WorldWideScience

Sample records for kv klystron rf

  1. Development of high power klystron. 3. Development of klystron No.2

    International Nuclear Information System (INIS)

    Hirano, K.; Wang, Y.L.; Sato, I.

    2000-08-01

    A high power klystron has been developed as the RF source of the high power CW electron linac (10 MeV, 100 mA, 1.249135 GHz). CW power of 1.2 MW and efficiencies over 65% at a beam voltage 85 kV were the design goal. We developed a long pill-box type beryllia window (long pill-box window) withstood the RF power of 1.7 MW (CW) and replaced the standard pill-box window of the prototype klystron with long pill-box window. The high power RF test was carried out with the converted klystron. This klystron has achieved CW RF power of 885 kW and efficiency of 47% at beam voltage of 85 kV. This paper describes key points of the designs to achieve the RF power over 1.2 MW and results of the high power RF test of the second klystron, which has been optimized by simulation codes to improve better efficiency. The second klystron has achieved the maximum efficiency of 56.5% with CW output power of 782 kW at a beam voltage of 80 kV and a cathode current of 20.4 A in present. The third klystron will be manufactured to reflect results of this test. (author)

  2. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  3. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  4. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  5. Analysis of RF section of 250 kW CW C-Band high power klystron

    International Nuclear Information System (INIS)

    Badola, Richa; Kaushik, Meenu; Baloda, Suman; Kirti; Vrati; Lamba, O.S.; Joshi, L.M.

    2012-01-01

    Klystron is a microwave tube which is used as a power amplifier in various applications like radar, particle accelerators and thermonuclear reactors. The paper deals with the analysis of RF section of 250 kW CW C band high power klystron for 50 to 60 kV beam voltage The simulation is done using Poisson's superfish and AJ disk software's Design of cavity is done using superfish. The result of superfish is used to decide the dimensions of the geometry of the cavity and AJ disk is used to determined the centre to centre distances between the cavities in order to obtain the desired powers. (author)

  6. Klystron 'efficiency loop' for the ALS storage ring RF system

    International Nuclear Information System (INIS)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-01-01

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron

  7. A unique power supply for the PEP II klystron at SLAC

    International Nuclear Information System (INIS)

    Cassel, R.; Nguyen, M.N.

    1997-07-01

    Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitor configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA

  8. IOT based RF power systems as an alternative to klystron amplifier in Indus-2 at the rate 505.812 MHz

    International Nuclear Information System (INIS)

    Deo, R.K.; Jain, M.K.; Kumar, Gautam; Lad, Mahendra; Badapanda, M.K.; Bagre, Sunil; Upadhyay, Rinki; Tripathi, Akhilesh; Rao, J.N.; Pandiyar, Mohan; Hannurkar, P.R.

    2013-01-01

    Due to non-availability of replacement Klystron tube in Indus-2, an IOT based high power RF amplifier system is realized. It is based on E2V make 80 kW IOTD2130 tube with its circuit assembly IMD2000ST. This amplifier system is easily available commercially due to its application in DTV broadcast. It has inherent advantages over klystron amplifier viz. high efficiency (η), less phase and amplitude sensitivity to HV ripple, higher linearity, compactness and less cooling requirement. This high power IOT amplifier is tested with its required control system, cooling system, electron gun auxiliary supplies, beam supply and focusing supply. The nominal beam voltage for this IOT is -36 kV however amplifier was tested successfully with indigenously developed -32 kV, crowbar less power supply. The optimum load impedance for IOT beam was calculated for this bias voltage ( 32kV). For the required load impedance, coupling coefficient (β) of output coupler to the O/P cavity was estimated and accordingly loop angle was adjusted. The amplifier has been tested up to 50 kW with amplifier efficiency 60% and gain 23 dB at - 32 kV beam voltage. (author)

  9. Phase synchronization of multiple klystrons in RF system

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching

  10. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  11. Performance of a 150-MW S-band klystron

    International Nuclear Information System (INIS)

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated, and tested a 60-Hz, 3-μs, 150-MW S-band klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535-kV, 700-A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. The 375-MW electron beam represents a new record for SLAC accelerator klystrons in terms of voltage, current, energy, and ruggedness of design. The rf output power is a 150% increase over the S-band tubes currently used in the two-mile-long linear accelerator at SLAC. This paper discusses design issues and experimental results of the diode and klystron

  12. Design of diode electron gun for 250 kW CW klystron

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2005-01-01

    A 250 kW CW klystron at frequencies 350 MHz and 700 MHz is being developed at Centre for Advanced Technology. These klystrons are required for forthcoming project like 100 MeV proton Linac for Spallation Neutron Source (SNS) as a main rf sources. In order to develop klystrons, we have designed the diode electron gun, which delivers more than 10 A beam current at 50 kV. This paper describes the simulation results of electron gun with computer code EGUN. (author)

  13. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  14. Klystron

    CERN Multimedia

    1990-01-01

    This klystron has been specially designed to be used as an RF source in particle accelertators. It is a five-cavity, high-gain, sealed-off klystron amplifier, able to deliver 17.5 kW of minimum average power and 35 MW minimum peak power at 2998.5 MHz. The maximum RF pulse duration available from this high-power klystron is 4.5 µsec. This klystron includes an ion pump, which ensures a continuous high vacuum. Used in the LEP injector LP1.

  15. Operational experience with -20 kV, 5 A DC power supply in Indus-2 RF system

    International Nuclear Information System (INIS)

    Tyagi, R.K.; Tripathi, A.; Upadhyay, R.; Badapanda, M.K.; Lad, M.

    2015-01-01

    An AC regulator based -20 kV, 5 A DC power supply is employed to bias 60 kW, 505.8 MHz klystron amplifier in Indus-2 RF system. A three terminal triggered spark gap based crowbar along with suitable limiting elements is incorporated at the output of the power supply for protection of sensitive klystron amplifier during load arcing conditions. Wire burn test is carried out on this power supply along with crowbar to ensure that the stored energy dumped into klystron during its arcing is less than 20 Joule. Various protection circuits like over voltage, over current, under voltage, phase failure, thermal overload and transformer oil over temperature protection have been incorporated in this power supply. Preventive maintenance of the power supply is carried out at regular intervals to ensure that it operates satisfactorily during actual operation.This includes checking the breakdown strength of transformer oil, drying of Silica gels in transformer breathers, checking of all electrical connections and cleaning of all high voltage components. The calibration of various meters, checking the setting of various protection-interlock cards and checking the healthiness of crowbar system are also done at regular intervals. During operation, crucial performance parameters of this power supply along with various interlock signals are continuously monitored. Suitable arrangement has been made to operate this supply either in local mode as well as in remote mode. This power supply is operating satisfactorily with klystron amplifier in Indus-2 RF system in round the clock mode for last 15 years and its operational experience are presented in this paper. (author)

  16. Reconstruction of -35 kV/200 kW HVPS for test of klystron units in LHCD system

    International Nuclear Information System (INIS)

    Huang Yiyun

    2004-01-01

    The paper introduces the -35 kV/200 kW high voltage power supply (HVPS) which is specially used to test klystron units in LHCD system. The new klystrons must be tested under high voltage level before operation and the old klystrons which have worked for a longtime must be exercised by HVPS in lower hybrid current drive (LHCD) system. As the former HVPS has some shortages in engineering design and operation design, the HVPS has to be modified and rebuilt by adopting new method and technology to solve existing bottle-neck problems. (author)

  17. Mode control in a high-gain relativistic klystron amplifier

    Science.gov (United States)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  18. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  19. Klystron Gun Arcing and Modulator Protection

    International Nuclear Information System (INIS)

    Gold, S

    2004-01-01

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc

  20. RF extraction issues in the relativistic klystron amplifiers

    Science.gov (United States)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  1. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 μs, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at ∼ 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 μs pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz

  2. Design and construction of a 500 KW CW, 400 MHz klystron to be used as RF power source for LHC/RF component tests

    CERN Document Server

    Frischholz, Hans; Pearson, C

    1998-01-01

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with t...

  3. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  4. Fast protection circuit for 1 MW Klystron based RF system of Low Energy High Intensity Proton Accelerator (LEHIPA)

    International Nuclear Information System (INIS)

    Shrotriya, Sandip; Shiju, A.; Patel, N.R.; Pande, Manjiri; Singh, P.

    2014-01-01

    This paper describes the details of a hardwired protection circuit designed and developed for 1 MW Klystron based Radio Frequency (RF) System. The hardwired protection circuit protects the klystron from fault conditions occurring in high power DC supplies, other bias supplies and inside the klystron itself. Fast response of the order of 1-2 microseconds is necessary in case of critical signals for the protection of such a high power system. The system needs to handle around 10 critical signals comprising of optical signals and different digital signals. In case of malfunction in the existing controller based interlock and protection system, klystron will be protected by this hardwired protection circuit. The hardwired circuit will provide redundant protection and protect the klystron from damage. This circuit and controller based protection system are operating in parallel. This paper describes details of a purely hardwired protection circuit developed for critical signals for achieving reliability and faster response time requirements of the RF system. (author)

  5. Performance of the Crowbar of the LHC High Power RF System

    CERN Document Server

    Ravidà, G; Valuch, D

    2012-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) are captured and accelerated to their final energies by two identical 400 MHz Radio Frequency (RF) systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell superconducting (SC) cavity. Each unit of four klystrons is powered by a -100kV/40A AC/DC power converter. A fast protection system (crowbar) protects the four klystrons in each of these units. Although the LHC RF system has shown has very good performance, operational experience has shown that the five-gap double-ended thyratrons used in the crowbar system suffer, from time to time, from auto-firing, which result in beam dumps. This paper presents the recent results obtained with an alternative solution based on solid state thyristors. Comparative measurements with the thyratron are shown.

  6. Design of a 100 MW X-band klystron

    International Nuclear Information System (INIS)

    Eppley, K.

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 KV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and rf efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program. 3 refs., 6 figs., 2 tabs

  7. Design of a 100 MW X-band klystron

    Science.gov (United States)

    Eppley, Kenneth

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.

  8. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  9. L-band pulsed klystron for the JHP

    International Nuclear Information System (INIS)

    Fukuda, S.; Takeuchi, Y.; Hisamatsu, H.; Anami, S.; Kihara, M.; Takahashi, A.

    1994-01-01

    An L-band high-power klystron for the JHP (6 MW output power and 600 μsec pulse width) was designed at KEK. High-power tests of the test diodes were performed up to a beam voltage of 140 kV, a pulse width of 600 μsec and a repetition rate of 50 pps. The capability to meet the specifications of the gun and the collector was confirmed. High-power tests of the rf window were also performed up to rf powers of 4 MW (600 μsec pulse width) and 5 MW (375 μsec pulse width). We obtained good results for an rf window using high-purity alumina (99.7%). The design considerations and manufacturing process are also described. Manufacturing a prototype tube has been completed and the tube is undergoing the high-power tests. (author)

  10. A concept of a wide aperture klystron with RF absorbing drift tubes for linear collider

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Azorskij, N.I.; Fateev, A.A.

    1997-01-01

    This paper is devoted to a problem of optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that optimal design should provide large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at desired technical parameters of the klystron. A novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations is presented. Results of experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator (E=1 MeV, I=250 A, τ=250 ns). To suppress self-excitation parasitic modes we have used technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved level of 100 MW output power

  11. Digital measurement system for the LHC klystron high voltage modulator.

    CERN Document Server

    Mikkelsen, Anders

    Accelerating voltage in the Large Hadron Collider (LHC) is created by a means of 16 superconducting standing wave RF cavities, each fed by a 400MHz/300kW continuous wave klystron amplifier. Part of the upgrade program for the LHC long shutdown one is to replace the obsolete analogue current and voltage measurement circuitry located in the high voltage bunkers by a new, digital system, using ADCs and optical fibres. A digital measurement card is implemented and integrated into the current HV modulator oil tank (floating at -58kV) and interfaced to the existing digital VME boards collecting the data for several klystrons at the ground potential. Measured signals are stored for the logging, diagnostics and post-mortem analysis purposes.

  12. RF Feedback Analysis for 4 cavities per klystron in PEP-II

    International Nuclear Information System (INIS)

    Corredoura, P.; Tighe, R.

    1994-06-01

    Lattice changes in the PEP-II high energy ring have made the concept of driving four cavities with a single klystron an attractive option. This paper examines the topology from a RF feedback point of view. Sources of error are identified and their magnitudes are estimated. The effect on the performance of the longitudinal impedance reducing feedback loops is calculated using control theory and Mathematica

  13. PEP-II prototype klystron

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability

  14. Beam dynamics and rf evolution in a multistage klystron-like free- electron laser

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1991-01-01

    Current understandings of beam dynamics and RF evolution in a klystron-like free-electron laser are present. Phase sensitiveness to injection jitters estimated by existing two theories is discussed. BBU suppression due to linear detuning is proposed as an alternative of ever proposed techniques. 13 refs., 2 figs., 1 tab

  15. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  16. Relativistic klystrons for high-gradient accelerators

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.

    1991-01-01

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power

  17. New klystron technology

    Science.gov (United States)

    Faillon, G.

    1985-10-01

    It is pointed out that klystrons representing high-power RF sources are mainly used in applications related to radars and scientific instrumentation. High peak power pulsed klystrons are discussed. It is found that a large number of linacs are powered by S-band klystrons (2.856 or 2.9985 GHz) with pulse durations of a few microseconds. Special precautions are being taken to insure that the breakdown voltage will not be reached, and very thin titanium coatings are employed to protect the ceramic against discharges. Attention is given to very large pulse width tubes, CW tubes, and limits of the power-frequency domain.

  18. Transient analysis of multicavity klystrons

    International Nuclear Information System (INIS)

    Lavine, T.L.; Miller, R.H.; Morton, P.L.; Ruth, R.D.

    1988-09-01

    We describe a model for analytic analysis of transients in multicavity klystron output power and phase. Cavities are modeled as resonant circuits, while bunching of the beam is modeled using linear space-charge wave theory. Our analysis has been implemented in a computer program which we use in designing multicavity klystrons with stable output power and phase. We present as examples transient analysis of a relativistic klystron using a magnetic pulse compression modulator, and of a conventional klystron designed to use phase shifting techniques for RF pulse compression. 4 refs., 4 figs

  19. Study on the Effects of the Modulator Output Ripple on the RF System of the KOMAC 100-MeV Proton Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Jeong, Hae Sung; Kim, Sung Gu; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The high power system of the proton linear accelerator consists of accelerating cavities such as Radio Frequency Quadrupole (RFQ) and Drift Tube Linac (DTL), high power radio frequency (RF) systems such as klystrons, RF transmission lines and modulators as a klystron power supply. The modulator used at KOMAC adopted a high frequency switching technology using a 3-phase full bridge converter topology to produce 5.8 MW peak power at -105 kV with 9 % duty and produces a current ripple corresponding to the harmonics of the switching frequency. In this paper, the output ripple from the modulator is analyzed and its effects on the high power RF system are presented. The ripple current of the modulator was measured and analyzed. The higher harmonics of the switching frequency were measured and the dominant one was the third harmonic. And this ripple had an effect on the RF signal which was amplified through the klystron and delivered to the DTL. The dominant ripple component of the RF signal was also the third harmonics of the IGBT switching frequency of the modulator.

  20. X-band klystrons for Japan Linear Collider

    International Nuclear Information System (INIS)

    Mizuno, H.; Odagiri, J.; Higo, T.; Yonezawa, H.; Yamaguchi, N.

    1992-01-01

    To achieve the acceleration gradient of 100 MeV/m necessary for the future linear collider in X-band, an RF power source which could produce more than 100 MW peak power with the pulse duration of 500 nsec is needed even with the factor 4 RF pulse compression system. As the first step for the development of the 100 MW class klystrons in X-band (11.424 GHz), a 30 MW class klystron named XB-50K was tested several times since 1990. XB-50K was tested up to the peak power of 18 MW with the pulse duration of 100 ns. A new 100 MW class klystron named XB-72K was designed and fabricated. Some test results of this klystron are reported. (Author) 9 refs., 3 figs., 2 tabs

  1. 60-MW test using the 30-MW klystrons for the KEKB project

    Science.gov (United States)

    Fukuda, S.; Michizono, S.; Nakao, K.; Saito, Y.; Anami, S.

    1995-07-01

    The B-Factory is a future plan, requiring an energy upgrade of the KEK linac from 2.5 GeV to 8.0 GeV (KEKB Project). This paper describes the recent development of an S-band high-power pulse klystron to be used as the PF-linac rf-source of the B-Factory. This tube is a modified version of the existing 30-MW tube, which produces 51 MW at a 310 kV beam voltage by optimizing the focusing magnetic field. In order to increase the reliability, the cathode diameter, the gun housing, and the insulation ceramic-seal were enlarged. This tube was redesigned so as to have the same characteristics as the test results of 30-MW tubes at a higher applied voltage without changing the rf interaction region. Four prototype tubes have been manufactured; final test results showed that these new tubes produce an output power of more than 50 MW at 310 kV with an efficiency of 46%. Recently this tube has produced more than 60 MW at a 350 kV beam voltage for a demonstration test. A comparison between the FCI-code prediction and the test results is also given in this paper.

  2. Computer-aided design of the RF-cavity for a high-power S-band klystron

    Science.gov (United States)

    Kant, D.; Bandyopadhyay, A. K.; Pal, D.; Meena, R.; Nangru, S. C.; Joshi, L. M.

    2012-08-01

    This article describes the computer-aided design of the RF-cavity for a S-band klystron operating at 2856 MHz. State-of-the-art electromagnetic simulation tools SUPERFISH, CST Microwave studio, HFSS and MAGIC have been used for cavity design. After finalising the geometrical details of the cavity through simulation, it has been fabricated and characterised through cold testing. Detailed results of the computer-aided simulation and cold measurements are presented in this article.

  3. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  4. The design and performance of 150-MW S-band klystrons

    International Nuclear Information System (INIS)

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated and tested a 60 Hz, 3 μs, 150 MW klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535 kV, 700 A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. This paper discusses design issues and experimental results of the diode and klystron including the suppression of gun oscillations

  5. An immersed field cluster klystron

    International Nuclear Information System (INIS)

    Palmer, R.B.; Herrmannsfeldt, W.B.; Eppley, K.R.

    1989-08-01

    Future linear colliders have a need for high power, high frequency, and short-pulse radio frequency sources. The proposed ''cluster klystron'' should give over 1 GW of 12 GHz radio frequency power, can employ direct current or a long high-voltage pulse, but can be gated to give pulses down to a few tens of nanoseconds. The device consists of 42 parallel 100 A channels. Each channel is fed from an individual magnetron-type gun employing a common 50 kV mod-anode. The beams are accelerated to 400 kV in common dc accelerating gaps and fed into the 42 separate klystron channels. Focusing of all channels is achieved by a single overall 4 kG magnetic field. Simulations of expected performance suggest that the efficiency could be above 70%. 10 refs., 6 figs., 5 tabs

  6. Design of an RF window for L-band CW klystron based on thermal-stress analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Seiya; Sato, Isamu; Konashi, Kenji; Ohshika, Junji.

    1993-01-01

    Design of klystron RF window has been performed based on a thermal-stress analysis for L-band CW electron linac for nuclear wastes transmutation. It was shown that the hoop stress for a modified disk is 46% of that of normal disk. Thermal load test has been done which indicated that the modified disk is proof against power twice as much as that for the normal disk. (author)

  7. Klystrons and modulators for SBLC

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    1997-04-01

    For SBLC, the DESY/THD S-band linear collider study, klystrons with 150 MW rf-pulse power at 50 Hz repetition rate and 3 {mu}s pulse duration are required [1]. This paper will give a short overview of the SBLC parameters and the S-band test linac at DESY. Two different modulator schemes, the conventional line type pulser and the hard tube pulser, will be discussed. After a brief description of the 150 MW S-band klystron the first operating experience with the klystron and a line type pulser at DESY will be presented. (author)

  8. Improvement of the long pulse operation of the s-band klystron

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T. [Graduate School of Sceince and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, I.; Hayakawa, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst

    2000-07-01

    The long pulse operation of the PV3030 klystron for FEL linac at LEBRA in Nihon University has been improved considerably by the additional vacuum system placed immediately downstream the klystron output rf window. With the new vacuum system, the large conductance has enabled a high vacuum in normal operation and a quick recovery when the dielectric breakdown occurred. A high vacuum near the rf window may be essentially important for a stable operation of the high power klystron with long pulse duration. Now the PV3030 klystron can be operated at the condition of 20 MW x 20 {mu}s x 12.5 Hz. (author)

  9. New high power CW klystrons at TED

    CERN Document Server

    Beunas, A; Marchesin, R

    2003-01-01

    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  10. Periodic permanent magnet focused klystron

    Science.gov (United States)

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  11. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  12. APS linac klystron and accelerating structure gain measurements and klystron PFN voltage regulation requirements

    International Nuclear Information System (INIS)

    Sereno, N.S.

    1997-01-01

    This note details measurements of the APS positron linac klystron and accelerating structure gain and presents an analysis of the data using fits to simple mathematical models. The models are used to investigate the sensitivity of the energy dependence of the output positron beam to klystron parameters. The gain measurements are separated into two parts: first, the energy gains of the accelerating structures of the positron linac are measured as a function of output power of the klystron; second, the klystron output power is measured as a function of input drive power and pulse forming network (PFN) voltage. This note concentrates on the positron linac rf and its performance as it directly affects the energy stability of the positron beam injected into the positron accumulator ring (PAR). Ultimately it is important to be able to minimize beam energy variations to maximize the PAR accumulation efficiency

  13. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  14. Design of a multi beam klystron cavity from its single beam parameters

    International Nuclear Information System (INIS)

    Kant, Deepender; Joshi, L. M.; Janyani, Vijay

    2016-01-01

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  15. 10 MW, L-Band Klystron for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert L. [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ferguson, Patrick [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-03-07

    This program developed a 10 MW, pulsed, Annular Beam Klystron (ABK) for accelerator applications. This is an alternative RF source to multiple beam klystrons MBKs), which are more complex and considerably more expensive. The ABK uses a single, annular cathode and a single beam tunnel with fundamental mode cavities. The operating specifications (voltage, efficiency, power, bndwidth, duty, etc.) are the same as for comparable MBKs.

