hoon; Lim, Young Khi

    2008-01-01

    It needs accurate estimation of radiation level for verifying machinery and cable in Nuclear Power Plant. Therefore, in this study, we used ESR(Electron Spin Resonance) system for estimate dose of Alanine dosimeter. Alanine/ESR dosimetry, already known as a dosimetric method in medical and industrial field, was applied to estimate dose quantity at cable locations within a nuclear power plant as a part of equipment qualification program. Alanine/ESR dosimetry of absorbed dose range is 1 - 100 KGy. The alanine dosimeter is not significantly affected by temperature and fading is limited to 1% per year. The alanine dosimeters were fixed on the targeted cable or nearest position to measure dose quantity to get accurate value. Alanine dosimeters were scanned by commercially used two different ESR systems, e-scan and EMX series for alanine dosimeters. To estimate more accurate dose, two environmental correction factors, irradiation temperature and dosimeter weight, were used in calculation of absorbed dose quantity. In this study, dose values which are alinine dosimeter from Wolsong unit 1 are measured by two ESR systems. And then the results was compared each other

  16. Partial molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water, NaCl, and DMSO aqueous solutions at T 298.15 K

    International Nuclear Information System (INIS)

    Yuan Quan; Li Zhifen; Wang Baohuai

    2006-01-01

    The apparent molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water and in the aqueous solutions of NaCl and DMSO with various concentrations at T = 298.15 K have been measured by the precise vibrating-tube digital densimeter. The calculated partial molar volumes at infinite dilution have been used to obtain corresponding transfer volumes from water to various solutions. The experimental results show that the standard partial molar volumes of the above amino acids and peptide at the dilute DMSO aqueous solutions are very close to those in water. However, the volumes show several types of variations with the increase of the concentrations of DMSO due to different types of side chain of amino acids, which should be discussed specifically. The NaCl changes considerably the infinite dilution standard partial molar volumes of the above amino acids and peptide in the aqueous solutions. The infinite dilution standard partial molar volumes of the each amino acids and peptide increase with the concentrations of NaCl. The experimental results have been rationalized by a cosphere overlap model

  17. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  18. Characterization of lithium formate EPR dosimeters for high dose applications – comparison with alanine

    DEFF Research Database (Denmark)

    Waldeland, Einar; Helt-Hansen, Jakob; Malinen, Eirik

    2011-01-01

    Lithium formate and l-α-alanine (alanine) EPR dosimeters were irradiated to doses from 100 Gy to 100 kGy. The irradiations were mainly performed at a Gammacell irradiator with dose rate of approximately 5.5 kGy h−1. Both the peak-to-peak amplitude of the first derivative EPR spectrum and the area...... irradiated to 1 kGy at temperatures from 11ºC to 40ºC were analyzed. By fitting an ‘exponential rise to maximum'-function to the dependence of the area under the EPR absorption spectrum on the dose, saturation doses of 53 kGy and 87 kGy for lithium formate and alanine, respectively, were found. Lower...... estimates were found when analyzing the dose dependence of the peak-to-peak amplitude. Furthermore, the peak-to-peak width was found to increase for doses above 10 kGy. No dose rate dependence for any of the studied materials was observed and the temperature coefficients at 25ºC (i.e. change in dosimeter...

  19. Conformational flexibility of L-alanine zwitterion determines shapes of Raman and Raman optical activity spectral bands

    Czech Academy of Sciences Publication Activity Database

    Kapitán, Josef; Baumruk, V.; Kopecký ml., V.; Bouř, Petr

    2006-01-01

    Roč. 110, č. 14 (2006), s. 4689-4696 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA203/06/0420 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * molecular flexibility * alanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006

  20. Advancements in accuracy of the alanine dosimetry system. Part 1. The effects of environmental humidity

    International Nuclear Information System (INIS)

    Sleptchonok, Olga F.; Nagy, Vitaly; Desrosiers, Marc F.

    2000-01-01

    A one-year study of the EPR signal of γ-irradiated ( 60 Co) L-α-alanine with simultaneous monitoring of the cavity Q-factor was undertaken. The widespread opinion that the EPR signal remains absolutely stable under normal laboratory storage conditions is inaccurate. At 0% humidity, the signal can be regarded as stable within ±1% of its initial value for 6 months for 1 and 10 kGy doses, but for only 3 months for 100 kGy. When stored at the same relative humidity values up to 60%, the fading rates for dosimeters irradiated to 1 and 10 kGy are similar, whereas signals of dosimeters irradiated to 100 kGy fade considerably faster for all humidities. The rates of fading increase with the relative humidity, especially above 60% R. H. Environmental humidity also deteriorates the accuracy of alanine dosimetry by changing the resonant cavity Q-factor. This is particularly important when irradiated alanine dosimeters are used as instrument calibration standards. Short-term changes in alanine EPR signal amplitudes were recorded upon removal of the irradiated dosimeters from their storage environments. The importance of an in situ standard to correct for measurement errors due to environmental effects is demonstrated. (author)

  1. Synthesis, characterization and photo behavior of new poly(amide-imide/montmorillonite nanocomposite containing N,N'-pyrromellitoyl-bis-L-alanine

    Directory of Open Access Journals (Sweden)

    M. Hajibeygi

    2013-09-01

    Full Text Available Two new samples of poly(amide-imide-nanocomposites were synthesized by insertion nano silicate particles in poly(amide-imide (PAI chains using a convenient solution intercalation technique. PAI as a source of polymer matrix was synthesized by the direct polycondensation reaction of N,N'-pyrromelitoyl-bis-L-alanine with 4,4'-diamino diphenyl ether in the presence of triphenyl phosphite (TPP, CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP. Morphology and structure of the resulting PAI-nanocomposite films with 5 and 10% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA and water uptake measurements.DOI: http://dx.doi.org/10.4314/bcse.v27i3.15

  2. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  3. Characterization of a meso-chiral isomer of a hexanuclear Cu(II) cage from racemization of the L-alanine Schiff base.

    Science.gov (United States)

    Rajesh, Chinnaiyan Mahalingam; Ray, Manabendra

    2014-09-14

    We are reporting structural characterization of two new hexanuclear cages (H3O)2[Cu3(μ3-OH)(μ3-NH3)(0.5)(L)3]2·8H2O (1) and (H3O)2[Cu3(μ3-OH)(μ3-H2O)(0.5)(L)3]2·8H2O (1a) where L(2-) is the dianionic form of the Schiff base of L-alanine and salicylaldehyde. The complex 1 has two C3 symmetric hydroxo bridged trinuclear halves joined by an ammonia or water molecule at the center through H-bonding. Each of the trinuclear halves is enantiopure but of opposite chirality to the other half, making the hexanuclear unit a meso isomer. Temperature dependent magnetic measurements showed the presence of ferromagnetic interactions among trinuclear Cu(II) units, a rare occurrence among trinuclear Cu(II) complexes. Characterization of the LiHL showed it to be enantiopure. Addition of a base, monitored using optical rotation, showed that racemization occurs as a result of base addition. The racemization depends on the base as well as the temperature. Base or Cu(II) induced racemization of amino acid derivatives has been indicated in a number of cases in the past but structural characterization of the products or formation of this type of chiral hexanuclear architecture was never reported. Structures of the complex and the ligand have a number of interesting H-bonding situations.

  4. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  5. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy

    International Nuclear Information System (INIS)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H.

    2015-10-01

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm 2 and 1 x 1 cm 2 at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  6. Alanine/ESR dosimetry system for routine use in radiation processing

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.; Hara, H.; Kashiwazaki, S.

    1993-01-01

    A new alanine-polystyrene(PS) dosimeter prepared with simplified molding procedure and an automatic desk-top dose-reader of alanine dosimeter were developed for the purpose of routine use. Combination of these two allows us to apply a reliable alanine/ESR dosimetry system to routine dosimetric process control in industrial gamma radiation processing. (Author)

  7. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  8. Reproducibility and signal response linearity of Alanine gel dosimeter

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo Silva; Campos, Leticia Lucente

    2008-01-01

    Gel Dosimetry has been studied mainly for medical applications, because it presents signal response in the dose range used in radiotherapy treatments and it can be applied for three dimensional dosimetry. Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. These ferric ions concentration can be measured by spectrophotometry technique. This work aims to study the reproducibility of the alanine gel solutions and the signal response as a function of gamma radiation dose, considering that these two properties are very important for characterizing and standardizing any dosimeter. (author)

  9. Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids

    NARCIS (Netherlands)

    Steen, Anton; Palumbo, Emmanuelle; Deghorain, Marie; Cocconcelli, Pier Sandro; Delcour, Jean; Kuipers, Oscar P.; Kok, Jan; Buist, Girbe; Hols, Pascal

    Mutations in the genes encoding enzymes responsible for the incorporation of D-Ala into the cell wall of Lactococcus lactis affect autolysis. An L. lactis alanine racemase (alr) mutant is strictly dependent on an external Supply Of D-Ala to be able to synthesize peptidoglycan and to incorporate

  10. Corrosion inhibition of nickel in H2SO4 solution by alanine

    International Nuclear Information System (INIS)

    Hamed, E.; Abd El-REhim, S.S.; El-Shahat, M.F.; Shaltot, A.M.

    2012-01-01

    Highlights: ► Corrosion of Ni in 1 M H 2 SO 4 in the absence and the presence of alanine. ► Alanine acts as a moderate mixed type inhibitor. ► Physical adsorption of alanine and formation of protective film are on Ni surface. ► Addition of KI improves the inhibition efficiency (synergistic effect). ► EFM technique is in reasonably good agreement with the different techniques used. - Abstract: The effect of alanine, as a safe inhibitor, was studied by measuring the corrosion of Ni in aerated and stagnant 1 M H 2 SO 4 solution (pH ∼0.2). Measurements were performed under various conditions using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and the new electrochemical frequency modulation (EFM) methods. The obtained results showed that the addition of alanine alone gives a moderate inhibition and acts as an anodic-type inhibitor. The inhibition is due to physical adsorption of alanine on the metal surface. The inhibition efficiency enhances with increasing alanine concentration and immersion time but decreases with rise in temperature. The apparent activation energy, E a , is higher in the presence than in the absence of alanine. Addition of I − ions greatly improves the inhibition efficiency of alanine. The synergistic effect is due to enhanced adsorption of alanine cations by chemisorbed I − anions on the metal surface. The results obtained from polarization, EIS and EFM techniques are in good agreement indicating that EFM method can be used successfully for monitoring corrosion rate of Ni in H 2 SO 4 solution with and without alanine.

  11. Preparation of α-alanine-3H by the interaction of atomic tritium heated up to 2000 K with a solid alanine target at 77 K

    International Nuclear Information System (INIS)

    Filatov, Eh.S.; Simonov, E.F.; Shishkov, A.V.; Mogil'nikov, V.P.

    1979-01-01

    Absorption of hydrogen by alanine targets, the target behaviour and the yield of α-alanine- 3 H were studied in experiments involving straight passage of H and T atoms from the sourse (2000 K) to the target (77 K) as a function of the exposure time. In the studies with 3 H 2 the radioactivity of the gas phase was decreasing more rapidly than the overall pressure of hydrogen: H 3 H accumulates more rapidly in the gas phase. Alanine decomposition products were identified. The conditions for the studies of α-alanine- 3 H are suggested

  12. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  13. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    Directory of Open Access Journals (Sweden)

    Ximena Escalera-Fanjul

    2017-06-01

    Full Text Available Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s. Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64

  14. Alanine-ESR dosimeter: application for dosimetry in industrial electron beam accelerator

    International Nuclear Information System (INIS)

    Murali, S.; Venkataramani, R.; Pushparaja; Sarma, K.S.S.; Natarajan, V.; Sastry, M.D.

    2000-01-01

    The feasibility of DL-α-alanine, as ESR dosimeter in powder form, was examined under the conditions of pulse electron accelerator used as an industrial irradiator. The investigations were carried out to examine the following aspects: (i) Alanine-ESR dose response in irradiator characteristics viz. various beam energies, beam currents, product conveying speeds, (ii) linearity of dose response of irradiated alanine signal for suitable range, (iii) dose uniformity of the irradiated samples and (iv) depth dose measurements using alanine powder dosimeters sandwiched between polyethylene layers. Experiments were carried out by varying some of the irradiator parameters at mobile mode of the conveyor (product under movement) and also at stationary mode for different EB energies and pulse rates. For estimation of EB dose, signal intensities of gamma irradiated DL--alanine powder calibrated with Fricke dosimetry have been used. Feasibility of application of alanine ESR dosimeter for low dose measurement down to 350 Gy has been experimentally established. The present studies show that under variable operating conditions of irradiator, alanine ESR dosimetry is suitable for dosimetric applications from low dose (350 Gy) to high dose (53 kgy). (author)

  15. A molecular receptor selective for zwitterionic alanine.

    Science.gov (United States)

    Rubio, Omayra H; Taouil, Rachid; Muñiz, Francisco M; Monleón, Laura M; Simón, Luis; Sanz, Francisca; Morán, Joaquín R

    2017-01-04

    A molecular receptor has been synthesized joining an aza-crown ether with a chiral chromane which mimics the oxyanion hole of the enzymes. With this receptor an apolar host-guest complex with zwitterionic alanine has been achieved through the formation of up to seven H-bonds. This complex allows the extraction of aqueous alanine to a chloroform phase, while other natural amino acids are poorly extracted or are not extracted at all. Due to the chiral nature of the receptor, enantioselective extraction from the aqueous alanine solution to a chloroform phase takes place. X-Ray analysis combined with anisotropic effects, NOE and CD studies revealed the absolute configuration of both strong and weak complexes. Modelling studies also support the proposed structures. The presence of an oxyanion-hole motif in this structure was corroborated by X-ray diffraction studies.

  16. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    Science.gov (United States)

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  17. Effects of Manganese (Ii Sulphate on Structural, Spectral, Optical, Thermal and Mechanical Properties of L-Alanine Sodium Sulphate Single Crystals

    Directory of Open Access Journals (Sweden)

    F. Praveena

    2017-04-01

    Full Text Available New Non-linear Optical materials have been attracting in the research world for their potential applications in emerging opto-electronic technology. The dipolar nature of amino acid leads to peculiar physical and chemical properties, thus making a good candidate for NLO applications. Single crystals of manganese(II sulphate doped L-Alanine sodium sulphate(LASS has been synthesized by slow evaporation technique. Structural property of the grown crystals are characterized by X-ray powder diffraction,FT-IR spectral analysis conforms all the functional groups. Thermogravity (TG and differential themogravimetric (DTA analysis have been performed to study the thermal stability of the crystals. The second harmonic generation efficiency was measured by Kurtz-Perry powder technique. The transmission and absorption of electromagnetic radiation is analysed through UV-VIS spectrum. Microhardness was measured at different applied load to understand the mechanical stability of the crystal.

  18. Dosimetry of electron and gamma radiation with DL-alanine

    International Nuclear Information System (INIS)

    Costa, Z.M. da; Campos, L.L.

    1996-01-01

    A dosimetric method based on the quantitative determination of stabilised free radicals in irradiated crystalline DL-alanine by electron spin resonance (ESR) spectroscopy was proposed as early in 1962. Since then, alanine dosemeters owing to their unique properties have been investigated by many authors and used in dosimetry of various types of radiation, namely gamma rays, electron and neutrons. Alanine is a simple aminoacid, on irradiation at room temperature predominantly free paramagnetic radicals of the type CH 3 -CH-COOH are produced. This paper reports the application of powder DL-alanine/ESR dosemeter for measurement of absorbed dose of gamma radiation from 60 Co sources and reactor nucleus and electron beams from accelerator. The obtained results give useful information about the instrumental care necessary to obtain the needed overall accuracy in determination of absorbed dose. (author)

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system... Test Systems § 862.1030 Alanine amino transferase (ALT/SGPT) test system. (a) Identification. An alanine amino transferase (ALT/SGPT) test system is a device intended to measure the activity of the...

  20. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    Science.gov (United States)

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates.

  1. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  2. Modifiable clinical and lifestyle factors are associated with elevated alanine aminotransferase levels in newly diagnosed type 2 diabetes patients

    DEFF Research Database (Denmark)

    Mor, Anil; Svensson, Elisabeth; Rungby, Jørgen

    2014-01-01

    BACKGROUND: Current literature lacks data on markers of non-alcoholic fatty liver disease (NAFLD) in newly diagnosed type 2 diabetes mellitus (T2DM) patients. We therefore, conducted a cross-sectional study to examine modifiable clinical and lifestyle factors associated with elevated alanine...... aminotransferase (ALT) levels as a marker of NAFLD in new T2DM patients. METHODS: Alanine aminotransferase levels were measured in 1026 incident T2DM patients enrolled in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. We examined prevalence of elevated ALT (>38 IU/L for women....../L (interquartile range: 22-41 IU/L) in men. Elevated ALT was found in 16% of incident T2DM patients. The risk of elevated ALT was increased in patients who were diabetes debut [adjusted prevalence ratio (aPR): 1.96, 95% confidence interval (CI): 1.15-3.33], in those with alcohol overuse (>14...

  3. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  4. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    International Nuclear Information System (INIS)

    Lanuza, L.G.; Cabalfin, E.G.; Kojima, T.; Tachibana, H.

    1999-01-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author)

  5. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lanuza, L G; Cabalfin, E G [Philippine Nuclear Research Institute, Quezon City (Philippines); Kojima, T; Tachibana, H [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research institute, Takasaki (Japan)

    1999-03-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author) 8 refs, 3 figs, 4 tabs

  6. The antiproton depth–dose curve measured with alanine detectors

    CERN Document Server

    Bassler, Niels; Palmans, Hugo; Holzscheiter, Michael H; Kovacevic, Sandra

    2008-01-01

    n this paper we report on the measurement of the antiproton depth–dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen and Olsen for conversion of calculated dose into response. A good agreement is observed between the measured and calculated relative effectiveness although an underestimation of the measured values beyond the Bragg-peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use of the alanine detectors for dosimetry of mixed radiation fields.

  7. The Antiproton Depth Dose Curve Measured with Alanine Detectors

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, Johnny Witterseh; Palmans, Hugo

    2008-01-01

    In this paper we report on the measurement of the antiproton depth dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen et Olsen for conversion of calculated dose...... into response. A good agreement was observed between the measured and calculated relative effectiveness although a slight underestimation of the calculated values in the Bragg peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use...... of the alanine detectors for dosimetry of mixed radiation fields....

  8. A High Sensitivity EPR Technique for Alanine Dosimetry (invited paper)

    International Nuclear Information System (INIS)

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1998-01-01

    Uncertainties of ± 5 mGy were achieved in the measurement of alanine dosemeters using optimised EPR parameters, instrumentation, spectral manipulation and subtraction techniques. Modulation amplitude and microwave power were adjusted to combine resonances of two neighbouring alanine signals. Instrumental variations were minimised by combining and subtracting pre- and post-measurement spectra of the empty EPR tube. A spectrum of the native signal of non-dosed alanine was generated from a single batch of dosemeters and subtracted from spectra of the irradiated dosemeters, also from the same batch. Field alignment was adjusted with the use of an in-cavity Mn ++ standard. A constant rotation goniometer was used to eliminate anisotropies in the EPR tube and alanine samples. Finally, digital filters were applied to the resulting spectra. (author)

  9. Characterization of the factors having an influence on the evolution of the EPR signal of irradiated alanine

    International Nuclear Information System (INIS)

    Feaugas-Le-Berre, Valerie

    1999-01-01

    EPR/alanine dosimetry has been used by the LNHB (Laboratoire National Henri Becquerel) since many years for applied metrology. This technic is based on the measurement of the EPR signal of the free radicals induced in alanine by irradiation. The aim of this work is to characterize the factors having an influence on the evolution of the amplitude of the EPR signal of irradiated alanine to limit the uncertainties on the determination of the absorbed dose. The first step of this work has been the choice of the dosimeter. A bibliographic study completed by experiments on the response of alanine isomers to the dose and on its stability with time has lead us to choose L-α-alanine powder as dosimeter. The influence of the recording parameter of the spectrometer on the characteristics of the EPR spectrum has then been studied. This has enabled us to optimize the recording conditions of EPR spectra. As the angular anisotropy of the EPR signal limits the measurements reproducibility, an experimental protocol has been defined to solve this problem. The repeatability of the measurements has been enhanced by modifying the spectrometer and using an internal standard constituted of single crystals of CuSO 4 .5H 2 O. As the amplitude of the EPR signal is sensitive to the measurement temperature, a method of normalization of the results to 20 C has been determined. We have studied the influence of an irradiation parameter and of environmental parameters. We have shown that the EPR signal amplitude increases with irradiation temperature. The EPR signal amplitude and its evolution vary strongly with storage conditions (temperature and moisture) of the dosimeter before and after irradiation. The presence of moisture in alanine powder leads to a loss of signal amplitude. The dosimeters exposition to light also entails a loss of amplitude. Oxygen does not influence the EPR spectrum of alanine. We have noticed that the EPR signal amplitude of samples stored in absence of moisture

  10. ß-N-Methylamino-L-alanine (BMAA Toxicity Is Gender and Exposure-Age Dependent in Rats

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Cyanobacterial β-N-methylamino-L-alanine (BMAA has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer’s Disease (AD, Amyotrophic Lateral Sclerosis (ALS or Parkinson’s Disease (PD. We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats’ natural passive defense mechanism, and potential memory deficits and changes to the rat’s natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3–7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.

  11. Determination of the dose of traffic in HDR brachytherapy with ALANINE/R PE technique

    International Nuclear Information System (INIS)

    Guzman Calcina, C. S.; Chen, F.; Almeida, A. de; Baffa, O.

    2001-01-01

    It determines, experimentally, the dose of traffic in brachytherapy for High Dose Rate (HDR), using for the first-time the Electronic Paramagnetic Resonance (EPR) technique with alanine detectors. The value obtained is the published next to obtained using lithium fluoride thermoluminescent dosimeters [es

  12. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery

    International Nuclear Information System (INIS)

    Wasserman, D.H.; Williams, P.E.; Lacy, D.B.; Green, D.R.; Cherrington, A.D.

    1988-01-01

    These studies were performed to assess the importance of intrahepatic mechanisms to gluconeogenesis in the dog during 150 min of treadmill exercise and 90 min of recovery. Sampling catheters were implanted in an artery and portal and hepatic veins 16 days before experimentation. Infusions of [U- 14 C]alanine, [3- 3 H]glucose, and indocyanine green were used to assess gluconeogenesis. During exercise, a decline in arterial and portal vein plasma alanine and in hepatic blood flow led to a decrease in hepatic alanine delivery. During recovery, hepatic blood flow was restored to basal, causing an increase in hepatic alanine delivery beyond exercise rates but still below resting rates. Hepatic fractional alanine extraction increased from 0.26 +/- 0.02 at rest to 0.64 +/- 0.03 during exercise and remained elevated during recovery. Net hepatic alanine uptake was 2.5 +/- 0.2 mumol.kg-1.min-1 at rest and remained unchanged during exercise but was increased during recovery. The conversion rate of [ 14 C]alanine to glucose had increased by 248 +/- 38% by 150 min of exercise and had increased further during recovery. The efficiency with which alanine was channeled into glucose in the liver was accelerated to a rate of 338 +/- 55% above basal by 150 min of exercise but declined slightly during recovery. In conclusion, 1) gluconeogenesis from alanine is accelerated during exercise, due to an increase in the hepatic fractional extraction of the amino acid and through intrahepatic mechanisms that more efficiently channel it into glucose

  13. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia

    Science.gov (United States)

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W.

    2016-01-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  14. Orientation of crystals in alanine dosimeter assessed by DRS, as seen in EPR spectra evaluation

    International Nuclear Information System (INIS)

    Grazyna Przybytniak; Zagorski, Z.P.

    1996-01-01

    The alanine dosimeter made for evaluation by diffuse light reflection spectrophotometry (ALA/DRS) does not show the effect of orientation of crystals. Supposed deviation from random orientation has been investigated by EPR spectroscopy. EPR investigation shows that in spite of the very fine size of L-alanine crystals, they are oriented in thin layers of the polyethylene matrix. Specially prepared films with deliberately well oriented crystals have confirmed this observation. Our ALA/DRS dosimeter can be evaluated by the EPR method for the concentration of free radicals, providing that the dominating crystal orientation in the dosimetric film is indicated on it as an arrow, and the sample is inserted into the magnetic cavity always in the same orientation as has been done during the calibration operation. (author). 6 refs., 2 figs

  15. Synthesis and characterization of new polyamides derived from alanine and valine derivatives

    Directory of Open Access Journals (Sweden)

    El-Faham Ayman

    2012-11-01

    Full Text Available Abstract Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property

  16. Effect of dipotassium hydrogen phosphate on thermodynamic properties of glycine and L-alanine in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Kaur, Kirtanjot

    2012-01-01

    Highlights: ► Densities and speeds of sound of amino acids in DKHP. ► Apparent molar volume and apparent molar compressibilities were calculated. ► The partial molar expansibilities at infinite dilution φ E 0 were obtained. ► Hydration number n H was calculated. ► The results are discussed in terms of solute–solvent interactions. - Abstract: Densities, ρ, speed of sound, u for glycine, L-alanine have been measured in aqueous solutions of dipotassium hydrogen phosphate (DKHP) ranging from 0.2, 0.4, 0.6 and 0.8 mol·kg −1 at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, partial molar expansibility have been derived from density data. Experimental speeds of sound data were used to estimate apparent molar adiabatic compressibility, limiting apparent molar adiabatic compressibility, transfer parameter and hydration number. These parameters have been discussed in the light of ion-ion and ion-solvent interactions.

  17. Uses of polymer-alanine film/ESR dosimeters in dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfeng; Dai Jinxian; Lu Ting; Chen Ruyi; Yang Hua

    1993-01-01

    Alanine ESR dosimetry is a reliable method, used in a various fields of ionizing radiation. The polymer-alanine film/ESR dosimeters of 0.3 -0.4 mm thickness were prepared and their dosimetric properties were studied for 60 Co γ photons and 3 - 5 MeV electrons in the dose range from 20 Gy to 100 kGy. The results show that under normal conditions the alanine calibration curves are linear in the dose range from 100 Gy to 10kGy. The dose profiles at the electron radiation field were measured with the film alanine dosimeters. The polymer-alanine film dosimeters were used for ion implantation of 400 keV ion implantor. Their dose response and energy dependence were investigated initially. (Author)

  18. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    International Nuclear Information System (INIS)

    Paik, Manjeong; Jeon, So Hee; Lee, Wonjae; Kang, Jong Seong; Kim, Kwan Mook

    2014-01-01

    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures

  19. Thin layer alanine dosimeter with optical spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2000-01-01

    Experience in the high dose dosimetry of gamma radiation, gathered in our group from the sixties till now, allows to express the opinion, that techniques applied are adequate to solve problems. It can be confirmed by the fact that 60% of laboratories participating in the international comparison during the duration of the contract obtained satisfactory results. Adaptation of these methods, in particular of the alanine-ESR dosimetry to highly inhomogeneous fields of EB gives poor results, as it has been shown on thin films of the alanine/polymer composite. However, the applications of these films give excellent results if the concentration of the radical CH 3 C·H CO 2 - is measured by diffuse reflection spectrophotometry, which tolerates poor transparency of the composite and is insensitive to the orientation of crystals of alanine in thin films, what is disqualifying the ESR measurements. The development of thin-film dosimeters for EB processing was possible due to new developments in solid state radiation chemistry. The research has revealed some unsolved questions, e.g. of the high temperature coefficient of alanine based dosimeters, of the role of the size of spurs and the necessity to adapt dosimetry to the energy spectrum of electrons, because every type of accelerators differs in that respect. (author)

  20. Alanine turnover in the postabsorptive state and during parenteral hyperalimentation before and after surgery

    NARCIS (Netherlands)

    Sauerwein, H. P.; Michels, R. P.; Cejka, V.

    1981-01-01

    Influence of total parenteral nutrition and operation on alanine turnover and venous alanine concentration was determined in 5 patients with stomach carcinoma using single technique of U-14C alanine. Every patient served at his own control. In the postabsorptive state alanine turnover was 1.63 +/-

  1. Preparation of alanine/ESR dosimeter using different binder of polymer blend

    International Nuclear Information System (INIS)

    Razzak, M.T.; Sudiro, Sutjipto; Sudradjat, Adjat; Waskito, Ashar; Djamili, M.F.

    1995-01-01

    Different composition of polymer blend of low density polyethylene (PE) and polystyrene (PS) have been studied to be used as a binder for the preparation of Alanine/ESR dosimeter. The polymer binder and Alanine powder were blended in Laboplastomil Mixer at 140 o C and then it was pressed into a plastic film of 0.50 mm thickness. The film was cut into sample size of 250 mm x 2.5 mm and irradiated by gamma rays from a cobalt-60 source at different dose and dose rate. It was found that a blend of Alanine, PS and PE in composition of 60:30:10 is appropriate to prepare the Alanine/ESR dosimeter. (author)

  2. Item Analysis di una prova di lettura a scelta multipla della certificazione di italiano per stranieri CILS (livello B1; sessione estiva 2012

    Directory of Open Access Journals (Sweden)

    Paolo Torresan

    2014-10-01

    Full Text Available Nell’articolo presentiamo un’analisi degli item di una prova di lettura a scelta multipla di livello B1 della certificazione CILS (Università per Stranieri di Siena. L’indagine si muove da una prima ricognizione del testo su cui si basa la prova, con uno studio delle modifiche cui è andata soggetta per mano dell’item writer, per poi ragionare sull’analisi di ogni singolo item, grazie ai dati emersi dalla somministrazione della prova a 161 studenti di italiano di livello corrispondente sparsi per il pianeta. Dalla nostra ricerca si evince che si danno un item ambiguo (# 1, per via della presenza di due chiavi, e un item di difficile risoluzione, per via della mancanza di informazioni utili per desumere il significato del vocabolo cui si riferisce (# 4.In this article we present an analysis of items in a reading multiple-choice test, B1 level, of the CILS certification (Università per Stranieri di Siena. The research starts with a preliminary recognition of the text on which the test is based, with a study of the modifications it has undergone by the item writer’s hand, and proceeds to reason about the analysis of every single item, using data from the ministration of the test to 161 students of Italian in the corresponding level, from all over the planet. From our research it emerges that the test presents an ambiguous item (# 1, with two keys, and a difficult item, without enough information to make clear the meaning of the word it refers to (# 4.

  3. Postirradiation effects in alanine dosimeter probes of two different suppliers

    International Nuclear Information System (INIS)

    Anton, Mathias

    2008-01-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, D W . The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for D W for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied

  4. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine.

    Science.gov (United States)

    Downing, S; Banack, S A; Metcalf, J S; Cox, P A; Downing, T G

    2011-08-01

    β-N-Methylamino-L-alanine, an unusual amino acid implicated in neurodegenerative disease, has been detected in cultures of nearly all genera of environmentally ubiquitous cyanobacteria tested. The compound is present within cyanobacterial cells in free and protein-associated forms, with large variations occurring in the concentration of these pools between species as well as within single strains. With a lack of knowledge and supporting data on the regulation of BMAA production and the role of this compound in cyanobacteria, the association between BMAA and cyanobacteria is still subject to debate. In this study we investigated the biosynthesis of BMAA in axenic non-diazotrophic cyanobacterial cultures using the stable isotope ¹⁵N. Nitrogen starvation of nutritionally replete cells resulted in an increase in free cellular ¹⁵N BMAA suggesting that BMAA may be the result of catabolism to provide nitrogen or that BMAA is synthesised to serve a functional role in the cell in response to nitrogen deprivation. The addition of NO₃⁻ and NH₄⁺ to the culture medium following starvation resulted in a decrease of free cellular BMAA without a corresponding increase in the protein-associated fraction. The use of ammonia as a nitrogen source resulted in a more rapid reduction of BMAA when compared to nitrate. This study provides the first data regarding the regulation of intracellular BMAA concentrations in cyanobacteria with results conclusively showing the production of ¹⁵N BMAA by an axenic cyanobacterial culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The unresolved puzzle why alanine extensions cause disease.

    Science.gov (United States)

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients.

  6. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse Kristoffer

    2013-01-01

    (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO...... demonstrated a dose-dependent incorporation of (15)NH4 into alanine together with increased (15)N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO...

  7. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ.

    Science.gov (United States)

    Yang, Xiao; van der Donk, Wilfred A

    2015-10-07

    Ribosomally synthesized peptides are generally limited to L-amino acid building blocks. Given the advantageous properties of peptides containing D-amino acids such as stabilization of certain turns and against proteolytic degradation, methods to introduce D-stereocenters are valuable. Here we report the first in vitro reconstitution and characterization of a dehydrogenase that carries out the asymmetric reduction of dehydroalanine. NpnJA reduces dehydroalanine to D-Ala using NAPDH as cosubstrate. The enzyme displays high substrate tolerance allowing introduction of D-Ala into a range of non-native substrates. In addition to the in vitro reactions, we describe five examples of using Escherichia coli as biosynthetic host for D-alanine introduction into ribosomal peptides. A deuterium-label-based coupled-enzyme assay was used to rapidly determine the stereochemistry of the newly installed alanine.

  8. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  9. Development of portable ESR spectrometer as a reader for alanine dosimeters

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.

    1993-01-01

    A prototype portable electron spin resonance (ESR) spectrometer was designed and tested, and its feasibility as a reader of alanine dosimeters was studied from the two standpoints of reproducibility of readings and sensitivity sufficient for dosimetry in the absorbed dose range 1-100 kGy. It has two main components: a permanent magnet and resonator; and a unit box with a microwave and auto-frequency control (AFC) circuit, a sweep controller of magnetic field, display, etc. In the present preliminary study, reproducibility values are measured with the same ESR parameters and alanine-polystyrene (alanine-PS) dosimeter at a dose of 1 kGy: repeatedly measuring without removing dosimeter from the cavity; individual measurement with removing and inserting again into the cavity with readjustment of ESR parameters. Alanine/ESR dosimetry using this spectrometer has a measurable dose range from 1 to 100 kGy with relatively high precision within ± 3% (1σ) as a preliminary result. The portable ESR spectrometer may also be modified as an automatic, more precise, dedicated alanine dosimeter reader. (author)

  10. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  11. Effect of Amino Acid Substitutions in the GerAA Protein on the Function of the Alanine-Responsive Germinant Receptor of Bacillus subtilis Spores▿

    Science.gov (United States)

    Mongkolthanaruk, Wiyada; Cooper, Gareth R.; Mawer, Julia S. P.; Allan, Raymond N.; Moir, Anne

    2011-01-01

    Spores of Bacillus subtilis require the GerAA, GerAB, and GerAC receptor proteins for l-alanine-induced germination. Mutations in gerAA, both random and site directed, result in phenotypes that identify amino acid residues important for receptor function in broad terms. They highlight the functional importance of two regions in the central, integral membrane domain of GerAA. A P324S substitution in the first residue of a conserved PFPP motif results in a 10-fold increase in a spore's sensitivity to alanine; a P326S change results in the release of phase-dark spores, in which the receptor may be in an “activated” or “quasigerminated” state. Substitutions in residues 398 to 400, in a short loop between the last two likely membrane-spanning helices of this central domain, all affect the germination response, with the G398S substitution causing a temperature-sensitive defect. In others, there are wider effects on the receptor: if alanine is substituted for conserved residue N146, H304, or E330, a severe defect in l-alanine germination results. This correlates with the absence of GerAC, suggesting that the assembly or stability of the entire receptor complex has been compromised by the defect in GerAA. In contrast, severely germination-defective mutants such as E129K, L373F, S400F, and M409N mutants retain GerAC at normal levels, suggesting more local and specific effects on the function of GerAA itself. Further interpretation will depend on progress in structural analysis of the receptor proteins. PMID:21378197

  12. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    Science.gov (United States)

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  13. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    Science.gov (United States)

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  14. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    Energy Technology Data Exchange (ETDEWEB)

    Oesteraas, Bjoern Helge [Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Hole, Eli Olaug [Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Malinen, Eirik [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)

    2006-12-21

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 {mu}m thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  15. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    International Nuclear Information System (INIS)

    Oesteraas, Bjoern Helge; Hole, Eli Olaug; Olsen, Dag Rune; Malinen, Eirik

    2006-01-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media

  16. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  17. Structural features and kinetic characterization of alanine racemase from Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Dong, Hui; Hu, Tingting; He, Guangzheng; Lu, Deren; Qi, Jianxun; Dou, Yanshu; Long, Wei; He, Xin; Ju, Jiansong; Su, Dan

    2018-02-26

    Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes a reversible racemization between the enantiomers of alanine. d-Alanine is an indispensable constituent in the biosynthesis of bacterial cell-wall peptidoglycan, and its inhibition is lethal to prokaryotes, which makes it an attractive target for designing antibacterial drugs. In this study, the molecular structure of alanine racemase from Bacillus pseudofirmus OF4 (DadX OF4 ) was determined by X-ray crystallography to a resolution of 1.8 Å. The comparison of DadX OF4 with alanine racemases from other bacteria demonstrated a conserved overall fold. Enzyme kinetics analysis showed that the conserved residues at the substrate entryway and the salt bridge at the dimer interface are critical for enzyme activity. These structural and biochemical findings provide a template for future structure-based drug-development efforts targeting alanine racemases. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  19. Green reduction of graphene oxide using alanine

    International Nuclear Information System (INIS)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-01-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  20. Green reduction of graphene oxide using alanine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiabin [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Salihi, Elif Caliskan, E-mail: caliskanelif@gmail.com [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Marmara University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 34668 Istanbul (Turkey); Šiller, Lidija [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  1. Implementation of an alanine dosimetry service

    International Nuclear Information System (INIS)

    Gago Arias, A.; Nunez Pelaez, N.; Peteiro Vilaseco, E.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.

    2011-01-01

    This work facing the implementation of an alanine dosimetry service, linked to the installation of Co 6 0 Radio physics Laboratory (LP) and Paramagnetic Resonance Service of the University of Santiago de Compostela (USC).

  2. Fenomeni d’interferenza nell’apprendimento dell’italiano da parte di parlanti spagnolo. Un’indagine a partire da un test a scelta multipla per gli studenti dell’Università Complutense di Madrid.

    Directory of Open Access Journals (Sweden)

    Francesco Zurlo

    2009-12-01

    Full Text Available Normal 0 14 MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman";} È noto che nell’apprendimento di lingue affini come italiano e spagnolo, il fenomeno del transfer linguistico gioca spesso un ruolo fondamentale. La percezione di vicinanza e di congruenza tra i due sistemi linguistici è alla base del frequente trasferimento da parte degli apprendenti, di regole, espressioni ed abitudini proprie della loro L1 nella L2, che non inficiando in molti casi il successo comunicativo rischiano alla lunga di cristallizzarsi e fossilizzarsi. Nella ricerca, svolta a partire da un test a scelta multipla proposto ad alcuni alunni dei corsi di italiano dell’Università Complutense di Madrid, si rilevano e descrivono alcune delle tipologie più ricorrenti di errori dovuti ad interferenza della L1, mettendo in rilievo la loro incidenza e la loro influenza nel determinare la specificità del percorso di apprendimento dell’italiano da parte degli ispanofoni, contraddistinto da accelerazioni e rallentamenti, arresti e stabilizzazioni.  Normal 0 14 MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman";} It is known that when learning similar languages, such as Italian and Spanish, the phenomenon of linguistic transfer often plays a fundamental role.  The perception of the two language systems as close and congruent is at the basis of

  3. Human Scalp Hair as an Indicator of Exposure to the Environmental Toxin β-N-Methylamino-l-alanine

    Directory of Open Access Journals (Sweden)

    Simoné Downing

    2017-12-01

    Full Text Available Dietary or aerosol exposure to the environmental neurotoxin β-N-methylamino-l-alanine (BMAA is a putative risk factor for the development of sporadic neurodegenerative disease. There are many potential sources of BMAA in the environment, but BMAA presence and quantities are highly variable. It has been suggested that BMAA in human hair may serve as an indicator of exposure. We sought to evaluate the use of the BMAA content of human scalp hair as an indicator of exposure, as well as the correlation between specific lifestyle or dietary habits, reported as hypothesised exposure risk factors, and BMAA in hair. Scalp hair samples and questionnaires were collected from participants in a small residential village surrounding a freshwater impoundment renowned for toxic cyanobacterial blooms. Data suggested a positive correlation between hair BMAA content and consumption of shellfish, and possibly pork. No statistically significant correlations were observed between hair BMAA content and residential proximity to the water or any other variable. Hair BMAA content was highly variable, and in terms of exposure, probably reflects primarily dietary exposure. However, the BMAA content of human hair may be affected to a great extent by several other factors, and as such, should be used with caution when evaluating human BMAA exposure, or correlating exposure to neurodegenerative disease incidence.

  4. Theoretical and experimental radiation effectiveness of the free radical dosimeter alanine to irradiation with heavy charged particles

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Olsen, K. J.

    1985-01-01

    Dose-response characteristics have been measured for the crystalline amino acid L-.alpha.-alanine irradiated with ion beams of 6 and 16 MeV protons, 20 MeV .alpha. particles, 21 MeV7Li ions, 64 MeV16O ions, and 80 MeV32S ions. The experimental radiation effectiveness (RE) with reference to low-LE...

  5. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    International Nuclear Information System (INIS)

    Khoury, H.J.; Silva, E.J. da; Mehta, K.; Barros, V.S. de; Asfora, V.K.; Guzzo, P.L.; Parker, A.G.

    2015-01-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20–220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  6. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance.

    Science.gov (United States)

    Hobson, Ruth M; Harris, Roger C; Martin, Dan; Smith, Perry; Macklin, Ben; Gualano, Bruno; Sale, Craig

    2013-10-01

    To examine the effect of beta-alanine only and beta-alanine with sodium bicarbonate supplementation on 2,000-m rowing performance. Twenty well-trained rowers (age 23 ± 4 y; height 1.85 ± 0.08 m; body mass 82.5 ± 8.9 kg) were assigned to either a placebo or beta-alanine (6.4 g · d(-1) for 4 weeks) group. A 2,000-m rowing time trial (TT) was performed before supplementation (Baseline) and after 28 and 30 days of supplementation. The post supplementation trials involved supplementation with either maltodextrin or sodium bicarbonate in a double-blind, crossover design, creating four study conditions (placebo with maltodextrin; placebo with sodium bicarbonate; beta-alanine with maltodextrin; beta-alanine with sodium bicarbonate). Blood lactate, pH, bicarbonate, and base excess were measured pre-TT, immediately post-TT and at TT+5 min. Performance data were analyzed using magnitude based inferences. Beta-alanine supplementation was very likely to be beneficial to 2,000-m rowing performance (6.4 ± 8.1 s effect compared with placebo), with the effect of sodium bicarbonate having a likely benefit (3.2 ± 8.8 s). There was a small (1.1 ± 5.6 s) but possibly beneficial additional effect when combining chronic beta-alanine supplementation with acute sodium bicarbonate supplementation compared with chronic beta-alanine supplementation alone. Sodium bicarbonate ingestion led to increases in plasma pH, base excess, bicarbonate, and lactate concentrations. Both chronic beta-alanine and acute sodium bicarbonate supplementation alone had positive effects on 2,000-m rowing performance. The addition of acute sodium bicarbonate to chronic beta-alanine supplementation may further enhance rowing performance.