  16. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  17. Performance review of an indigenously developed high power test stand built for the Indian S-band 5 MW pulsed klystron development

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Baxy, D.; Mulchandani, J.; Hannurkar, P.R.; Joshi, L.M.

    2003-01-01

    CAT took up development of 5 MW S-Band klystrons indigenously in collaboration with CEERI Pilani. The development of klystron prototype is completed. These klystrons are very crucial devices, for energizing the 10-20 MeV electron accelerators, which are developed in the country for various industrial, medical and scientific applications. A test station has been developed indigenously at CAT for these klystrons. It consists of a 12 MW peak power 130 kV klystron pulse modulator, a 1 : 10 pulse transformer, 130 kV high voltage deck having high voltage pulse divider, pulse current transformer as well indigenously built klystron socket, filament supplies, klystron support structure and pulse transformer oil tank. After development/rigorous testing the test stand was shifted to CEERI and was installed and commissioned there by CAT. Gun collector test module and prototypes of the 5 MW klystron were tested, aged and conditioned at high power using this test stand. The details of the system / test results are discussed

  18. The Klynac: An integrated klystron and linear accelerator

    International Nuclear Information System (INIS)

    Potter, James M.; Schwellenbach, David; Meidinger, Alfred

    2013-01-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  19. Development of an X-Band 50 MW Multiple Beam Klystron

    International Nuclear Information System (INIS)

    Song Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-01-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam -- wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust - high efficient - long life high power amplifier

  20. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  1. High-power test of S-band klystron for long-pulse operation

    International Nuclear Information System (INIS)

    Morii, Y.; Oshita, E.; Abe, S.; Keishi, T.; Tomimasu, T.; Ohkubo, Y.; Yoshinao, M.; Yonezawa, H.

    1994-01-01

    FELI(Free Electron Laser Research Institute, Inc.) is constructing a free electron laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using an S-band linac. The linac is commissioning now. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) of the FELI linac are operated in three pulse operation modes (pulse width and peak RF power; 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW). The S-band klystron and its modulator were combined to test their performance. The high power test results of the S-band klystron are summarized in this paper. (author)

  2. 150-MW S-Band klystron program at the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Sprehn, D.; Caryotakis, G.; Phillips, R.M. [Stanford Linear Accelerator Center, Stanford Univ., Stanford, CA (United States)

    1997-04-01

    Two S-Band klystrons operating at 150 MW have been designed, fabricated and tested at the Stanford Linear Accelerator Center (SLAC) during the past two years for use in an experimental accelerator at Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany. Both klystrons operate at the design power, 60 Hz repetition rate, 3 {mu}s pulsewidth, with an efficiency > 40%, and agreement between the experimental results and simulations is excellent. The 535 kV, 700 A electron gun was tested by constructing a solenoidal focused beam-stick which identified a source of oscillation, subsequently engineered out of the klystron guns. Design of the beam-stick and the two klystrons is discussed, along with observation and suppression of spurious oscillations. Differences in design and the resulting performance of the klystrons is emphasized. (author)

  3. High power ubitron-klystron

    International Nuclear Information System (INIS)

    Balkcum, A.J.; McDermott, D.B.; Luhmann, N.C. Jr.

    1997-01-01

    A coaxial ubitron is being considered as the rf driver for the Next Linear Collider (NLC). Prior simulation of a traveling-wave ubitron using a self-consistent code found that 200 MW of power and 53 dB of gain could be achieved with 37% efficiency. In a ubiron-klystron, a series of cavities are used to obtain an even tighter electron bunch for higher efficiency. A small-signal theory of the ubitron-klystron shows that gain scales with the square of the cavity separation distance. A linear stability theory has also been developed. Verification of the stability theory has been achieved using the 2-12-D PIC code, MAGIC, and the particle-tracing code. Saturation characteristics of the amplifier will be presented using both MAGIC and a simpler self-consistent slow-timescale code currently under development. The ubitron can also operate as a compact, highly efficient oscillator. Cavities only two wiggler periods in length have yielded up to 40% rf conversion efficiency in simulation. An initial oscillator design for directed energy applications will also be presented

  4. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  5. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  6. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC.

  7. Modification of 300kV RF Ion Source for 1-MV Electrostatic Accelerator at KOMAC

    International Nuclear Information System (INIS)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub

    2015-01-01

    The specifications of the 1-MV electrostatic accelerator are shown as below. High voltage power supply is electron transformer rectifier (ELV) type which was developed in Nuclear Physics Institute (Novosibirsk) for industrial electron accelerators. And accelerator column consists of alumina and metal electrode rings were 0.5m-long brazed structure which can be installed horizontally. In case of ion source for 1-MV electrostatic accelerator, it is chosen a thonemann type rf ion source and 300-kV test-stand was made up to confirm the stable operating conditions. High voltage power supply is fabricated by domestic company, and its operation has been confirming at KOMAC site. Equally, the ion source of 300-kV test-stand should be modified to install into the high voltage power supply. In this paper, modification of ion source of 300-kV test-stand for 1-MV electrostatic accelerator is presented and its processes are considered. 300-kV RF ion source and power supply are testing for the 1-MV electrostatic accelerator and trying for combination between them. The 1-MV electrostatic accelerator will be fabricated with domestic companies and tested in the beam application research building at KOMAC

  8. Development of X-band klystron technology at SLAC

    International Nuclear Information System (INIS)

    Caryotakis, G.

    1997-05-01

    The SLAC design for a 1-TeV collider (NLC) requires klystrons with a performance which is well beyond the state-of-the-art for microwave tubes in the United States or abroad. The electrical specifications for the NLC klystrons are not fully established, but they are approximately as follows: Frequency, 11.4 GHz; Peak Power, 75 MW; Pulse Length, 1.5 μs; Repetition Rate, 180 Hz; Gain, 50 dB; Efficiency, (including beam focusing) 50%. SLAC is in the seventh year of a program to develop these klystrons. The choice of X-band as the operating frequency, along with the sheer size of the NLC, have resulted in some new, most demanding standards for the klystrons which may power this future machine. These are related to the overall efficiency required, to the high rf gradients that must be supported at the output circuit without vacuum breakdown, and to the manufacturing cost of the 5,000-10,000 klystrons needed for the collider

  9. Design of 120 MW beam power electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Dong Dong

    2005-01-01

    An electron gun was designed and the beam optics for a China-made 50 MW klystron was simulated. The electron gun ceramic cylinder was designed and optimized. The China-made cathode was replaced with an imported one to lessen evaporation and arcing. The high voltage (320 kV) of the cathode was increased to meet the klystron output power demand and a low electric field strength (22.1 kV/mm) electron gun was designed to avoid the high power operation which damaged the ceramic cylinder. The klystron output power was increased and life span extended. (authors)

  10. Development of an X-Band 50 MW Multiple Beam Klystron

    Science.gov (United States)

    Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-12-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.

  11. High-gradient electron accelerator powered by a relativisitic klystron

    International Nuclear Information System (INIS)

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  12. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    CERN Document Server

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  13. Development of multimegawatt klystrons for linear colliders

    International Nuclear Information System (INIS)

    Caryotakis, G.; Callin, R.; Eppley, K.

    1993-04-01

    A number of experimental klystrons have been constructed and evaluated at SLAC, KEK and INP, aiming toward output power objectives of 100 and 120 MW at 11.4 GHz (SLAC and KEK respectively) or 150 MW at 14 GHz (INP), with pulse lengths on the order of 1 μs. Since rf breakdown is considered to be the principal mechanism limiting power for such tubes, most of the effort has been concentrated on the design of output circuits that reduce rf gradients by distributing fields over a longer region of interaction. Another klystron component receiving emphasis has been the output window, where the approach for future tubes may be to use a circular TE01-mode, half-wave window. Rest results to date in this continuing international effort are: 50 MW with 1 μs pulses, using a traveling-wave output circuit (SLAC and INP), and 85 MW with 200 ns. pulse (SLAC), using two conventional reentrant, but uncoupled, output cavities. At KEK a klystron with a single, but not reentrant, cavity has produced 80 MW in 50 ns pulses. Finally, Haimson has demonstrated 100 MW at 50 ns with a traveling-wave output. This paper addresses primarily the work performed at SLAC during the last two years

  14. Test result of 5 GHz, 500 kW CW prototype klystron for KSTAR LHCD system

    Energy Technology Data Exchange (ETDEWEB)

    Do, H., E-mail: heejindo@nfri.re.kr [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, S. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Jeong, J.H.; Bae, Y.S.; Yang, H.L. [National Fusion Research Institute, Daejeon 350-333 (Korea, Republic of); Delpech, L.; Magne, R.; Hoang, G.T. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Park, H.; Cho, M.H.; Namkung, W. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-10-15

    A 5 GHz LHCD system is being designed for current drive and profile modification necessary for AT mode and steady-state operation of the KSTAR tokamak. A prototype 500 kW CW klystron operating at 5 GHz was developed for the steady-state RF source. In this klystron, a multi-cell cavity is introduced to reduce cavity voltage and ohmic power loss. The klystron is designed with a triode system for optimization of gain, efficiency and beam control. The high voltage for the cathode is turned by using a thyristor switching system at the low voltage transformer unit. For anode voltage control, a mod-anode voltage divider system is used which utilize the parallel-circuit of the FET switch and Zener diodes. The RF output power of the klystron was 300 kW for 800 s and 450 kW for 20 s. The maximal temperature at collector top surface was 83 deg. C and power loss at the tube body did not exceed 10 kW, the interlock level for the protection of the klystron. Detailed results of the klystron system test and commissioning are presented.

  15. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  16. RF system design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Schwarz, H.; Rimmer, R.

    1994-06-01

    The paper presents an overview of the design of the RF system for the PEP-II B Factory. An RF station consists of either two or four single-cell cavities driven by a 1.2 MW klystron through a waveguide distribution network. A variety of feedback loops stabilize the RF and its interaction with the beam. System parameters and all the relevant parameters of klystron and cavities are given

  17. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  18. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  19. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  20. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    International Nuclear Information System (INIS)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-01-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  1. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  2. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  3. FPGA based control system for -100 kV, 25 A Crowbarless DC power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Tripathi, A.; Badapanda, M.K.; Lad, M.

    2015-01-01

    FPGA based digital control system has been developed for -100 kV, 25 A solid state modular crowbarless DC klystron bias power supply of 1 MW, 352.2 MHz RF test stand. The control system has capability to operate this power supply either in CW or pulse mode. Central controller, PSM controller and graphical user interface are key parts of this control system. Central controller monitors the status of various subsystems of this power supply like 11 kV step start unit, four numbers of main transformers each having 44 numbers of secondary windings and 176 numbers of switch power modules for deciding the number of power modules to be put ON and their duty cycles depending on the set output voltage and current. PSM controller sends appropriate control signal to the switch power modules through fibre optic lines and communicates it to the central controller. Linux based graphical user interface has been developed which enables the user to set the operating parameters along with their trip limits and displays the information of critical parameters of this power supply on a local touch screen panel. Provision for remote control and supervision is also provided through a separate PC connected to the main control system via Ethernet. The control system has capability to trip the power supply within 5 μsec in case any parameter exceeds its set limit. Suitable data logging feature is incorporated for offline fault analysis. The control system architecture along with its software protection interlocks are presented in this paper. The performance of the control system has been verified during operation of -100 kV, 25 A DC power supply with 1 MW, 352.2 MHz klystron amplifier. (author)

  4. High-power RF controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddl, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kw cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference

  5. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  6. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the art of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.

  7. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications. Final Report

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David

    2011-01-01

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  8. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  9. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-11-01

    A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars

  10. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  11. Performance of high power S-band klystrons focused with permanent magnet

    International Nuclear Information System (INIS)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  12. Performance of high power S-band klystrons focused with permanent magnet

    Science.gov (United States)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  13. SLAC RF Source Research at X-Band

    International Nuclear Information System (INIS)

    Sprehn, D.

    2003-01-01

    X-band klystrons capable of 75 MW and utilizing either solenoidal or Periodic Permanent Magnet (PPM) focusing are undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC). The klystron development is part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). SLAC has developed a solenoidal-focused X-band klystron which is currently the workhorse of high power component testing for the NLC. A state-of-the-art modulator will drive eight of these tubes which, in turn, will power an rf distribution system referred to as the ''8-pack'' in order to test these modulators and waveguide components. Eventually, in an interest to save millions of dollars per year in the operational cost of the NLC, these tubes will be replaced by PPM klystrons. The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan ), and industry. These tubes follow from the successful 50 MW PPM design of 1996. Recent testing of this particular tube at wider pulsewidths has reached 50 MW at 55 % efficiency, 2.4 μs and 60 Hz. Two 50 MW PPM klystrons produced by industry have been delivered to SLAC. One of these devices arrived with a vacuum suitable for test. Testing during 2001 revealed a serious, but curious, vacuum response which limited the operation to an rf output of ∼40 MW. A 75 MW PPM klystron prototype was first constructed in 1997 and later modified in 1999 to eliminate oscillations. This tube has reached the NLC design target of 75 MW at 1.5 μs though at a significantly reduced rep rate. Two new 75 MW PPM klystrons were constructed and tested in 2002 after a diode was successfully tested in 2001. The new design was aimed at reducing the cost and increasing the reliability of such high-energy devices. The rf circuit and beam focusing for one of these devices was built by industry and incorporated into one of the tubes

  14. Pulse modulator for X-band klystron at GLCTA

    International Nuclear Information System (INIS)

    Akemoto, M.; Honma, H.; Nakajima, H.; Shidara, T.; Fukuda, S.

    2004-01-01

    This paper presents an X-band klystron modulator recently constructed for the Global Linear Collider Test Accelerator (GLCTA) at KEK. The modulator is a thyratron-switched line-type design, and operates two klystrons up to 75 MW peak power, 1.6 μs rf pulse width and up to 150 Hz repetition rate. The major goals of the modulator are reasonably compact size and high reliability. One notable feature is the use of eight 30kJ/s switching power supplies in parallel to charge the pulse forming network. These supplies are a major contributor to compact size of the modulator. The design, specifications and results of performance tests of the modulator are described. (author)

  15. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  16. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  17. Feedback system of the RF phase in KEK-ATF linac

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T.; Hayano, H.; Kuriki, M.; Naito, T. [Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-07-01

    KEK-ATF linac is built in the Assembly Hall for TRISTAN project in 1991. The thermal condition of the hall is not good enough for a stable linac operation, because the temperature of the klystron gallery is drifted by 1degC within one day. RF phase is also drifted by 3-5deg of the S-band frequency in day and night. In order to control the RF phase, we installed RF phase detectors, which have S/H circuit in order to use for pulsed RF. By using the phase detector, an RF phase feedback system was tested. It was found that a stable klystron operation could be performed within the phase drift of {+-}0.5deg in a day. (author)

  18. High-power rf controls for the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1985-01-01

    The high-power rf system for the National Bureau of Standards (NBS)-Los Alamos racetrack microtron (RTM) uses waveguide power splitters and waveguide phase shifters to distribute rf power from a single 500-kW cw klystron to four side-coupled accelerating structures. The amplitude and phase of each structure is controlled by a feedback system that uses the waveguide variable power splitters, waveguide phase shifters, and klystron drive as the active control elements. A block diagram of this system is shown, as is a subset of the complete system on which the measurements reported in this paper were performed. The feedback controls on the capture section use low-level rf amplitude and phase controls on the rf drive to the klystron. These controls are very fast with an open loop gain bandwidth of approximately 40 kHz. The feedback loop is identical to the feedback loop used in the chopper/buncher system described in another paper at this conference. 4 refs., 8 figs

  19. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  20. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  1. Practical test of the LINAC4 RF power system

    CERN Document Server

    Schwerg, N

    2011-01-01

    The high RF power for the Linac4 accelerating structures will be generated by thirteen 1.3 MW klystrons, previously used for the CERN LEP accelerator, and six new klystrons of 2.8 MW all operating at a frequency of 352.2 MHz. The power distribution scheme features a folded magic tee feeding the power from one 2.8 MW klystron to two LEP circulators. We present first results from the Linac4 test place, validating the approach and the used components as well as reporting on the klystron re-tuning activities.

  2. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  3. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  4. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  5. Design and development of permanent magnet based focusing lens for J-Band Klystron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K., E-mail: kumuds@barc.gov.in [Control Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhay, Ayan; Meena, Rakesh; Rawat, Vikram; Joshi, L.M [Microwave Tubes Division, Central Electronics Engineering Research Institute, Pilani (India)

    2014-07-01

    Applying permanent magnet technology to beam focusing in klystrons can reduce their power consumption and increase their reliability of operation. Electromagnetic design of the beam focusing elements, for high frequency travelling wave tubes, is very critical. The magnitude and profile of the magnetic field need to match the optics requirement from beam dynamics studies. The rise of the field from cathode gun region to the uniform field region (RF section) is important as the desired transition from zero to peak axial field must occur over a short axial distance. Confined flow regime is an optimum choice to minimize beam scalloping but demands an axial magnetic field greater than 2 - 3 times the Brillouin flow field. This necessitates optimization in the magnet design achieve high magnetic field within given spatial constraints. Electromagnetic design and simulations were done using 3D Finite element method (FEM) analysis software. A permanent magnet based focusing lens for a miniature J-Band klystron has been designed and developed at Control Instrumentation Division, BARC. This paper presents the design, simulation studies, beam transmission and RF tests results for J Band klystron with permanent magnet focusing lens. (author)

  6. New developments in relativistic klystron amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, M; Colombant, D; Fernsler, R; Hubbard, R; Lampe, M; Serlin, V; Slinker, S [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.

    1997-12-31

    A relativistic klystron amplifier that employed cavities with inductively loaded wide gaps and a novel converter has achieved 50% energy efficiency, a significant advance over the previous state of the art of 20%. The new device was immersed in a 3 kG magnetic field and contained two innovations: (1) Wide gaps which include an inductively loaded return current structure that was opaque to the unmodulated beam space charge but transparent to the RF field. (2) A novel converter that was made of a `leaky` cavity with a radially-converging inductively-loaded structure that was inserted in the output wide-gap. This structure reduced the potential energy residing in the electron beam and maximized RF output energy. (author). 4 figs., 13 refs.

  7. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    Science.gov (United States)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  8. The SSRL linacs for injection to the storage ring and rf gun testing

    International Nuclear Information System (INIS)

    Park, Sanghyun; Weaver, James N.

    1996-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) operates two linac systems. One has three SLAC type linac sections powered by two klystrons for injection of electrons at 120 MeV into the booster ring, boosting the energy to 2.3 GeV to fill the SPEAR. After the ramping, the SPEAR stores up to 100 mA of the beam at 3.0 GeV. The preinjector consists of a thermionic RF gun, an alpha magnet, and a chopper along with focusing magnets. The other has one 10 foot section powered by the injector klystron for the testing of RF gun with photocathode, which is driven by a separate klystron. This paper describes present systems with their operational parameters, followed by plans for the upgrades and RF gun development efforts at the SSRL. (author)

  9. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  10. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  11. Environmental influences contributing to window failure of the SLAC 50 MW klystron

    International Nuclear Information System (INIS)

    Krienen, F.

    1984-03-01

    The additional heating of the klystron window is due to the intense x-ray level, produced inside the klystron, illuminating the entrance of the output wave guide. Photo-electric effect, although of low efficiency, produces enough electrons at the right location and right phase to start multipactor, which progresses with increasing intensity towards the window. The intercepted charge and the concomitant x-radiation heat the window, but the heating is not the cause of the breakdown per se. The accumulated charge on the window creates electric stress, which comes in addition to the RF stress. It could therefore be a major cause of electrical breakdown. The coating, which is intended to carry this charge off, should have a relaxation time constant small compared to the pulse duration. Unfortunately the coating can not be made conducting enough because it conflicts with the Joule heating in the RF field

  12. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  13. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  14. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  15. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    Horan, D.; Solita, L.; Reigle, D.; Dimonte, N.

    1997-01-01

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  16. Klystron development in India

    International Nuclear Information System (INIS)

    Joshi, S.N.; Joshi, L.M.

    2006-01-01

    Full text: The high power klystrons belong to the family of microwave tube power amplifiers that find wide use in communication, radar, heating of plasma in thermo-nuclear reactors, industrial microwave heating and particle accelerators for medical, industrial and scientific applications including nuclear waste transmutation, energy production by sub-critical reactors and spallation neutron sources. With the rapid growth of the country in scientific and industrial research sector, there is a large in house demand of klystrons covering wide frequency and power ranges for various applications. The main users of klystrons are defense/DRDO, BARC, RRCAT, SAMEER and IPR. A recent survey of the requirement of microwave tubes in the country conducted by CEERI has indicated a substantial requirement of klystrons in different frequency and power ranges. There are only a few established commercial vendors of klystrons around the globe. Keeping the strategic nature of applications and high cost of tube in mind, it is felt necessary to have indigenous development and production of klystrons to the extent possible. Presently CEERI has the credit of being the only place in the country where klystrons have been successfully designed and developed. It has created a strong infrastructure for computer-aided design of klystrons, their fabrication and testing. Currently it is engaged in the development of a high average power S-band pulsed klystron under MoU with BARC and is planning to take up development of klystrons for medical linacs and miniature klystrons for defense applications. Apart from that it is also planned to take-up development of low frequency CW power klystrons for ADSS programme. RRCAT has also started some activities on design and development of klystrons. They are already using single and multi-beam klystrons for INDUS and other linac programmes and have a large projected requirement of klystrons in next ten years. BEL, Bangalore has been producing low cw power

  17. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    International Nuclear Information System (INIS)

    Reass, W.A.; Doss, J.D.; Gribble, R.F.

    2001-01-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented

  18. Solid state high power amplifier for driving the SLC injector klystron

    International Nuclear Information System (INIS)

    Judkins, J.G.; Clendenin, J.E.; Schwarz, H.D.

    1985-03-01

    The SLC injector klystron rf drive is now provided by a recently developed solid-state amplifier. The high gain of the amplifier permits the use of a fast low-power electronic phase shifter. Thus the SLC computer control system can be used to shift the phase of the high-power rf rapidly during the fill time of the injector accelerator section. These rapid phase shifts are used to introduce a phase-energy relationship in the accelerated electron pulse in conjunction with the operation of the injector bunch compressor. The amplifier, the method of controlling the rf phase, and the operational characteristics of the system are described. 5 refs., 4 figs

  19. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  20. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  1. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  2. Klystron-modulator system availability of PLS 2 GeV electron linac

    International Nuclear Information System (INIS)

    Cho, M.H.; Park, S.S.; Oh, J.S.; Namkung, W.

    1996-01-01

    PLS Linac has been injecting 2 GeV electron beams to the Pohang Light Source (PLS) storage ring since September 1994. PLS 2 GeV linac employs 11 sets of high power klystron-modulator (K and M) system for the main RF source for the beam acceleration. The klystron has rated output peak power of 80 MW at 4 microsec pulse width and at 60 pps. The matching modulator has 200 MW peak output power. The total accumulated high voltage run time of the oldest unit has reached beyond 23,000 hour and the sum of all the high voltage run time is approximately 230,000 hour as of May 1996. In this paper, we review overall system performance of the high-power K and M system. A special attention is paid on the analysis of all failures and troubles of the K and M system which affected the linac high power RF operations as well as beam injection operations for the period of 1994 to May 1996. (author)

  3. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  4. Operating experience and reliability improvements on the 5 kW CW klystron at Jefferson Lab

    International Nuclear Information System (INIS)

    Nelson, R.; Holben, S.

    1997-01-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of reporting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator

  5. Commissioning experience with the PEP-II low-level RF system

    International Nuclear Information System (INIS)

    Corredoura, P.; Allison, S.; Claus, R.; Ross, W.; Sapozhnikov, L.; Schwarz, H.D.; Tighe, R.; Yee, C.; Ziomek, C.

    1997-05-01

    The low-level RF system for PEP-II is a modular design housed in a VXI environment and supported by EPICS. All signal processing and control is done at baseband using in-phase and quadrature (IQ) techniques. Remotely configurable RF feedback loops are used to control coupled-bunch instabilities driven by the accelerating mode of the RF cavities. A programmable DSP based feedback loop is implemented to control phase variations across the klystron due to the required adjustment of the cathode voltage to limit cathode power dissipation. The DSP loop also adaptively cancels modulations caused by klystron power supply ripple at selected power line harmonics between 60 Hz and 10 kHz. The system contains a built-in baseband network analyzer which allows remote measurement of the RF feedback loop transfer functions and automated configuration of these loops. This paper presents observations and measured data from the system

  6. Enhancing the power output of the VA-955 UHF-TV klystron

    International Nuclear Information System (INIS)

    Bowen, O.N.; Lawson, J.Q.

    1977-01-01

    The Varian VA-955 UHF-TV klystron is rated at 50 kW CW, and four of these klystrons were used to provide 200 kW of RF power for lower hybrid heating experiments on the ATC machine at 800 MHz. These proven, production-type tubes were wanted to generate more power for larger type machines, such as the PDX. Varian was asked whether the tubes were capable of higher-power operation in pulsed applications. They replied that they had no experimental data but felt that the tubes were capable of greatly enhanced performance under pulsed conditions. By using cathode modulation instead of modulating anode control of the klystron, and thus limiting the time that high voltage is applied to the cathode, it was shown that the tube is capable of an output power of 200 kW for tens of milliseconds compared to its normal CW rating of 50 kW. A description is given of the experimental results, the required modifications to the klystron and output transmission circuit, the details of operation of the regulating modulator used to perform the experiment. Upgrade kits are now being fabricated to allow 200 kW operation of the two 50 kW units which were lent to General Atomic for Doublet II experiments

  7. Development of the power system for accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeokjung; Kim, D. I.; Kim, H. S.; Park, B. S.; Seol, K. T.; Yun, S. P.; Song, Y. G.; Jang, J. H.; Cho, Y. S.

    2013-02-01

    The 100-MeV proton linac needs 4 modulators whose specification is as follows, -115kV, 55A, and 9%. The development of the modulators were successfully finished and installed at Gyeongju site of KAERI. One of them was used and successfully tested in the 20-MeV linac operation at Daejeon site. The klystron is used to supply the high power RF into the accelerating structure. There are 2 klystrons for 20-MeV part of the linac and 7 klystrons from 20-MeV to 100-MeV region. The maximum voltage is ?105kV, the peak power is 1.6 MW, and the duty is 9%. All of the 7 klystrons have been fabricated, tested and installed. The high power RF system includes circulators, dummy lodes, RF windows, and wave-guides. The development of the high power RF components was finished and they were installed at the Gyeongju site. The 11 sets of RCCS (resonant control cooling system) will be used to control the cooling water temperature inside the accelerating structure. The temperature range of the cooling water covers between 21 .deg. C and 33 .deg. C with the 0.1 .deg. C control. All RCCSs were installed in the klystron gallery. Purposes of the 20-MeV linac operation at Daejeon site of KAERI (2007∼2011) are to supply proton beams to user, to porve the accelerator performance, to test the developed components including LLRF, diagnostics, and control system, and to measure the proton beam properties. During the period, the total number of samples reaches to 1,603 and the average machine availability becomes 96.2%. The 20-MeV linac was disassembled, moved and installed at Gyeongju site after finishing the test operation

  8. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  9. Operation of a 1.3 GHz, 10 MW Multiple Beam Klystron

    CERN Document Server

    Bohlen, H P; Cattelino, M; Cox, L; Cusick, M; Forrest, S; Friedlander, F; Staprans, A; Wright, E; Zitelli, L

    2004-01-01

    Results will be reported for a 1.3 GHz, 10 MW multiple beam klystron that is being developed for the TESLA linear accelerator facility. The design parameters for the device are 10 MW peak RF output power with 150 kW average power, 1.5 ms pulse length, 65% efficiency, 50 dB gain, and 2.0 A/cm2

  10. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  11. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  12. Characterization of a klystrode as a RF source for high-average-power accelerators

    International Nuclear Information System (INIS)

    Rees, D.; Keffeler, D.; Roybal, W.; Tallerico, P.J.

    1995-01-01

    The klystrode is a relatively new type of RF source that has demonstrated dc-to-RF conversion efficiencies in excess of 70% and a control characteristic uniquely different from those for klystron amplifiers. The different control characteristic allows the klystrode to achieve this high conversion efficiency while still providing a control margin for regulation of the accelerator cavity fields. The authors present test data from a 267-MHz, 250-kW, continuous-wave (CW) klystrode amplifier and contrast this data with conventional klystron performance, emphasizing the strengths and weaknesses of the klystrode technology for accelerator applications. They present test results describing that limitation for the 250-kW, CW klystrode and extrapolate the data to other frequencies. A summary of the operating regime explains the clear advantages of the klystrode technology over the klystron technology

  13. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  14. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  15. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  16. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  17. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  18. W-Band Sheet Beam Klystron Design

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.; Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.

    2011-01-01

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons (1). Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  19. The amplitude and phase control of the ALS Storage Ring RF System

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1995-03-01

    A 500MHz, 300KW Klystron power amplifier provides RF power to the ALS Storage Ring. In order to accommodate the amplitude and phase changes during beam stacking and decay, which demand continuously varying power levels from the Klystron, four loops are used to keep the system operating properly, with two of those loops dedicated to keeping the two cavity tuners on tune. Description of the control loops and their performance data will be given. Using the modulation anode of the Klystron in the amplitude loop will be discussed

  20. An S-band high gain relativistic klystron amplifier with high phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Li, Z. H.; Xu, Z.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  1. Final Report for 'Design calculations for high-space-charge beam-to-RF conversion'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference 'cut-cell' boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT's, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of 'stair-step' geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other

  2. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  3. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  4. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  5. RF source for proton linear accelerator in Kyoto University

    International Nuclear Information System (INIS)

    Iwashita, Yoshihisa

    1987-01-01

    Construction of a 433 MHz, 7 MeV proton linear accelerator is currently underway in Kyoto University under a three-year plan starting in 1986. The ion source, power source for it, RFQ main unit, WR2100 waveguide and a set of klystrons for RFQ were installed last year, or the first year of the plan, and the power source for the klystrons for RFQ, a set of klystrons for STL, DTL main unit, etc., are planned to be installed this year. Operation has not started yet because of the absence of the power source for the klystrons. Thus this report is focused on the considerations made in selecting the acceleration frequency of 433 MHz, specifications of the klystrons and the structure of the power sources for them. Based on considerations of the efficiency and cost of the accelerating tubes and RF sources to be used, the acceleration frequencies of 433.33 MHz and 1,300 MHz were adopted. The klystron selected is Litton L5773, which has a peak power output of 1.25 Mw, average power output of 75 kW, maximum pulse width of 2,000 μS and duty of 6 percent, and it consists of four cavities. The structure and characteristics of a klystron are also described. (Nogami, K.)

  6. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    Science.gov (United States)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  7. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  8. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  9. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Science.gov (United States)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  10. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    Science.gov (United States)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  11. Relativistic Klystron Two-Beam Accelerator studies at the RTA test facility

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Houck, T.L.; Anderson, D.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two- Beam Accelerator (RK-TBA) concept is being constructed at LBNL to study physics, engineering, and costing issues. The prototype, called RTA, is described and compared to a full scale design appropriate for driving the Next Linear Collider. Specific details of the induction core test and pulsed power system are presented. Details of the 1-MeV, 1.2-kA induction gun currently under construction are described

  12. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  13. Commissioning of the 400 MHz LHC RF System

    CERN Document Server

    Ciapala, Edmond; Baudrenghien, P; Brunner, O; Butterworth, A; Linnecar, T; Maesen, P; Molendijk, J; Montesinos, E; Valuch, D; Weierud, F

    2008-01-01

    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented.

  14. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  15. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  16. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  17. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  18. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Akhil, E-mail: akhilpatel@rrcat.gov.in; Kale, Umesh; Shrivastava, Purushottam

    2017-04-21

    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the

  19. Fundamentals of klystron testing

    International Nuclear Information System (INIS)

    Caldwell, J.W. Jr.

    1978-08-01

    Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing

  20. PPM klystron operation in GLCTA

    International Nuclear Information System (INIS)

    Saeki, T.; Akemoto, M.; Shidara, T.

    2004-01-01

    High-gradient tests of X-band accelerator structure have been done with two solenoidal-type klystrons at Global Linear Collider Test Accelerator (GLCTA) facility in High Energy Accelerator Research Organization (KEK). In the GLCTA facility, a PPM-type klystron was installed and has been operated with dummy load from this April. In this article, the installation and the status of the PPM-type klystron operations are presented. (author)

  1. The Tore Supra Lower Hybrid Test Bed : improvements and applications

    International Nuclear Information System (INIS)

    Delpech, L.; Achard, J.; Beaumont, B.

    2006-01-01

    Within the CIMES project framework in Tore Supra, a klystron TH2103C (3.7 GHz) is under development at THALES ELECTRON DEVICES. It differs from the previous klystrons used in Tore Supra generator mainly in that it has no modulating anode, the RF output power will reach 700 kW CW, by raising the High Voltage value to 76 kV and a beam current up to 23 A. The Tore Supra test bed is a dedicated facility used for high power tests on RF components or on RF transmitters. It has been improved to integrate the TH2103C klystron and a specific 100 kV solide state switch which control the beam current. Since April 2005, the integration of the first tube (without modulating anode) and the 100 kV switch has been completed in the Test Bed and has allowed the modifications and tests of the interfaces and security system for the devices. Improvements were also made on the cooling loop flow to dissipate a power of 1750 kW CW. With these devices, the RF power routinely available in the Lower Hybrid Test Bed is 400 kW CW. With the development of the TH2103C, detailed studies and tests on RF components which will be used up to 750 kW CW on match load or 700 kW on VSWR = 1.4, are necessary to evaluate their performances and thermal behaviour. The test a crucial component, the recombiner, which adds the RF powers coming from the two RF outputs of the TH2103C and inject the resulted power into one WR284 waveguide to a test load or to the plasma, was completed. Two tests have been performed : a thermal study with 400 kW during 1000 s, and RF pulsed tests on short cuts to increase the value of the electric field inside the component. The experiments and calculations (ANSYS and HFSS codes) validate the use of this device with the TH2103C. A module made with two different Beryllium Oxide RF windows, has been under test. The losses on each window are measured by calorimetric measurements and evaluated by computation with HFSS and ANSYS code. The results are compared. In this paper, the

  2. Multipactors in klystron cavities

    International Nuclear Information System (INIS)

    Hayashi, Kazutaka; Iyeki, Hiroshi; Kikunaga, Toshiyuki.

    1993-01-01

    A multipactor phenomenon in a klystron causes gain shortage or instability problem. Some tests using a prototype klystron input cavity revealed the microwave discharges in vacuum with magnetic field. The test results and the methods to avoid multipactors are discussed in this paper. (author)

  3. 352.2 MHz rf system for the ESRF

    International Nuclear Information System (INIS)

    Jacob, J.; David, C.

    1988-01-01

    This paper reports that ESRF's 352.2 MHz RF system that uses 1 MW-CW klystrons and five-cell LEP type cavities has been adopted. In the storage ring (SR), two klystrons will feed a total of four cavities in order to provide the maximum required accelerating voltage of 8.9 MV. In the injector synchrotron (SY), two cavities fed by one klystron in a cycling mode at 10 Hz will give the maximum needed accelerating voltage of 7.3 MV. In multibunch operation of the SR, coupled bunch oscillations will be driven by the higher order modes (HOMs) of the cavities, and may limit the maximum beam current to about 60 mA. Spare ports will allow to install HOM dampers on the cavities in order to raise the instability thresholds above the design current of 100 mA. In addition, active feed back systems may be implemented

  4. Maintenance of a medical klystron linear accelerator and evaluation of the lifetime of the klystron

    International Nuclear Information System (INIS)

    Yokoyama, Koichi; Takita, Takenobu; Hashimoto, Shigeo; Koda, Yukio; Sawayanagi, Hisayoshi

    1981-01-01

    A 15 MeV Mitsubishi medical linear accelerator was installed at our center in June 1971. Clinical use and maintenance of the machine are reviewed. Special attention should be paid to the fact that only one klystron tube has been working for nine years. This tube has now recorded more than 17,000 filament hours, while the manufacturer's warranty time is 1,500 hours. Extension of the operating hours will significantly reduce the maintenance expenses of the machine. In this aspect, we intended to evaluate the lifetime of the Mitsubishi klystron used at several hospitals by means of a questionnaire. As a result, the following points are noticed: 1. It is advisable to keep in use a klystron tube which has been working normally for a quite long time. (Preventive replacement is unnecessary.) 2. A protective device should be provided to prevent the trouble which will follow the breakage in a klystron. 3. The present warranty time for the klystron may depend on the lifetime of individual products, including even some defective ones. If the occurrence of such products is minimized, the mean life of the klystron will be extended considerably and, consequently, the warranty time can also be prolonged to a great extent. (author)

  5. Development of bouncer-type pulse modulator for the ILC

    International Nuclear Information System (INIS)

    Akemoto, Mitsuo; Honma, Hiroyuki; Nakajima, Hiromitsu; Shidara, Tetsuo; Fukuda, Shigeki

    2009-01-01

    This paper describes a long-pulse 1.3 GHz klystron modulator that was recently developed for the Superconducting RF Test Facility (STF) at High Energy Accelerator Research Organization (KEK). The modulator has a direct-switched-type design with a 1:15 step-up transformer and a bouncer circuit to compensate the output phase droop within ±0.5%; it can drive a klystron up to 10 MW peak power, 1.5 ms rf pulse width, and 5 pps repetition rate. The main features of this modulator are four 50 kW switching power supplies in parallel to charge storage capacitors to 10 kV, self-healing-type storage capacitors to realize a compact capacitor bank, and a highly reliable IGBT switch which enables elimination of a crowbar circuit. Design considerations and its performance are presented. An IEGT (Injection Enhanced Gate Transistor) switch, composed of six series devices with a rating of 4.5 kV and 2100 A-DC, has been also developed and tested for R and D to realize a compact modulator. (author)

  6. RF radiation measurement for the Advanced Photon Source (AS) personnel safety system

    International Nuclear Information System (INIS)

    Song, J.J.; Kim, J.; Otocki, R.; Zhou, J.

    1995-01-01

    The Advanced Photon Source (APS) booster and storage ring RF system consists of five 1-MW klystrons, four 5-cell cavities, and sixteen single-cell cavities. The RF power is distributed through many hundreds of feet of WR2300 waveguide with H-hybrids and circulators. In order to protect personnel from the danger of RF radiation due to loose flanges or other openings in the waveguide system, three detector systems were implemented: an RF radiation detector, a waveguide pressure switch, and a Radiax aperture detector (RAD). This paper describes RF radiation measurements on the WR 2300 waveguide system

  7. Optimization,Modeling, and Control: Applications to Klystron Designing and Hepatitis C Virus Dynamics

    Science.gov (United States)

    Lankford, George Bernard

    In this dissertation, we address applying mathematical and numerical techniques in the fields of high energy physics and biomedical sciences. The first portion of this thesis presents a method for optimizing the design of klystron circuits. A klystron is an electron beam tube lined with cavities that emit resonant frequencies to velocity modulate electrons that pass through the tube. Radio frequencies (RF) inserted in the klystron are amplified due to the velocity modulation of the electrons. The routine described in this work automates the selection of cavity positions, resonant frequencies, quality factors, and other circuit parameters to maximize the efficiency with required gain. The method is based on deterministic sampling methods. We will describe the procedure and give several examples for both narrow and wide band klystrons, using the klystron codes AJDISK (Java) and TESLA (Python). The rest of the dissertation is dedicated to developing, calibrating and using a mathematical model for hepatitis C dynamics with triple drug combination therapy. Groundbreaking new drugs, called direct acting antivirals, have been introduced recently to fight off chronic hepatitis C virus infection. The model we introduce is for hepatitis C dynamics treated with the direct acting antiviral drug, telaprevir, along with traditional interferon and ribavirin treatments to understand how this therapy affects the viral load of patients exhibiting different types of response. We use sensitivity and identifiability techniques to determine which parameters can be best estimated from viral load data. We use these estimations to give patient-specific fits of the model to partial viral response, end-of-treatment response, and breakthrough patients. We will then revise the model to incorporate an immune response dynamic to more accurately describe the dynamics. Finally, we will implement a suboptimal control to acquire a drug treatment regimen that will alleviate the systemic cost

  8. Two generations of klystrons reunited

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    As the newest accelerator on the block, Linac4 is a hotbed of fresh technology and innovation. But among its many new elements you’ll find some familiar pieces, including eleven klystrons from CERN’s former flagship, LEP.   View of the Linac4 hall. The LEP klystrons (front and centre of the image) are surrounded by grey lead shielding. (Image: Suitbert Ramberger.) The Linac4 accelerator is powered by both new, state-of-the-art klystrons and former LEP klystrons. In fact, the first Drift Tube Linac (DTL) module is powered completely by these LEP klystrons. The last of the DTL modules has only just been installed in the Linac4 tunnel – a milestone that will soon take the accelerator up to 50 MeV, allowing it to act as a back-up machine for Linac2 for a few years before the complete handover to the CERN accelerator chain. It’s been a long journey to this point. Linac4 was first conceived in the early 2000s, and its design overlapped with the end of th...

  9. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  10. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  11. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  12. RF sources for recent linear accelerator projects

    International Nuclear Information System (INIS)

    Terrien, J.C.; Faillon, G.; Guidee, P.

    1992-01-01

    We present the state of the art of high power klystrons at Thomson Tubes Electroniques, along with the main technological limitations for peak power and pulse width. Then we describe the work that is under way to upgrade performance and some of the alternative RF sources that have been developed. (Author) 3 refs., 4 figs., 2 tabs

  13. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  14. Development of the C-band (5712 MHz) 50 MW class PPM klystron (2)

    International Nuclear Information System (INIS)

    Matsumoto, H.; Shintake, T.; Ohkubo, Y.; Taoka, H.; Ohhashi, K.; Kakuno, K.

    2001-01-01

    Hot isostatic pressing (HIP) technique has been firstly applied to fabricate a magnetic circuit in a PPM klystron. Simply stacking disks of the magnetic stainless-steel (Mag-SUS) and oxygen-free-copper (OFC) alternatively, and processing in a HIP vessel filled with pressurised Ar-gas at 1200-kgf/cm 2 and temperature of 800degC for 2 hours, they were bonded in one block with diffusion bonding. No brazing-alloys were used in this process. After machining the rf-cavities and beam drift-tube on the bonded PPM stack, they were assembled together in one body by means of conventional brazing method. The C-band PPM klystron based on this technique was fabricated in the course of the Linear Collider R and D. Out-put power of 37 MW was generated with 2.5-μsec pulse width and 50 pps repetition rate. (author)

  15. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  16. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  17. SMES based power modulator - status August 2001

    International Nuclear Information System (INIS)

    Juengst, K.P.; Gehring, R.; Kudymow, A.; Suess, E.

    2001-10-01

    Based on a superconducting magnetic energy storage (SMES) a long-pulse klystron modulator has been designed for use in the TESLA test facility (TTF) at DESY, Hamburg. A proto-type with an output power of 25 MW is under development at Forschungszentrum Karlsruhe in cooperation with the office of engineering lbK at Karlsruhe. Including a pulse transformer (1:13/11.5), the system will deliver pulses of 130 kV or 115 kV, 1.7 ms pulse length with a flat top of ± 0.5%, at a repetition rate up to 10 Hz. This new system's main features are a highly dynamic SMES (> 100 T/s), a high current power supply (rated 27 V/2.6 kA), a switched-mode high voltage power supply (rated 14 kV/45 A), a fast thyristor power switch for 2.6 kA approx. continuous current/ 2 ms break, an IGCT power switch rated 2.6 kA/14 kV, a protection switch unit and a system control unit. This demonstration system is to serve alternatively two klystrons of 5 MW RF output or one multibeam klystron of 10 MW RF output. A significant part of the components of the system has been built. A first set of the system components had been arranged to form a model of the modulator and 1 MW pulses were generated. The next large step in the area of the power electronic part is to increase the power of this test arrangement up to 10 MW. The SMES and its cryostat have undergone initial testing. The data acquisition and control system under development at DESY has been taken over and adjusted to our computer and experimental environment. (orig.)