  7. PGC-1α regulates alanine metabolism in muscle cells.

    Science.gov (United States)

    Hatazawa, Yukino; Qian, Kun; Gong, Da-Wei; Kamei, Yasutomi

    2018-01-01

    The skeletal muscle is the largest organ in the human body, depositing energy as protein/amino acids, which are degraded in catabolic conditions such as fasting. Alanine is synthesized and secreted from the skeletal muscle that is used as substrates of gluconeogenesis in the liver. During fasting, the expression of PGC-1α, a transcriptional coactivator of nuclear receptors, is increased in the liver and regulates gluconeogenesis. In the present study, we observed increased mRNA expression of PGC-1α and alanine aminotransferase 2 (ALT2) in the skeletal muscle during fasting. In C2C12 myoblast cells overexpressing PGC-1α, ALT2 expression was increased concomitant with an increased alanine level in the cells and medium. In addition, PGC-1α, along with nuclear receptor ERR, dose-dependently enhanced the ALT2 promoter activity in reporter assay using C2C12 cells. In the absence of glucose in the culture medium, mRNA levels of PGC-1α and ALT2 increased. Endogenous PGC-1α knockdown in C2C12 cells reduced ALT2 gene expression level, induced by the no-glucose medium. Taken together, in the skeletal muscle, PGC-1α activates ALT2 gene expression, and alanine production may play roles in adaptation to fasting.

  8. Application of an alanine dosimetry system for industrial irradiation and radiation protection

    International Nuclear Information System (INIS)

    Gohs, U.

    1996-01-01

    This paper reports the application of alanine dosimetry in radiation processing. Continuous checks of the EPR measuring conditions as well as using high-quality alanine dosimeters and consistent technique for dose determination guarantee an accuracy of about ± 3% intermediate dose levels. The alanine dosimetry system was applied for dose mapping measurements during irradiator qualification and performance qualification of different products, routine dosimetry, and special radiation protection applications within the gamma irradiator. (author)

  9. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans

    International Nuclear Information System (INIS)

    Consoli, A.; Nurjhan, N.; Reilly, J.J. Jr.; Bier, D.M.; Gerich, J.E.

    1990-01-01

    To quantitate alanine and lactate gluconeogenesis in postabsorptive humans and to test the hypothesis that muscle is the principal source of these precursors, we infused normal volunteers with [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose and calculated alanine and lactate incorporation into plasma glucose corrected for tricarboxylic acid cycle carbon exchange, the systemic appearance of these substrates, and their forearm fractional extraction, uptake, and release. Forearm alanine and lactate fractional extraction averaged 37 +/- 3 and 27 +/- 2%, respectively; muscle alanine release (2.94 +/- 0.27 mumol.kg body wt-1.min-1) accounted for approximately 70% of its systemic appearance (4.18 +/- 0.31 mumol.kg body wt-1.min-1); muscle lactate release (5.51 +/- 0.42 mumol.kg body wt-1.min-1) accounted for approximately 40% of its systemic appearance (12.66 +/- 0.77 mumol.kg body wt-1.min-1); muscle alanine and lactate uptake (1.60 +/- 0.7 and 3.29 +/- 0.36 mumol.kg body wt-1.min-1, respectively) accounted for approximately 30% of their overall disappearance from plasma, whereas alanine and lactate incorporation into plasma glucose (1.83 +/- 0.20 and 4.24 +/- 0.44 mumol.kg body wt-1.min-1, respectively) accounted for approximately 50% of their disappearance from plasma. We therefore conclude that muscle is the major source of plasma alanine and lactate in postabsorptive humans and that factors regulating their release from muscle may thus exert an important influence on hepatic gluconeogenesis

  10. Radiolysis of alanine adsorbed in a clay mineral

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-543, Deleg. Coyoacan, C.P. 04510 (Mexico)

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  11. Radiolysis of alanine adsorbed in a clay mineral

    International Nuclear Information System (INIS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-01-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine

  12. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    Science.gov (United States)

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  13. Physiological and biochemical effects of morphactin IT 3233 on callus and tumour tissues of Nicotiana tabacum L. cultured in vitro III. Transamination processes catalysed by aminotransferase L-alanine: 2-oxoglutarate

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available An active alanine transaminase was found both in callus and tumour tissues of tobacco. The enzyme is more active in the latter tissue, and the reaction balance is strongly shifted towards alanine production, while in callus tissue towards glutamic acid formation. Morphactin applied to the tissue cultures stimulates markedly the enzyme activity only in callus. A negative correlation was observed between the intensity of transamination processes and enhanced synthesis of proteins in the tissues studied. Morphactin disturbs nitrogen metabolism in the callus tissue. Tumour tissue is more resistant to the action of this substance. The different hormonal activities in these tissues may be the cause of the different effects of morphactin.

  14. Characteristics and application of alanine dosimeter 'Aminogray'

    International Nuclear Information System (INIS)

    Kashiwazaki, Shigeru; Matsuyama, Shigeki; Hatta, Toshimasa; Yagyu, Hideki; Kojima, Takuji; Tanaka, Ryuichi; Morita, Yohsuke.

    1988-01-01

    Recently, accompanying the progress of nuclear power generation and space development, the evaluation of reliability for the materials and parts used under irradiation has become important. For the evaluation of reliability, the accurate grasp of radiation dose is the prerequisite. In some case, the measurement of cumulative dose in a long period in an actual environment becomes necessary. In this paper, the characteristics and application of a new dosimeter element 'Aminogray' which is suitable to the above requirement are reported. Aminogray is rodshape element made by forming alanine, a kind of amino acid, using a binder polymer, and the alanine content is 70 wt.%, and the polymer is polystyrene. An element of 3 mm diameter and 30 mm length is enclosed in a polystyrene cylinder of 4 mm thickness. This thickness was determined by considering the electronic equilibrium condition in Co-60 gamma-ray irradiation. The principle of the measurement is to determine a dose by measuring the amount of free radicals produced in alanine by radiation using ESR method. The free radicals are extremely stable, and exist for a long period, and the amount of radical production is proportional to absorbed dose. The development, characteristics and application of Aminogray are reported. (K.I.)

  15. No effect of β-alanine on muscle function and kayak performance

    DEFF Research Database (Denmark)

    Bech, Signe Refsgaard; Nielsen, Tobias Schmidt; Hald, Martin

    2018-01-01

    PURPOSE: It was investigated if β-alanine supplementation counteracts muscular fatigue development or improves athletic performance. METHODS: Elite kayak rowers (10 males and 7 females) were supplemented with either 80 mg/kg body mass/day β-alanine or placebo for 8 weeks. Muscular fatigue...

  16. Effect of β-alanine supplementation on 20 km cycling time trial performance

    Directory of Open Access Journals (Sweden)

    Ruth Margaret JAMES

    2014-09-01

    Full Text Available The effects of β-alanine supplementation on high-intensity cycling performance and capacity have been evaluated, although the effects on longer duration cycling performance are unclear. Nineteen UK category 1 male cyclists completed four 20 km cycling time trials, two before and two after supplementation with either 6.4 g•d-1 β-alanine (n = 10; BA or a matched placebo (n = 9; P. Performance time for the 20 km time trial and 1 km split times were recorded. There was no significant effect of β-alanine supplementation on 20 km time trial performance (BA-pre 1943 ± 129 s; BA-post 1950 ± 147 s; P-pre 1989 ± 106 s; P-post 1986 ± 115 s or on the performance of each 1 km split. The effect of β-alanine on 20 km time trial performance was deemed unclear as determined by magnitude based inferences. Supplementation with 6.4 g•d-1 of β-alanine for 4 weeks did not affect 20 km cycling time trial performance in well trained male cyclists.

  17. Alanine Counteracts the Destabilizing Effect that Urea has on RNase-A.

    Science.gov (United States)

    Chowhan, Rimpy K; Ali, Fasil; Bhat, Mohd Y; Rahman, Safikur; Singh, Laishram R; Ahmad, Faizan; Dar, Tanveer A

    2016-01-01

    It is generally believed that organisms use and accumulate methylamine osmolytes to prevent urea's damaging effect on protein stability and activity. However, urea-rich cells not only accumulate methylamines but also many other methylated and non-methylated compounds as well. But, so far it is not known whether osmolytes that are not accumulated in urea-rich cells could also confer urea-counteracting properties. We investigated the behavior of a non-methylamine osmolyte, alanine for its counteracting effect against urea denaturation of a model protein, ribonuclease A (RNase-A). We have measured structure and thermodynamic parameters (Tm, ΔHm, and ΔGD°) of RNase-A in the presence of alanine, urea and their combination. The results were also compared with the ability of glycine (osmolyte lacking one methyl group when compared with alanine) to counter urea's effect on protein stability. We observed that alanine but not glycine counteracts urea's harmful effect on RNase-A stability. The results indicated that alanine (in addition to methylamine osmolytes) may serve as an alternate urea-counteractant. Since glycine fails to protect RNase-A from urea's destabilizing effect, it seems that methylation to glycine might have some evolutionary significance to protect proteins against harmful effects of urea.

  18. ESR/Alanine {gamma}-dosimetry in the 10-30 Gy range

    Energy Technology Data Exchange (ETDEWEB)

    Fainstein, C. E-mail: cfainstein@cab.cnea.gov.ar; Winkler, E.; Saravi, M

    2000-05-15

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for {gamma}-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in {gamma}-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  19. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  20. Effect of combined β-alanine and sodium bicarbonate supplementation on cycling performance.

    Science.gov (United States)

    Bellinger, Phillip M; Howe, Samuel T; Shing, Cecilia M; Fell, James W

    2012-08-01

    The purpose of this study was to investigate the effects of 28 d of β-alanine supplementation on 4-min cycling time trial performance and to determine whether there was an additive effect of combined β-alanine and sodium bicarbonate (NaHCO3) supplementation on high-intensity cycling performance. Fourteen highly trained cyclists (mean ± SD: age = 25.4 ± 7.2 yr, mass = 71.1 ± 7.1 kg, V˙O(2max) = 66.6 ± 5.7 mL·kg·min) supplemented for 28 d with β-alanine (65 mg·kg body mass each day) or placebo. A maximal 4-min bout of cycling was performed before supplementation (baseline) and twice after supplementation: after ingestion of NaHCO3 (300 mg·kg body mass) and ingestion of a placebo using a randomized crossover design with 2 d between trials. Blood pH and HCO3 concentration were determined before loading (postsupplementation trials) and at pretest and posttest. In the acute NaHCO3 loading trials, blood pH and HCO3 were elevated from before loading to pretest, and the magnitude of the change in HCO3 from pretest to posttest was significantly greater compared with the acute placebo loading trial (P < 0.001). Average power output in the 4-min cycling performance trial was increased in placebo + NaHCO3 (+3.1% ± 1.8%) and β-alanine + NaHCO3 (+3.3% ± 3.0%) compared with baseline (P < 0.05). β-alanine + placebo did not significantly improve average power output compared with baseline (+1.6% ± 1.7%, P = 0.20); however, magnitude-based inferences demonstrated that β-alanine + placebo was associated with a 37% likelihood of producing average power improvements. In trained cyclists, β-alanine supplementation did not significantly improve 4-min cycling performance; however, there may be a small meaningful improvement in performance. Acute NaHCO3 supplementation significantly improved 4-min cycling performance. There seemed to be a minimal additive effect of combined β-alanine and NaHCO3 supplementation.

  1. The Alanine Racemase of Mycobacterium smegmatis Is Essential for Growth in the Absence of d-Alanine▿ †

    Science.gov (United States)

    Milligan, Daniel L.; Tran, Sieu L.; Strych, Ulrich; Cook, Gregory M.; Krause, Kurt L.

    2007-01-01

    Alanine racemase, encoded by the gene alr, is an important enzyme in the synthesis of d-alanine for peptidoglycan biosynthesis. Strains of Mycobacterium smegmatis with a deletion mutation of the alr gene were found to require d-alanine for growth in both rich and minimal media. This indicates that alanine racemase is the only source of d-alanine for cell wall biosynthesis in M. smegmatis and confirms alanine racemase as a viable target gene for antimycobacterial drug development. PMID:17827284

  2. Dextran Sulfate Sodium Inhibits Alanine Synthesis in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Carolyn M. Slupsky

    2011-04-01

    Full Text Available To understand and characterize the pathogenic mechanisms of inflammatory bowel disease, dextran sulfate sodium (DSS has been used to induce acute and chronic colitis in animal models by causing intestinal epithelium damage. The mechanism of action of DSS in producing this outcome is not well understood. In an effort to understand how DSS might impact epithelial cell metabolism, we studied the intestinal epithelial cell line Caco-2 incubated with 1% DSS over 56 hours using 1H NMR spectroscopy. We observed no difference in cell viability as compared to control cultures, and an approximately 1.5-fold increase in IL-6 production upon incubation with 1% DSS. The effect on Caco-2 cell metabolism as measured through changes in the concentration of metabolites in the cell supernatant included a three-fold decrease in the concentration of alanine. Given that the concentrations of other amino acids in the cell culture supernatant were not different between treated and control cultures over 56 hours suggest that DSS inhibits alanine synthesis, specifically alanine aminotransferase, without affecting other key metabolic pathways. The importance of alanine aminotransferase in inflammatory bowel disease is discussed.

  3. High-level production of α-amylase by manipulating the expression of alanine racamase in Bacillus licheniformis.

    Science.gov (United States)

    He, Penghui; Zhang, Zeying; Cai, Dongbo; Chen, Yaozhong; Wang, Hao; Wei, Xuetuan; Li, Shunyi; Chen, Shouwen

    2017-09-01

    To improve target protein production by manipulating expression levels of alanine racemase in Bacillus licheniformis. The gene of dal was identified to be responsible for alanine racemase function. Based on the selection marker of dal, a food-grade expression system was constructed in B. licheniformis, and effects of different dal expression levels mediated by promoters on α-amylase production were investigated. The highest α-amylase activity (155 U/ml) was obtained in BL10D/pP43SAT-PtetDal, increased by 27% compared with that of the control strain BL10/pP43SAT in tetracycline-based system (123 U/ml). Moreover, the dal transcriptional level was not correlated positively with that of amyL. A food-grade system for high-level production of α-amylase was constructed in B. licheniformis, revealing that expression levels of selection marker significantly affected target protein production.

  4. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  5. Electron Paramagnetic Resonance signal ratio of Alanine Pellets In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Hoon; Sung, In Bok; Lee, Byung Il; Lim, Young Ki

    2011-01-01

    As a dosimeter for ESR dosimetry, alanine has many useful features including relatively long endurance time of radicals and almost no difference with the radiation dose rate and radiation quality. Alanine dosimeters have been accepted as transfer dosimeters for their good precision at high radiation range. For alanine/ESR spectra, it was reported that the peaks of the spectra are due to the three kinds of radicals induced by radiation. The ratio of the weak 'satellite line' and the central peak of the three man in alanine specta(in this study x /y ratio ) are changed on the LET value of radiation. In case of lithium formate monohydrate was recently identified as a promising dosimetric material. in addition, it was reported the the peak height in the signal spectra is not easily saturated when power is irradiated with relatively high LET radiation such as neutron rays. The difference in the peak height ratio was reported to be caused by increased local radical density following the radiation of high LET. The spectrum shape of some alanine dosimeter installed in the containment buildings of NPPs showed differences in comparison with dosimeters exposed only to gamma rays. There was apparent change of spectra, expressed as the 'x/y ratio'. As noted in other papers, high LET radiation such as neutron rays causes shape changes of the spectrum of alanine dosimeters. Thus, the unanticipated high dose level and low 'x/y ratio' of some alanine dosimeters from the containment building could be explained b exposure to mixed radiation with high LET. Generally, the locations evaluated in this study are regarded as being exposed only to gamma rays, because the positions are blocked from direct neutron rays, because the positions are blocked from direct neutron rays from reactor by thick cement barriers and heavy instruments.

  6. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae.

    Science.gov (United States)

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  7. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Stefania eDe Benedetti

    2014-02-01

    Full Text Available For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly.D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L- alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  8. Polymerization of alanine in the presence of a non-swelling montmorillonite

    Science.gov (United States)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  9. A thin alanine-polyethylene film dosimetry system with diffuse reflection spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Rafalski, A.

    1995-01-01

    Characteristics of a new alanine dosimeter in the shape of a thin film, with the measurement of optical absorption of the CH 3 CHCOO - radical is described. That type of dosimeter, ALA/DRS (for diffuse reflection spectrophotometry) is compared, to an alanine dosimeter with EPR evaluation (ALA/EPR for short). In many respects the simple ALA/DRS version, as the alanine-polyethylene composite is superior. The paper shows the importance of the new experimental approach to free radical research in solid state radiation chemistry. (author). 7 refs., 3 figs

  10. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine

    DEFF Research Database (Denmark)

    Schnackerz, K D; Andersen, G; Dobritzsch, D

    2008-01-01

    Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase ...

  11. Relative response of the alanine dosimeter to medium energy x-rays.

    Science.gov (United States)

    Anton, M; Büermann, L

    2015-08-07

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  12. End-to-end tests using alanine dosimetry in scanned proton beams

    Science.gov (United States)

    Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.

    2018-03-01

    This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.

  13. Partial alanine scan of mast cell degranulating peptide (MCD): importance of the histidine- and arginine residues.

    Science.gov (United States)

    Buku, Angeliki; Mendlowitz, Milton; Condie, Barry A; Price, Joseph A

    2004-06-01

    The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.

  14. Simultaneous determination of glucose turnover, alanine turnover, and gluconeogenesis in human using a double stable-isotope-labeled tracer infusion and gas chromatography-mass spectrometry analysis

    International Nuclear Information System (INIS)

    Martineau, A.; Lecavalier, L.; Falardeau, P.; Chiasson, J.L.

    1985-01-01

    We have developed and validated a new method to measure simultaneously glucose turnover, alanine turnover, and gluconeogenesis in human, in steady and non-steady states, using a double stable-isotope-labeled tracer infusion and GC-MS analysis. The method is based on the concomitant infusion and dilution of D-[2,3,4,6,6-2H5]glucose and L-[1,2,3-13C3]alanine. The choice of the tracers was done on the basis of a minimal overlap between the ions of interest and those arising from natural isotopic abundances. Alanine was chosen as the gluconeogenic substrate because it is the major gluconeogenic amino acid extracted by the liver and, with lactate, constitutes the bulk of the gluconeogenic precursors. The method was validated by comparing the results obtained during simultaneous infusion of trace amounts of both stable isotope labeled compounds with the radioactive tracers (D-[3-3H]glucose and L-[1,2,3-14C3]alanine) in a normal and a diabetic subject; the radiolabeled tracers were used as the accepted reference procedure. A slight overestimation of glucose turnover (7.3 versus 6.8 in normal and 10.8 versus 9.2 mumol/kg min in diabetic subject) was noticed when the stable isotope-labeled tracers were used. For the basal turnover rate of alanine, similar values were obtained with both methods (6.2 mumol/kg min). For gluconeogenesis, higher values were observed in the basal state with the stable isotopes (0.42 versus 0.21 mumol/kg min); however, these differences disappeared in the postprandial period after the ingestion of a mixed meal. Despite those minor differences, the overall correlation with the reference method was excellent for glucose turnover (r = 0.87) and gluconeogenesis (r = 0.86)

  15. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Energy Technology Data Exchange (ETDEWEB)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  16. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    International Nuclear Information System (INIS)

    Okle, Oliver; Rath, Lisa; Galizia, C. Giovanni; Dietrich, Daniel R.

    2013-01-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using 14 C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca 2+ homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca 2+ , learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis

  17. Lack of Effect of Sodium Benzoate at Reported Clinical Therapeutic Concentration on d-Alanine Metabolism in Dogs.

    Science.gov (United States)

    Popiolek, Michael; Tierney, Brendan; Steyn, Stefanus J; DeVivo, Michael

    2018-06-19

    Cognitive decline and psychosis have been hypothesized to be mediated by N-methyl-d-aspartate receptor (NMDAR) hypofunction. Consistent with this hypothesis, chronic treatment with d-alanine, a coagonist at the glycine site of the NMDAR, leads to an improvement of positive and cognitive symptoms in schizophrenic patients. d-alanine is oxidized by d-amino acid oxidase (DAAO); thus, an inhibitor of DAAO would be expected to enhance d-alanine levels and likewise lead to desirable clinical outcomes. Sodium benzoate, on the basis of d-amino acid inhibition, was observed to display beneficial clinical effects in schizophrenic and Alzheimer's patients. However, in the clinical pilot studies using sodium benzoate, d-amino acids were not quantified to verify that sodium benzoate's efficacy was mediated through DAAO inhibition. In this study, d-alanine content was monitored in cerebral spinal fluid (CSF) of dogs treated with daily injections of d-alanine (30 mg/kg) alone and in combination with sodium benzoate (30 mg/kg) for seven consecutive days. We reasoned that the cerebral spinal fluid d-alanine quantity is reflective of the brain d-alanine levels and it would increase as a consequence of DAAO inhibition with sodium benzoate. We found that d-alanine treatment lead to maximal concentration of 7.51 μM CSF d-alanine level; however, coadministration of sodium benzoate and d-alanine did not change CSF d-alanine level beyond that of d-alanine treatment alone. As a consequence, we conclude that clinical efficacy associated with chronic administration of sodium benzoate in schizophrenic and Alzheimer's patients is likely not mediated through inhibition of DAAO.

  18. Status report of the ESR/alanine project of the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Girzikowsky, R.

    1990-01-01

    The main tasks of the Dosimetry Laboratory of the IAEA are in the field of therapy-level dosimetry. Other dose ranges, i.e. protection-level standardization and calibration, are partly covered, too. On high-dose level the laboratory has been offering a Fricke-dosimetry service to Member States on request since 1965. In 1985 the Dosimetry Section has initiated an International Dose Assurance Service (IDAS). This service is an important part of the Agency's high-dose standardization programme and is based on Electron-Spin-Resonance (ESR) analysis of radiation-induced free radicals in alanine. This ESR/alanine dosimetry system was initially developed for high-dose application by GSF/Munich as the Agency's outside contractor. Although efforts were undertaken to equip the Agency Laboratory with an ESR analyzer since 1984, the purchase of an adequate unit was postponed until the end of 1988. From the date of establishment of the IDAS programme until today, the handling of all technical aspects, i.e. dosimeter production and evaluation was and is carried out by GSP/Munich under IAEA contract. As mentioned above, the IAEA Dosimetry Laboratory is in possession of its own ESR analyzer since December 1988. It was then installed in May 1989. Only one staff member of the laboratory was assigned to this project. He made himself acquainted with the analyzer, the measuring technique, and the application of alanine as dosimeter material. The ESR spectrometric analyzer is a CW ESR type ESP 300 manufactured by Bruker GmbH/FRG. It consists of a 9''/2,7 kW magnet, an X-band microwave bridge, a field regulator unit, a signal channel unit and a data system ESP 1620 based on the 68020 CPU. The probe material selected for measurement of concentration of radiation-induced free radicals is L-Alanine. This amino acid is a suitable material for transfer dosimeters due to its properties, i.e. wide sensitivity range (10 Gy to 100 kGy), energy independence for high-energy photons and electron

  19. Synthesis of 1- and 3-11C-labelled L-lactic acid using multi-enzyme catalysis

    International Nuclear Information System (INIS)

    Bjurling, P.; Laangstroem, B.