  18. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  19. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  20. Operational performance and improvements to the rf power sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  1. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  2. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  3. Performance of the SLAC Linear Collider klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Fowkes, W.R.; Koontz, R.F.; Schwarz, H.D.; Seeman, J.T.; Vlieks, A.E.

    1987-01-01

    There are now 200 new, high power 5045 klystrons installed on the two-mile Stanford Linear Accelerator. Peak power per klystron averages over 63 MW. Average energy contribution is above 240 MeV per station. Electron beam energy has been measured as high as 53 GeV. Energy instability due to kylstron malfunction is less than 0.2%. The installed klystrons have logged over one million operating hours with close to 20,00 klystron hours cumulative operating time between failures. Data is being accumulated on klystron operation and failure modes with failure signatures starting to become apparent. To date, no wholesale failure modes have surfaced that would impair the SLAC linear Collider (SLC) program

  4. A conceptual design of the RF system for the NSP high intensity proton accelerator at JAERI

    International Nuclear Information System (INIS)

    Chishiro, Etsuji; Kusano, Joichi; Mizumoto, Motoharu; Touchi, Yutaka; Kaneko, Hiroshi; Takado, Hiroshi; Sawada, Junichi

    1999-03-01

    JAERI has been proposing the Neutron Science Project which aims at exploring the fields of basic science and nuclear technology using a high power spallation neutron source. The neutron source will be driven by a high intensity linear accelerator with an energy of 1.5 GeV and an average beam current of 5.33 mA and beam power of 8 MW. The RF system for the accelerator consists of a high-energy accelerator part and a low energy accelerator part. The maximum RF power requirements at the high and low energy accelerator parts are 25 MW and 8.3 MW, respectively. In this report, we describe the conceptual design of the RF system. In the low energy accelerator part, we estimated the requirement for the high-power amplifier tube and made the basis design for RF components. In the high energy accelerator part, we studied the effect of tuning errors, Lorentz forces and microphonics in the superconducting cavity. We calculated the klystron efficiency and supply power in the arrangement of where one klystron distributes the RF power to four cavities. We also considered an IOT RF system. Finally, we describe the electrical capacity and quantity of cooling water in the RF system. (author)

  5. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  6. Digital Low-Level RF Controls for Future Superconducting Linear Colliders

    CERN Document Server

    Simrock, Stefan

    2005-01-01

    The requirements for RF Control Systems of Superconducting Linear Colliders are not only defined in terms of the quality of field control but also with respect to operability, availability, and maintainability of the RF System, and the interfaces to other subsystems. The field control of the vector-sum of many cavities driven by one klystron in pulsed mode at high gradients is a challenging task since severe Lorentz force detuning, microphonics and beam induced field errors must be suppressed by several orders of magnitude. This is accomplished by a combination of local and global feedback and feedforward control. Sensors monitor individual cavity probe signals, and forward and reflected wave as well as the beam properties including beam energy and phase while actuators control the incident wave of the klystron and individual cavity resonance frequencies. The operability of a large llrf system requires a high degree of automation while the high availability requires robust algorithms, redundancy, and extremel...

  7. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Horan, D.

    1999-01-01

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control and permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands

  8. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  9. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  10. The Klystron Engineering Model Development (KEMD) Task - A New Design for the Goldstone Solar System Radar (GSR)

    Science.gov (United States)

    Teitelbaum, L.; Liou, R.; Vodonos, Y.; Velazco, J.; Andrews, K.; Kelley, D.

    2017-08-01

    The Goldstone Solar System Radar (GSSR) is one of the world's great planetary radar facilities. The heart of the GSSR is its high-power transmitter, which radiates 450 kW from DSS-14, the Deep Space Network's 70-m antenna at Goldstone, by combining the output from two 250-kW klystrons. Klystrons are vacuum tube electron beam devices that are the key amplifying elements of most radio frequency telecommunications and radar transmitter systems. NASA's Science Mission Directorate sponsored the development of a new design for a 250-kW power, 50-MHz bandwidth, reliable klystron, intended to replace the aging operational devices that were developed in the mid-1990s. The design, developed in partnership with Communications & Power Industries, was verified by implementing and testing a first article prototype, the engineering model. Key elements of the design are new beam optics and focusing magnet, a seven-cavity RF body, and a modern collector able to reliably dissipate the full power of the electron beam. The first klystron based on the new VKX-7864C design was delivered to the DSN High-Power Transmitter Test Facility on November 1, 2016, the culmination of a six-year effort initiated to explore higher-resolution imaging of potentially hazardous near-Earth asteroids. The new design met or exceeded all requirements, including supporting advanced GSSR ranging modulations. The first article prototype was placed into operational service on July 26, 2017, after failure of one of the older klystrons, restoring the GSSR to full-power operations.

  11. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  12. RF power sources for 5--15 TeV linear colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  13. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To data the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modeling are presented

  14. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented. 5 refs., 5 figs

  15. Design of a relativistic klystron two-beam accelerator prototype

    International Nuclear Information System (INIS)

    Westenskow, G.; Caporaso, G.; Chen, Y.

    1995-01-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented

  16. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  17. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  18. Studies of a powerful PPM focused X-band klystron

    International Nuclear Information System (INIS)

    Avrakhov, P.; Balakin, V.; Chashurin, V.

    1998-01-01

    Results of computer simulation and testing of the powerful X band klystron with phase-pulse modulation are presented. The klystron was developed for KEK synchrotron. The simulation efficiency of the klystron is smaller than the testing one. The parasitic oscillations are detected in the klystron, and it is necessary to suppress them [ru

  19. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  20. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  1. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    Science.gov (United States)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  2. Utilization of a Vircator to drive a High Power Relativistic Klystron Amplifier

    Science.gov (United States)

    Gardelle, J.; Bardy, J.; Cassany, B.; Desanlis, T.; Eyl, P.; Galtié, A.; Modin, P.; Voisin, L.; Balleyguier, P.; Gouard, P.; Donohue, J.

    2002-11-01

    At CESTA, we have been producing electron beams for some fifteen years by using induction accelerators and pulse diodes. First we had performed Frre-Electron Lasers experiments and we are currently studying the production of High-Power microwaves in the S-band. Among the possible sources we have chosen to perform Relativistic Klystron (RK) experiments with a pulse diode capable of generating a 700kV, 15 kA, 100 ns annular electron beam. In an amplifier configuration, we are testing the idea of using a Vircator as the driver for the first cavity of the klystron. This Vircator uses a simple electrical generator (Marx capacitor bank) which operates in the S-band in the GW class. By reducing the power level to about 100 MW, a 200 ns reliable and reproducible input driver pulse is obtained. First, we present the results of a preliminary experiment for which a coaxial cavity has been built in order to be fed by the Vircator emission at 2.45 GHz. Secondly, we give the experimental results in an oscillator configuration which corresponds to the fisrt step of our RK studies. Comparisons with the results of numerical simulations performed with MAGIC and MAFIA will be given for both experiments.

  3. Control electronics of the PEP RF system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1981-01-01

    The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented

  4. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  5. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  6. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  7. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  8. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  9. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  10. RF feedback development for the PEP-II B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity.

  11. RF feedback development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity

  12. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    International Nuclear Information System (INIS)

    Sharma, P.K.; Kazarian, F.; Garibaldi, P.; Gassman, T.; Artaud, J.F.; Bae, Y.S.; Belo, J.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D.

    2011-01-01

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  13. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  14. Recent Upgrade of the Klystron Modulator at SLAC

    International Nuclear Information System (INIS)

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.

    2011-01-01

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 μS at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 μS at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  15. High-power klystrons

    Science.gov (United States)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  16. Relativistic klystron research for high gradient accelerators

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs

  17. C-band main linac rf system for e+e- linear collider of 0.5 to 1.0 TeV C.M. energy

    International Nuclear Information System (INIS)

    Shintake, T.; Akasaka, N.; Kubo, K.; Matsumoto, H.; Matsumoto, S.; Takeda, Shigeru; Oide, K.; Yokoya, K.; Pearce, P.; Lee, H.S.; Cho, M.H.; Watanabe, K.; Takeda, Osamu; Baba, H.

    1996-01-01

    A hardware R and D for the C-band (5712 MHz) rf system for a linear collider started in 1996 at KEK. An accelerating gradient of 32 MV/m (including beam loading) will be generated by 50 MW C-band klystrons in combination with an rf-compression system. The klystron and its power supply can be fabricated by conventional technology. The straightness tolerance for the accelerating structures is 30 μm, which is also achievable with conventional fabrication processes. No critical new technology is required in a C-band system. Therefore, a reliable system can be constructed at low cost with a minimum of R and D studies. The first high-power test is scheduled for 1997. (author)

  18. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  19. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  20. Design of the klystron filament power supply control system for EAST LHCD

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zege; Wang, Mao; Hu, Huaichuan; Ma, Wendong; Zhou, Taian; Zhou, Faxin; Liu, Fukun; Shan, Jiafang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-09-15

    A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systems and proves feasible completely.

  1. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  2. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  3. Summary of the 3rd workshop on high power RF-systems for accelerators

    International Nuclear Information System (INIS)

    Sigg, P.K.

    2005-01-01

    The aim of this workshop was to bring together experts from the field of CW and high average power RF systems. The focus was on operational and reliability issues of high-power amplifiers using klystrons and tubes, large power supplies; as well as cavity design and low-level RF and feedback control systems. All these devices are used in synchrotron radiation facilities, high power linacs and collider rings, and cyclotrons. Furthermore, new technologies and their applications were introduced, amongst other: high power solid state amplifiers, IOT amplifiers, and high voltage power supplies employing solid state controllers/crowbars. Numerical methods for complete rf-field modeling of complex RF structures like cyclotrons were presented, as well as integrated RF-cavity designs (electro-magnetic fields and mechanical structure), using numerical methods. (author)

  4. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  5. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  6. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Seoul (Korea, Republic of); Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively.

  7. Reliability and lifetime predictions of SLC klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Lee, T.G.; Vlieks, A.E.

    1989-01-01

    The energy upgrade of SLAC, with the first of the new 67 MW SLAC Linear Collider (SLC) klystrons, began over four years ago. Today there are over 200 of these klystrons in operation. As a result, there is a wealth of klystron performance and failure information that enables reasonable predictions to be made on life expectancy and reliability. Data from initial tests, follow-up tests and daily operation monitoring on the accelerator is stored for analysis. Presented here are life expectancy predictions with particular emphasis on cathode life. Also, based on this data, the authors will discuss some of the principal modes of failure. 3 refs., 2 figs., 1 tab

  8. Reliability and lifetime predictions of SLC klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Lee, T.G.; Vlieks, A.E.

    1989-03-01

    The energy upgrade of SLAC, with the first of the new 67 MW SLAC Linear Collider (SLC) klystrons, began over four years ago. Today there are over 200 of these klystrons in operation. As a result, there is a wealth klystron performance and failure information that enables reasonable predictions to be made on life expectancy and reliability. Data from initial tests, follow-up tests and daily operation monitoring on the accelerator is stores for analysis. Presented here are life expectancy predictions with particular emphasis on cathode life. Also, based on this data, we will discuss some of the principal modes of failure. 3 refs., 2 figs

  9. Integration of -70kV, 22A high voltage power supply with solid state crowbar and the LHCD system of SST-1

    International Nuclear Information System (INIS)

    Rajan Babu, N.; Virani, C.G.; Dalakoti, S.; Sharma, P.K.; Ambulkar, K.K.; Parmar, P.R.; Thakur, A.L.; Dhorajiya, Pragnesh

    2015-01-01

    LHCD system is a important system for the steady state operation of the SST-1 machine. Four numbers of klystrons of 3.7 GHz are used as a microwave source to produce 2 MW of microwave power. This power is launched into the machine to achieve the steady state operation of the SST-1 Machine. A -70kV, 22A high voltage power supply and a solid-state crowbar are procured and tested and validated for its performance separately. Both of the system are integrated and tested for its integrated performance for the safe and reliable test of the klystron tube. A 10J wire test is conducted for the optimum value of the series resistor. This test will validate the integrated performance of power supply, Crowbar and the interlocking circuit. This paper details the optimization of the ballast resistor from 150 ohms to 40 ohms and its successful integration with the klystron tube for its 500kW CW operation. Some operational experience is also shared

  10. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA

  11. Latest Results in SLAC 75-MW PPM Klystrons

    International Nuclear Information System (INIS)

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.

    2006-01-01

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed

  12. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  13. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  14. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  15. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  16. Development of a protection system for high power klystrons in EAST

    International Nuclear Information System (INIS)

    Feng Jianqiang; Shan Jiafang; Yang Yong; Wang Mao; Wang Dongxia

    2010-01-01

    The energy dissipated on the electrodes of a klystron can be estimated from maximal breakdown current, value of the arc discharge voltage and time of turning off the power supply. It mainly introduces the design of over-current protection of Klystrons for 2.45 G/2 MW LHCD System on EAST. Circuits triggering by an over-current and ignitrons are adopted to protect klystrons. Experiment results prove that the system can protect klystrons efficiently. (authors)

  17. Large-Signal Klystron Simulations Using KLSC

    Science.gov (United States)

    Carlsten, B. E.; Ferguson, P.

    1997-05-01

    We describe a new, 2-1/2 dimensional, klystron-simulation code, KLSC. This code has a sophisticated input cavity model for calculating the klystron gain with arbitrary input cavity matching and tuning, and is capable of modeling coupled output cavities. We will discuss the input and output cavity models, and present simulation results from a high-power, S-band design. We will use these results to explore tuning issues with coupled output cavities.

  18. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  19. NLC Hybrid Solid State Induction Modulator

    CERN Document Server

    Cassel, R L; Pappas, G C; Delamare, J E

    2004-01-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X-band klystrons. The original NLC envisions a solid state induction modulator design to drive up to 8 klystrons to 500 kV for 3 μs at 120 PPS with one modulator delivering greater than 1,000 MW pulse, at 500 kW average. A change in RF compression techniques resulted in only two klystrons needed pulsing per modulator at a reduced pulse width of 1.6 μsec or approximately 250 MW of the pulsed power and 80 kW of average powers. A prototype Design for Manufacturability (DFM) 8-pack modulator was under construction at the time of the change, so a redirection of modulator design was in order. To utilities the equipment which had already be fabricated, a hybrid modulator was designed and constructed using the DFM induction modulator parts and a conventional pulse transformer. The construction and performance of this hybrid two klystron Induction modul...

  20. 100 kV solid-state switch for fusion heating systems

    International Nuclear Information System (INIS)

    Beaumont, B.; Bertrand, E.; Brugnetti, R.; Chatroux, D.; Kazarian, F.; Milly, R.; Prou, M.; Rigole, H.

    2005-01-01

    Power switching in RF heating systems is a delicate function as it is often linked to high power tube protection. In most RF systems, the end stage power tube is fed by a high voltage power supply (HVPS), which connection to the tube has to be interrupted in case of arc suspicion. The amount of energy that is allowable to be dissipated in the arc is in the range of 10-50 J, to limit the degradations observed on the tube structures. The protection function is usually performed by a crowbar. Furthermore, the HVPS is often shared by several power tubes, and the loss of all the power from the group of tubes is to be avoided to minimize the perturbation on the plasma experiment. A description of a 40 kV thyristor based crowbar and a 100 kV, 25 A MOSFET switch is given, as well as the contours of the existing components for high power switching applications. By combining small components, such as thyristors or MOSFET, in matrix, highly compact and reliable units have been built and implemented in Tore Supra RF systems

  1. Pulse modulator developments in support of klystron testing at SLAC

    International Nuclear Information System (INIS)

    Koontz, R.F.; Cassel, R.; Lamare, J. de; Ficklin, D.; Gold, S.; Harris, K.

    1993-01-01

    Several families of high power klystrons in S- and X-Band are being developed in the Klystron Laboratory at SLAC. To support these developments, a number of new pulse modulators are being designed from scratch, or upgraded from existing laboratory test modulators. This paper outlines the modulator parameters available in the SLAC Klystron Laboratory, and discuss two new modulators that are under construction

  2. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  3. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%

  4. RF feedback simulation for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Tighe, R.

    1994-06-01

    A model, of the beam and RF system for PEP-11 has been developed to allow both time-domain simulation and frequency-domain analysis of the complete system. The model includes the full set of feedback loops and nonlinear elements such as the beam and klystron. The model may be used to predict beam and feedback stability in the presence of nonlinearities through time-domain simulation as well as system frequency response about a given operating point

  5. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Yu-Seok; Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber

  6. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  7. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  8. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  9. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zehai; Zhang Jun; Shu Ting; Qi Zumin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2012-09-15

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  10. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    Science.gov (United States)

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  11. Relativistic klystron research at SLAC and LLNL

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab

  12. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  13. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  14. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  15. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  16. Beam test with the HIMAC RF control system

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    RF system of the HIMAC synchrotron has been developed and tested in the factory. With the high power system, we could sweep the acceleration frequency from 1MHz to 8MHz with the acceleration voltage of 6KV. The performance of the RF control system has been confirmed with a developed simulator of the synchrotron oscillation. Following these two tests in the factory, we had a beam test of the RF control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the beam test and its results. (author)

  17. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  18. Sci-Thurs PM: Delivery-08: Investigation of the source of RF noise from a modulator for an MR-linac project.

    Science.gov (United States)

    Lamey, M; Burke, B; Rathee, S; Fallone, B G; Carlone, M

    2008-07-01

    The next significant step in the advancement of IGRT is the integration of an MRI with a linac. The MRI-linac will provide images with exquisite soft tissue contrast in real-time during treatment. A possible problem associated with the proposed integration is the RF noise generated by the linac. This noise could interfere with the received signals of the MRI producing deleterious effects in the image quality. The work herein is concerned with understanding the processes involved in the RF noise production and the magnitude and frequency of this RF noise in the modulator of a linac. A software programming environment, MultiSIM, was used to model the electronic components of a modulator. Several Current and Voltage waveforms from the modulator were measured with an oscilloscope and compared with the corresponding results from the modulator model for validation. Finally, RF noise generated by the modulator was measured using field probes, which permits the frequency components of the measured and simulated modulator waveforms to be compared with the measured RF noise. The modeled PFN charging current and voltage, and klystron current show good agreement with measurements, with the exception of the tail of the klystron voltage signal. Once the model has been validated in both the time and frequency domains, future work will entail predicting pulse shape changes when, and if, modifications to the modulator are made. Specifically, modifications will be made which shift and/or reduce the RF noise in the frequency range of interest for a 0.2T MRI. © 2008 American Association of Physicists in Medicine.

  19. 1-MW klystron for fusion plasma heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  20. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs

  1. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  2. The theoretical study of the optical klystron free electron laser

    International Nuclear Information System (INIS)

    Yang Zhenhua

    2001-01-01

    The work of the theoretical study and numerical simulation of optical klystron free electron laser is supported by National 863 Research Development Program and National Science Foundation of China. The object of studying UV band free electron laser (FEL) is to understand the physical law of optical klystron FEL and to gain experience for design. A three-dimensional code OPFEL are made and it is approved that the code is correct completely. The magnetic field of the optical klystron, the energy modulation of the electron beam, the density modulation of the electron beam, spontaneous emission of the electron beam in optical klystron, the harmonic super-radiation of the electron beam, and the effects of the undulator magnetic field error on modulation of the electron beam energy are simulated. These results are useful for the future experiments

  3. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  4. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  5. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  6. Modelling RF sources using 2-D PIC codes

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (''port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation

  7. Energy-efficient operation of a booster RF system for Taiwan light source operated in top-up mode

    International Nuclear Information System (INIS)

    Yeh, Meng-Shu; Wang, Chaoen; Chang, Lung-Hai; Chung, Fu-Tsai; Yu, Tsung-Chi; Lin, Ming-Chyuan; Chen, Ling-Jhen; Yang, Tz-Te; Chang, Mei-Hsia; Lin, Yu-Han; Tsai, Ming-Hsun; Lo, Chih-Hung; Liu, Zong-Kai

    2015-01-01

    Contemporary light sources operate in a top-up mode to maintain their photon intensity quasi-constant so as to improve significantly the thermal stability of the photon beam and to maximize ultimately the average photon flux at a designed maximum operational beam current. Operating in a top-up mode requires frequent beam injection from the synchrotron booster to the storage ring of the light source, but the injection intervals occupy only a tiny portion of the operational time of the integrated machine. To maintain a high operational reliability, the booster RF system practically operates necessarily under injection conditions around the clock and consumes full electric power whether during top-up injection or not. How to decrease the power consumption of the booster RF system during its stand-by time but not to sacrifice the reliability and availability of the RF system is obviously of fundamental interest for routine operation of the light source in a top-up mode. Here, an energy-efficient operation of a booster RF system adaptive to top-up operation of a light source is proposed that has been developed, realized and integrated into the booster RF system of the Taiwan Light Source (TLS), and routinely operated since the end of year 2008. The klystron cathode current and RF gap voltage of the booster's accelerating RF cavity are both periodically modulated to adapt the injection rhythm during top-up operation, which results in decreased consumption of electric power of the booster RF system by more than 78%. The impact on the reliability and availability of the booster RF system has been carefully monitored during the past five operational years, delivering more than 5000 h scheduled user beam time per year. The booster RF system retains its excellent reliability and availability as previously. Neither a decrease of the service time nor an induced reliability issue from the klystron or any high-power high-voltage component of the transmitter has been

  8. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    Science.gov (United States)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  9. Development of an x-ray klystron modulator with a pulse-forming line and magnetic switch

    International Nuclear Information System (INIS)

    Akemoto, M.; Takeda, S.

    1992-01-01

    A new type of klystron modulator has been developed for the Japan Linear Collider. It consists of a pulse-forming line (PFL), a pulse transformer and a magnetic switch. In order to realize a compact modulator, a triplate strip transmission line using deionized water as a dielectric was adapted. An Fe amorphous core was used for the magnetic switch and the pulse transformer to reduce the size and cost. A preliminary test has shown that an output pulse with a peak voltage of 550 kV, a pulse length (flat-top) of 440 ns and a rise time of 165 ns can be generated for a dummy load with an impedance of 412Ω. It was also experimentally confirmed that the power efficiency of the modulator is approximately 83%. (Author) 7 figs., 3 tabs., 2 refs

  10. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  11. Comparison between the performance of some KEK-klystrons and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shigeki [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    Recent developments of various klystron simulation codes have enabled us to realistically design klystrons. This paper presents various simulation results using the FCI code and the performances of tubes manufactured based on this code. Upgrading a 30-MW S-band klystron and developing a 50-MW S-band klystron for the KEKB projects are successful examples based on FCI-code predictions. Mass-productions of these tubes have already started. On the other hand, a discrepancy has been found between the FCI simulation results and the performance of real tubes. In some cases, the simulation results lead to high-efficiency results, while manufactured tubes show the usual value, or a lower value, of the efficiency. One possible cause may come from a data mismatch between the electron-gun simulation and the input data set of the FCI code for the gun region. This kind of discrepancy has been observed in 30-MW S-band pulsed tubes, sub-booster pulsed tubes and L-band high-duty pulsed klystrons. Sometimes, JPNDSK (one-dimensional disk-model code) gives similar results. Some examples using the FCI code are given in this article. An Arsenal-MSU code could be applied to the 50-MW klystron under collaboration with Moscow State University; a good agreement has been found between the prediction of the code and performance. (author)

  12. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    International Nuclear Information System (INIS)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-01-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured

  13. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    International Nuclear Information System (INIS)

    Van Winkle, Daniel; Fox, John; Teytelman, Dmitry; SLAC

    2005-01-01

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine the root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback loop

  14. Very broad bandwidth klystron amplifiers

    Science.gov (United States)

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  15. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    Science.gov (United States)

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  16. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

    Energy Technology Data Exchange (ETDEWEB)

    Caryotakis, G.

    2004-12-15

    This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

  17. Clipper circuit of pulse modulator used for klystron-5045 power supply

    CERN Document Server

    Akimov, A V

    2001-01-01

    While the operation of modulator to the pulsed transformer of klystron-5045, current through the primary winding of the pulse transformer (PT) continues to flow even upon the end of the klystron voltage operating pulse. This is determined by an energy stored in magnetizing inductance. The prolongation of magnetizing current passing process simultaneously with the premature choking of thyratron can cause high voltage of inverse polarity at the klystron, which cause the destruction of the cathode. We have considered the possibility of shortening time of magnetizing current passage for the charge of reasonable choice of clipper circuit parameters. The behavior of clipper circuit was studied in modulators used for the VEPP-5 (BINP, Russia) preinjector klystron power supply. The optimum operation run of the circuit was selected and its design features are described.

  18. A PPM-focused klystron at X-band with a traveling-wave output structure

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1995-01-01

    We have developed algorithms for designing disk-loaded traveling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 Ghz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a PPM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m. copyright 1995 American Institute of Physics

  19. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  20. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  1. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  2. The klystron: A microwave source of surprising range and endurance

    International Nuclear Information System (INIS)

    Caryotakis, G.

    1998-04-01

    This year marks the 60th anniversary of the birth of the klystron at Stanford University. The tube was the first practical source of microwaves and its invention initiated a search for increasingly more powerful sources, which continues to this day. This paper reviews the scientific uses of the klystron and outlines its operating principles. The history of the device is traced, from its scientific beginnings, to its role in World War II and the Cold War, and to its current resurgence as the key component in a major accelerator project. Finally, the paper describes the development of a modular klystron, which may someday power future accelerators at millimeter wavelengths

  3. Progress on a prototype main ring rf cavity

    International Nuclear Information System (INIS)

    Swain, G.; Kandarian, R.; Thiessen, H.A.; Poirier, R.; Smythe, W.R.

    1989-01-01

    A prototype rf cavity and rf drive system for a hadron facility main ring has been designed and will be tested in the Proton Storage Ring (PSR) at Los Alamos as a part of a collaborative effort between LANL and TRIUMF. The cavity uses an orthogonally biased ferrite tuner. The design provides for accelerating gap voltages up to 200 kV for the 49.3 to 50.8 MHz range. Progress on the cavity construction and testing is described. 13 refs., 5 figs

  4. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  5. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2005-01-01

    Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) : Part 2: cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

  6. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  7. RF System Modelling for the JLab 12 GeV Upgrade and RIA

    International Nuclear Information System (INIS)

    Alicia Hofler; Jean Delayen; Hovater, J.; Stefan Simrock

    2003-01-01

    Jefferson Lab is using the MATLAB/Simulink library for RF systems developed for TTF as a tool to develop a model of its 12 GeV upgrade and the Rare Isotope Accelerator (RIA) to study the behavior and performance of the RF control system. The library includes elements describing a superconducting cavity with mechanical modes excited by Lorentz Force effects and a klystron including saturation characteristics. It can be applied to gradient and phase or in-phase and quadrature control for cavities operating in either a self-excited loop or generator driven mode. We will provide an overview of the theory behind the library components and present initial modeling results for Jefferson Lab's 12 GeV Upgrade and the RIA systems

  8. SLAC collider injector, RF-drive synchronization and trigger electronics, and 15-AMP thermionic-gun development

    International Nuclear Information System (INIS)

    Koontz, R.; Miller, R.; McKinney, T.; Wilmunder, A.

    1981-02-01

    The rf drive system for the Collider Injector Development (EL CID) including laser timing, subharmonic buncher drive and phasing, and accelerator rf drive is described. The rf synchronized master trigger generation scheme for the collider is outlined. Also, a 15 amp peak, 200 kV short pulse gun being developed at SLAC as a backup to the Sinclair laser gun is described

  9. Solenoid fringe field compensation for the Cluster Klystron

    International Nuclear Information System (INIS)

    Wang, H.; Fernow, R.C.; Kirk, H.G.; Palmer, R.B.; Zhao, Y.

    1996-04-01

    Optimization of the solenoid pancake currents so as to have a uniform axial magnetic field over an extended volume, is very important for the successful operation of the Cluster Klystron. By boosting the first and the last pancake currents by 35%, a uniform field Br/Bz ≤ 0.1% at radius R ≤ 2 cm can be extended from ± 7 cm to ± 16 cm. The result confirms simulations and the requirements for a 3-beam Cluster Klystron Experiment are achieved

  10. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  11. A ppM-focused klystron at X-band with a travelling-wave output structure

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1994-10-01

    We have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 GHz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a ppM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m

  12. TESLA: Large Signal Simulation Code for Klystrons

    International Nuclear Information System (INIS)

    Vlasov, Alexander N.; Cooke, Simon J.; Chernin, David P.; Antonsen, Thomas M. Jr.; Nguyen, Khanh T.; Levush, Baruch

    2003-01-01

    TESLA (Telegraphist's Equations Solution for Linear Beam Amplifiers) is a new code designed to simulate linear beam vacuum electronic devices with cavities, such as klystrons, extended interaction klystrons, twistrons, and coupled cavity amplifiers. The model includes a self-consistent, nonlinear solution of the three-dimensional electron equations of motion and the solution of time-dependent field equations. The model differs from the conventional Particle in Cell approach in that the field spectrum is assumed to consist of a carrier frequency and its harmonics with slowly varying envelopes. Also, fields in the external cavities are modeled with circuit like equations and couple to fields in the beam region through boundary conditions on the beam tunnel wall. The model in TESLA is an extension of the model used in gyrotron code MAGY. The TESLA formulation has been extended to be capable to treat the multiple beam case, in which each beam is transported inside its own tunnel. The beams interact with each other as they pass through the gaps in their common cavities. The interaction is treated by modification of the boundary conditions on the wall of each tunnel to include the effect of adjacent beams as well as the fields excited in each cavity. The extended version of TESLA for the multiple beam case, TESLA-MB, has been developed for single processor machines, and can run on UNIX machines and on PC computers with a large memory (above 2GB). The TESLA-MB algorithm is currently being modified to simulate multiple beam klystrons on multiprocessor machines using the MPI (Message Passing Interface) environment. The code TESLA has been verified by comparison with MAGIC for single and multiple beam cases. The TESLA code and the MAGIC code predict the same power within 1% for a simple two cavity klystron design while the computational time for TESLA is orders of magnitude less than for MAGIC 2D. In addition, recently TESLA was used to model the L-6048 klystron, code

  13. Electronics for the control of the rf system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1980-03-01

    This note describes the operation of the major components used for controlling the phase and the field level of the PEP rf cavities. The block diagram of one rf station is decomposed into several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the field of each cell at the same level; the total gap voltage developed by a pair of cavities is obeying the command of the gap voltage controller; finally, the phase variation along the amplification chain and the klystron are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented. The purpose of this report is to acquaint interested people with the design philosophy and to allow them to evaluate the capabilities of this system and its behavior during operation of the machine. 5 refs., 16 figs

  14. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  15. High peak power tubes and gate effect Klystrons

    International Nuclear Information System (INIS)

    Gerbelot, N.; Bres, M.; Faillon, G.; Buzzi, J.M.

    1993-01-01

    The conventional microwave tubes such as TWTs, Magnetrons, Klystrons... deliver the very high peak powers which are required by radar transmitters but more especially by many particle accelerators. In the range of a few hundred MHz to about 10 GHz, some dozen of MWs per unit are currently obtained and commercially available, according to the frequency and the pulse lengths. But peak power requirements are ever increasing, especially for the expected new linear particle acceleratores, where several hundred MWs per tube would be necessary. Also some special military transmitters begin to request GW pulses, with short pulse lengths - of course - but at nonnegligible repetition rates. Therefore several laboratories and microwave vacuum tube manufacturers have engaged - for several years - studies and development in the field of very high peak microwave power (HPM) toward two main directions: extended operation and extrapolation of the conventional tubes and devices; development of new concepts, among which the most promising are likely the high-current relativistic klystrons - that are also referred to as gate effect klystrons

  16. Accelerating Rf Station For Hirfl-csr, Lanzhou, China

    CERN Document Server

    Arbuzov, V S; Dranichnikov, A N; Gorniker, E I; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Sedlyarov, I K; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    In accordance with the plan of cooperation with the Institute of Modern Physics (IMP), Lanzhou, China, the Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia has produced and supplied an accelerating RF station for the multipurpose Cooling Storage Ring system (CSR), which is being constructed at IMP. The RF station had been tested at IMP site and now is installed into the Main Ring of the facilities. The RF station operates in the frequency range of 0.25~1.7 MHz. Maximum accelerating voltage is 8 kV. The resonance frequency of the RF cavity is tuned in the whole frequency range by biasing of ferrites, which are used in the cavity. Ferrites of 600NN type were produced by a firm manufacture "Magneton", St. Petersburg. The pressure in the cavity vacuum chamber is lower, than 3·10-11

  17. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  18. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  19. METHOD FOR STABILIZING KLYSTRONS

    Science.gov (United States)

    Magnuson, D.W.; Smith, D.F.

    1959-04-14

    High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.

  20. Design and development of high voltage MARX modulator technology for long pulse application

    International Nuclear Information System (INIS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2013-01-01

    High power pulse modulators are used for powering the RF amplifier like klystrons. This paper describes the development of a 10 kV, 10 A, 1 ms Marx modulator for technology demonstration. The modulator is developed using four no. of main modules each of 2.5 kV. To reduce the over sizing factor of capacitors, the allowed drop of main Marx cell is 9%. A droop compensation circuit has been developed to reduce the output pulse voltage droop from 9% to within ±1%. Droop compensation consists of 10 numbers of corrector modules each of 200 V. A microcontroller based trigger circuit was used for simultaneous triggering of main modules and for staggered triggering of corrector modules. A 25 kV, 10 A, 1 ms Marx modulator is being developed. The advantages of this scheme are oil free design, low DC voltage, adjustable pulse width, adjustable rise time/fall time and modular design etc. (author)

  1. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  2. Presentation of klystron history and statistics by World-Wide Web

    International Nuclear Information System (INIS)

    Kamikubota, N.; Furukawa, K.

    2000-01-01

    A web-based system for browsing klystron histories and statistics has been developed for the KEKB e-/e+ linac. This system enables linac staffs to investigate various klystron histories, such as recent trends of ES (down frequency/reflection/high voltage), at his/her convenient PC/Mac/console, where a web-browser is available. This system started in January 2000, and now becomes an inevitable tool for the linac staffs. (author)

  3. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  4. An RF cavity for barrier bucket experiment in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, M.; Iwashita, Y. [Kyoto Univ. (Japan); Mori, Y. [and others

    1998-11-01

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 10{sup 14}ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  5. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  6. Design and development of a lasertron model

    International Nuclear Information System (INIS)

    Dubrovin, A.

    1990-02-01

    A lasertron is a high power RF generator driven by a modulated laser beam. Short periodic electron bunches are produced from a photocathode and accelerated through an anode by a high DC voltage (up to 400 kV) to reduce space charge effects and provide a maximum beam power. A resonant cavity, coupled to an extraction line, is set up close behind the anode and matched to the beam to allow DC to RF conversion. In principle, the lasertron is not RF power limited, whereas in the klystrons, the velocity modulation efficiency gets worse as the electrons get relativistic. This thesis presents a theoretical study of the lasertron based upon the use of a dedicated simulation code, an approach of the different phenomena involved in the laser triggered photofield emission, and the design of a transition radiation detector for the fast temporal diagnosis of the beam [fr

  7. Measurements of crowbar performance of the 20 kV 130 A dc power supply of the TRIUMF RF system

    International Nuclear Information System (INIS)

    Mitra, A.K.

    1991-05-01

    The TRIUMF RF system operates at a fixed frequency of 23.06 MHz with a power capability of 1800 kW. The dc plate power for the four push-pull power amplifiers is provided by a single dc power supply at 20 kV, 130 A and the amplifiers are protected by a single ignitron crowbar circuit. In the case of voltage breakdown outside the tube, the triggering of the crowbar circuit relies on the voltage developed across a low resistance shunt in the return path of the common dc power supply. Frequent failure of the crowbar ignitrons following an external dc voltage breakdown led to the investigation of the crowbar performance. Current transformers have been installed in the common B + line to the power amplifiers and the anode circuit of the ignitron crowbar in order to measure amplitude, duration and time delay of various dc currents under fault conditions. Similar current transformers were installed in the individual anode circuits of the power amplifiers to provide protection to the complete system in case of an external dc voltage breakdown. The results of these measurements and recommended solutions for operations are reported. (Author) 3 refs., 4 figs

  8. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  9. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  10. JLab High Efficiency Klystron Baseline Design for 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Hovater, J.; Delayen, Jean; Harwood, Leigh; Nelson, Richard; Wang, Haipeng

    2003-01-01

    A computer design of a 13.5 kW, 1497 MHz, CW type, 55% efficiency, 0.8 microPv beam perveance, ∼40 dB gain, 5-cavity klystron has been developed for JLab 12 GeV Upgrade project.The design uses TRICOMP codes to simulate the gun, mod-anode section, solenoid focus channel and beam dump. The klystron tube was designed by JPNDISK (1D) code initially and then optimized by MASK (2D) code for the baseline parameters. All of these codes have been bunch marked by JLab 5 kW operational klystrons. The details of design parameters and the simulations by MAFIA (3D) for the cavity couplings tuners, and window are also going to be presented.

  11. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  12. Thyratron-PFN, IGBT Hybrid, and Direct Switched Modulator R and D As it Effects Klystron Protection

    International Nuclear Information System (INIS)

    Gold, Saul L

    2000-01-01

    Modulator development is an ongoing program at SLAC. The Stanford Linear Accelerator with its approximately 240 klystrons and modulators operates for 6,000 plus hours a year. This operation gives SLAC an important insight into component and system reliability in the High Voltage environment. The planned NLC is approximately 10 times the size of SLAC and the High Voltage Modulator Klystron systems are one of the largest cost drivers. This paper will contain a brief progress report on the optimized Line Modulator and touch on Solid-State advances, which make Solid State, High Power pulse modulators the wave of the future. Klystron protection remains a critical issue along with modulator reliability, efficiency and cost. Configurations whereby multiple klystrons are paralleled on a single modulator may exacerbate the problem. The majority of this paper will discuss tests at SLAC of klystron arcs on Line-type modulators with single and double klystron loads. This talk may introduce and refer to other talks at this conference and other conferences by National and Foreign Laboratory collaborators and Industry, specifically in relation to DOE SBIR programs

  13. The electrically silent Kv6.4 subunit confers hyperpolarized gating charge movement in Kv2.1/Kv6.4 heterotetrameric channels.

    Directory of Open Access Journals (Sweden)

    Elke Bocksteins

    Full Text Available The voltage-gated K(+ (Kv channel subunit Kv6.4 does not form functional homotetrameric channels but co-assembles with Kv2.1 to form functional Kv2.1/Kv6.4 heterotetrameric channels. Compared to Kv2.1 homotetramers, Kv6.4 exerts a ~40 mV hyperpolarizing shift in the voltage-dependence of Kv2.1/Kv6.4 channel inactivation, without a significant effect on activation gating. However, the underlying mechanism of this Kv6.4-induced modulation of Kv2.1 channel inactivation, and whether the Kv6.4 subunit participates in the voltage-dependent gating of heterotetrameric channels is not well understood. Here we report distinct gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels, compared to Kv2.1 homotetramers, as revealed by gating current recordings from mammalian cells expressing these channels. The gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels displayed an extra component around the physiological K(+ equilibrium potential, characterized by a second sigmoidal relationship of the voltage-dependence of gating charge movement. This distinct gating charge displacement reflects movement of the Kv6.4 voltage-sensing domain and has a voltage-dependency that matches the hyperpolarizing shift in Kv2.1/Kv6.4 channel inactivation. These results provide a mechanistic basis for the modulation of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits.

  14. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  15. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  16. Test results of the Los Alamos ferrite-tuned rf cavity

    International Nuclear Information System (INIS)

    Friedrichs, C.C.; Spalek, G.; Carlini, R.D.; Smythe, W.R.

    1987-03-01

    An rf accelerating cavity appropriate for use in a 20% frequency bandwidth synchrotron has been designed, fabricated, and is now being tested at Los Alamos. The cavity-amplifier system was designed to produce a peak rf gap voltage of 90 kV over the range from 50 to 60 MHz. Special features of the system are the transversely biased ferrite tuner, capacitive coupling of the amplifier to the cavity, and a 15-cm beam pipe. High-power rf testing of the cavity-amplifier system started in August 1986, using an adjustable dc power supply to bias the ferrite. This paper describes the cavity-amplifier circuit and the test results to the present time. Future plans are also discussed

  17. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  18. The 5K70SK automatically tuned, high power, S-band klystron

    Science.gov (United States)

    Goldfinger, A.

    1977-01-01

    Primary objectives include delivery of 44 5K70SK klystron amplifier tubes and 26 remote tuner assemblies with spare parts kits. Results of a reliability demonstration on a klystron test cavity are discussed, along with reliability tests performed on a remote tuning unit. Production problems and one design modification are reported and discussed. Results of PAT and DVT are included.

  19. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    Science.gov (United States)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  20. Amended proposal for R ampersand D on a cluster klystron

    International Nuclear Information System (INIS)

    Fernow, R.C.; Fischer, J.; Gallardo, J.C.; Kirk, H.G.; Ko, S.K.; Palmer, R.B.; Ulc, S.; Wang, H.

    1993-01-01

    This Proposal is an updated version of FWP submitted in March 1992. Significant work has been done since the original proposal, and much of this is reported on in this update. In addition there have been several changes made, some in response to suggestions made by the three reviews sent to us in December, 1992. The new information and changes include: Technical information on the proposed design of the magnetron gun, the magnet, acceleration gap, and electrical system (including a comment on efficiency loss due to high-voltage leakage current). Modification of the phase I and II tests to allow operation of the gun and klystron off the axis of the magnet, thus simulating the magnet situation when multiple beams are used. Modification of phases III and IV to test a cluster of three beams: first a three beam gun, and then three beams with a klystron on one of them. We have added a phase V which would be the testing of a full three-beam demonstration klystron. The mod-anode pulser would now be located on the high voltage deck instead of externally. Power for the pulser and other high voltage components would now be provided by an isolation transformer instead of from a lead battery. We believe these changes have improved the proposed program and thank the reviewers for their constructive suggestions. The design is still evolving. Relatively little work has been done on the detailed klystron design, and none on the beam dump

  1. Generation of femtosecond electron single pulse using laser photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M.; Kinoshita, K.; Watanabe, T. [Nuclear Engineering Research Laboratory, University of Tokyo, Tokai, Ibaraki (JP)] [and others

    1998-11-01

    A new laser photocathode RF electron gun was installed in the second linac of the S-band twin linac system of Nuclear Engineering Research Laboratory(NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 4.7 MeV, the charge per bunch 1 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV. The horizontal normalized emittance is 1 {pi} mm.mrad. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The gun is planned to be used for femtosecond X-ray generation via the head-on Thomson scattering and laser wakefield acceleration in 1998. (author)

  2. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  3. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  4. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  5. Klystron control software in the SLC

    International Nuclear Information System (INIS)

    Jobe, R.K.; Thompson, K.; Phinney, N.