    1990-01-01

    The synthesis of 1- and 3- 11 C-labelled L-lactic acid from the corresponding racemic 1- or 3- 11 C-labelled alanine using a multi-enzymatic reaction route, is presented. DL-[1- 11 C]Alanine was synthesised by reacting sodium 1-hydroxy-ethyl sulfite with hydrogen [ 11 C]cyanide, obtained from [ 11 C]carbon dioxide, and ammonia followed by acid hydrolysis. DL-[3- 11 C]-Alanine was synthesised by a methylation of a glycine derivative, N-(diphenylmethylene)-glycine tert-butyl ester, with [ 11 C]methyl iodide, obtained from [ 11 C]carbon dioxide, and subsequent hydrolysis. The racemic 1- or 3- 11 C-labelled alanine was then converted to pyruvic acid, by D-amino acid oxidase/catalase and glutamic-pyruvic transaminase, which was directly reduced to L-lactic acid by L-lactic dehydrogenase in a one-pot procedure. The total synthesis time was 40 minutes, counted from release of [ 11 C]carbon dioxide. The decay corrected radiochemical yields were ca. 80% for L-[1- 11 C]lactic acid, based on hydrogen cyanide, and ca. 60% for L-[3- 11 C]lactic acid, based on carbon dioxide. The radiochemical purities were higher than 99% analysed by HPLC. (author)

  20. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β‐alanine transamination

    Science.gov (United States)

    Blancquaert, Laura; Baba, Shahid P.; Kwiatkowski, Sebastian; Stautemas, Jan; Stegen, Sanne; Barbaresi, Silvia; Chung, Weiliang; Boakye, Adjoa A.; Hoetker, J. David; Bhatnagar, Aruni; Delanghe, Joris; Vanheel, Bert; Veiga‐da‐Cunha, Maria; Derave, Wim

    2016-01-01

    Key points Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β‐alanine is an efficient substrate for the mammalian transaminating enzymes 4‐aminobutyrate‐2‐oxoglutarate transaminase and alanine‐glyoxylate transaminase.The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β‐alanine, which is in turn controlled by degradation of β‐alanine in liver and kidney.Chronic oral β‐alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high‐intensity exercises. The present study can partly explain why the β‐alanine supplementation protocol is so inefficient, by demonstrating that exogenous β‐alanine can be effectively routed toward oxidation. Abstract The metabolic fate of orally ingested β‐alanine is largely unknown. Chronic β‐alanine supplementation is becoming increasingly popular for improving high‐intensity exercise performance because it is the rate‐limiting precursor of the dipeptide carnosine (β‐alanyl‐l‐histidine) in muscle. However, only a small fraction (3–6%) of the ingested β‐alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β‐alanine transamination enzymes, namely 4‐aminobutyrate‐2‐oxoglutarate transaminase (GABA‐T) and alanine‐glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA‐T and AGXT2 are able to transaminate β‐alanine efficiently. The reaction catalysed by GABA‐T is inhibited by vigabatrin, whereas both GABA‐T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA‐T and AGXT2 are highly expressed in the mouse liver and

  1. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    Science.gov (United States)

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  2. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor

    Directory of Open Access Journals (Sweden)

    Nelson eRojas Murcia

    2015-03-01

    Full Text Available The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA, two nonribosomal peptide synthetases (AmbB and AmbE, and two iron(II/α-ketoglutarate-dependent oxygenases (AmbC and AmbD. Bioinformatics analysis predicts one thiolation (T domain for AmbB and two T domains (T1 and T2 for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala, while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed.

  3. Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA Mode of Action within the Neurodegenerative Pathway: Facts and Controversy

    Directory of Open Access Journals (Sweden)

    Nicolas Delcourt

    2017-12-01

    Full Text Available The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.

  4. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria

    Science.gov (United States)

    Reichmann, Nathalie T.; Cassona, Carolina Picarra

    2013-01-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with d-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA–D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers d-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for d-alanine incorporation through a process that has been proposed to proceed via a d-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of d-alanine, indicating that LTA has a role, either direct or indirect, in the efficient d-alanine incorporation into WTA in living cells. PMID:23858088

  5. Rapid mapping of protein functional epitopes by combinatorial alanine scanning

    OpenAIRE

    Weiss, GA; Watanabe, CK; Zhong, A; Goddard, A; Sidhu, SS

    2000-01-01

    A combinatorial alanine-scanning strategy was used to determine simultaneously the functional contributions of 19 side chains buried at the interface between human growth hormone and the extracellular domain of its receptor. A phage-displayed protein library was constructed in which the 19 side chains were preferentially allowed to vary only as the wild type or alanine. The library pool was subjected to binding selections to isolate functional clones, and DNA sequencing was used to determine ...

  6. Optical signal response pf the alanine gel solution for photons and electrons clinical beams

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo; Campos, Leticia Lucente

    2009-01-01

    Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The measure technique is based on the transformation of ferrous ions (Fe 2+ ) in ferric ions (Fe 3+ ) after irradiation. The DL-Alanine (C 3 H 7 NO 2 ) is an aminoacid tissue equivalent that improves the production of ferric ions in the solution. This work aims to study the comparison of optical signal response of the alanine gel solution for photons and electrons clinical beams. It was observed that the calibration factor can be considered independent of quality of the radiation for photons and electrons clinical beams. Therefore, it can be used the same calibration factor for evaluating the absorbed dose in photons and electrons fields in the energy of 6 MeV. Alanine Gel Dosimeter presents good performance and can be useful as alternative dosimeter in the radiotherapy area using MRI technique for 3D dose distribution evaluation. (author)

  7. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  8. Serum alanine aminotransferase levels, hematocrit rate and body weight correlations before and after hemodialysis session

    Directory of Open Access Journals (Sweden)

    Edmundo Pessoa Lopes

    2009-01-01

    Full Text Available PURPOSE: To evaluate alanine aminotransferase levels before and after a hemodialysis session and to correlate these values with the hematocrit rate and weight loss during hemodialysis. PATIENTS AND METHODS: The serum alanine aminotransferase levels, hematocrit rate and body weight were measured and correlated before and after a single hemodialysis session for 146 patients with chronic renal failure. An receiver operating characteristic (ROC curve for the serum alanine aminotransferase levels collected before and after hemodialysis was plotted to identify hepatitis C virus-infected patients. RESULTS: The mean weight loss of the 146 patients during hemodialysis was 5.3% (p < 0.001. The mean alanine aminotransferase levels before and after hemodialysis were 18.8 and 23.9 IU/, respectively, denoting a significant 28.1% increase. An equally significant increase of 16.4% in the hematocrit rate also occurred after hemodialysis. The weight loss was inversely correlated with the rise in both the alanine aminotransferase level (r = 0.3; p < 0.001 and hematocrit rate (r = 0.5; p < 0.001. A direct correlation was found between the rise in alanine aminotransferase levels and the hematocrit during the hemodialysis session (r = 0.4; p < 0.001. Based on the ROC curve, the upper limit of the normal alanine aminotransferase level should be reduced by 40% relative to the upper limit of normal if the blood samples are collected before the hemodialysis session or by 60% if blood samples are collected after the session. CONCLUSION: In the present study, significant elevations in the serum alanine aminotransferase levels and hematocrit rates occurred in parallel to a reduction in body weight after the hemodialysis session. These findings suggest that one of the factors for low alanine aminotransferase levels prior to hemodialysis could be hemodilution in patients with chronic renal failure.

  9. Development of a dosimeter for high doses assessment based on Alanine/EPR

    International Nuclear Information System (INIS)

    Galante, O.L.; Rodrigues, O. Jr.; Campos, L.L.

    2000-01-01

    The increasing use of radiation sources of high activity for industrial and medical applications becomes important the research and the development of detectors and dosimetric methods for quality control of the applied doses. This work presents the current stage of the research at IPEN/CNEN-SP that has as objective the development of a standard dosimetric system for high doses assessment based on the alanine as radiation detector and electron paramagnetic resonance (EPR) as measurement technique. The developed system consists of the cylindrical container built in polyethylene of high density and the detector element based on DL-alanine commercially available. For the detector preparation different binding materials such as paraffin and acetate polyvinyl solution (pva) and also the use of a polyethylene tube of low density with 3.2 mm of external diameter, 2 mm of internal diameter and 30 mm of length were tested to provide the easier preparation method and the most sensitive detector. For the alanine + paraffin detector it was used 80% of alanine and 20% of paraffin, for the alanine + pva detector it was used 70% of alanine and 30% of pva solution, and pure alanine was encapsulated, compacted and sealed in the case of the polyethylene tube. The obtained results with respect to handling, packing and construction easiness showed that the polyethylene tube presents all characteristics to obtain of a good detector element. The validation of the dosimetric system was carried out with gamma radiation of the cobalt-60 with doses in the range between 0.2 Gy to 200 kGy. Type tests such as fading, lowest detection limit, reproducibility and energy dependence of the sign EPR were performed. All measurements were carried out at room temperature using a spectrometer of electron paramagnetic resonance (EPR) Bruker model MXE. Taking into account the results obtained: linearity of the EPR signal between 10 Gy and 50 kGy, reproducibility better than 3%, low fading associated with

  10. The influence of measurement and storage conditions on alanine ESR dosimeters

    International Nuclear Information System (INIS)

    Alexandre, A.C.

    1992-01-01

    Alanine has several desirable properties as an ESR dosemeter e.g. tissue equivalence, low fading and an approximately linear response for doses up to 10 kGy. This work reports on a simple system to produce the alanine dosemeter, the signal intensity for a range of doses and energies, and the effect of the air humidity and the spectrometer settings on the ESR signal. (Author)

  11. Detection of Cyanotoxins, β-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Anne Banack

    2015-01-01

    Full Text Available A cluster of amyotrophic lateral sclerosis (ALS has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA, a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC, free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB and N-(2-aminoethylglycine (AEG. In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.

  12. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-29

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.

  13. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum.

    Science.gov (United States)

    Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G

    2011-04-01

    Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Calculations of the relative effectiveness of alanine for neutrons with energies up to 17.1 MeV

    International Nuclear Information System (INIS)

    Gerstenberg, H.M.; Coyne, J.J.

    1990-01-01

    The relative effectiveness (RE) of alanine has been calculated for neutrons using the RE of alanine for charged particles. The neutrons interact with one or more of the elements (hydrogen, carbon, nitrogen and oxygen) that compose the alanine. These interactions produce spectra of secondary charged particles consisting of ions of H, D, He, Be, B, C, N and O. From a combination of the calculated secondary charged particle spectra generated by the slowing down neutrons, and the calculated RE of the ions produced, a RE for the neutrons can be obtained. In addition, lineal energy spectra were determined for neutrons with energies up to 17.1 MeV interacting with alanine. An analytical code was used to calculate these spectra for a 1 μm diameter alanine cell surrounded by an alanine medium. For comparison, similar calculations were made for muscle tissue. Finally, the calculated differential RE was folded with dose distributions to obtain RE-weighted distributions for alanine. (author)

  15. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  16. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo; Campos, Leticia Lucente

    2013-01-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  17. Structure of poly (. beta. -alanine) polymerized in the solid state. Koso jugo shita. beta. -alanine no kozo

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, Hiroshi; Nakamura, Hiroyoshi; Kimura, Hirokazu; Konishi, Takashi [Kyoto Inst. of Tech., Kyoto (Japan). Faculty of Textile Science

    1989-12-05

    The structure of poly({beta}-alanine) polymerized in the solid state was studied. This polymerization was carried out on a single crystal of {beta}-alanine at 170 centigrade for 40 h in an evacuated tube. The crystal structure of the polymer was assigned to I-type crystal of Nylon 3. The polymer chains were oriented vertical to the crystal side and different to monomer crystal orientation. This may be caused by the molecular layer slipping along the cleavage plane of monomer crystal. A scanning electron microscope(SEM) showed the band structure of hundreds nm width of same orientation, but X ray showed only unoriented rings, so that they are estimated to be the structure of fine fibril like assembly or necklace like continuous chain structure of grains. Near the surface, whiskers which were thought to be oligomer of low degree of polymerization, were observed. The SEM of end view of the etched surface did not show the laminated structure but showed the network structure of about 1 mu-m which is thought to be fibril precursor. 12 refs., 10 figs.

  18. The photon energy dependence of the alanine/EPR dosimetry system, an experimental investigation

    International Nuclear Information System (INIS)

    Bergstrand, E.S.; Hole, E.O.; Shortt, K.R.; Ross, C.K.

    2002-01-01

    The energy dependence of a dosimetry system based on electron paramagnetic resonance (EPR) spectroscopy of alanine has been studied to determine its suitability for use in dose verification for radiotherapy. A few experiments with high-energy photon irradiation of alanine have been reported in the literature. However, the reported results disagree whether the ratio of dose in alanine to dose in water is independent of the radiation energy or whether there is a small dependence for photon energies of relevance to radiotherapy. The concentration of free radicals in alanine is proportional to the absorbed dose in alanine over a wide dose range covering three decades. The relative number of radicals may be determined by examining the EPR spectrum, and hence it is possible to determine the dose with a system that has been calibrated using a known dose of 60 Co radiation. In the present work, irradiations of alanine dosimeters were performed at the National Research Council (NRC), in Ottawa, Canada. The radiation qualities investigated were 10, 20 and 30 MV x-rays using the NRC linac. For each radiation quality, 30 dosimeters were irradiated in a water phantom with a level of absorbed dose to water ranging from 10 to 50 Gy. For reference purposes, irradiations using the NRC 60 Co source were performed on more or less the same day as the irradiations at each specific linac quality. In all beams, the dose to water was measured using a graphite-walled NE2571 ionisation chamber that was originally calibrated by comparison with a sealed-water calorimeter. The alanine dosimeters were evaluated at the EPR laboratory at the University of Oslo, Norway, using an X-band Bruker ESP300E spectrometer with a rectangular double resonator. One of the resonators contained a Mn 2+ /MgO sample that was read after each dosimeter reading, in order to provide independence from short-term sensitivity fluctuations in the spectrometer. All dosimeters irradiated at one specific linac quality were

  19. An investigation of the photon energy dependence of the EPR alanine dosimetry system

    International Nuclear Information System (INIS)

    Bergstrand, Eva Stabell; Shortt, Ken R; Ross, Carl K; Hole, Eli Olaug

    2003-01-01

    The electron paramagnetic resonance (EPR) alanine dosimetry system is based on EPR measurements of radicals formed in alanine by ionizing radiation. The system has been studied to determine its energy dependence for photons in the 10-30 MV region relative to those of 60 Co and to find out if the system would be suitable for dosimetry comparisons. The irradiations were carried out at the National Research Council, Ottawa, Canada and the doses ranged from 8 to 54 Gy. The EPR measurements were performed at the University of Oslo, Norway. The ratio of the slope of the alanine reading versus dose-to-water curve for a certain linac photon beam quality and the corresponding slope for a reference 60 Co γ-radiation gives an experimental measure of the relative dose-to-water response of the EPR alanine dosimetry system. For calculating the linear regression coefficients of these alanine reading versus dose curves, the method of weighted least squares was used. This method is assumed to produce more accurate regression coefficients when applied to EPR dosimetry than the common method of standard least squares. The overall uncertainty on the ratio of slopes was between 0.5 and 0.6% for all three linac energies. The relative response for all the linac beams compared to cobalt was less than unity: by about 0.5% for the 20 and 30 MV points but by more than 1% for the 10 MV point. The given standard uncertainties negate concluding that there is any significant internal variation in the measured response as a function of beam quality between the three linac energies. Thus, we calculated the average dose response for all three energies and found that the alanine response is 0.8% (±0.5%) lower for high energy x-rays than for 60 Co γ-rays. This result indicates a small energy dependence in the alanine response for the high-energy photons relative to 60 Co which may be significant. This result is specific to our dosimetry system (alanine with 20% polyethylene binder pressed into a

  20. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  1. Influence of the irradiation temperature on the free-radical response of alanine

    International Nuclear Information System (INIS)

    Wieser, A.; Siegele, R.; Regulla, D.F.

    1989-01-01

    GSF operates the only IAEA high-level dosimetry reference laboratory and, as a joint project with the IAEA, the International Dose Assurance Service (IDAS). Dosimetry is based on long-lived free radicals in organic alanine induced by ionizing radiation and readout by ESR spectroscopy. The thermal time response of the radical concentration in alanine is fairly constant after irradiation provided that the alanine samples are stored at temperatures below 50 0 C. By contrast, a positive temperature coefficient had earlier been found at GSF for the production rate of alanine radicals, for irradiation temperatures between 0 and 50 0 C. This effect has to be considered for reference dosimetry in radiation processing. Radiation processing is also of interest at irradiation temperatures below 0 0 C. The present study describes experiments on the influence of irradiation temperatures between +50 and -100 0 C. Comparison is made between the present and earlier results, in the overlapping temperature range. An empirical function is proposed for the temperature coefficient based on the experimental data. (author)

  2. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M.

    2018-03-01

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311 ++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P 1 bar space group of triclinic system (Z = 2), the β-2AlaOTf in the P21/m space group of monoclinic system (Z = 2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state.

  3. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  4. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine

    International Nuclear Information System (INIS)

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E.

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14 C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors

  5. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  6. Green reduction of graphene oxide using alanine.

    Science.gov (United States)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Alanine-EPR dosimetry system. Why we like it?

    International Nuclear Information System (INIS)

    Stuglik, Z.

    2007-01-01

    To develop a new high-dose dosimeter we should: (1) to find material with radiation effect monotonically (if possible linearly) dependent on an absorbed dose; (2) to investigate its dosimetric characteristics (sensitivity, dose range, repeatability, accuracy, post-effects); (3) to evaluate economical parameters of new method (cost and availability of dosimetric material, cost of analytical instrument and its services); (4) to evaluate operational features of new dosimeter (sensitivity for environmental conditions, time from irradiation to the read-out); (5) to perform a calibration curve, i.e. functional dependence between radiation effect (dosimetric signal) and absorbed dose. On the base of this very stable stable ammonium radical (SAR) generated in crystalline α-alanine was established in the INCT as an alanine-EPR dosimetry system. Presented lecture describes the main features of this dosimeter

  8. A method to improve application technique in Alanine/ESR dosimetry

    International Nuclear Information System (INIS)

    Choi, Hoon; Ha, Ju Hee; Choi, Won; Lim, Young Khi

    2008-01-01

    Full text: For long-term radiation monitoring to assess the cable aging in harsh condition of nuclear power plant, ESR dosimetry method using alanine dosimeters was already recommended in many technical document and paper. Several ESR dosimetry systems were already produced and used widely, but the actual application of these systems for industrial dosimetry needs careful consideration of error sources in process of dose measurement. The alanine dosimeters were measured by E-scan alanine analyzer system or EMX ESR spectrometer. For the accurate measurement of the dosimeters, we have studied various source of errors. First, this paper discusses sources of inaccuracy related to data processing. To make a meaningful dose assessment, the dosimeter measurements need to be compared with measurements made using certified dosimeters of known dose. This is achieved by performing the routine calibration procedure which creates a calibration curve and corresponding fit coefficients from measurements made with a set of dosimeters with known certified dose. The calibration curves in ESR dosimetry are usually constructed by means of the least-squares technique in its simplest variant. The recommended alternative linearity several replicate measurements of Y at each used X value. Also, measurement is subject to error, so repeat measurements will not be identical. A technical description of a linear calibration is assumed that the dispersion of the measurements is the same for each standard. But in some cases, the standard deviation has to be specified separately for each value of concentration. In this case, it used the WLS (Weighted Least-Squared Regression) method instead of the OLS (Ordinary Least-Squared Regression) method. Second, the precision of the ESR spectrum was showed as a reproducibility test for the two ESR systems. The reproducibility test was performed at an absorbed dose of 1 k Gy, which is at least three orders of magnitude above the background reading of an

  9. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Knockout of the alanine racemase gene in Lactobacillus plantarum results in septation defects and cell wall perforation

    NARCIS (Netherlands)

    Palumbo, E.; Favier, C.F.; Deghorain, M.; Cocconcelli, P.S.; Grangette, C.; Mercenier, A.M.E.; Vaughan, E.E.; Hols, P.

    2004-01-01

    A stable mutant of Lactobacillus plantarum deficient in alanine racemase (Alr) was constructed by two successive homologous recombination steps. When the mutant was supplemented with D-alanine, growth and viability were unaffected. Surprisingly, deprivation Of D-alanine during exponential growth did

  11. Preliminary assessment of LiF and alanine detectors for the dosimetry of proton therapy beams

    International Nuclear Information System (INIS)

    Fattibene, P.; Calicchia, A.; De Angelis, C.; Onori, S.; Egger, E.

    1996-01-01

    An experimental intercomparison between the proton response of LiF TLD-100 and alanine detectors is reported. The investigations were performed with LiF chips and alanine pellets in a 62 MeV proton beam at the Paul Scherrer Institut in Villigen (CH). Results were compared with reference dosimetry provided by Markus type parallel plate ionization chamber. The response of the detectors was studied, in a phantom, at different beam penetration depths in pristine and modulated beams. For both alanine and TL detectors, within the experimental uncertainty of the measurements, no significant energy dependence in the response was observed down to the Bragg peak region. The sensitivity of alanine and LiF detectors to protons was measured in the centre of modulated Bragg peak and no significant difference was found with respect to 60 Co. Contrary to LiF, alanine also offers a remarkable tissue equivalence which favours its choice for in-phantom dosimetry. (author)

  12. Dosimetry in non-homogeneous media with alanine/EPR mini dosemeters and simulation with PENELOPE Monte Carlo code;Dosimetria em meios nao-homogeneos com minidosimetros de alanina/EPR e simulacao Monte Carlo com o codigo PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Vega Ramirez, J.L.; Chen, F.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2009-07-01

    The dosimetric system of L-alanine mini dosimeter and K-Band EPR spectrometer was tested for the dosimetry in non-homogeneous media through the determination of the Percentage Depth Dose (PDD) curve for a small radiation field. The alanine mini dosimeters were produced by mechanical pressure of a mixture of L-alanine (95%) and PVA (5%) to nominal dimensions of 1 mm diameter and 3 mm length and 3 - 4 mg. For detecting the EPR signal of the mini dosimeters irradiated to 25 Gy, a K-Band (24 GHz) spectrometer was used. The dosimeters were irradiated in a {sup 60}Co radiotherapy unit using 80 cm source skin distance and field sizes of 2.5 x 2.5 cm{sup 2}. The inhomogeneous phantom consisted of acrylic and cork sheets of 30 x 30 x 1 cm{sup 3}; six cork sheets were sandwiched between five and nine acrylic sheets, which were placed at the top and bottom regions respectively. PDD curves with radiographic film and PENELOPE simulation were also determined. The PDD results for alanine mini dosimeters agreed better than 5.9% with film and PENELOPE. (author)

  13. Dosimetric calibration of humidity chamber inside the 60Co-PANBIT irradiator using alanine ESR dosimeter

    International Nuclear Information System (INIS)

    Murali, S.; Venkataramani, R.; Pushparaja; Natarajan, V.; Sastry, M.D.; Bora, J.S.; Venkatacharyulu, K.

    1998-01-01

    In the present work the suitability of the electron spin resonance (ESR) technique, using DL - α - alanine sample is examined. It is well documented that radiation induced free radicals in alanine give strong ESR spectrum which can be used for dosimetry purposes. The aspects that are relevant to the present work are: (I) stability of the radicals in temperature and humidity conditions in which the experiments were carried out; (II) linearity at high doses; and (III) establishing the utility of alanine ESR dosimeter by cross checking the dose values with more established dosimeters. The details of these investigations are presented and it is shown that alanine ESR dosimeter will meet all the required conditions satisfactorily

  14. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    McCarron, Pearse; Logan, Alan C; Giddings, Sabrina D; Quilliam, Michael A

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications.

  15. Hypoglycemic effect of the hydroalcoholic extract of leaves of Averrhoa carambola L. (Oxalidaceae

    Directory of Open Access Journals (Sweden)

    Edilene B. Ferreira

    Full Text Available The effect of the oral treatment (20 mg/kg x day with the hydroalcoholic extract of leaves of Averrhoa carambola L. (HELAC on fasting glycemia (15 h was examined. For this purpose, rats that received vehicle (Control group or HELAC (HELAC group during 15 days were compared. HELAC group showed lower fasting glycemia (p<0.05. In contrast, livers from HELAC group showed higher (p<0.05 glucose production from L-alanine (5 mM. This effect was mediated, at least part of it, by an activation of the catabolism of L-alanine inferred by the increased hepatic urea (p<0.05 and L-lactate (p<0.05 production. Differently of L-alanine, the glucose production from L-glutamine (5 mM, L-lactate (2 mM and glycerol (2 mM was similar (Control group vs. HELAC group. In addition, the HELAC treatment did not change the glucose uptake in soleus muscles, inferred by the incorporation of [14C]-glucose to glycogen (glycogen synthesis and [14C]-lactate production. Thus, we can conclude that the reduction of fasting glycemia promoted by the treatment with HELAC was not mediated by an inhibition of hepatic gluconeogenesis and/or an increased glucose uptake by muscles.

  16. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... of the biological dose is out of scope of the current work. Materials and methods The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose...... fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2...

  17. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A.; Baccaro, S.; Cemmi, A. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Colli, V.; Gambarini, G. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF{sub 2}:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH{sub 3}CH(NH{sub 2})COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT. (authors)

  18. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    Energy Technology Data Exchange (ETDEWEB)

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  19. Structure of alanine racemase from Oenococcus oeni with bound pyridoxal 5′-phosphate

    International Nuclear Information System (INIS)

    Palani, Kandavelu; Burley, Stephen K.; Swaminathan, Subramanyam

    2012-01-01

    Alanine racemase from O. oeni exists as a dimer in the crystal structure. Both monomers contribute to the two active sites present, one for each monomer. The crystal structure of alanine racemase from Oenococcus oeni has been determined at 1.7 Å resolution using the single-wavelength anomalous dispersion (SAD) method and selenium-labelled protein. The protein exists as a symmetric dimer in the crystal, with both protomers contributing to the two active sites. Pyridoxal 5′-phosphate, a cofactor, is bound to each monomer and forms a Schiff base with Lys39. Structural comparison of alanine racemase from O. oeni (Alr) with homologous family members revealed similar domain organization and cofactor binding

  20. A spectrophotometric readout for γ irradiated alanine solution - a dosimetric application

    International Nuclear Information System (INIS)

    Marzouk, Asma

    2007-01-01

    Alanine is a stable dosimeter of reference in its solid state. Its installation in solution as being a dosimetric system of routine remains very useful. A follow-up of the behaviour of the irradiated alanine solution with 15 kGy according to the concentration is carried out by UV-Visible spectrophotometry. The results obtained prove the difficulty in analytical studies of the radiolysis of aqueous solutions by optical absorption due to the ambiguous broad spectra of the species and the reaction products. (Author). 47 refs

  1. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    Science.gov (United States)

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    Science.gov (United States)

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-07

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  3. Determination of isodose curves in Radiotherapy using an Alanine/ESR dosemeter; Determinacion de curvas de isodosis en Radioterapia usando un dosimetro de Alanina/ESR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Baffa, O.; Graeff, C.F.O. [Departamento de Fisica e Matematica. Universidade de Sao Paulo FFCLRP. 14040-901 Ribeirao Preto-SP (Brazil)

    1998-12-31

    It was studied the possible use of an Alanine/ESR dosemeter in the isodose curves mapping in normal treatments of Radiotherapy. It was manufactured a lot of 150 dosemeters with base in a mixture of D-L Alanine dust (80 %) and paraffin (20 %). Each dosemeter has 4.7 mm diameter and 12 mm length. A group of 100 dosemeters of the lot were arranged inside 50 holes of the slice 25 of the phantom Rando Man. The phantom irradiation was realized in two opposed projections (AP and PA) in Co-60 equipment. A group of 15 dosemeters was take of the same lot for obtaining the calibration curve in a 1-20 Gy range. After irradiation the signal of each dosemeter was measured in an ESR spectrometer operating in the X-band ({approx} 9.5 GHz) and the wideness of Alanine ESR spectra central line was correlated with the radiation dose. The wideness dose calibration curve resulted linear with a correlation coefficient 0.9996. The isodose curves obtained show a profile enough similar at comparing with the theoretical curves. (Author)

  4. Adsorption characteristics of 14C-labeled alanine, aspartic acid and adenosine triphosphate by metal-chelating resins

    International Nuclear Information System (INIS)

    Ishiyama, Toshio; Matsunami, Tadao; Shibata, Setsuko; Honda, Yoshihide.

    1987-01-01

    (1) Adsorption properties of 14 C-alanine, 14 C-ATP (adenosine triphosphate) and 14 C-aspartic acid on the metal-chelating resins were determined and found that the Cu(II)-Chelex 100 and Fe(III)-Unicellex UR10, Fe(III)-Chelex 100 chelating resins were highly effective for the adsorption of 14 C-alanine and 14 C-ATP, respectively. (2) Desorption rate of 14 C-ATP from the Fe(III)-Unicellex UR10 and Fe(III)-Chelex 100 resins was somewhat higher than the case of 14 C-alanine, probably because the coordination bonds of Cu-alanine might be stronger than those of Fe-ATP. Thus, 14 C-labeled organic compounds such as 14 C-alanine and 14 C-ATP of a low activity concentration (3.7 mBq/ml) (1 x 10 -7 μCi/ml) in aqueous solution may be measured with liquid scintillation counter after pre-concentration by use of the Fe(III)- and Cu(II)-chelating resin columns. (author)

  5. Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels

    International Nuclear Information System (INIS)

    Sharpe, P.H.G.; Sephton, J.P.

    1999-01-01

    In this paper we describe the work that has been carried out at National Physical Laboratory (NPL) to develop a mailed alanine reference dosimetry service for radiotherapy dose levels. The service is based on alanine/paraffin wax dosimeters produced at NPL. Using a data analysis technique based on spectrum fitting, it has been possible to achieve a precision of dose measurement better than ±0.05 Gy (1σ). A phantom set has been developed for use in high energy photon beams, which enables simultaneous irradiation of alanine dosimeters and ionisation chambers in a well defined geometry. Studies in photon beams of energies between 60 Co and 20 MeV have shown no significant energy dependence (<1%) for alanine relative to dose determination using a graphite calorimeter. Work is underway to extend the service to electron beams, and preliminary results are presented on the direct calibration of alanine in electron beams using a graphite calorimeter. (author)

  6. Effect of streptococcal preparation (picibanil) on the postoperative rise in serum alanine aminotransferase activity in patients with urogenital cancer.

    OpenAIRE

    Taketa, Kazuhisa; Ohmori, Hiroyuki; Matsumura, Yonesuke; Asahi, Toshihiko; Okimune, Masaaki

    1980-01-01

    The effect of Picibanil, a streptococcal agent, on the development of liver injury after operations for urogenital cancer was studied retrospectively in the light of serum alanine aminotransferase (ALT) activity. The series comprised 32 cases receiving Picibanil and 33 controls with otherwise comparable clinical backgrounds. Picibanil reduced the incidence of postoperative ALT rise over 50 U/l within 6 weeks but increased it thereafter. The increase in ALT activity after 6 weeks was relativel...

  7. UPLC-ESI-MS/MS method for the quantitative measurement of aliphatic diamines, trimethylamine N-oxide, and β-methylamino-l-alanine in human urine.

    Science.gov (United States)

    Bhandari, Deepak; Bowman, Brett A; Patel, Anish B; Chambers, David M; De Jesús, Víctor R; Blount, Benjamin C

    2018-04-15

    This work describes a quantitative high-throughput analytical method for the simultaneous measurement of small aliphatic nitrogenous biomarkers, i.e., 1,6-hexamethylenediamine (HDA), isophoronediamine (IPDA), β-methylamino-l-alanine (BMAA), and trimethylamine N-oxide (TMAO), in human urine. Urinary aliphatic diamines, HDA and IPDA, are potential biomarkers of environmental exposure to their corresponding diisocyanates. Urinary BMAA forms as a result of human exposure to blue-green algae contaminated food. And, TMAO is excreted in urine due to the consumption of carnitine- and choline-rich diets. These urinary biomarkers represent classes of small aliphatic nitrogen-containing compounds (N-compounds) that have a high aqueous solubility, low logP, and/or high basic pK a . Because of the highly polar characteristics, analysis of these compounds in complex sample matrices is often challenging. We report on the development of ion-pairing chemistry based ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the simultaneous measurement of these biomarkers in human urine. Chromatographic separation was optimized using heptafluorobutyric acid-(HFBA-) based mobile phase and a reversed-phase C18 column. All four analytes were baseline separated within 2.6 min with an overall run time of 5 min per sample injection. Sample preparation involved 4 h of acid hydrolysis followed by automated solid phase extraction (SPE) performed using strong cation exchange sorbent bed with 7 N ammonia solution in methanol as eluent. Limits of detection ranged from 0.05 ng/mL to 1.60 ng/mL. The inter-day and intra-day accuracy were within 10%, and reproducibility within 15%. The method is accurate, fast, and well-suited for biomonitoring studies within targeted groups, as well as larger population-based studies such as the U. S. National Health and Nutrition Examination Survey (NHANES). Published by Elsevier B.V.

  8. Plasma Levels of Alanine Aminotransferase in the First Trimester Identify High Risk Chinese Women for Gestational Diabetes

    OpenAIRE

    Leng, Junhong; Zhang, Cuiping; Wang, Peng; Li, Nan; Li, Weiqin; Liu, Huikun; Zhang, Shuang; Hu, Gang; Yu, Zhijie; Ma, Ronald CW; Chan, Juliana CN; Yang, Xilin

    2016-01-01

    Alanine aminotransferase (ALT) predicts type 2 diabetes but it is uncertain whether it also predicts gestational diabetes mellitus (GDM). We recruited 17359 Chinese women with ALT measured in their first trimester. At 24?28?weeks of gestation, all women underwent a 50-gram 1-hour glucose challenge test (GCT) followed by a 75-gram 2-hour oral glucose tolerance test if GCT result was ?7.8?mmol/L. Restricted cubic spline analysis was used to examine full-range risk associations of ALT levels wit...

  9. Beta-alanine supplementation improves jumping power and affects severe-intensity performance in professional alpine skiers.

    Science.gov (United States)

    Gross, Micah; Bieri, Kathrin; Hoppeler, Hans; Norman, Barbara; Vogt, Michael

    2014-12-01

    Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.

  10. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.

    Science.gov (United States)

    Liu, Dong; Zhang, Lu; Xue, Wen; Wang, Yaping; Ju, Jiansong; Zhao, Baohua

    2015-07-01

    This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Alanine-EPR dosimetry system for high industrial as well radiotherapeutic dose measurement

    International Nuclear Information System (INIS)

    Dobrovodsky, J.; Bukovjan, J.

    2005-01-01

    Slovak Institute of Metrology is developing new metrology standard for high doses, based on the alanine-EPR as a reference dosimetry system. A Bruker e-scan EPR analyser developed specifically for alanine dosimetry has improved stability of EPR measurement, especially at lower dose range. The standard e-scan system provides sensitivity below 1 Gray. After further improvement of the system and lowering of dose determination expanded uncertainty down below 1 %, its utilisation for radiotherapy field is expected (authors)

  12. Metabolism of leucine and alanine in growing rats fed the diets with various protein to energy ratios

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1975-01-01

    In order to clarify the nutritional significance of metabolism of the carbon skeleton of individual amino acids, the metabolic fates of L-leucine-U- 14 C and L-alanine-U- 14 C were investigated in growing rats fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein in 12 hr after the injection of leucine- 14 C was about 73% of the dose in the 0 and 5 PC% groups, though it decreased with increasing the levels of dietary protein from 10 to 30 PC%. The value of 14 C recovery in body protein almost agreed with the net protein utilization (NPU) determined for the whole egg protein in a similar experimental condition. The 14 C recovery in expired CO 2 and body lipid suggested that the carbon skeleton of leucine is well utilized as an energy source when the dietary carbohydrate is extensively replaced by protein. While, the incorporation of 14 C into body protein from alanine- 14 C was less than about 11% of the dose in all the dietary groups, and the majority of 14 C was recovered in expired CO 2 and body lipid in a remarked contrast to leucine. A similar pattern in urinary excretion of 14 C was obtained for these amino acids, and the refracted rise of 14 C from 10 PC% may give an indication for minimum protein requirements. (auth.)

  13. Alanine Aminotransferase, ?-Glutamyltransferase, and Incident Diabetes

    OpenAIRE

    Fraser, Abigail; Harris, Ross; Sattar, Naveed; Ebrahim, Shah; Davey Smith, George; Lawlor, Debbie A.

    2009-01-01

    OBJECTIVE: To estimate and compare associations of alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) with incident diabetes. RESEARCH DESIGN AND METHODS: ALT and GGT were studied as determinants of diabetes in the British Women's Heart and Health Study, a cohort of 4,286 women 60-79 years old (median follow-up 7.3 years). A systematic review and a meta-analysis of 21 prospective, population-based studies of ultrasonography, which diagnosed nonalcoholic fatty liver disease (NA...

  14. Stability constants of mixed ligand complexes of dioxouranium(II) and thorium(IV) with complexones and isomeric alanines

    International Nuclear Information System (INIS)

    Singh, R.K.; Saxena, M.C.

    1992-01-01

    The present work reports on the stability sequence between UO 2 II and Th IV ions for their mixed ligands complexes with the two isomeric alanines, α-alanine (α-ala) and β-alanine (β-ala) containing a complexone as primary ligand. The complexones used are iminodiacetate (IMDA), nitrilotricetate (NTA), 2-hydroxyethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,2-diaminocyclohexanetraacetate (CDTA) and diethylenetriminepentaacetate (DTPA). (author). 9 refs., 1 tab

  15. Synthesis and characterization of alanine boron hydrate for its use in thermal neutron dosimetry

    International Nuclear Information System (INIS)

    Yanez S, J.C.

    1994-01-01

    Alanine boron hydrate was synthesized for its possible use as intercomparison dosimeter for thermal neutron irradiation. The irradiations were performed in the Nuclear Reactor of the Nuclear Center of Mexico. The salt was prepared by reacting alanine and boric acid in a (1:1) stoichiometric ratio in neutral pH 7.5 aqueous solution and also in a basic pH 13 solution. The latter reaction was prepared with the addition of ammonia hydroxide (25%). Solutions were stirred and afterwards were let to evaporate. The obtained product in each reaction is a white solid. Dosimeters were prepared with the obtained reaction products and irradiated under thermal neutron flux of 5 x 10 7 n/cm 2 s. For 30 hours. The analysis of irradiated samples was made in a Variant E-15 Electron Paramagnetic Resonance spectrometer. The observed response of the samples prepared with the reaction product at the basic pH is approximately 50% higher than the neutral pH samples. In order to investigate the optimum signal enhancement samples were prepared in a basic pH medium in the following stoichiometric ratios: (1:0.5); (1:0.75); (1:1.25); (1:1.5) and (1:1.75). It was observed that the samples of the reaction (1:0.75) produced the higher response. The response was 2728% higher than the alanine only dosimeters. The reaction product was chemically characterized by X-ray diffraction, Nuclear Magnetic Resonance, Chromatography, Refractometry and Solubility tests. Results indicate that alanine boron hydrate is formed in basic media and in a stoichiometric ratio (1:0.75). The dosimetric characterization of alanine boron hydrate was performed, results are reported. It is concluded that alanine boron hydrate may be a good intercomparison dosimeter for thermal neutron irradiation. (Author)

  16. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  17. Amorphous track predictions in ‘libamtrack’ for alanine relative effectiveness in ion beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Greilich, Steffen; Grzanka, Leszek

    2011-01-01

    and simple dose response, the alanine detector can help to study fundamental assumptions and accuracy in amorphous track modelling. The libamtrack project enabled recently to directly compare various flavours of ATMs. We therefore present here the potential of predictions for alanine from two libamtrack ATMs...... transport and stopping powers hinders a thorough interpretation of the deviation found and stress the necessity for a broader data base at lower particle energies....

  18. Prostatic biopsy in the prostate specific antigen gray zone; La biopsia prostatica multipla nalla zona grigia dei valori dell'antigene prostatico specifico

    Energy Technology Data Exchange (ETDEWEB)

    Drudi, F. M.; Ricci, P.; Iannicelli, E.; Di Nardo, R.; Novelli, L.; Laghi, A.; Passariello, R. [Rome Univ. La Sapienza, Rome (Italy). Ist. di Radiologia II Cattedra; Perugia, G. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Urologia U. Bracci

    2000-02-01

    The main purpose of this study was to identify cases of undetected prostatic cancer in patients with normal findings at digital examination and transrectal US, and prostate specific antigen (PSA) values ranging 4-10 ng/mL. 290 patients were submitted to transrectal US and random bilateral prostatic biopsy; 3 samples were collected from each side of the gland using 16-Gauge thru-cut needles. Of the 290 patients who gave full informed consent, 34 people were selected whose age range was between 56 to 76 years (mean: 64). Inclusion criteria were PSA 4-10 ng/mL, PSAD cut-off 0.15, free/total PSA ratio 15-25%, and normal findings at digital examination and transrectal US. PSA velocity was calculated collecting 3 blood samples every 30 days for 2 months. 5 of the 34 selected patients (15%) had prostatic cancer, and 2 (6%) Pin (1 Pin 1 and 1 Pin 2). As for the other 27 patients, biopsy demonstrated 4 (12%) cases of prostatitis and 23 (62%) cases of BPH. PSA values increased in all patients with positive histology, versus only 6 (22%) of those with negative histology. Our findings confirm that prostatic biopsy can detect tumors also in areas which appear normal at transrectal US and digital examination, and that PSA rate increases in patients with positive histology. Finally, the actual clinical role of prostatic biopsy relative to all other diagnostic imaging techniques remains to be defined. [Italian] Si intende qui dimostrare la percentuale di neoplasie prostatiche sfuggite all'esplorazione rettale e all'ecografia transrettale nei pazienti convalori di antigene prostatico specifico tra 4 e 10 ng/ml. 290 pazienti sono stati sottoposti a ecografia transrettale e biopsia multipla (6 prelievi, ago da 16 Gauge) dopo consenso informato. Di questi sono stati selezionati 34: eta' tra 56 e 76 anni, eta' media 64 anni. Parametri di selezione: antigene prostatico specifico con valori tra 4 e 10ng/ml; densita' dell'antigene prostatico specifico con

  19. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the object......Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics......-alanine and its subsequent conversion into 3HP using a novel ß-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7±0.3 g・L-1 with a 0.14±0.0 C-mol・C-mol-1 yield on glucose in 80 hours in controlled fed-batch fermentation in mineral medium at pH 5......, and this work therefore lays the basis for developing a process for biological 3HP production....

  20. Impact of weight reduction program on serum alanine ...

    African Journals Online (AJOL)

    Objective: This study was to examine the correlation between body mass index, serum alanine .... level recorded at least 2 distinct instances at an interval of ... ing exercises, 30 minutes of aerobic exercise training with intensity equal 60-70% of the individual maximum heart .... loric restriction after consuming a high-fat diet.