    1985-05-01

    Triggering, control, and monitoring of 240 high-power klystrons will be supported by the SLC control system this summer. The control software is distributed among a VAX host computer, a local microprocessor cluster, and a dedicated intelligent CAMAC module. The functions performed by these three components and the algorithms used are discussed

  6. Detection of X-ray due to gun arcing of high power klystron

    International Nuclear Information System (INIS)

    Vogel, Vladimir; Matsumoto, Shuji

    2004-01-01

    X-ray due to a klystron gun arching was monitored by a detector consists of a plastic scintillation fiber and a photo-multiplier. Observation of the X-ray was done during the processing run of an X-band klystron. A clear signal of X-ray burst is observed when the gun arcing occurs. Possibility of the fast protection for a pulse modulator from the gun arcing is discussed. (author)

  7. Conceptual design of a bright electron injector based on a laser-driven photocathode rf electron gun

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, Y.J.; Hopkins, D.; Kim, K.J.; Kung, A.; Miller, R.; Sessler, A.; Young, T.

    1988-09-01

    Conceptual design of a bright electron injector for the 1 GeV high gradient test experiment, envisaged by the LLNL-SLAC-LBL collaboration on the Relativistic Klystron is presented. The design utilizes a high-brightness laser-driven rf photocathode electron gun, similar to the pioneering LANL early studies in concept (different parametrically however), together with achromatic magnetic bunching and transport systems and diagnostics. The design is performed with attention to possible use in an FEL as well. A simple but realistic analytic model including longitudinal and transverse space-charge and rf effects and extensive computer simulation form the basis of the parametric choice for the source. These parameters are used as guides for the design of the picosecond laser system and magnetic bunching section. 4 refs., 5 figs., 2 tabs

  8. LEP’s legacy continues at the ESS

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    The last components of a radio-frequency (RF) power station equipped with a LEP klystron were recently shipped to the city of Lund in Sweden. The station will be used as an integration test stand at the European Spallation Source (ESS), with the purpose of training ESS engineers for the setting up of 154 RF stations needed in Lund.   A truck with the LEP klystron has arrived at ESS, in Lund. A klystron that was originally part of the Large Electron-Positron Collider (LEP), CERN’s former flagship accelerator, will be used in the start-up phase of the world’s largest neutron source, the ESS. If this klystron could speak, it would have a long and interesting story to tell. During LEP decommissioning and dismantling, 44 klystrons were put aside to be used for other projects. For about 20 of them, the high-voltage part was adapted in order to accommodate Linac4’s pulsed-RF operation. “Some of the klystrons were built ...

  9. Development of L-band, 10MW multi beam klystron

    International Nuclear Information System (INIS)

    Irikura, M.; Miyake, S.; Yano, A.; Kazakov, S.; Larionov, A.; Teryaev, V.; Chin, Y.H.

    2004-01-01

    A 10-MW, L-band multi beam klystron (MBK) for TESLA linear collider and TESLA XFEL has been under development at Toshiba Electron Tubes and Devices Co., Ltd. (TETD) in collaboration with KEK. The TESLA requires pulsed klystrons capable of 10 MW output power at 1300 MHz with 1.5 ms pulse length and a repetition rate of 10 pps. The MBK with 6 low-perveance beams in parallel enables us to operate at lower cathode voltage with higher efficiency. The design work has been accomplished and the fabrication is under way. We are going to start conditioning and testing of prototype no.0 in the middle of July 2004. The design overview will be presented. (author)

  10. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  11. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, D.; Wiedemann, H.; Youngmann, B.; Miller, R.H.

    1991-01-01

    A 120 MeV, 2,856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The RF system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring RF system are highlighted

  12. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, H.; Wiedemann, H.; Youngmann, B.

    1991-05-01

    A 120 MeV, 2856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The rf system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring rf system are highlighted. 8 refs., 6 figs

  13. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  14. Ka-Band Klystron Amplifier for CUBESATs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We offer an ultra-compact klystron amplifier for remote sensing on CubeSats. It will operate at 35.7 GHz, have 400 MHz bandwidth, and output greater than 32 watts...

  15. Sequence Control System of 1-MW CW Klystron for the PEFP

    CERN Document Server

    Park, Byoung R; Chun Myung Hwan; Han Yeung Jin; Hyo Jeong Maeng; Kim Sung Chul; Yang Jae Seok; Yu In Ha

    2005-01-01

    Sequence control system of 1-MW CW klystron for the PEFP (Proton Engineering Frontier Project) has been developed in order to drive the 1-MW klystron amplifier. The system is able to control several power supplies and many environment conditions. The hardware of sequence control and the interlock system are based on the Allen-Bradley's SLC500 Program Logic Controller (PLC). Also the system can be controlled by a touch screen at local mode or Ethernet network with high level HMI at remote mode.

  16. Simulation of Oscillations in High Power Klystrons

    CERN Document Server

    Ko, K

    2003-01-01

    Spurious oscillations can seriously limit a klystron's performance from reaching its design specifications. These are modes with frequencies different from the drive frequency, and have been found to be localized in various regions of the tube. If left unsuppressed, such oscillations can be driven to large amplitudes by the beam. As a result, the main output signal may suffer from amplitude and phase instabilities which lead to pulse shortening or reduction in power generation efficiency, as observed during the testing of the first 150MW S-band klystron, which was designed and built at SLAC as a part of an international collaboration with DESY. We present efficient methods to identify suspicious modes and then test their possibility of oscillation. In difference to [3], where each beam-loaded quality-factor Qbl was calculated by time-consuming PIC simulations, now only tracking-simulations with much reduced cpu-time and less sensitivity against noise are applied. This enables the determination of Qbl for larg...

  17. Low voltage 80 KV to 125 KV electron processors

    International Nuclear Information System (INIS)

    Lauppi, U.V.

    1999-01-01

    The classic electron beam technology made use of accelerating energies in the voltage range of 300 to 800 kV. The first EB processors - built for the curing of coatings - operated at 300 kV. The products to be treated were thicker than a simple layer of coating with thicknesses up to 100g and more. It was only in the beginning of the 1970's that industrial EB processors with accelerating voltages below 300 kV appeared on the market. Our company developed the first commercial electron accelerator without a beam scanner. The new EB machine featured a linear cathode, emitting a shower or 'curtain' of electrons over the full width of the product. These units were much smaller than anv previous EB processors and dedicated to the curing of coatings and other thin layers. ESI's first EB units operated with accelerating voltages between 150 and 200 kV. In 1993 ESI announced the introduction of a new generation of Electrocure. EB processors operating at 120 kV, and in 1998, at the RadTech North America '98 Conference in Chicago, the introduction of an 80 kV electron beam processor under the designation Microbeam LV

  18. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  19. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  20. A high efficiency Ku-band radial line relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang; Zhang, Jun; Ju, Jinchuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a high power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.

  1. Ka-Band Klystron Amplifier for CUBESATs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Ka-Band klystron amplifier for use in CubeSats. It will operate at 35.7 GHz, have 400 MHz of bandwidth, and output at least 32 watts of saturated power....

  2. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    Science.gov (United States)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  3. Production of coherent XUV and soft x-rays using a transverse optical klystron

    International Nuclear Information System (INIS)

    Freeman, R.R.; Kincaid, B.J.

    1984-01-01

    An optical klystron is a device in which a relativistic electron beam produces coherent electromagnetic radiation by interacting with an external laser beam in an undulator magnetic field. Such a device represents the relativistic generalization of the microwave klystron. The device is called transverse optical klystron (TOK), because the energy exchange between the electrons and the light in this case is due to the transverse electric field of the laser. The generation of coherent light by the TOK can be considered as a three step process, including energy modulation, compaction or bunching, and radiation. In the present paper, a description is provided of the general physical principles underlying the operation of each of the three sections of the TOK, taking into account the modulator, the compactor, and the radiator. 14 references

  4. Retrofitting the 5045 Klystron for Higher Efficiency

    International Nuclear Information System (INIS)

    Jensen, Aaron; Fazio, Michael; Haase, Andy; Jongewaard, Erik; Kemp, Mark; Neilson, Jeff

    2015-01-01

    The 5045 klystron has been in production and accelerating particles at SLAC National Accelerator Laboratory for over 25 years. Although the design has undergone some changes there are still significant opportunities for improvement in performance. Retrofitting the 5045 for higher efficiencies and a more mono-energetic spent beam profile is presented.

  5. Wavelength switching in an optical klystron

    International Nuclear Information System (INIS)

    Berryman, K.W.; Smith, T.I.

    1995-01-01

    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length

  6. Conceptual design of the RF accelerating cavities for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Maggiore, M.; Calabretta, L.; Di Giacomo, M.; Rifuggiato, D.; Battaglia, D.; Piazza, L.

    2006-01-01

    A superconducting cyclotron accelerating ions up to 250 A MeV, for medical applications and radioactive ions production is being studied at Laboratori Nazionali del Sud in Catania. The radio frequency (RF) system, working in the fourth harmonic, is based on four normal conducting radio frequency cavities operating at 93 MHz. This paper describes an unusual multi-stem cavity design, performed with 3D electromagnetic codes. Our aim is to obtain a cavity, completely housed inside the cyclotron, with a voltage distribution ranging from 65 kV in the injection region to a peak value of 120 kV in the extraction region, and having a low power consumption

  7. One-dimensional disk model simulation for klystron design

    International Nuclear Information System (INIS)

    Yonezawa, H.; Okazaki, Y.

    1984-05-01

    In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use

  8. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  9. Design and performance of a 2-megawatt high voltage dc test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1994-01-01

    A high-power water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of a 2 MW dissipation at 95 kV DC, is designed and installed. The load utilizes wirewound resistor elements suspended inside G-11 insulated tubing contained within a single-wall 316 stainless steel pressure vessel with flanged elliptical heads. The vessel supplies a continuous flow of deionized water. Baffles fabricated from G-10 sheets support the tubing and promote water turbulence to maximize heat removal. A companion oil tank houses resistive filament and mod-anode power supply test loads, plus an electrical interlock system which provides protection from inadequate water flow, excessive oil temperature, and arcing in either the pressure vessel or oil tank. A secondary safety system consists of both hydrostatic and steam pressure relief valves on the pressure vessel. Power supply tests indicate the load simulates the electrical load characteristics of a high-power klystron to a degree sufficient to accurately performance-test the rf high voltage power supplies used at the Advanced Photon Source

  10. Hybrid Design Optimization of High Voltage Pulse Transformers for Klystron Modulators

    CERN Document Server

    Sylvain, Candolfi; Davide, Aguglia; Jerome, Cros

    2015-01-01

    This paper presents a hybrid optimization methodology for the design of high voltage pulse transformers used in klystron modulators. The optimization process is using simplified 2D FEA design models of the 3D transformer structure. Each intermediate optimal solution is evaluated by 3D FEA and correction coefficients of the 2D FEA models are derived. A new optimization process using 2D FEA models is then performed. The convergence of this hybrid optimal design methodology is obtained with a limited number of time consuming 3D FEA simulations. The method is applied to the optimal design of a monolithic high voltage pulse transformer for the CLIC klystron modulator.

  11. Simulation study of transverse optical klystron radiation

    International Nuclear Information System (INIS)

    Xu Hongliang; Diao Caozheng; Liu Jinying; He Duohui; Jia Qika; Wang Xiangqi

    1997-01-01

    The radiation from a transverse optical klystron (TOK) is calculated by far field approximation equation and numerical integration, in which the effects of electron-beam emittance and energy spread are considered. Accurate electron-beam profiles have been experimentally determined and modeled by the Monte Carlo method. The calculated spectra illustrate the emittance of Hefei storage ring imposes on the spontaneous radiation of TOK

  12. RF heating systems evolution for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Magne, R.; Achard, J.; Armitano, A.; Argouarch, A.; Berger-By, G.; Bernard, J. M.; Bouquey, F.; Charabot, N.; Colas, L.; Corbel, E.; Delpech, L.; Ekedahl, A.; Goniche, M.; Guilhem, D.; Hillairet, J.; Jacquot, J.; Joffrin, E.; Litaudon, X.; Lombard, G.; Mollard, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2014-02-12

    Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW × 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resilience and its CW compatibility, three new actively cooled antennas are being designed, with the aim of reducing their sensitivity to the load variations induced by ELMs. The LH system has been recently upgraded with new klystrons and the PAM antenna, the possible reshaping of the antenna mouths is presently studied for matching with the magnetic field line in the WEST configuration. For the ECRH system, the device for the poloidal movement of the mirrors of the antenna is being changed for higher accuracy and speed.

  13. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  14. Experience with the New Digital RF Control System at the CESR Storage Ring

    CERN Document Server

    Liepe, Matthias; Dobbins, John; Kaplan, Roger; Strohman, Charles R; Stuhl, Benjamin K

    2005-01-01

    A new digital control system has been developed, providing great flexibility, high computational power and low latency for a wide range of control and data acquisition applications. This system is now installed in the CESR storage ring and stabilizes the vector sum field of two of the superconducting CESR 500 MHz cavities and the output power from the driving klystron. The installed control system includes in-house developed digital and RF hardware, very fast feedback and feedforward control, a state machine for automatic start-up and trip recovery, cw and pulsed mode operation, fast quench detection, and cavity frequency control. Several months of continuous operation have proven high reliability of the system. The achieved field stability surpasses requirements.

  15. Design of a higher harmonic RF system for the Advanced Light Source

    CERN Document Server

    Byrd, J M; De Santis, S; Kosta, S; Lo, C C; Plate, D; Rimmer, R A; Franks, M

    2000-01-01

    We report on the design and fabrication of a third harmonic radiofrequency (RF) system for the Advanced Light Source (ALS) to be used for lengthening the bunch and increasing the Touschek-dominated beam lifetime. We plan to install five single-cell 1.5 GHz copper RF cavities in one-half of an ALS straight section with a predicted increase in the lifetime by a factor of 3. Each RF cell is designed to sustain a maximum voltage of 125 kV with a power dissipation of 5 kW. We present measurements made on an aluminum cavity model characterizing the RF properties of cavity such as the cavity R/Q and higher-order modes (HOMs). In particular, resonances in the cavity tuners were studied in order to avoid heating of the tuner bellows. Initial measurements of the copper cavities indicate a Q value of 21 000, resulting in a shunt impedance of 1.69 M OMEGA per cell

  16. Development of digital low level rf system

    International Nuclear Information System (INIS)

    Michizono, Shinichiro; Anami, Shozo; Katagiri, Hiroaki; Fang, Zhigao; Matsumoto, Toshihiro; Miura, Takako; Yano, Yoshiharu; Yamaguchi, Seiya; Kobayashi, Tetsuya

    2008-01-01

    One of the biggest advantages of the digital low level rf (LLRF) system is its flexibility. Owing to the recent rapid progress in digital devices (such as ADCs and DACs) and telecommunication devices (mixers and IQ modulators), digital LLRF system becomes popular in these 10 years. The J-PARC linac LLRF system adopted cPCI crates and FPGA based digital feedback system. Since the LLRF control of the normal conducting cavities are more difficult than super conducting cavities due to its lower Q values, fast processing using the FPGA was the essential to the feedback control. After the successful operation of J-PARC linac LLRF system, we developed the STF (ILC test facility in KEK) LLRF system. Since the klystron drives eight cavities in STF phase 1, we modified the FPGA board. Basic configuration and the performances of these systems are summarized. The future R and D projects (ILC and ERL) is also described from the viewpoints of LLRF. (author)

  17. Cryogenic studies of rf accelerating structures, vintage 1978

    International Nuclear Information System (INIS)

    Liska, D.; Uher, J.; Potter, J.

    1986-01-01

    Cryogenically cooled rf cavity studies were undertaken at Los Alamos in 1978 to test the effectiveness of reduced temperature on the Q-enhancement of 450-MHz drift-tube linac structures. A complete facility was set up to do high power tests, not only at liquid nitrogen (LN 2 ) temperature but with liquid hydrogen (LH 2 ) as well. The cavity, Dewar, klystron test stand, and a remote outdoor enclosure were constructed. Hydrogen safety approval for the tests was obtained. Unfortunately, the hydrogen tests were never done. However, the cavity was tested at high power in LN 2 and a Q-enhancement of 2.02 was recorded, compared to 2.7 expected theoretically. This work is now continuing with improved measuring techniques using some of the same apparatus. It is the purpose of this paper to report on the early work and to reference its continuation today

  18. Simulation and optimization of Corona Rings for 300 kV, 120 kHz RF transformer for 3 MeV, 30 kW DC accelerator

    International Nuclear Information System (INIS)

    Das, Swati H.; Dewangan, S.; Sharma, D.K.

    2015-01-01

    The 3 MeV, 30 kW Industrial DC Electron Beam Accelerator with a terminal voltage of 3 MV is designed, developed and housed inside the Electron Beam Centre (EBC) building at Kharghar, Navi Mumbai. The accelerator requires an input voltage of 150 kV-0-150 kV at 120 kHz which is generated by tuned air-core step- up toroidal transformer. The Transformer is rated for 6 kV-0-6 kV primary and 150 kV-0-150 kV secondary at 120 kHz working at 6 kg/cm''2 SF 6 gas environment. Secondary is wound over the perforated insulator former, To limit the electric stress to 5-7 kV/cm on the insulator surface and 120 kV/cm in SF 6 , transformer was simulated in CST EM studio for electric field analysis. Parametric simulations were done to optimize the dimensions and design of corona rings at the High voltage terminals. Simulation results are described in this paper briefly. (author)

  19. System integration of RF based negative ion experimental facility at IPR

    Science.gov (United States)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  20. System integration of RF based negative ion experimental facility at IPR

    International Nuclear Information System (INIS)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A

    2010-01-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ∼5 x 10 12 cm -3 . The source can deliver a negative ion beam of ∼10 A with a current density of ∼30 mA/cm 2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  1. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.

  2. Numerical simulation of the SLAC X-100 klystron using RKTW2D

    International Nuclear Information System (INIS)

    Ryne, R.D.; Vlieks, A.E.

    1991-05-01

    We have performed numerical simulations of the X-100 klystron being developed at Stanford Linear Accelerator Center. The X-100 is being developed as a possible source for the next generation of linear collider, and will be required to produce ∼100 MW of power for a duration of ∼800 ns. Our simulations were performed using the simulation programs RKTW1D and RKTW2D, developed at Lawrence Livermore National Laboratory. The codes were used to investigate the operation of the klystron over a wide range of operating conditions. We will present comparisons of the simulation results with experimental results. 3 refs., 5 figs

  3. Development of a diagnostic system for Klystron modulators using a neural network

    International Nuclear Information System (INIS)

    Mutoh, M.; Oonuma, T.; Shibasaki, Y.; Abe, I.; Nakahara, K.

    1992-01-01

    The diagnostic system for klystron modulators using a neural network has been developed. Large changes in the voltage and current of the main circuit in a klystron modulator were observed just several ten milli-seconds before the modulator experienced trouble. These changes formed a peculiar pattern that depended on the parts with problems. Diagnosis was possible by means of pattern recognition. The recognition test of patterns using a neutral network has shown good results. This system, which is built in a linac control system, is presently being operated so as to collect new trouble patterns and to carry out tests for practical use. (author)

  4. Pulse transformer R and D for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1997-07-01

    The authors have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and requires a larger core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and a pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests using a klystron load are also presented

  5. Recent performance, lifetime, and failure modes of the 5045 klystron population at SLAC

    International Nuclear Information System (INIS)

    Koontz, R.F.; Lee, T.G.; Pearson, C.; Vlieks, A.E.

    1992-08-01

    The 65 MW S-Band klystrons (5045) used to power SLC have been in service for over seven years. Currently, 244 of these tubes are in place on the accelerator, operating full power at 120 pulses per second. Enough tubes have now reached end of life, or experienced other failures to allow a good analysis of failure modes, and to project average lifetime for this type of tube. This paper describes the various modes of failure seen in klystrons rammed from SLC service, and provides data on expected lifetime from current production based on accumulated SLC operating experience

  6. Recent performance, lifetime, and failure modes or the 5045 klystron population at SLAC

    International Nuclear Information System (INIS)

    Koontz, R.F.; Lee, T.G.; Pearson, C.; Vlieks, A.E.

    1992-01-01

    The 65 MW S-Band klystrons (5045) used to power SLC have been in service for over seven years. Currently, 244 of these tubes are in place on the accelerator, operating full power at 120 pulses per second. Enough tubes have now reached cathode end of life, or experienced other failures to allow a good analysis of failure modes, and to project average lifetime for this type of tube. This paper describes the various modes of failure seen in klystrons returned from SLC service, and provides data on expected lifetime from current production based on accumulated SLC operating experience. 3 refs., 6 figs

  7. The two-beam accelerator and the relativistic klystron power source

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1988-04-01

    This paper discusses the concept of a two-beam accelerator. Two versions are discussed; one employing a free electron laser, the second employing a branched beam sent through ''transfer cavities'' as in a klystron. 14 refs., 26 figs., 1 tab

  8. Impact of SSSC on Measured Impedance in Single Phase to Ground Fault Condition on 220 kV Transmission Line

    Directory of Open Access Journals (Sweden)

    Mohamed ZELLAGUI

    2012-08-01

    Full Text Available This paper presents and compares the impact of SSSC on measured impedance for single phase to ground fault condition. The presence of Static Synchronous SSSC on a transmission line has a great influence on the ZRelay in distance protection. The protection of the high voltage 220 kV single circuit transmission line in eastern Algerian electrical transmission networks is affected in the case with resistance fault RF. The paper investigate the effect of Static Synchronous Series Compensator (SSSC on the measured impedance (Relay taking into account the distance fault point (n and fault resistance (RF. The resultants simulation is performed in MATLAB software environment.

  9. Study of the Reflex-Klystron

    International Nuclear Information System (INIS)

    Valencia A, R.

    1981-01-01

    The main purpose of this paper is the theoretical study and the development of a technique for designing. A low power Reflex-Klystron, in order to construct it in the graduated section laboratories of the Instituto Politecnico Nacional. It is pretended to attain a power of 15-45 m W in frequencies of 8-10 GHz with low acceleration potentials (300-400 V) and electric current of 15-25 m A; the device will be mechanically tuned and will have a fine tuning through the potential of the reflector (150-180 V negative with respect to the resonator). The International System of Units is used in this thesis. (Author)

  10. High-power rf pulse compression with SLED-II at SLAC

    International Nuclear Information System (INIS)

    Nantista, C.