  1. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    International Nuclear Information System (INIS)

    Chen, Felipe; Graeff, Carlos F.O.; Baffa, Oswaldo

    2005-01-01

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm 3 and irradiated with a (3x3) cm 2 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range

  2. Room temperature Q-band electron magnetic resonance study of radicals in X-ray-irradiated L-threonine single crystals

    International Nuclear Information System (INIS)

    Vanhaelewyn, Gauthier; Vrielinck, Henk; Callens, Freddy

    2014-01-01

    In the past, decennia radiation-induced radicals were successfully identified by electron magnetic resonance (EMR) in several solid-state amino acids and sugars. The authors present a room temperature (RT) EMR study of the stable radicals produced by X-ray-irradiation in the amino acid L-threonine (CH 3 CH(OH)CH(NH3 + )COO - ). Its chemical structure is similar to that of the well-known dosimetric material L-alanine (CH 3 CH(NH3 + )COO - ), and radiation defects in L-threonine may straightforwardly be compared with the extensively studied L-alanine radicals. The hyperfine coupling tensors of three different radicals were determined at RT using electron nuclear double resonance. These results indicate that the two most abundant radicals share the same basic structure CH 3 .C(OH)CH(NH3 + )COO - , obtained by H-abstraction, but are stabilised in slightly different conformations. The third radical is most probably obtained by deamination (CH 3 CH(OH).CHCOO - ), similar in structure to the stable alanine radical. (authors)

  3. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  4. Alanine administration does not stimulate gluconeogenesis in preterm infants

    NARCIS (Netherlands)

    van Kempen, Anne A. M. W.; Romijn, Johannes A.; Ruiter, An F. C.; Endert, Erik; Weverling, Gerrit Jan; Kok, Johanna H.; Sauerwein, Hans P.

    2003-01-01

    Gluconeogenesis partially depends on sufficient precursor supply, and plasma alanine concentrations are generally low in preterm infants. Stimulation of gluconeogenesis may contribute to the prevention of hypoglycemia, an important clinical problem in these infants. In this study we evaluated the

  5. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-01-01

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm 3 ). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm 3 . In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  6. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy.

    Science.gov (United States)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-07-01

    In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm(3)). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm(3). In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was -2.4 ± 0.9% (1σ) for protons and -2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of -1.7% for protons and -1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be

  7. Relationship between turnover rate and oxidation rate of alanine in the post-absorptive state and during parenteral nutrition before and after surgery

    NARCIS (Netherlands)

    Sauerwein, H. P.; Michels, R. P.; Cejka, V.

    1985-01-01

    The influence of total parenteral nutrition and stomach resection on alanine turnover rate and alanine oxidation rate was measured in ten patients after single injection of U-14 C-alanine. Sequential studies were done in three patients. During parenteral nutrition alanine turnover was significantly

  8. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  9. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial.

    Science.gov (United States)

    Smith, Abbie E; Walter, Ashley A; Graef, Jennifer L; Kendall, Kristina L; Moon, Jordan R; Lockwood, Christopher M; Fukuda, David H; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2009-02-11

    Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, beta-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and beta-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining beta-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men. Forty-six men (Age: 22.2 +/- 2.7 yrs; Ht: 178.1 +/- 7.4 cm; Wt: 78.7 +/- 11.9; VO2peak: 3.3 +/- 0.59 l.min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL - 16.5 g dextrose powder per packet; n = 18) or beta-alanine (BA - 1.5 g beta-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio. Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p body mass were only significant for the BA group after the second three weeks of training. The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.

  10. Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial

    Directory of Open Access Journals (Sweden)

    Beck Travis W

    2009-02-01

    Full Text Available Abstract Background Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H+ buffer. Concurrent high-intensity interval training (HIIT and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT on endurance performance and aerobic metabolism in recreationally active college-aged men. Methods Forty-six men (Age: 22.2 ± 2.7 yrs; Ht: 178.1 ± 7.4 cm; Wt: 78.7 ± 11.9; VO2peak: 3.3 ± 0.59 l·min-1 were assessed for peak O2 utilization (VO2peak, time to fatigue (VO2TTE, ventilatory threshold (VT, and total work done at 110% of pre-training VO2peak (TWD. In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL – 16.5 g dextrose powder per packet; n = 18 or β-alanine (BA – 1.5 g β-alanine plus 15 g dextrose powder per packet; n = 18 group. All subjects supplemented four times per day (total of 6 g/day for the first 21-days, followed by two times per day (3 g/day for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio. Results Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p 2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. Conclusion The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.

  11. Electron beam dose measurements with alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Rodrigues, O. Jr.; Galante, O.L.; Campos, L.L.

    2001-01-01

    When the aminoacid alanine, CH 3 -CH(NH 2 )-COOH, is exposed to radiation field, stable free radicals are produced. The predominant paramagnetic specie found at room temperature is the CH 3 -CH-COOH. Electron Spin Resonance - ESR is a technique used for quantification and analysis of radicals in solid and liquid samples. The evaluation of the amount of produced radicals can be associated with the absorbed dose . The alanine/ESR is an established dosimetry method employed for high doses evaluation, it presents good performance for X-rays, gamma, electrons, and protons radiation detection. The High Doses Dosimetry Laboratory of Ipen developed a dosimetric system based on alanina/ESR that presents good characteristics for use in gamma fields such as: wide dose range from 10 to 10 5 Gy, low fading, low uncertainty (<5%), no dose rate dependence and non-destructive ESR single readout. The detector is encapsulated in a special polyethylene tube that reduces the humidity problems and improves the mechanical resistance. The IPEN dosimeter was investigated for application in electron beam fields dosimetry

  12. Coordinated research efforts for establishing an international radiotherapy dose intercomparison service based on the alanine/ESR system

    International Nuclear Information System (INIS)

    Nette, H.P.; Onori, S.; Fattibene, P.; Regulla, D.; Wieser, A.

    1993-01-01

    The IAEA has long been active in the field of high-dose standardization. An International Dose Assurance Service (IDAS) was established based on alanine/ESR dosimetry. This service operates over the range of 100 Gy to 100 kGy and is directed towards industrial radiation processing in IAEA member states. It complements the IAEA/WHO TLD postal dose intercomparison service for dose assurance in hospital radiotherapy departments. Experience with the alanine high dose service suggests that the alanine dosimeter might provide superior performance to TLD in the therapy dose range. Preliminary test measurements with the participation of GSF/Germany, Istituto Superiore di Sanita/Italy (both providing alanine dosimeters and their evaluation) and IAEA (providing reference irradiations) seems to justify research efforts through an IAEA Coordinated Research Programme (CRP). This CRP, entitled ''Therapy Level Dosimetry with the Alanine/ESR System'' is presently under set-up. It will include general work common to all assigned/potential contract holders as well as some specific research topics in accordance to individual proposals of each participant. (author)

  13. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo

    2009-01-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  14. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  15. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  16. A non-enzymic browning induced by gamma cobalt-60 irradiation and heating in a fructose-alanine model system

    International Nuclear Information System (INIS)

    Bachman, S.; Zegota, A.; Zegota, H.

    1981-01-01

    The Maillard browning reaction between reducing sugars and amino compounds is important in food chemistry and may considerably affect the colour, aroma and nutritional value of food after thermal processing. In this study, the effect of irradiation combined with heating on the course of browning reaction in the model system of aqueous solution of fructose (0.03M) and alanine (0.01M) was investigated. The optical absorption spectra recorded for irradiated and heated solution of fructose-alanine were different from those of only irradiated or only heated solution. The brown colour of the samples is caused by the extension of the tail-end absorption into the visible region of the spectrum. No absorption maximum appears in the visible range. The heating of irradiated fructose solution with non-irradiated alanine develops markedly more intensive browning than that of the heating of irradiated alanine solution with non-irradiated fructose. The products of fructose radiolysis are responsible for the acceleration of browning in the fructose-alanine system. (author)

  17. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Sale Craig

    2012-06-01

    Full Text Available Abstract Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC. Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg, matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6 or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks supplementation group. Participants completed an isometric knee extension test (IKET to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2% and impulse by 3.7 ± 1.3 kN·s-1 (13.9% following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11 = 2.9, p ≤0.05; impulse: t(11 = 3.1, p ≤ 0.05. There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels.

  18. Increased alanine aminotransferase levels and associated characteristics among newly diagnosed type 2 diabetes patients: Results from the DD2 study

    DEFF Research Database (Denmark)

    Mor, Anil; Thomsen, Reimar W.; Rungby, Jørgen

    Objectives: Elevated levels of serum alanine aminotransferase (ALAT) have been linked with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), insulin resistance and the metabolic syndrome in type 2 diabetes (T2D) patients. We examined ALAT levels in newly diagnosed T2D...... quartile (>32IU/L / >41IU/L for women/men). As compared to people with ALAT values in the lowest quartile, those with high ALAT were younger (median age 57 vs. 64 years, pobese (median BMI 31.2 vs. 29.1 kg/m2, p=0.004), and had a larger waist circumference (111 vs. 101 cm, p....0001) and higher median CRP levels (2.8 vs. 1.8 mg/L, p=0.0147). They also had substantially poorer glucose control (HbA1c 7.40 vs. 6.90%, p=0.084; fasting blood glucose 7.56 vs. 6.86 mmol/L, pvs. 4.15 mmol/L, p=0.006), whereas blood pressure was similar...

  19. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy; Comparacion dosimetrica en interfaces de tejidos con dosimetros TLD, L-alanina, peliculas EDR2 y simulacion Penelope para una fuente de Co-60 y acelerador lineal en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin, Departamento de Fisica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  20. Development of an alanine dosimeter for gamma dosimetry in mixed environments

    International Nuclear Information System (INIS)

    Vehar, D.W.; Griffin, P.J.

    1992-01-01

    L-αa-Alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance (EPR) spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10 5 Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in 60 Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by calculations in conjunction with CaF 2 :Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including the ACRR and SPR-III reactors

  1. Dosimetry of blood irradiation using an alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Chen, F.; Covas, D.T.; Baffa, O.

    2001-01-01

    A batch of 80 DL-alanine dosimeters was supplied to Hemocentro of the Hospital and Clinics of Faculdade de Medicina de Ribeirao Preto (HC-FMRP) SP, Brazil for the purpose of quality control of the radiation dose delivered to blood bags. The irradiation was made using two (40x40) cm 2 parallel opposed radiation fields each with 80 cm of source to surface distance in the Radiotherapy Section of HC-FMRP with the 60 Co teletherapy unit. The calculated radiation absorbed dose at the center of the box was 20 Gy. The dosimeter readings were performed using a Varian E-4 ESR Spectrometer operating in X-band. For the 80 dosimeters and over the irradiation volume throughout a blood bag, the minimum and maximum doses were 14 and 23 Gy, respectively. The mean dose was (18±2) Gy (1σ), and the coefficient of variability was 11.1%. Alanine dosimeters demonstrated easy handling, good precision and adequate sensitivity for this application

  2. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

    Science.gov (United States)

    Oppici, Elisa; Montioli, Riccardo; Cellini, Barbara

    2015-09-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Taurine and β-alanine intraperitoneal injection in lactating mice modifies the growth and behavior of offspring.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2018-01-08

    Taurine, one of the sulfur-containing amino acids, has several functions in vivo. It has been reported that taurine acts on γ-aminobutyric acid receptors as an agonist and to promote inhibitory neurotransmission. Milk, especially colostrum, contains taurine and it is known that milk taurine is essential for the normal development of offspring. β-Alanine is transported via a taurine transporter and a protein-assisted amino acid transporter, the same ones that transport taurine. The present study aimed to investigate whether the growth and behavior of offspring could be altered by modification of the taurine concentration in milk. Pregnant ICR mice were separated into 3 groups: 1) a control group, 2) a taurine group, and 3) a β-alanine group. During the lactation periods, dams were administered, respectively, with 0.9% saline (10 ml/kg, i.p.), taurine dissolved in 0.9% saline (43 mg/10 ml/kg, i.p.), or β-alanine dissolved in 0.9% saline (31 mg/10 ml/kg, i.p.). Interestingly, the taurine concentration in milk was significantly decreased by the administration of β-alanine, but not altered by the taurine treatment. The body weight of offspring was significantly lower in the β-alanine group. β-Alanine treatment caused a significant decline in taurine concentration in the brains of offspring, and it was negatively correlated with total distance traveled in the open field test at postnatal day 15. Thus, decreased taurine concentration in the brain induced hyperactivity in offspring. These results suggested that milk taurine may have important role of regulating the growth and behavior of offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range

    International Nuclear Information System (INIS)

    Wieser, A.; Lettau, C.; Fill, U.; Regulla, D.F.

    1993-01-01

    The yield of radicals induced by ionizing radiation in the amino acid alanine and its quantification by ESR spectroscopy has proven excellent reproducibility. Those radicals trapped in the crystal lattice are prevented from recombination providing a thermally very stable system. This allows alanine to be applied as a transfer dosemeter. With paraffin-alanine probes ESR dosimetry can be performed with a standard deviation of ± 0.5% in the dose range from 20 Gy up to 100 kGy. At 1 Gy dose level the error increases to ± 6%. This dose level is three orders of magnitude higher than the calculated detection threshold for alanine with modern X-band ESR spectrometers. It was found that the poor standard deviation at the 1 Gy dose level, is not mainly produced by a bad signal-to-noise ratio but by a variable non-radiation induced ESR background signal from the alanine probes within a batch. In the present study the main sources of error for ESR dosimetry in the dose range below 20 Gy were analyzed. The influences of the production process, UV light and humidity upon the ESR background signal from paraffin-alanine probes were investigated. Measurements are shown indicating a second stable structure of the alanine radical at room temperature. (author)

  5. Synthesis of racemic 2-deutero-3-fluoro-alanine and its salts, and intermediates therefor

    International Nuclear Information System (INIS)

    1975-01-01

    The racemates of 2-deutero-3-fluoro-alanine and its salts are prepared by reductive amination of 3-fluoro-pyruvic acid, its hydrate or salts thereof, via the intermediate 2-imino-3-fluoro propionic acid salt, using alkali metal borodeuterides as reducing agents. The racemates thus obtained are valuable in the production of the corresponding 2-deutero-3-fluoro-D-alanine, and its pharmacologically acceptable salts, and derivatives thereof, which are potent antibacterial agents

  6. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    Science.gov (United States)

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-02

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    Science.gov (United States)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  8. Recent progress in application of JAERI alanine/ESR dosimetry system

    International Nuclear Information System (INIS)

    Kojima, T.

    1995-01-01

    Feasibility studies of application of JAERI alanine/ESR dosimetry system were performed on radiotherapy level dosimetry, low dose-rate dosimetry for residual life estimation of cable insulators used in nuclear power facilities, and dose monitoring for electron processing. (author)

  9. Inhibitory effect of different product analogues on {beta}-alanine synthase: A thermodynamic and fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andujar-Sanchez, Montserrat; Martinez-Gomez, Ana Isabel; Martinez-Rodriguez, Sergio; Clemente-Jimenez, Josefa Maria; Heras-Vazquez, Francisco Javier Las; Rodriguez-Vico, Felipe [Departamento de Quimica Fisica, Bioquimica y Quimica Inorganica, Facultad de Ciencias Experimentales, Universidad de Almeria, Carretera de Sacramento s/n, La Canada de San Urbano, Almeria 04120 (Spain); Jara-Perez, Vicente [Departamento de Quimica Fisica, Bioquimica y Quimica Inorganica, Facultad de Ciencias Experimentales, Universidad de Almeria, Carretera de Sacramento s/n, La Canada de San Urbano, Almeria 04120 (Spain)], E-mail: vjara@ual.es

    2009-02-15

    The enzyme N-carbamoyl-{beta}-alanine amidohydrolase catalyse the hydrolysis of N-carbamoyl-{beta}-alanine or N-carbamoyl-{beta}-aminoisobutyric acid to {beta}-alanine or 3-aminoisobutyric acid, under the release of carbon-dioxide and ammonia. This work studies the inhibition of N-carbamoyl-{beta}-alanine amidohydrolase from Agrobacterium tumefaciens C58 (At{beta}car) by different carboxylic acid compounds that differ in number of carbons, and position and size of ramification, while the binding thermodynamics of the inhibitors are studied by isothermal titration calorimetry (ITC) and fluorescence. From the binding constants and inhibition studies, we conclude that propionate is the most efficient inhibitor among those tested. Substitution of the linear alkyl acids in positions 2 and 3 resulted in a drastic decrease of the affinity. The thermodynamic parameters show that a conformational change is triggered upon ligand binding. Binding enthalpy {delta}H{sub b} is negative in all cases for all ligands, and thus, Van der Waals interactions and hydrogen bonding are most probably the major sources for this term. The process is entropically favoured at all temperatures and pH studied, most probably due to the liberation of water molecules accompanying the conformational change of the enzyme.

  10. Inhibitory effect of different product analogues on β-alanine synthase: A thermodynamic and fluorescence analysis

    International Nuclear Information System (INIS)

    Andujar-Sanchez, Montserrat; Martinez-Gomez, Ana Isabel; Martinez-Rodriguez, Sergio; Clemente-Jimenez, Josefa Maria; Heras-Vazquez, Francisco Javier Las; Rodriguez-Vico, Felipe; Jara-Perez, Vicente

    2009-01-01

    The enzyme N-carbamoyl-β-alanine amidohydrolase catalyse the hydrolysis of N-carbamoyl-β-alanine or N-carbamoyl-β-aminoisobutyric acid to β-alanine or 3-aminoisobutyric acid, under the release of carbon-dioxide and ammonia. This work studies the inhibition of N-carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58 (Atβcar) by different carboxylic acid compounds that differ in number of carbons, and position and size of ramification, while the binding thermodynamics of the inhibitors are studied by isothermal titration calorimetry (ITC) and fluorescence. From the binding constants and inhibition studies, we conclude that propionate is the most efficient inhibitor among those tested. Substitution of the linear alkyl acids in positions 2 and 3 resulted in a drastic decrease of the affinity. The thermodynamic parameters show that a conformational change is triggered upon ligand binding. Binding enthalpy ΔH b is negative in all cases for all ligands, and thus, Van der Waals interactions and hydrogen bonding are most probably the major sources for this term. The process is entropically favoured at all temperatures and pH studied, most probably due to the liberation of water molecules accompanying the conformational change of the enzyme

  11. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  12. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    International Nuclear Information System (INIS)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M; Zink, K

    2015-01-01

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from 60 Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k env for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted with BEAMnrc to a 60 Co unit and an Elekta (E nom =6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n e /n e,w ) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k env =0.9991+0.0049 *((n e /n e,w )−0.7659) 3 Conclusion: A perturbation correction factor k env accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n e /n e,w ) between 1 and 1.4. For denser materials such as bone or much less dense

  13. Dependence of enthalpies of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2011-01-01

    Highlights: · Enthalpies of dissolution of β-alanyl-β-alanine are measured in aqueous methanol, ethanol, 1-propanol and 2-propanol by calorimetry. · Standard values of dissolution and transfer enthalpies of β-alanyl-β-alanine and enthalpy coefficients of pair-wise interactions are calculated. · Dependences of the thermodynamic characteristics of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures are determined. - Abstract: The dissolution enthalpies of β-alanyl-β-alanine in aqueous methanol, ethanol, 1-propanol and 2-propanol solutions with an alcohol content up to 0.4 mole fractions have been measured calorimetrically at T = 298.15 K. The standard enthalpies of dissolution, Δ sol H o and transfer, Δ tr H o , of β-alanyl-β-alanine from water into mixed solvents and the enthalpy coefficients of pair-wise interactions, h xy , of β-alanyl-β-alanine with alcohol solvent molecules have been calculated. The results are discussed in terms of solute-solute and solute-solvent interactions.

  14. Probing the energy landscape of alanine dipeptide and decalanine using temperature as a tunable parameter in molecular dynamics

    International Nuclear Information System (INIS)

    Chatterjee, A; Bhattacharya, S

    2016-01-01

    We perform several molecular dynamics (MD) calculations of solvated alanine dipeptide and decalanine in vacuum with temperature as a tunable parameter and in the process, generate Markov state models (MSMs) at each temperature. An interesting observation that the kinetic rates appear to obey the Arrhenius rate law allows us to predict the dynamics of alanine dipeptide at 300 K at the microsecond timescales using the nanoseconds long high temperature calculations without actually performing MD simulations at 300 K. We conclude that the energy landscape of alanine dipeptide contains superbasins deeper than k B T and determine the energy barriers associated with the moves from the Arrhenius rate expression. Similar insights regarding the energy landscape associated with folding/unfolding pathways of a deca-alanine molecule are obtained using kinetic rates calculated at different temperatures. (paper)

  15. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    Science.gov (United States)

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Liquid chromatographic determination of the cyanobacterial toxin beta-n-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water.

    Science.gov (United States)

    Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y

    2009-08-01

    Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.

  17. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    Directory of Open Access Journals (Sweden)

    Tran Nguyen Thanh Thuy

    2016-05-01

    Full Text Available In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy and Nafion® modified and enzyme (glutamate oxidase (GlutOx immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA and dopamine (DA, respectively. The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2 (N = 10, respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C. The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L and reasonable recoveries (70%~107% were obtained.

  18. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  19. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men.

    Science.gov (United States)

    Okudan, N; Belviranli, M; Pepe, H; Gökbel, H

    2015-11-01

    The aim of this study was to investigate the effects of beta alanine and/or creatine supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. Forty-four untrained healthy men (aged 20-22 years, weight: 68-72 kg, height: 174-178 cm) participated in the present study. After performing the Wingate Test (WAnT) for three times in the baseline exercise session, the subjects were assigned to one of four treatment groups randomly: 1) placebo (P; 10 g maltodextrose); 2) creatine (Cr; 5 g creatine plus 5 g maltodextrose); 3) beta-alanine (β-ALA; 1,6 g beta alanine plus 8,4 g maltodextrose); and 4) beta-alanine plus creatine (β-ALA+Cr; 1,6 g beta alanine plus 5 g creatine plus 3,4 g maltodextrose). Participants were given the supplements orally twice a day for 22 consecutive days, then four times a day for the following 6 days. After 28 days, the second exercise session was applied during which peak power (PP) and mean power (MP) were measured and fatigue index (FI) was calculated. PP and MP decreased and FI increased in all groups during exercise before and after the treatment. During the postsupplementation session PP2 and PP3 increased in creatine supplemented group (from 642.7±148.6 to 825.1±205.2 in PP2 and from 522.9±117.5 to 683.0±148.0 in PP3, respectively). However, MP increased in β-ALA+Cr during the postsupplementation compared to presupplementation in all exercise sessions (from 586.2±55.4 to 620.6±49.6 in MP1, from 418.1±37.2 to 478.3±30.3 in MP2 and from 362.0±41.3 to 399.1±3 in MP3, respectively). FI did not change with beta alanine and beta alanine plus creatine supplementation during the postsupplementation exercise session. Beta-alanine and beta alanine plus creatine supplementations have strong performance enhancing effect by increasing mean power and delaying fatigue Index during the repeated WAnT.