    1993-04-01

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50--100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-los resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, we have designed and constructed a prototype SLED-II pulse-compression system which operates in the circular TE 01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  11. C-band RF-system development for e{sup +}e{sup -} linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Oh, J.S.; Yoshida, M.; Watanabe, K.; Ohkubo, Y.; Yonezawa, H.; Baba, H.

    1998-11-01

    Hardware R and D on the C-band (5712 MHz) RF-system for an electron/positron linear collider started in 1996 at KEK. During two years R and D, we have developed a 50-MW C-band klystron (TOSHIBA E3746), a 'Smart Modulator', a traveling-wave resonator (TWR) and a cold model of the rf-pulse compressor. A C-band accelerating structure, which uses the choke-mode cavity, is under development. Its HOM damping performance will be tested using short-bunch beams of ASSET beam-line at SLAC in this year. The C-band system is able to accelerate a high-current beam at an accelerating gradient higher than that in a conventional S-band system, therefore, there will be various applications in the future beside the linear collider. For example, we can build an injector for a SR-ring and for various physics experiments within a short site-length. Additionally, since the C-band components are compact, it has a big potentiality to be widely used in various medical and industrial applications, such as an electron-beam radiotherapy machine, or a compact non-destructive X-ray imaging system. (author)

  12. Lessons learned from positron-electron project low level rf and longitudinal feedback

    Directory of Open Access Journals (Sweden)

    J. Fox

    2010-05-01

    Full Text Available The Positron-Electron Project II (PEP-II B Factory collider ended the final phase of operation at nearly twice the design current and 4X the design luminosity. In the ultimate operation state, eight 1.2 MW radio-frequency (rf klystrons and 12 accelerating cavities were added beyond the original implementation, and the two storage rings were operating with longitudinal instability growth rates roughly 5X in excess of the original design estimates. From initial commissioning there has been continual adaptation of the low level rf (LLRF control strategies, configuration tools, and some new hardware in response to unanticipated technical challenges. This paper offers a perspective on the original LLRF and longitudinal instability control design, and highlights via two examples the system evolution from the original design estimates through to the final machine with 1.2×10^{34} luminosity. The impact of unanticipated signals in the coupled-bunch longitudinal feedback and the significance of nonlinear processing elements in the LLRF systems are presented. We present valuable “lessons learned” which are of interest to designers of next generation feedback and impedance controlled LLRF systems.

  13. Design of the New Wideband RF System for the CERN PS Booster

    CERN Document Server

    Paoluzzi, Mauro; Angoletta, Maria Elena; Arnaudon, Luca; Energico, Salvatore; Findlay, Alan; Haase, Matthias; Jaussi, Michael; Jones, Anthony; Landré, David; Molendijk, John; Quartullo, Danilo; Shaposhnikova, Elena

    2016-01-01

    For the renovation and upgrade of the CERN PS Booster (PSB) RF systems a development project was launched in 2012. The design, based on a new approach, aimed at replacing the existing tuned, narrowband RF systems with wideband, modular, solid-state driven units. A wide range of issues had to be addressed spanning from RF power production, radiation hardness of solid-state devices, active cancellation of beam-induced voltages, dedicated low-level electronics allowing multi-harmonic operation and beam stability. Following a three-year prototyping and testing campaign and two international reviews, the project endorsement came at the end of year 2015. It foresees the complete removal of present h1, h2 and h10 systems and the deployment of a new one covering all the frequency ranges from 1 MHz to 18 MHz. The four PSB rings will be equipped with 144 identical acceleration cells providing 24 kV total RF voltage per ring. This paper describes the design concepts, the retained solutions, the expected performances and...

  14. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    International Nuclear Information System (INIS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-01-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented

  15. AN INVESTIGATION OF THE BEAM MONITOR FOR THE CLUSTER KLYSTRON

    International Nuclear Information System (INIS)

    ZHAO, Y.

    2001-01-01

    The cluster klystron project required a beam monitor to check the quality of the hollow beam shape. Since the power density of the beam is very large, a common phosphorescent screen doesn't work. We investigated varies types of monitors. The related problems were also discussed

  16. The PS 13.3-20 MHZ RF Systems for LHC

    CERN Document Server

    Garoby, R; Haase, M; Krusche, A; Maesen, P; Morvillo, M; Paoluzzi, M; Rossi, C

    2003-01-01

    As part of the preparation of the PS as an injector for the LHC, a prototype 20 MHz rf system has been used, to demonstrate that the nominal longitudinal performance of the proton beam for LHC can be obtained using multiple bunch-splittings. Based on these successful results obtained during 2000, the development of the operational rf system began in 2001. To allow the preparation of bunch trains with a bunch spacing of 25 or 75 ns, this system must operate either at 20 or 13.3 MHz respectively. Two new ferrite cavities and their associated amplifiers have been designed and built. Each one can provide a maximum voltage of 20 kV peak during 200 ms with a 10% duty cycle. The cavities are equipped with fast (~20 ms) gap shorting relays, and rf feedback reduces their Q below 10 at both frequencies. A single system is sufficient to generate the nominal beam for LHC. The second one will then be both a "hot spare" and a very valuable performance enhancement providing the possibility of handling a larger than nominal ...

  17. Design and development of 75 MHz 1 kW RF system with micro-controller based protection and control

    International Nuclear Information System (INIS)

    Rosily, Sherry; Pande, Manjiri; Handu, V.K.

    2011-01-01

    A 75 MHz, 1 kW Radio Frequency (RF) system has been successfully tested on a 50 ohm load, along with a microcontroller based protection circuit for protection of the system against the possible problems that may occur during RF power coupling to Radio Frequency Quadrapole (RFQ) load. This paper describes major challenges faced during the development and methods by which they have been overcome. Measurement of the tube anode temperature which is at 4 kV dc and 1 kW RF power is one of these. Confidence provided by these successful experiences has inspired an exploration of possibilities for further enhancement of the present system. These are also discussed in the paper. (author)

  18. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    CERN Document Server

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  19. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers

    Science.gov (United States)

    Tao, Xiao; MacKinnon, Roderick

    2010-01-01

    Summary Voltage-dependent K+ channels play key roles in shaping electrical signaling in both excitable as well as non-excitable cells. These channels open and close in response to the voltage changes across the cell membrane. Many studies have been carried out in order to understand the voltage sensing mechanism. Our laboratory recently determined the atomic structures of a mammalian voltage-dependent K+ channel Kv1.2 and a mutant of Kv1.2 named the ‘paddle-chimera’ channel, in which the voltage sensor paddle was transferred from Kv2.1 to Kv1.2. These two structures provide atomic descriptions of voltage-dependent channels with unprecedented clarity. Until now the functional integrity of these two channels biosynthesized in yeast cells have not been assessed. Here we report the electrophysiological and pharmacological properties of Kv1.2 and the paddle chimera channels in planar lipid bilayers. We demonstrate that Pichia yeast produce ‘normally functioning’ mammalian voltage-dependent K+ channels with qualitatively similar features to the Shaker K+ channel in the absence of the N-terminal inactivation gate, and that the paddle chimera mutant channel functions as well as Kv1.2. We find, however, that in several respects the Kv1.2 channel exhibits functional properties that are distinct from Kv1.2 channels reported in the literature. PMID:18638484

  20. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    Science.gov (United States)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  1. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    International Nuclear Information System (INIS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-01-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J

  2. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    Science.gov (United States)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  3. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    Energy Technology Data Exchange (ETDEWEB)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  4. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  5. Study of the emission performance of high-power klystrons: SLAC XK-5

    International Nuclear Information System (INIS)

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The final goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further

  6. Study of the emission performance of high-power klystrons: SLAC XK-5

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The final goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further.

  7. French 400 kV network

    Energy Technology Data Exchange (ETDEWEB)

    Pelissier, R

    1965-11-01

    A 400 kV transmission network has been constructed to carry hydroelectric power from the Alps and the Massif Central to Paris at peak hours and to carry power in the reverse direction in off-peak hours. A double circuit-ring at 400 kV encircling the Paris region is also nearing completion. Measures have to be taken to counter the very high short-circuit currents in such a network. A 730 kV network will eventually become necessary. The consequent multiplicity of transmission voltages will give rise to further problems. Collaboration with neighboring countries is envisaged. The problems of stability and synchronization posed by the new system are described and solutions suggested. The new circuit-breaking requirements are discussed, and details of tower design for 400 kV and 730 kV are given.

  8. Mechanosensitive gating of Kv channels.

    Directory of Open Access Journals (Sweden)

    Catherine E Morris

    Full Text Available K-selective voltage-gated channels (Kv are multi-conformation bilayer-embedded proteins whose mechanosensitive (MS Popen(V implies that at least one conformational transition requires the restructuring of the channel-bilayer interface. Unlike Morris and colleagues, who attributed MS-Kv responses to a cooperative V-dependent closed-closed expansion↔compaction transition near the open state, Mackinnon and colleagues invoke expansion during a V-independent closed↔open transition. With increasing membrane tension, they suggest, the closed↔open equilibrium constant, L, can increase >100-fold, thereby taking steady-state Popen from 0→1; "exquisite sensitivity to small…mechanical perturbations", they state, makes a Kv "as much a mechanosensitive…as…a voltage-dependent channel". Devised to explain successive gK(V curves in excised patches where tension spontaneously increased until lysis, their L-based model falters in part because of an overlooked IK feature; with recovery from slow inactivation factored in, their g(V datasets are fully explained by the earlier model (a MS V-dependent closed-closed transition, invariant L≥4. An L-based MS-Kv predicts neither known Kv time courses nor the distinctive MS responses of Kv-ILT. It predicts Kv densities (hence gating charge per V-sensor several-fold different from established values. If opening depended on elevated tension (L-based model, standard gK(V operation would be compromised by animal cells' membrane flaccidity. A MS V-dependent transition is, by contrast, unproblematic on all counts. Since these issues bear directly on recent findings that mechanically-modulated Kv channels subtly tune pain-related excitability in peripheral mechanoreceptor neurons we undertook excitability modeling (evoked action potentials. Kvs with MS V-dependent closed-closed transitions produce nuanced mechanically-modulated excitability whereas an L-based MS-Kv yields extreme, possibly excessive

  9. APT LLRF control system functionality and architecture

    International Nuclear Information System (INIS)

    Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.

    1996-01-01

    The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within ± 1% amplitude and 1 degree phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be 'identical'. In addition, the resonance condition of the cavities is monitored and maintained. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool-down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA). (author)

  10. New method for pumping an optical klystron

    International Nuclear Information System (INIS)

    Vignola, G.; Freemen, R.R.; Kincaid, B.M.; Pellegrini, C.; Luccio, A.; Murphy, J.; Galayda, J.; Van Steenbergen, A.

    1985-01-01

    A novel method of operation for a transverse optical klystron (TOK) is proposed. The TOK is a device in which a relativistic electron beam produces tunable coherent radiation at short wavelengths by interacting with a powerful external laser and an undulator field. Here we show that by selecting the external laser wavelengths to be one of the harmonics in the undulator radiation spectrum, excellent output at short wavelength can be realized with significantly reduced performance requirements for the undulator magnet and the storage ring providing the electron beam

  11. Two and three dimensional simulation of disk-loaded travelling-wave output structures for high-power klystrons

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1994-01-01

    The authors have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. They use either a four or five cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, they obtain excellent cold-test agreement between the 2-D and 3-D models. They use hot-test simulations with CONDOR to design the structure with maximum efficiency and minimum surface fields. The azimuthal asymmetry due to the coupling iris can increase the peak fields by 20 to 30 percent. They can reduce this problem by making the final cavity with a non-circular cross section. With proper dimensions, they can keep a good match while reducing the azimuthal asymmetry to 6 percent. They have designed circuits at 11.424 Ghz for several different perveances. At 440 kV, microperveance 1.2, they calculate 83 MW, 54 percent efficiency, peak surface field 76 MV/m. At microperveance 0.8, they calculate 60 MW, 58 percent efficiency, peak field 67 MV/m. At 465 kV, microperveance 0.6, they calculate 55 MW, 62 percent efficiency, peak field 63 MV/m

  12. The subfamily-specific interaction between Kv2.1 and Kv6.4 subunits is determined by interactions between the N- and C-termini.

    Directory of Open Access Journals (Sweden)

    Elke Bocksteins

    Full Text Available The "silent" voltage-gated potassium (KvS channel subunit Kv6.4 does not form electrically functional homotetramers at the plasma membrane but assembles with Kv2.1 subunits, generating functional Kv2.1/Kv6.4 heterotetramers. The N-terminal T1 domain determines the subfamily-specific assembly of Kv1-4 subunits by preventing interactions between subunits that belong to different subfamilies. For Kv6.4, yeast-two-hybrid experiments showed an interaction of the Kv6.4 N-terminus with the Kv2.1 N-terminus, but unexpectedly also with the Kv3.1 N-terminus. We confirmed this interaction by Fluorescence Resonance Energy Transfer (FRET and co-immunoprecipitation (co-IP using N-terminal Kv3.1 and Kv6.4 fragments. However, full-length Kv3.1 and Kv6.4 subunits do not form heterotetramers at the plasma membrane. Therefore, additional interactions between the Kv6.4 and Kv2.1 subunits should be important in the Kv2.1/Kv6.4 subfamily-specificity. Using FRET and co-IP approaches with N- and C-terminal fragments we observed that the Kv6.4 C-terminus physically interacts with the Kv2.1 N-terminus but not with the Kv3.1 N-terminus. The N-terminal amino acid sequence CDD which is conserved between Kv2 and KvS subunits appeared to be a key determinant since charge reversals with arginine substitutions abolished the interaction between the N-terminus of Kv2.1 and the C-terminus of both Kv2.1 and Kv6.4. In addition, the Kv6.4(CKv3.1 chimera in which the C-terminus of Kv6.4 was replaced by the corresponding domain of Kv3.1, disrupted the assembly with Kv2.1. These results indicate that the subfamily-specific Kv2.1/Kv6.4 heterotetramerization is determined by interactions between Kv2.1 and Kv6.4 that involve both the N- and C-termini in which the conserved N-terminal CDD sequence plays a key role.

  13. MA-core loaded untuned RF compression cavity for HIRFL-CSR

    International Nuclear Information System (INIS)

    Mei Lirong; Xu Zhe; Yuan Youjin; Jin Peng; Bian Zhibin; Zhao Hongwei; Xia Jiawen

    2012-01-01

    To meet the requirements of high energy density physics and plasma physics research at HIRFL-CSR the goal of achieving a higher accelerating gap voltage was proposed. Therefore, a magnetic alloy (MA)-core loaded radio frequency (RF) cavity that can provide a higher accelerating gap voltage compared to standard ferrite loaded cavities has been studied at IMP. In order to select the proper magnetic alloy material to load the RF compression cavity, measurements of four different kinds of sample MA-cores have been carried out. By testing the small cores, the core composition was selected to obtain the desired performance. According to the theoretical calculation and simulation, which show reasonable consistency for the MA-core loaded cavity, the desired performance can be achieved. Finally about 1000 kW power will be needed to meet the requirements of 50 kV accelerating gap voltage by calculation.

  14. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  15. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Science.gov (United States)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  16. Cavity Voltage Phase Modulation MD blocks 3 and 4

    CERN Document Server

    Mastoridis, T; Butterworth, A; Molendijk, J; Tuckmantel, J

    2013-01-01

    The LHC RF/LLRF system is currently setup for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would push the klystrons to saturation. For beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam (transient beam loading) will not be corrected, but the strong RF feedback and One-Turn Delay feedback will still be active for RF loop and beam stability in physics. To achieve this, the voltage set point should be adapted for each bunch. The goal of these MDs was to test thefirmware version of an iterative algorithm that adjusts the voltage set point to achieve the optimal phase modulation for klystron forward power considerations.

  17. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  18. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  19. Design and development of low level S-Band RF control system for IRFEL injector LINAC

    International Nuclear Information System (INIS)

    Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)

  20. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  1. Decreased expression of Kv7 channels in Hirchsprung's disease.

    Science.gov (United States)

    O'Donnell, Anne-Marie; Coyle, David; Puri, Prem

    2017-07-01

    Voltage-dependent K + channels (Kv channels) participate in electrical rhythmicity and smooth muscle responses and are regulated by excitatory and inhibitory neurotransmitters. Kv channels also participate in the interstitial cell of Cajal (ICC) and smooth muscle cell (SMC) responses to neural inputs. The Kv family consists of 12 subfamilies, Kv1-Kv12, with five members of the Kv7 family identified to date: Kv7.1-Kv7.5. A recent study identified the potassium channel Kv7.5 as having a role in the excitability of ICC-IM in the mouse colon. We therefore designed this study to test the hypothesis that Kv7 channels are present in the normal human colon and are reduced in Hirschprung's disease (HSCR). HSCR tissue specimens were collected at the time of pull-through surgery (n=10), while normal control tissue specimens were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Kv7.3-Kv7.5 immunohistochemistry was performed and visualized using confocal microscopy to assess their distribution. Western blot analysis was undertaken to determine Kv7.3-Kv7.5 protein quantification. Kv7.3 and Kv7.4-immunoreactivity was co-localized with neuron and ICC markers, while Kv7.5 was found to be expressed on both ICCs and SMCs. Western blot analysis revealed similar levels of Kv7.3 and Kv7.5 expression in the normal colon and HSCR colon, while Kv7.4 proteins were found to be markedly decreased in ganglionic specimens and decreased further in aganglionic specimens. A deficiency of Kv7.4 channels in the ganglionic and aganglionic bowel may place a role in colonic dysmotility in HSCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. APT LLRF control system functionality and architecture

    International Nuclear Information System (INIS)

    Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.

    1996-01-01

    1% amplitude and l degree phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be ''identical.'' In addition, resonance control is performed by providing a proper drive signal to structure cooling water valves in order to keep the cavity resonant during operation. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool- down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described for each of the aforementioned subsystems as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA) The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within

  3. RF Tests of an 805 MHz Pillbox Cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    D. Li; J. Corlett; R. MacGill; M. Zisman; J. Norem; A. Moretti; Z. Qian; J. Wallig; V. Wu; Y. Torun; R.A. Rimmer

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows over beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, following several weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested with and without the external magnetic field. 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, indicating that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emission significantly. A gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection of the Be window surface found no visual damage, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning the cavity in a strong magnetic field has been developed. More thorough window and cavity surface inspection is under way

  4. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Rimmer, R.; Norem, J.; Torun, Y.

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows for beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, and it had to take many weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during the processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested at conditions of with and without the external magnetic field. A conservative 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, it indicated that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emissions significantly. A modest gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection on Be windows surface found no damage at all, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning cavity in a strong magnetic field has been developed. More through window and cavity surface inspection is under way

  5. Design and evaluation of the XBT diode

    International Nuclear Information System (INIS)

    Wright, E.L.; Vlieks, A.; Fant, K.; Pearson, C.; Koontz, R.; Jensen, D.; Miram, G.

    1993-01-01

    This paper describes the design and experimental results achieved with the 440 kV, microperveance 1.9, XBT (X-band Beam Tester) diode. The Pierce gun was developed for the 100 MW X-band klystron; the high power RF source to be used on the NLC (Next Linear Collider). The gun is electrostatically focused (no magnetic compression) to a beam diameter of 6.35 mm, with an area convergence of 110:1. Maximum cathode loading is approximately 25 A/cm 2 , with a beam power density of 770 MW/cm 2 . The measured beam current was within 2% of the value predicted by simulation with EGUN. Transmission through the highly instrumented beam tester was 99.98%. Some novel techniques were used to achieve near perfect beam transmission, which include the use of a reentrant-floating input pole piece

  6. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments

    International Nuclear Information System (INIS)

    Goodman, D.L.; Birx, D.L.; Danly, B.G.

    1991-01-01

    In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented

  7. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    Science.gov (United States)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  8. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  9. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    International Nuclear Information System (INIS)

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-01-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  10. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xu, Z.; Li, Z. H. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Tang, C. X. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2012-07-15

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  11. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Science.gov (United States)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  12. Effects of angular misalignment on optical klystron undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, G., E-mail: gmishra_dauniv@yahoo.co.in; Prakash, Bramh; Gehlot, Mona

    2015-11-21

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  13. Racetrack microtron radio-frequency system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Mitra, A.K.

    1981-01-01

    The design and construction progress of a prototype rf system to drive the Los Alamos-NBS racetrack microtron (RTM) electron accelerator is described. The rf system requires 450-kW cw at 2380 MHz from a single klystron. The output from the klystron is split three ways to drive a capture section, a preaccelerator section, and the main accelerator section. The fields in each section are phase- and amplitude-controlled to tight tolerances. Temperature control of the accelerator sections also is linked to the amplitude-control system, because the system's average power is so high

  14. PLC control of 50 MW klystron modulators

    International Nuclear Information System (INIS)

    Shang Lei; Liu Gongfa; Chen Liping; Lu Yeming; Hong Jun; Zhang Yi; Zhao Feng

    2004-01-01

    Upgrade project of the 50 MW klystron modulators of Hefei Light Source (HLS) was firstly introduced. PLC control system of modulators was employed to replace the old control and monitor system, which was based on relay logic circuit and manual operation method. the PLC system becomes a sub system of the new EPICS control system of HLS. Constant-current, switch-mode and high voltage power supplies were adopted to replace the old 50 Hz power supplies. The technology of modulators was improved and operation was more reliable. The design method, hardware and software of PLC control of modulators were described and the performance was presented. (authors)

  15. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  16. 250 kV aim for hvdc valves

    Energy Technology Data Exchange (ETDEWEB)

    1966-06-01

    Development now being carried out by ASEA is aimed at increasing the normal operating voltage for a mercury arc valve to 250 kV dc. The maximum direct voltage per valve group, with one valve in each arm of the bridge, is 125 kV for equipment already in operation in New Zealand, Japan, and Konti Scan. Valves for 130 kV and 133 kV operation are under construction for the Vancouver and the Pacific Intertie 1 links.

  17. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  18. Hvor fosser kvælstoffet hen?