  20. The NIM alanine-EPR dosimetry system: its application in NDAS programme and others

    International Nuclear Information System (INIS)

    Gao Jun-Cheng

    1999-01-01

    In 1983, National Institute of Metrology (NIM) began to study alanine-EPR dosimetry system. From 1988 on, the system has been used as a transfer standard to launch into the National Dose Assurance Service (NDAS) programme for cobalt-60 facilities in China. In this paper, the eleven years implementation of NDAS programme are presented by statistics. In 1991, under an IAEA coordinated research programme, NIM had studied to extend the range of the system to therapy level. In recent years, the NIM in cooperation with other institutes has been developing film-alanine dosimeter for electron beam dosimetry. (author)

  1. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    Science.gov (United States)

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    Science.gov (United States)

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  3. New optically active and thermally stable poly(amide-imide)s containing N,N'-(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-alanine and aromatic diamines: synthesis and characterization

    International Nuclear Information System (INIS)

    Faghihi, Khalil; Absalar, Morteza; Hajibeygi, Mohsen

    2009-01-01

    Five new optically active poly(amide-imide)s (PAIs) 6a-e were prepared by direct polycondensation reaction of the newly synthesized N,N'-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-L-alanine 4 with various aromatic diamines 5a-e using polar aprotic solvents such as N-methyl-2-pyrrolidone (NMP). In this technique triphenyl phosphite (TPP) and pyridine were used as condensing agents to form poly(amide-imide)s through the N-phosphonium salts of pyridine. All of the polymers were obtained in quantitative yields with inherent viscosities between 0.29-0.46 dL g -1 and were highly soluble in polar aprotic solvents such as N,N-dimethyl acetamide (DMAc), N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), N-methyl- 2-pyrrolidone (NMP) and solvents such as sulfuric acid. They were fully characterized by means of 1 H NMR, FTIR spectroscopy, elemental analyses, inherent viscosity, solubility test, specific rotation and thermal properties of these polymers were investigated using thermogravimetric analysis techniques (TGA and DTG). (author)

  4. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study.

    Science.gov (United States)

    Al-Karmi, Anan M; Ayaz, Ali Asghar H; Al-Enezi, Mamdouh S; Abdel-Rahman, Wamied; Dwaikat, Nidal

    2015-09-01

    Alanine dosimeters in the form of pure alanine powder in PMMA plastic tubes were investigated for dosimetry in a clinical application. Electron paramagnetic resonance (EPR) spectroscopy was used to measure absorbed radiation doses by detection of signals from radicals generated in irradiated alanine. The measurements were performed for low-dose ranges typical for single-fraction doses often used in external photon beam radiotherapy. First, the dosimeters were irradiated in a solid water phantom to establish calibration curves in the dose range from 0.3 to 3 Gy for 6 and 18 MV X-ray beams from a clinical linear accelerator. Next, the dosimeters were placed at various locations in an anthropomorphic pelvic phantom to measure the dose delivery of a conventional four-field box technique treatment plan to the pelvis. Finally, the doses measured with alanine dosimeters were compared against the doses calculated with a commercial treatment planning system (TPS). The results showed that the alanine dosimeters have a highly sensitive dose response with good linearity and no energy dependence in the dose range and photon beams used in this work. Also, a fairly good agreement was found between the in-phantom dose measurements with alanine dosimeters and the TPS dose calculations. The mean value of the ratios of measured to calculated dose values was found to be near unity. The measured points in the in-field region passed dose-difference acceptance criterion of 3% and those in the penumbral region passed distance-to-agreement acceptance criterion of 3 mm. These findings suggest that the pure alanine powder in PMMA tube dosimeter is a suitable option for dosimetry of radiotherapy photon beams.

  5. Deficiency in l-Serine Deaminase Interferes with One-Carbon Metabolism and Cell Wall Synthesis in Escherichia coli K-12▿

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine

    2010-01-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359

  6. Medical reference dosimetry using EPR measurements of alanine: Development of an improved method for clinical dose levels

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Andersen, Claus Erik; Rosendal, Flemming; Kofoed, Inger Matilde

    2009-01-01

    Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low signal fading, non-destructive measurement and small dosimeter size. Material and Methods. A Bruker EMX-micro EPR spectrometer with a rectangular cavity and a measurement time of two minutes per dosimeter was used for reading of irradiated alanine dosimeters. Under these conditions a new algorithm based on scaling of known spectra was developed to extract the alanine signal. Results. The dose accuracy, including calibration uncertainty, is less than 2% (k=1) above 4 Gy (n=4). The measurement uncertainty is fairly constant in absolute terms (∼30 mGy) and the relative uncertainty therefore rises for dose measurements below 4 Gy. Typical reproducibility is <1% (k=1) above 10 Gy and <2% between 4 and 10 Gy. Below 4 Gy the uncertainty is higher. A depth dose curve measurement was performed in a solid-water phantom irradiated to a dose of 20 Gy at the maximum dose point (dmax) in 6 and 18 MV photon beams. The typical difference between the dose measured with alanine in solid water and the dose measured with an ion chamber in a water tank was about 1%. A difference of 2% between 6 and 18 MV was found, possibly due to non-water equivalence of the applied phantom. Discussion. Compared to previously published methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications

  7. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  8. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    Science.gov (United States)

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. © The Author(s) 2016.

  9. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons.

    Science.gov (United States)

    Dadsetan, Sherry; Bak, Lasse K; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Leke, Renata; Schousboe, Arne; Waagepetersen, Helle S

    2011-09-01

    It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH(4)Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Science.gov (United States)

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  11. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    Science.gov (United States)

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Modelization of the physical and chemical phenomenon of fading and control of parameters for quality assurance of ESR/alanine measurements

    International Nuclear Information System (INIS)

    Dolo, J.M.; Feaugas, V.; Pichot, E.

    2000-01-01

    The work of L.M.R.I. according to the research agreement contract is constituted of three parts which all contributed to the same objective: the better understanding of the phenomenon of production and disappearing of free radicals in the alanine dosimeter. The first part is the contribution to the accuracy of the measurements parameters and their optimisation. Many parameters such as the power level and the modulation amplitude must be chosen carefully. This part describes how we have defined the limits of the parameter values giving the best arrangement between the four objectives: the better signal-to-noise ratio with the highest amplitude of the central line, and the better reproducibility with a resolution as good as possible. The second part is our contribution to increase the understanding on how external parameters influence the chemical reactions in alanine. Two experimental studies of combined effects have been realised in the laboratory. A multi-parametric approach (experimental design) has shown the complexity of the problem. The chosen methodology permits to give the first global quantitative view of the fading. However the obtained results, that suggested a physico-chemical recombination reaction of the free radicals created during the irradiation, are not sufficient. The last part is a study of the kinetic aspect of the mechanism. The aim of this study is to indicate the number of transient species leading to this radical and their kinetics of reaction. We follow the evolution of the ESR/alanine spectrum shape and correlate the response estimated from the central peak height to the absorbed dose. From these hypothesis we modelize the kinetics of free radical densities and check their fitting with experiment. (author)

  13. Acidic-Basic Properties of Three Alanine-Based Peptides Containing Acidic and Basic Side Chains: Comparison Between Theory and Experiment

    OpenAIRE

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A.

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)7-KK-NH2 (KAK), Ac-OO-(A)7-DD-NH2 (OAD), Ac-KK-(A)7-EE-NH2 (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability ...

  14. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Bak, Lasse Kristoffer; Sørensen, Michael

    2011-01-01

    study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo......It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present...

  15. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  16. Beta-N-Methylamino-l-Alanine: LC-MS/MS Optimization, Screening of Cyanobacterial Strains and Occurrence in Shellfish from Thau, a French Mediterranean Lagoon

    Directory of Open Access Journals (Sweden)

    Damien Réveillon

    2014-11-01

    Full Text Available β-N-methylamino-l-alanine (BMAA is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS method. A combination of an effective solid phase extraction (SPE clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively. Ten species of cyanobacteria (six are reported to be BMAA producers were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW, while only several samples contained quantifiable free BMAA.

  17. New optically active and thermally stable poly(amide-imide)s containing N,N'-(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-alanine and aromatic diamines: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, Khalil; Absalar, Morteza; Hajibeygi, Mohsen [Arak University (Iran, Islamic Republic of). Faculty of Science. Organic Polymer Chemistry Research Lab.

    2009-07-01

    Five new optically active poly(amide-imide)s (PAIs) 6a-e were prepared by direct polycondensation reaction of the newly synthesized N,N'-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-L-alanine 4 with various aromatic diamines 5a-e using polar aprotic solvents such as N-methyl-2-pyrrolidone (NMP). In this technique triphenyl phosphite (TPP) and pyridine were used as condensing agents to form poly(amide-imide)s through the N-phosphonium salts of pyridine. All of the polymers were obtained in quantitative yields with inherent viscosities between 0.29-0.46 dL g{sup -1} and were highly soluble in polar aprotic solvents such as N,N-dimethyl acetamide (DMAc), N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), N-methyl- 2-pyrrolidone (NMP) and solvents such as sulfuric acid. They were fully characterized by means of {sup 1}H NMR, FTIR spectroscopy, elemental analyses, inherent viscosity, solubility test, specific rotation and thermal properties of these polymers were investigated using thermogravimetric analysis techniques (TGA and DTG). (author)

  18. Weight loss and elevated gluconeogenesis from alanine in lung cancer patients

    NARCIS (Netherlands)

    S. Leij-Halfwerk (Susanne); P.C. Dagnelie (Pieter); J.W.O. van den Berg (Willem); J.L.D. Wattimena (Josias); C.H. Hordijk-Luijk; J.H.P. Wilson (Paul)

    2000-01-01

    textabstractBACKGROUND: The role of gluconeogenesis from protein in the pathogenesis of weight loss in lung cancer is unclear. OBJECTIVE: Our aim was to study gluconeogenesis from alanine in lung cancer patients and to analyze its relation to the degree of weight loss.

  19. Effect of sodium bicarbonate and Beta-alanine on repeated sprints during intermittent exercise performed in hypoxia.

    Science.gov (United States)

    Saunders, Bryan; Sale, Craig; Harris, Roger C; Sunderland, Caroline

    2014-04-01

    To investigate the separate and combined effects of sodium bicarbonate and beta-alanine supplementation on repeated sprints during simulated match play performed in hypoxia. Study A: 20 recreationally active participants performed two trials following acute supplementation with either sodium bicarbonate (0.3 g·kg-1BM) or placebo (maltodextrin). Study B: 16 recreationally active participants were supplemented with either a placebo or beta-alanine for 5 weeks (6.4 g·day-1 for 4 weeks, 3.2 g·day-1 for 1 week), and performed one trial before supplementation (with maltodextrin) and two following supplementation (with sodium bicarbonate and maltodextrin). Trials consisted of 3 sets of 5 × 6 s repeated sprints performed during a football specific intermittent treadmill protocol performed in hypoxia (15.5% O2). Mean (MPO) and peak (PPO) power output were recorded as the performance measures. Study A: Overall MPO was lower with sodium bicarbonate than placebo (p = .02, 539.4 ± 84.5 vs. 554.0 ± 84.6 W), although there was no effect across sets (all p > .05). Study B: There was no effect of beta-alanine, or cosupplementation with sodium bicarbonate, on either parameter, although there was a trend toward higher MPO with sodium bicarbonate (p = .07). The effect of sodium bicarbonate on repeated sprints was equivocal, although there was no effect of beta-alanine or cosupplementation with sodium bicarbonate. Individual variation may have contributed to differences in results with sodium bicarbonate, although the lack of an effect with beta-alanine suggests this type of exercise may not be influenced by increased buffering capacity.

  20. Tissue interfaces dosimetry in small field radiotherapy with alanine/EPR mini dosimeters and Monte Carlo-Penelope simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo, FFCLRP, Departamento de Fisica, Av. Bandeirantes 3900, Bairro Monte Alegre, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Chen, F. [Universidade Federale do ABC, CCNH, Rua Santa Adelia 166, Bangu, 09210-170 Santo Andre, Sao Paulo (Brazil); Apaza V, D. G., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin de Arequipa, Departamento de Fisica, Arequipa (Peru)

    2014-08-15

    The dosimetry system based on alanine mini dosimeters plus K-Band EPR spectrometer was tested in the tissue-interface dosimetry through the percentage depth-dose (Pdd) determination for 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} radiation fields sizes. The alanine mini dosimeters were produced by mechanical pressure from a mixture of 95% L-alanine and 5% polyvinyl alcohol (Pva) acting as binder. Nominal dimensions of these mini dosimeters were 1 mm diameter and 3 mm length as well as 3 - 4 mg mass. The EPR spectra of the mini dosimeters were registered using a K-Band (24 GHz) EPR spectrometer. The mini dosimeters were placed in a nonhomogeneous phantom and irradiated with 20 Gy in a 6 MV PRIMUS Siemens linear accelerator, with a source-to-surface distance of 100 cm using the small fields previously mentioned. The cylindrical non-homogeneous phantom was comprised of several disk-shaped plates of different materials in the sequence acrylic-bone cork-bone-acrylic, with dimensions 15 cm diameter and 1 cm thick. The plates were placed in descending order, starting from top with four acrylic plates followed by two bone plates plus eight cork plates plus two bone plates and finally, four acrylic plates (4-2-8-2-4). Pdd curves from the treatment planning system and from Monte Carlo simulation with Penelope code were determined. Mini dosimeters Pdd results show good agreement with Penelope, better than 95% for the cork homogeneous region and 97.7% in the bone heterogeneous region. In the first interface region, between acrylic and bone, it can see a dose increment of 0.6% for mini dosimeters compared to Penelope. At the second interface, between bone and cork, there is 9.1% of dose increment for mini dosimeter relative to Penelope. For the third (cork-bone) and fourth (bone-acrylic) interfaces, the dose increment for mini dosimeters compared to Penelope was 4.1% both. (Author)

  1. Tissue interfaces dosimetry in small field radiotherapy with alanine/EPR mini dosimeters and Monte Carlo-Penelope simulation

    International Nuclear Information System (INIS)

    Vega R, J. L.; Nicolucci, P.; Baffa, O.; Chen, F.; Apaza V, D. G.

    2014-08-01

    The dosimetry system based on alanine mini dosimeters plus K-Band EPR spectrometer was tested in the tissue-interface dosimetry through the percentage depth-dose (Pdd) determination for 3 x 3 cm 2 and 1 x 1 cm 2 radiation fields sizes. The alanine mini dosimeters were produced by mechanical pressure from a mixture of 95% L-alanine and 5% polyvinyl alcohol (Pva) acting as binder. Nominal dimensions of these mini dosimeters were 1 mm diameter and 3 mm length as well as 3 - 4 mg mass. The EPR spectra of the mini dosimeters were registered using a K-Band (24 GHz) EPR spectrometer. The mini dosimeters were placed in a nonhomogeneous phantom and irradiated with 20 Gy in a 6 MV PRIMUS Siemens linear accelerator, with a source-to-surface distance of 100 cm using the small fields previously mentioned. The cylindrical non-homogeneous phantom was comprised of several disk-shaped plates of different materials in the sequence acrylic-bone cork-bone-acrylic, with dimensions 15 cm diameter and 1 cm thick. The plates were placed in descending order, starting from top with four acrylic plates followed by two bone plates plus eight cork plates plus two bone plates and finally, four acrylic plates (4-2-8-2-4). Pdd curves from the treatment planning system and from Monte Carlo simulation with Penelope code were determined. Mini dosimeters Pdd results show good agreement with Penelope, better than 95% for the cork homogeneous region and 97.7% in the bone heterogeneous region. In the first interface region, between acrylic and bone, it can see a dose increment of 0.6% for mini dosimeters compared to Penelope. At the second interface, between bone and cork, there is 9.1% of dose increment for mini dosimeter relative to Penelope. For the third (cork-bone) and fourth (bone-acrylic) interfaces, the dose increment for mini dosimeters compared to Penelope was 4.1% both. (Author)

  2. Synthesis of 15N isotope labeled alanine

    International Nuclear Information System (INIS)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant'Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira

    2005-01-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of 15 N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of 15 N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of α-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ( 15 NH 3 aq) was carried out. In order to avoid eventually losses of 15 NH 3 , special cares were adopted, since the production cost is high. Although the acquisition cost of the 13 N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH 3 (aq) being employed. With the establishment of the system for 15 NH 3 recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  3. Development of DL-alanine systems for gamma radiation and electron dosimetry

    International Nuclear Information System (INIS)

    Costa, Zelia Maria da

    1994-01-01

    Two different dosimetric systems using DL-Alanine samples were employed to determine the absorbed dose from 60 Co gamma-rays source and electrons emitted from an accelerator. The first dosimetric system is based on the relationship between free radicals produced and the absorbed dose using the electron spin resonance (ESR) technique. Details on the sample preparation, the spectrometer parameter setting, the analysis of the ESR signal to dose, the influence of dose rate and the radiation type dependence are described. The second dosimetric system is based on the determination by absorbance spectrophotometry of the complex produced, which are formed when the irradiated alanine is dissolved in a solution containing ferrous ammonium sulphate xylenol in 0,05 N H 2 SO 4 . Different concentrations for each reagents has been analyzed in the preparation of this solution as well as the influence caused by radiation type and dose rate in the absorbance. (author)

  4. Averaged electron collision cross sections for thermal mixtures of β-alanine conformers in the gas phase

    Science.gov (United States)

    Fujimoto, Milton M.; de Lima, Erik V. R.; Tennyson, Jonathan

    2017-10-01

    A theoretical study of elastic electron scattering by gas-phase amino acid molecule β-alanine (NH2-CH2-CH2-COOH) is presented. R-matrix calculations are performed for each of the ten lowest-lying, thermally-accessible conformers of β-alanine. Eigenphase sums, resonance features, differential and integral cross sections are computed for each conformer. The positions of the low-energy shape resonance associated with the unoccupied {π }* orbital of the -COOH group are found to vary from 2.5 to 3.3 eV and the resonance widths from 0.2 to 0.5 eV depending on the conformation. The temperature-dependent population ratios are derived, based on temperature-corrected Gibbs free energies. Averaged cross sections for thermal mixtures of the 10 conformers are presented. A comparison with previous results for the α-alanine isomer is also presented.

  5. Porcine alanine transaminase after liver allo-and xenotransplantation

    OpenAIRE

    Ekser, Burcin; Gridelli, Bruno; Cooper, David K.C.

    2012-01-01

    Aspartate transaminase (AST) and alanine transaminase (ALT) are measured following liver transplantation as indicators of hepatocellular injury. During a series of orthotopic liver allo-and xenotransplants, we observed that there was an increase in AST in all cases. The anticipated concomitant rise in ALT did not occur when a wild-type (WT) pig was the source of the liver graft, but did occur when a baboon or a genetically engineered (α1,3-galactosyltransferase gene-knockout [GTKO]) pig was t...

  6. Use of the entire spectrum of irradiated alanine for dosimetry

    International Nuclear Information System (INIS)

    Dolo, J.M.; Moignau, F.

    2005-01-01

    Alanine is an amino acid commonly used in ESR dosimetry as a reference detector. The classic approach for the measurement of irradiated samples is to determine the amplitude of the central peak of the first derivative spectrum. It is generally considered that this technique represents the best and most reproducible solution for achieving an accurate proportionality between the concentration of free radicals inside the resonant cavity, characterized by the amplitude, and the dose. It is also accepted that this central peak corresponds to the free radical CH 3 .CHCOO - . The hyperfine structure of this radical in the spectrum shows five main peaks with the approximate ratios 1:4:6:4:1 as regards coupling. This paper presents another approach featuring analysis of the entire spectrum: (i) ratios of identified peaks (ii) ratio variation vs time with regard to several parameters affecting fading. These variations in the alanine spectrum are probably correlated with the variation of the concentrations of different free radical species. These variations and their positions in the spectrum are very important constraints that increase the uncertainty of this type of measurement

  7. Effect of tolbutamide on 14C-sodium bicarbonate and 14C-alanine metabolism in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Kunjathoor, V.V.; Ye, Y.; Pillai, U.A.; Ferguson, P.W.; Medon, P.J.

    1990-01-01

    Tolbutamide (TOLB) is a sulfonylurea commonly used in the treatment of noninsulin-dependent diabetes mellitus. Studies have shown that TOLB affects gluconeogenesis and glycolysis from various substrates in the liver. Specifically, TOLB inhibits gluconeogenesis from lactate in a dose-dependent manner. In order to further clarify tolbutamide's mechanism of action, its effect on the incorporation of 14 C from NaH 14 CO 3 and 14 C-alanine into glucose, lactate or pyruvate in the presence of lactate was measured. Rat hepatocytes were incubated with lactate (2.0 mM) with or without TOLB (1.0 mM) in the presence of NaH 14 CO 3 or 14 C-alanine. TOLB inhibited the incorporation of C 14 from NaHCO 3 and alanine into glucose by 55 and 56%, respectively. TOLB did not alter the incorporation of C 14 from NaHCO 3 into lactate or pyruvate. TOLB did not affect the incorporation of 14 C from alanine into lactate but produced a pooling of 14 C as pyruvate. The authors data support studies demonstrating the TOLB produces its actions, in part, by increasing the concentration of fructose-2,6-bisphosphate and inhibiting pyruvate carboxylase

  8. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.

    OpenAIRE

    Consoli, A; Nurjhan, N; Reilly, J J; Bier, D M; Gerich, J E

    1990-01-01

    To assess the mechanisms responsible for increased gluconeogenesis in noninsulin-dependent diabetes mellitus (NIDDM), we infused [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose in 10 postabsorptive NIDDM subjects and in 9 age- and weight-matched nondiabetic volunteers and measured systemic appearance of alanine and lactate, their release from forearm tissues, and their conversion into plasma glucose (corrected for Krebs cycle carbon exchange). Systemic appearance of lactate and alanine were...

  9. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  10. Hb and dyslipidaemia as predicting markers of serum alanine aminotransferase elevation in Chinese adolescents.

    Science.gov (United States)

    Chao, Kuo-Ching; Chang, Chun-Chao; Owaga, Eddy; Bai, Chyi-Huey; Huang, Tzu-chieh; Pan, Wen-Harn; Chang, Jung-Su

    2016-04-01

    Fe is an essential element for erythropoiesis and Hb synthesis. High Hb levels affect the blood's viscosity and are associated with cardiovascular dysfunction. The aim of the present study was to examine relationships of Hb and cardiometabolic abnormalities with the risk of alanine aminotransferase (ALT) elevation in adolescents. A population-based, cross-sectional study. National Nutrition and Health Survey in Taiwan (2010-2011, adolescents). Healthy adolescents aged 13-18 years. In total, 1941 adolescents (963 boys and 978 girls) were entered in the study. The mean age was 15·3 (sd 0·1) years (boys, 15·3 (sd 0·1) years; girls, 15·2 (sd 0·1) years). ALT tertile cut-off points for boys were 11 and 16 U/l, and for girls were 9 and 12 U/l. Girls without dyslipidaemia and presenting in the highest quartile (Q1) of Hb (>13·6 g/dl) were 1·89 and 3·76 times more likely to have raised serum ALT (9 and >12 U/l, respectively) than the reference (lowest quartile of Hb (Q1), 12 U/l) than the reference (Q1 of Hb, 15·4 g/dl), who were 7·40 times more likely to have elevated serum ALT of >16 U/l than the reference (Q1 of Hb, Hb level is a predictor of elevated serum ALT in adolescent girls with dyslipidaemia. Our study also highlights the importance of further research to establish cut-off points for Hb and its utility in diagnosing and preventing the onset of dyslipidaemia in adolescents.

  11. Aspartate Aminotransferase and Alanine Aminotransferase Detection on Paper-Based Analytical Devices with Inkjet Printer-Sprayed Reagents

    Directory of Open Access Journals (Sweden)

    Hsiang-Li Wang

    2016-01-01

    Full Text Available General biochemistry detection on paper-based microanalytical devices (PADs uses pipette titration. However, such an approach is extremely time-consuming for large-scale detection processes. Furthermore, while automated methods are available for increasing the efficiency of large-scale PAD production, the related equipment is very expensive. Accordingly, this study proposes a low-cost method for PAD manufacture, in which the reagent is applied using a modified inkjet printer. The optimal reaction times for the detection of aspartate aminotransferase (AST and alanine aminotransferase (ALT are shown to be 6 and 7 min, respectively, given AST and ALT concentrations in the range of 5.4 to 91.2 U/L (R2 = 0.9932 and 5.38 to 86.1 U/L (R2 = 0.9944. The experimental results obtained using the proposed PADs for the concentration detection of AST and ALT in real human blood serum samples are found to be in good agreement with those obtained using a traditional spectrophotometric detection method by National Cheng Kung University hospital.

  12. Effects of 4 Weeks of β-Alanine Supplementation on Swim-Performance Parameters in Water Polo Players.

    Science.gov (United States)

    Brisola, Gabriel Motta Pinheiro; Milioni, Fabio; Papoti, Marcelo; Zagatto, Alessandro Moura

    2017-08-01

    In water polo, several high-intensity efforts are performed, leading to the fatigue process due to accumulation of hydrogen ions, and thus β-alanine supplementation could be an efficient strategy to increase the intramuscular acid buffer. Purpose To investigate whether 4 wk of β-alanine supplementation enhances parameters related to water polo performance. Methods Twenty-two highly trained male water polo players of national level were randomly assigned to receive 28 d of either β-alanine or a placebo (4.8 g/d of the supplement in the first 10 d and 6.4 g/d in the final 18 d). The participants performed 30-s maximal tethered swimming (30TS), 200-m swimming (P200m), and 30-s crossbar jumps (30CJ) before and after the supplementation period. Results The β-alanine group presented significant increases in 30TS for mean force (P = .04; Δ = 30.5% ± 40.4%) and integral of force (P = .05; Δ = 28.0% ± 38.0%), as well as P200m (P = .05; Δ = -2.2% ± 2.6%), while the placebo group did not significantly differ for mean force (P = .13; Δ = 24.1% ± 33.7%), integral of force (P = .12; Δ = 24.3% ± 35.1%), or P200m (P = .10; Δ = -1.6% ± 3.8%). However, there was no significant group effect for any variable, and the magnitude-based-inference analysis showed unclear outcomes between groups (Cohen d ± 95%CL mean force = 0.16 ± 0.83, integral of force = 0.12 ± 0.84, and P200m = 0.05 ± 0.30). For 30CJ the results were similar, with improvements in both groups (placebo, Δ = 14.9% ± 14.1%; β-alanine, Δ = 16.9% ± 18.5%) but with no significant interaction effect between groups and an unclear effect (0.14 ± 0.75). Conclusion Four weeks of β-alanine supplementation does not substantially improve performance of 30TS, P200m, or 30CJ in highly trained water polo athletes compared with a control group.

  13. Differential effects of mercurial compounds on the electroolfactogram (EOG) of salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Baatrup, E; Døving, K B; Winberg, S

    1991-01-01

    The effects on the salmon (Salmo salar L.) electroolfactogram (EOG) of the two mercurials, mercuric chloride (HgCl2) and methylmercuric chloride (CH3HgCl), were studied. The EOG responses were evoked by stimulating the olfactory epithelium with 340 microM L-alanine for 10 sec every second minute...

  14. Effects of Glutamine and Alanine Supplementation on Central Fatigue Markers in Rats Submitted to Resistance Training

    Directory of Open Access Journals (Sweden)

    Audrey Yule Coqueiro

    2018-01-01

    Full Text Available Recent evidence suggests that increased brain serotonin synthesis impairs performance in high-intensity intermittent exercise and specific amino acids may modulate this condition, delaying fatigue. This study investigated the effects of glutamine and alanine supplementation on central fatigue markers in rats submitted to resistance training (RT. Wistar rats were distributed in: sedentary (SED, trained (CON, trained and supplemented with alanine (ALA, glutamine and alanine in their free form (G + A, or as dipeptide (DIP. Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive loads. In the last 21 days, supplementations were offered in water with a 4% concentration. Albeit without statistically significance difference, RT decreased liver glycogen, and enhanced the concentrations of plasma glucose, free fatty acids (FFA, hypothalamic serotonin, and ammonia in muscle and the liver. Amino acids affected fatigue parameters depending on the supplementation form. G + A prevented the muscle ammonia increase by RT, whereas ALA and DIP augmented ammonia and glycogen concentrations in muscle. DIP also increased liver ammonia. ALA and G + A reduced plasma FFA, whereas DIP increased this parameter, free tryptophan/total tryptophan ratio, hypothalamic serotonin, and the serotonin/dopamine ratio. The supplementations did not affect physical performance. In conclusion, glutamine and alanine may improve or impair central fatigue markers depending on their supplementation form.

  15. Some physico-technical aspects of the new generation of self-calibrated alanine/EPR dosimeter and results from the international intercomparison trial

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    2000-01-01

    Some physico-technical parameters of the self-calibrated alanine/EPR dosimeters are described. Principally, this new type of solid state/EPR dosimeter contains radiation sensitive diamagnetic material (in the present case, alanine), some quantity of EPR active, but radiation insensitive, substance (for example, Mn 2+ /MgO) playing roles of an internal standard and a binding material. Thus with this dosimeter the EPR spectra of alanine and the internal standard Mn 2+ are recorded simultaneously and the dose response is represented as a ratio of EPR signal intensities of alanine versus Mn 2+ as a function of absorbed dose. As a result, the data of the present study have shown that there is practically no interference of the dosimeter EPR response (expressed as the ratio I alanine /I Mn ) from the way of preparation (homogeneity), behavior after irradiation (fading of EPR signals with time, influence of different meteorological conditions) as well as specific spectrometer setting conditions. These dosimeters show satisfactory reproducibility of preparation and reading as well as stability on keeping. Thus, fulfilling the described physico-technical data of this type of dosimeters, the reproducibility of the readings is significantly improved particularly when intercomparison among different laboratories is performed. This conclusion is confirmed by independent studies of the described self-calibrated alanine/EPR dosimeters in several laboratories in Europe. Results of which are also reported. (author)

  16. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin-Targeting Thiazole Analogue of Bisebromoamide.

    Science.gov (United States)

    Johnston, Heather J; Boys, Sarah K; Makda, Ashraff; Carragher, Neil O; Hulme, Alison N

    2016-09-02

    Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid-phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose-dependent response in IRS-1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Development of physical and numerical techniques of Alanine/EPR dosimetry in radiotherapy

    International Nuclear Information System (INIS)

    Castro, F.; Ponte, F.; Pereira, L.

    2006-01-01

    In this work, a set of 50 alanine dosimeters has been used in a radiotherapy context, simulating a two-dimensional treatment in a non-overlapping dosimeter configuration. The dose is reconstructed from physical and numerical simulation of the electron paramagnetic resonance signal, calculating the spin density. Thus, it can be used to better adjust the error in the calibration curve to give a final accuracy of <0.03 Gy. A complete set of experimental test parameters have been used with a standard dosimeter in order to obtain the best analysis configuration. These results indicate that for a conventional treatment of some hundreds of mGy, this method can be useful with a correct signal validation. A numerical test and fitting software has been developed. The general use of alanine/electron paramagnetic resonance dosimetry in radiotherapy context is discussed. (authors)

  18. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    Science.gov (United States)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  19. An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: I. Clinical x-ray beams

    International Nuclear Information System (INIS)

    Zeng, G G; McEwen, M R; Rogers, D W O; Klassen, N V

    2004-01-01

    The energy dependence of alanine/EPR dosimetry, in terms of absorbed dose-to-water for clinical 6, 10, 25 MV x-rays and 60 Co rays was investigated by measurements and Monte Carlo (MC) calculations. The dose rates were traceable to the NRC primary standard for absorbed dose, a sealed water calorimetry. The electron paramagnetic resonance (EPR) spectra of irradiated pellets were measured using a Bruker EMX 081 EPR spectrometer. The DOSRZnrc Monte Carlo code of the EGSnrc system was used to simulate the experimental conditions with BEAM code calculated input spectra of x-rays and γ-rays. Within the experimental uncertainty of 0.5%, the alanine EPR response to absorbed dose-to-water for x-rays was not dependent on beam quality from 6 MV to 25 MV, but on average, it was about 0.6% lower than its response to 60 Co gamma rays. Combining experimental data with Monte Carlo calculations, it is found that the alanine/EPR response per unit absorbed dose-to-alanine is the same for clinical x-rays and 60 Co gamma rays within the uncertainty of 0.6%. Monte Carlo simulations showed that neither the presence of PMMA holder nor varying the dosimeter thickness between 1 mm and 5 mm has significant effect on the energy dependence of alanine/EPR dosimetry within the calculation uncertainty of 0.3%

  20. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  1. Study of intrinsic energy dependence of α-alanine and dose intercomparison with ESR and ISE techniques

    International Nuclear Information System (INIS)

    Laere, K. van; Bartolotta, A.; Callens, F.

    1993-01-01

    The intrinsic energy behavior of the radiation chemical yields G(R ·) and G(NH 3 ) which determine the dose response for the alanine/ESR and alanine/Ion-Selective Electrode (ISE) system, is an important characteristic for the consistent use in different radiation environments. Therefore, the response of ISS and Gent α-alanine dosimeters in the dose range 0.1 to 700 kGy was examined with 60 Co, bremsstrahlung and electron beam radiation. Bremsstrahlung beams with end point energy between 5 and 12 MeV and electron beams with mean energy at the effective point of measurement between 4 and 25 MeV were used. Analysis of the 60 Co calibration results shows that there are no significant differences in dose determination between the two laboratories. The statistical evaluation of 41 sets of independent series of measurements has shown no significant variation with beam energy. The results also confirm good consistency between ISE and ESR measurements. (author)

  2. Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K

    Science.gov (United States)

    Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.

    2015-04-01

    In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.

  3. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia)

    International Nuclear Information System (INIS)

    Blasco, J.; Puppo, J.

    1999-01-01

    The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200-600 μg·l -1 ), Pb (350-700 μg·l -1 ) and Cu (10-20 μg·l -1 ) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l -1 , 7 days) and copper (20 μg·l -1 , 5 days) were observed significant differences (P -1 . A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  5. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  6. Electrostatic interactions drive native-like aggregation of human alanine:glyoxylate aminostransferase.

    Science.gov (United States)

    Dindo, Mirco; Conter, Carolina; Cellini, Barbara

    2017-11-01

    Protein aggregate formation is the basis of several misfolding diseases, including those displaying loss-of-function pathogenesis. Although aggregation is often attributed to the population of intermediates exposing hydrophobic surfaces, the contribution of electrostatic forces has recently gained attention. Here, we combined computational and in vitro studies to investigate the aggregation process of human peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme involved in glyoxylate detoxification. We demonstrated that AGT is susceptible to electrostatic aggregation due to its peculiar surface charge anisotropy and that PLP binding counteracts the self-association process. The two polymorphic mutations P11L and I340M exert opposite effects. The P11L substitution enhances the aggregation tendency, probably by increasing surface charge anisotropy, while I340M plays a stabilizing role. In light of these results, we examined the effects of the most common missense mutations leading to primary hyperoxaluria type I (PH1), a rare genetic disorder associated with abnormal calcium oxalate precipitation in the urinary tract. All of them endow AGT with a strong electrostatic aggregation propensity. Moreover, we predicted that pathogenic mutations of surface residues could alter charge distribution, thus inducing aggregation under physiological conditions. A global model describing the AGT aggregation process is provided. Overall, the results indicate that the contribution of electrostatic interactions in determining the fate of proteins and the effect of amino acid substitutions should not be underestimated and provide the basis for the development of new therapeutic strategies for PH1 aimed at increasing AGT stability. © 2017 Federation of European Biochemical Societies.

  7. Alanine aminotransferase and mortality in patients with type 2 diabetes (ZODIAC-38)

    NARCIS (Netherlands)

    Deetman, Petronella E.; Alkhalaf, Alaa; Landman, Gijs W. D.; Groenier, Klaas H.; Kootstra-Ros, Jenny E.; Navis, Gerjan; Bilo, Henk J. G.; Kleefstra, Nanne; Bakker, Stephan J. L.

    Introduction Combined data suggest a bimodal association of alanine aminotransferase (ALT) with mortality in the general population. Little is known about the association of ALT with mortality in patients with type 2 diabetes. We therefore investigated the association of ALT with all-cause,

  8. Development of an alanine dosimeter for gamma dosimetry in mixed environments -- Summary of research

    International Nuclear Information System (INIS)

    Vehar, D.W.; Griffin, P.J.

    1994-02-01

    L-α-alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10 5 Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in 60 Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by irradiations in conjunction with CaF 2 :Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including those provided by the Annular Core Research Reactor and Sandia Pulsed Reactor

  9. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    Science.gov (United States)

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Influence of convulsants on rat brain activities of alanine aminotransferase and aspartate aminotransferase

    Czech Academy of Sciences Publication Activity Database

    Netopilová, M.; Haugvicová, Renata; Kubová, Hana; Dršata, J.; Mareš, Pavel

    2001-01-01

    Roč. 26, č. 12 (2001), s. 1285-1291 ISSN 0364-3190 Institutional research plan: CEZ:AV0Z5011922 Keywords : alanine aminotransferase * aspartale aminotransferase Subject RIV: FH - Neurology Impact factor: 1.638, year: 2001

  11. Alanine aminotransferase, gamma-glutamyltransferase (GGT) and all-cause mortality: results from a population-based Danish twins study alanine aminotransferase, GGT and mortality in elderly twins

    DEFF Research Database (Denmark)

    Fraser, Abigail; Thinggaard, Mikael; Christensen, Kaare

    2009-01-01

    Abstract Background/Aims: Alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) are widely used markers of liver disease. Several population-based cohort studies have found associations of these liver enzymes with all-cause mortality. None of these studies controlled for genetic...... for potential confounders and existing diabetes and cardiovascular disease. Environmental developmental origins may explain the association, but larger twin studies are required to replicate our findings....

  12. Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance.

    Science.gov (United States)

    Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo

    2016-01-01

    In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.

  13. Amino acid metabolism of Astacus leptodactylus Esch.—III. Studies on the biosynthesis of α- and β-alanine from aspartate

    NARCIS (Netherlands)

    Marrewijk, W.J.A. van; Zandee, D.I.

    1975-01-01

    1. 1. Six hours after injection of 1- or 4-14C-aspartate into the crayfish Astacus leptodactylus almost all radioactivity incorporated was found in the amino acids. 2. 2. From both precursors only the amino acids α-alanine and glutamic acid were labelled. The biosynthesis of α-alanine from

  14. Elaboration And Study Of Transfer Alanine/ESR Dosemeters

    International Nuclear Information System (INIS)

    Torres G, Luz A.

    1996-01-01

    The dosimetry is the dose measure imparted by the energy from the ionizing radiation to the matter. The dosemeters is the means used for the determination of such a dose. Diverse dosimetric classes exist, this classification depends in essence of the energy involved in the irradiation process and of its application necessity. It is as well as in radiological protection movie dosemeter is used, and TLD, in the calibration of units, as those of cobalt, the ionization cameras are used, in the detection of superficial contamination the accountants Geiger Muller and proportional etc. The transfer dosimeter Alanine/ESR is used, object of the present work, is characterized because after reading the registered dose, the information is conserved and it can be transferred and read in any team of ESR. Likewise the following dose that is imparted will be added to the previous one registered, this indicates that the dosemeters is of integral character. In the spectra taken ESR, it is determined that the integral double or area under the curve of the spectrum ESR is proportional to the concentration of free radicals generated by the radiation ionization and in turn this concentration is proportional to the dose received by the pills; in last, these proportionality relationships take to that the area under the curve of the spectrum main ESR is proportional to the radiation dose received by the alanine dosemeters. This dosemeter seeks to be an economic alternative that it will lend the calibration service that today offers the ionization Cameras or the acrylic red industrial dosemeters

  15. Oxidation of phenyl alanine by pyridinium chlorochromate in acidic DMF–water medium: A kinetic study

    Directory of Open Access Journals (Sweden)

    B.L. Hiran

    2016-11-01

    Full Text Available The kinetics of oxidation of phenyl alanine by pyridinium chlorochromate in DMF–water (70:30% mixture in presence of perchloric acid leads to the formation of corresponding aldehyde. The reaction is of first order each in [PCC], [HClO4] and [AA]. Michaelis–Menten type kinetics was observed with phenyl alanine. The reaction rates were determined at different temperatures [25, 30, 35, 40, 45, 50 °C] and the activation parameters were calculated. The reaction does not induce polymerization of acrylonitrile. With an increase in the amount of DMF in its aqueous mixture, the rate increases. A suitable mechanism for the reaction was postulated.

  16. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  17. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    International Nuclear Information System (INIS)

    Haedener, A.; Tamm, Ch.

    1987-01-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-[2- 2 H]phenyl-[2- 2 H]alanine was formed from (E) -[2,2'- 2 H 2 ]cinnamic acid and ammonia in 46% yield, whereas L-phenyl-[2- 13 C, 15 N]alanine was obtained from (E)-[2- 13 C]cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged 15 NH 3 was reisolated as 15 NH 4 Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. [2- 2 H]Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with 2 H 2 O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines. (author)

  18. Alanine/epr pellet dosimeter using poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer as a binder for radiation dosimetry

    International Nuclear Information System (INIS)

    Beshir, W.B.; Ezz El-Din, H.M.; Abdel-fatth, A.A.; Ebraheem, S.

    2005-01-01

    A new alanine pellet dosimeter was developed for gamma and electron beam radiation dosimetry. Alanine powder was mixed with a new binding material, poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) copolymer. Pellets were prepared by pressing fine powder alanine with 60% copolymer binder by using hydraulic press and a specially designed pressing die. The radiation-formed stable free radicals were analysed by using electron paramagnetic resonance (EPR) spectroscopy. The useful dose range of these pellets was found to ranges from 1 to 80 kGy. The stability of the radiation- induced response was also studied

  19. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE

    International Nuclear Information System (INIS)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L.

    2001-01-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10 5 Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  20. Hydrophobic radical influence on structure and vibration spectra of zwitter-ionic forms of glycine and alanine in condensed state

    International Nuclear Information System (INIS)

    Ten, G.N.; Kadrov, D.M.; Baranov, V.I.

    2014-01-01

    Structure and vibrational spectra of the zwitter-ionic forms of glycine and alanine in water solution and solid state have been calculated in the B3LYP/6-311++G(d,p) approximation. The environment influence has been taken into account by two methods: the self-consistent reaction field (SCRF) method and one of modeling the glycine and alanine complexes with molecules of water. The structure, energy and spectral properties have been determined which allow establishing an influence of the hydrophobic radical on the glycine and alanine ability to form the hydrogen bonds. It is shown by comparison with experiment that for the calculation of vibrational (IR and Raman) spectra of the zwitter-ionic forms of glycine and alanine in the condensed states they must be surrounded with three molecules of water, one of which is located between the N + H 3 and COO - ionic groups. The value of energy necessary to form the Ala complexes with water compared to Gly ones is 56.47 and 12.55 kcal/mol higher in the case of the complex formation with 1and 3 molecules of water, respectively, located between bipolar groups. (authors)