    DEFF Research Database (Denmark)

    Larsen, Torben

    Der har i Ingeniøren inden i et par måneder kunne læses adskillelige ivrige indlæg om de danske fjordes evne til at fjerne kvælstof. Kvælstof fosser ud af fjordene? lød en af de første overskrifter. Få uger efter blev det stik modsatte synspunkt fremført under overskriften Fjordene holder på kvæl...

  19. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  20. Effects of haloperidol on Kv4.3 potassium channels.

    Science.gov (United States)

    Lee, Hong Joon; Sung, Ki-Wug; Hahn, Sang June

    2014-10-05

    Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 μM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Design of a Solid-State Fast Voltage Compensator for klystron modulators requiring constant AC power consumption

    CERN Document Server

    Aguglia, Davide; Viarouge, Philippe; Cros, Jerome

    2014-01-01

    This paper proposes a novel topological solution for klystron modulators integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This kind of solution is mandatory for the CLIC project under study, which requires several hundreds of synchronously operated klystron modulators for a total pulsed power of 39 GW. The topology is optimized for the challenging CLIC specifications, which require a very precise output voltage flat-top as well as fast rise and fall times (3µs). The Fast Voltage Compensator is integrated in the modulator such that it only has to manage the capacitor charger current and a fraction of the charging voltage. Consequently, its dimensioning power and cost is minimized.

  2. A nonlinear theory of relativistic klystrons connected to a coaxial waveguide

    International Nuclear Information System (INIS)

    Uhm, H.S.; Hendricks, K.J.; Arman, M.J.; Bowers, L.; Hackett, K.E.; Spencer, T.A.; Coleman, P.D.; Lemke, R.W.

    1997-01-01

    A self-consistent nonlinear theory of current modulation in an electron beam propagating through relativistic klystrons connected to a coaxial waveguide is developed. A theoretical model of the beam-energy increase Δγ near the extraction cavity is also developed, based on the self-potential depression. The potential depression κ can be significantly reduced in the vicinity of the extraction cavity from its value at the injection point. In appropriate system parameters, the kinetic-energy increase can easily be more than 50 keV, thereby eliminating the possibility of virtual cathode in the extraction cavity. Properties of the current modulation in a klystron are also investigated, assuming that a regular cylindrical waveguide is connected to a coaxial waveguide at the propagation distance z=z 1 . Due to proximity of a grounded conductor, the beam close-quote s potential depression κ in the coaxial region is considerably less than that in the regular region. It is shown in the present analysis that amplitude of the current modulation increases drastically as the coaxial inner-conductor approaches the driving cavity. Moreover, the amplitude of the current modulation in the coaxial region changes slowly in comparison with that in the regular region

  3. Survey of magnetic fields near BPA 230-kV and 500-kV transmission lines

    International Nuclear Information System (INIS)

    Perrin, N.; Aggarwal, R.P.

    1991-01-01

    The purpose of this study was to characterize typical levels and variability of 60Hz magnetic fields at the centerline and edge of right-of-way of Bonneville Power Administration (BPA) 230-kV and 500-kV transmission lines. This was accomplished by taking magnetic field measurements at over 800 spans in Oregon and Washington. The spans were sampled using a stratified random sampling procedure with region (East vs. West), voltage (230-kV vs 500-kV), and circuit configuration as strata. There were five different circuit configuration groups for each region/voltage category requiring a total of 200 strata. Magnetic field measurements were taken at 13 locations under each span using an EMDEX-C as a survey meter. Additional information recorded for each span included conductor height (at 10 locations), right-of-way width, longitudinal and lateral slope, time of day, vegetation, terrain, weather conditions, temperature, wind speed, span length and presence of other lines in the corridor. 9 refs., 17 figs., 26 tabs

  4. High-charge s-band photocathode RF-gun and linac system for radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Uesaka, Mitsuru; Katsumura, Yousuke [Univ. of Tokyo, Graduate School of Engineering, Nuclear Engineering Research Laboratory, Tokai, Ibaraki (JP)] (and others)

    2002-01-01

    For sub-picosecond pump-and-prove-type radiation chemistry work, a new synchronized electron linac and laser system was installed in the Nuclear Engineering Research Laboratory (NERL) of University of Tokyo. The new laser system, with a Ti:Sapphire oscillator (795 nm) and amplifiers, generates 300 ps pulses at 10 Hz. The laser is transported through the vacuum chamber and then split into two beams. The first is compressed and converted to the third harmonics (265 nm, <250 {mu}J, 4-11 ps) so as to drive the photocathode RF-gun and generate a pump-electron beam. The second is compressed to 100 fs and used for the probe light. The high-power RF, which is provided by a new 15 MW klystron, is divided into the gun and the accelerating section. Finally, a time jitter of 330 fs (rms) was achieved between the pump-electron beam and the probe laser, which is equivalent to the design value of 320 fs. A charge of 7 nC/bunch was observed at the exit of the gun from this new laser system. Improvement of the vacuum in the gun (<10{sup -9} Torr) is the most effective way to obtain such a high-charge beam. After about three years of operation, the Cu photocathode has shown no degradation of quantum efficiency. (author)

  5. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  6. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    International Nuclear Information System (INIS)

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  7. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  8. Design of a 2 kA, 30 fs Rf-Photoinjector for Waterbag Compression

    Science.gov (United States)

    van der Geer, S. B.; Luiten, O. J.; de Loos, M. J.

    Because uniformly filled ellipsoidal ‘waterbag’ bunches have linear self-fields in all dimensions, they do not suffer from space-charge induced brightness degradation. This in turn allows very efficient longitudinal compression of high-brightness bunches at sub or mildly relativistic energies, a parameter regime inaccessible up to now due to detrimental effects of non-linear space-charge forces. To demonstrate the feasibility of this approach, we investigate ballistic bunching of 1 MeV, 100 pC waterbag electron bunches, created in a half-cell rf-photogun, by means of a two-cell booster-compressor. Detailed GPT simulations of this table-top set-up are presented, including realistic fields, 3D space-charge effects, path-length differences and image charges at the cathode. It is shown that with a single 10MW S-band klystron and fields of 100 MV/m, 2kA peak current is attainable with a pulse duration of only 30 fs at a transverse normalized emittance of 1.5 μm.

  9. Reduced field TE01 X-Band traveling wave window

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Tantawi, S.G.; Wright, E.L.

    1995-01-01

    The RF electric field is reduced by more than a factor of two using a pair of symmetrically located irises in a new type of klystron window operating in the TE 01 mode at X-Band. The advantages of this window over the usual TE 01 half-wave resonant window are discussed as well as theory and operating results. Ultra high purity alumina formed by the HIP process is used. This window has been successfully tested at 100 MW with a 1.5 microsecond RF pulse width and is being used on the XL series klystrons

  10. Functional properties of human neuronal Kv11 channels

    DEFF Research Database (Denmark)

    Einarsen, Karoline; Calloe, Kirstine; Grunnet, Morten

    2009-01-01

    Kv11 potassium channels are important for regulation of the membrane potential. Kv11.2 and Kv11.3 are primarily found in the nervous system, where they most likely are involved in the regulation of neuronal excitability. Two isoforms of human Kv11.2 have been published so far. Here, we present...... current characteristics of the isoforms presented in this work may contribute to the regulation of neuronal excitability....

  11. Choice of harmonic number for the ISABELLE accelerating rf system

    International Nuclear Information System (INIS)

    Pedersen, F.

    1977-01-01

    Originally, h = 2 was chosen for the accelerating rf system to avoid growth of coupled bunch mode longitudinal instabilities. The ability to operate ISABELLE in a bunched mode and maintaining six interaction points plus the compatibility with the boxcar transfer scheme suggested for transfer from an eventual future accumulator ring has made it desirable to choose a different harmonic number, namely h = 3. It is shown in the following that the impedance threshold for these instabilities is higher than the impedance limit required during stacking to obtain design performance. The threshold is independent of the harmonic number, so the choice of h is free from an instability point of view, as long as we are below this threshold. For h = 3, the required peak voltage to produce the same acceptance and acceleration rate as the h = 2 system is 35 kV compared to 30 kV for the h = 2 system. The total stored energy in the h = 3 cavities will be less than in h = 2 cavities, so the cost is roughly unchanged. For the above mentioned reasons it is strongly recommended to choose h = 3

  12. Design and optimization of G-band extended interaction klystron with high output power

    Science.gov (United States)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  13. Design Of Load-klystron Equivalent For Jlc

    CERN Document Server

    Grishanov, B I

    2004-01-01

    In this paper a design of a resistive load - an equivalent of a klystron for the Japan Linear Collider JLC is described. The load should operate in a pulse mode at high voltage and high averege power. Different design variants were considered. The choice in favour of ceramic bulk resistor with longitudinal conductivity was done. A caloric and hydraulic calculation was executed. A mesurements of ceramics thermal conductivity of the bulk resistor and of a single radiator produced warmth remooval were done. Unfortunataly the last events on JLC forbad us to realys the project "in metall". But authours houp that this design experience could be usefull for another accelerating centers. The load can find an application as a absorbing resistor in high voltage schemes.

  14. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  15. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  16. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-01-01

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d max is at 2.15 cm for a 10 × 10 cm 2 field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  17. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    Science.gov (United States)

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  18. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    Energy Technology Data Exchange (ETDEWEB)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  19. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane.

    Science.gov (United States)

    Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter

    2018-04-12

    Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.

  20. Design of a PFN for the NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1998-06-01

    A pulse-forming network(PFN) with mutual coupling has been designed and built for the klystron pulse moderator of the SLAC Next Linear Collider (NLC). The PFN consists of a single-layer air-core coil with mutual coupling between sections and equal valued capacitos. The optimization of the coupling coefficient and the design of the air-core coil such as its radius, the number of turns and its total length are discussed. The results of the high and low voltage tests are also presented

  1. Design of a PFN for the NLC klystron pulse modulator

    Energy Technology Data Exchange (ETDEWEB)

    Akemoto, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Gold, S.; Krasnykh, A.; Koontz, R.

    1998-11-01

    A pulse-forming network (PFN) with mutual coupling has been designed and built for the klystron pulse modulator of the SLAC Next Linear Collider (NLC). The PFN consists of a single-layer air-core coil with mutual coupling between sections and equal valued capacitors. The optimization of the coupling coefficient and the design of the air-core coil such as its radius, the number of turns and its total length are discussed. The results of the high and low voltage tests are also presented. (author)

  2. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation

    International Nuclear Information System (INIS)

    Roura-Ferrer, Meritxell; Sole, Laura; Martinez-Marmol, Ramon; Villalonga, Nuria; Felipe, Antonio

    2008-01-01

    Voltage-dependent K + channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G 1 -phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation

  3. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  4. Production of Coherent xuv and soft-x-ray light using a transverse optical klystron

    International Nuclear Information System (INIS)

    Kincaid, B.M.; Freeman, R.R.

    1984-01-01

    This section describes the theory of the production of coherent xuv radiation and soft x rays using a transverse optical klystron (TOK). A TOK uses a high-power laser in conjunction with an undulator magnet to produce laserlike output of xuv radiation from a relativistic electron beam. 16 references, 5 figures

  5. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zumin; Zhang, Jun, E-mail: zhangjun-nudt@126.com; Zhong, Huihuang; Zhu, Danni; Qiu, Yongfeng [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-01-15

    The triaxial klystron amplifier is an efficient high power relativistic klystron amplifier operating at high frequencies due to its coaxial structure with large radius. However, the coaxial structures result in coupling problems among the cavities as the TEM mode is not cut-off in the coaxial tube. Therefore, the suppression of the TEM mode leakage, especially the leakage from the buncher cavity to the input cavity, is crucial in the design of a triaxial klystron amplifier. In this paper, a non-uniform three-gap buncher cavity is proposed to suppress the TEM mode leakage. The cold cavity analysis shows that the non-uniform three-gap buncher cavity can significantly suppress the TEM mode generation compared to a uniform three-gap buncher cavity. Particle-in-cell simulation shows that the power leakage to the input cavity is less than 1.5‰ of the negative power in the buncher cavity and the buncher cavity can efficiently modulate an intense relativistic electron beam free of self-oscillations. A fundamental current modulation depth of 117% is achieved by employing the proposed non-uniform buncher cavity into an X-band triaxial amplifier, which results in the high efficiency generation of high power microwave.

  6. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The 6.9 kV/2.3 kV 400 kVA-class single-phase YBCO model transformer with the YBCO tape with copper tape was manufactured for short-circuit current test. Short-circuit test was performed and the short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. The transformer withstood short-circuit current. We are planning to turn the result into a consideration of a 66 kV/6.9 kV-20 MVA-class three-phase superconducting transformer. We are developing an elemental technology for 66 kV/6.9 kV 20 MVA-class power transformer with YBCO conductors. The protection of short-circuit technology is one of the elemental technologies for HTS transformer. Since short-circuit current is much higher than critical current of YBCO tape, there is a possibility that superconducting characteristics may be damaged during short-circuit period. We made a conductor to compose the YBCO tape with copper tape. We manufactured 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer using this conductor and performed short-circuit current test. The short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. We may consider this conductor withstands short-circuit current.

  7. X irradiation of human epidermis in vitro. 2. Comparison of single 44 kV and 200 kV X irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wollina, U; Fueller, J; Burger, B; Hipler, C

    1989-01-01

    On the example of the reduction of epidermal adhesion of FITC wheat germ agglutinine (WGA) the direct membrane effect of a single X irradiation (44 kV and 220 kV) was analyzed in vitro. Human normal skin and psoriasis centres were compared. Normal skin showed no alteration of microscopically visible FITC-WGA adhesion on epidermal cells over the whole dose range. Foci of psoriasis responded to doses of /ge/ 5 Gy (44 and 220 kV) with a drastic reduction of epidermal lectin binding to lower and medium cell layers. Maximum efficacy was with 5 Gy (44 kV) or 10 Gy (220 kV). A dose elevation up to 20 Gy did not result in an increase of efficacy. Topographically the radiosensitive FITC-WGA adhesion could chiefly be seen in the dermal ridges. The findings support the impression of an increased radiosensitivity of the lesional psoriatic epidermis compared with normal skin. This is connected with an abnormal differentiation of keratinocytes in psoriasis. (author).

  8. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  9. Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related Peptide-induced cerebral reactivity

    DEFF Research Database (Denmark)

    Chadha, Preet S; Jepps, Thomas A; Carr, Georgina

    2014-01-01

    Middle cerebral artery (MCA) diameter is regulated by inherent myogenic activity and the effect of potent vasodilators such as calcitonin gene-related peptide (CGRP). Previous studies showed that MCAs express KCNQ1, 4, and 5 potassium channel genes, and the expression products (Kv7 channels) part......) participate in the myogenic control of MCA diameter. The present study investigated the contribution of Kv7.4 and Kv7.5 isoforms to myogenic and CGRP regulation of MCA diameter and determined whether they were affected in hypertensive animals....

  10. Modification of MEA modulator-klystron units enabling short pulse injection into a pulse-stretcher ring

    International Nuclear Information System (INIS)

    Kroes, F.B.; Heine, E.

    1989-01-01

    In order to modify the present 500 MeV, 1% duty factor electron accelerator MEA into a 900 MeV, 0.1% d.f. injector for a newly to be build pulse- stretching ring, the present modulator-klystron units have to be adapted from 4 MW, 2% d.f. mode of operation into the 10 MW, 0.2% d.f. mode. Suitable klystrons are commercially available, the matching modulators, however, will be obtained by modifying the present ones, which policy is dictated by economical considerations. The design principles of these modulators -a proto-type is presently under construction- will be discussed. Special attention is given to the video-pulse shape requirements, dictated by the future performance of the pulse-stretcher. This device has to deliver low emittance, high duty factor (n90%) beams for nuclear physics experiments. Some proto-type tests of the video-pulse forming modifications will be presented. (author). 5 refs.; 11 figs.; 2 tabs

  11. DC plasma ion implantation in an inductively coupled RF plasma

    International Nuclear Information System (INIS)

    Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.

    2004-01-01

    Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)

  12. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  13. The anticonvulsant retigabine suppresses neuronal Kv2-mediated currents

    DEFF Research Database (Denmark)

    Stas, Jeroen I; Bocksteins, Elke; Jensen, Camilla S

    2016-01-01

    Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently...

  14. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  15. Design and development of embedded control system for high power RF test facility

    International Nuclear Information System (INIS)

    Nageswara Rao, J.; Badapanda, M.K.; Upadhyay, Rinki; Tripathi, Akhilesh; Hannurkar, P.R.

    2013-01-01

    Design and development of an embedded control system for the control, interlock and operation of 1MW, 352.2 MHz TH2089 klystron based RF test facility. The key components of the control system are NI compact Re configurable Input Output (cRIO) system and Windows based PC. The cRIO system's rugged hardware architecture includes a 1.06 GHz Dual-Core embedded controller with Real Time (RT) Operating System, a reconfigurable Field Programmable Gate Array (FPGA) chassis for custom I/O timing, control and processing; and I/O modules. Windows based Graphical User Interface (GUI) has been developed to guide the user through start-up procedure, to set the operating parameters and also to display the status information of all the signals. The application software for data logging and publishing of the acquired data namely set, read back and status signals of auxiliary power supplies and machine safety interlocks has been developed in LabVIEW RT module and is running on embedded controller. Machine safety interlock logic has been implemented in FPGA to meet the time criticality. (author)

  16. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  17. Final Design of the SLAC P2 Marx Klystron Modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-11-08

    The SLAC P2 Marx has been under development for two years, and follows on the P1 Marx as an alternative to the baseline klystron modulator for the International Linear Collider. The P2 Marx utilizes a redundant architecture, air-insulation, a control system with abundant diagnostic access, and a novel nested droop correction scheme. This paper is an overview of the design of this modulator. There are several points of emphasis for the P2 Marx design. First, the modulator must be compatible with the ILC two-tunnel design. In this scheme, the modulator and klystron are located within a service tunnel with limited access and available footprint for a modulator. Access to the modulator is only practical from one side. Second, the modulator must have high availability. Robust components are not sufficient alone to achieve availability much higher than 99%. Therefore, redundant architectures are necessary. Third, the modulator must be relatively low cost. Because of the large number of stations in the ILC, the investment needed for the modulator components is significant. High-volume construction techniques which take advantage of an economy of scale must be utilized. Fourth, the modulator must be simple and efficient to maintain. If a modulator does become inoperable, the MTTR must be small. Fifth, even though the present application for the modulator is for the ILC, future accelerators can also take advantage of this development effort. The hardware, software, and concepts developed in this project should be designed such that further development time necessary for other applications is minimal.

  18. Major Refit for CERN's 400 kV Substation

    CERN Multimedia

    2001-01-01

    The 400 kV substation on the Prévessin site brings in the electricity that powers CERN's accelerators and the majority of the Laboratory's installations. It was originally built in the 1970s for the SPS, and is one of only five privately owned 400 kV sub-stations in France. Three of the others belong to the national railway company, SNCF, supplying the Paris-Marseilles TGV line, the other is at the Cadarache research centre near mouth of the Rhone. After nearly thirty years of service, CERN's substation has just undergone a complete overhaul. The new main 18 kV switchboard for the SPS pulsed network. The electricity supply for the original Prévessin substation was from the 400 kV EDF network, delivered through three 90 MW transformers at 18 kV to the SPS pulsed network, With the arrival of LEP, two 110 MW transformers were added to supply the new accelerator. Now, as CERN gears up for the LHC, additional pulsed power capacity is needed to supply the transfer lines carrying protons from...

  19. Conceptual design Fusion Experimental Reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Nagashima, Takashi; Ikeda, Yoshitaka

    1991-11-01

    This report describes a conceptual design of Lower Hybrid Wave (LH) system for FER and ITER. In JAERI, the conceptual design of LH system for FER has been performed in these 3 years in parallel to that of ITER. There must be a common design part with ITER and FER. The physical requirement of LH system is the saving of volt · sec in the current start-up phase, and the current drive at the boundary region. The frequency of 5GHz is mainly chosen for avoidance of the α particle absorption and for the availability of electron tube development. Seventy-two klystrons (FER) and one hundred klystrons (ITER) are necessary to inject the 30 MW (FER) and 45-50 MW (ITER) rf power into plasma using 0.7 - 0.8 MW klystron per one tube. The launching system is the multi-junction type and the rf spectrum must be as sharp as possible with high directivity to improve the current drive efficiency. One port (FER) and two ports (ITER) are used and the injection direction is in horizontal, in which the analysis of the ray-tracing code and the better coupling of LH wave is considered. The transmission line is over-sized waveguide with low rf loss. (author)

  20. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  1. Inactivation as a new regulatory mechanism for neuronal Kv7 channels

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Grunnet, Morten; Olesen, Søren-Peter

    2007-01-01

    neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger...

  2. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu (China); Jia, Nan; Duan, Yaoyong [The Chinese People' s Armed Police Force Academy, Hebei (China); Li, Zheng-Hong [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, CAEP, Mianyang (China); Cheng, Hui [Microwave Department, Sichuan Jiuzhou Electric Appliance Group Co., Ltd., Mianyang (China); Yang, Xiao-Chuan [Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang (China)

    2016-07-15

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.

  3. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Directory of Open Access Journals (Sweden)

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  4. Investigation of High Voltage Breakdown and Arc Localization in RF Structures

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Goulding, R.H.; Swain, D.W.

    1999-01-01

    An effort is underway to improve the voltage standoff capabilities of ion cyclotron range of frequencies (ICRF) heating and current drive systems. One approach is to develop techniques for determining the location of an electrical breakdown (arc) when it occurs. A technique is described which uses a measurement of the reflection coefficient of a swept frequency signal to determine the arc location. The technique has several advantages including a requirement for only a small number of sensors and very simple data interpretation. In addition a test stand is described which will be used for studies of rf arc behavior. The device uses a quarter-wave resonator to produce voltages to 90 kV in the frequency range of 55-80 MHz

  5. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Schmitt, Nicole; Calloe, Kirstine

    2006-01-01

    The family of Kv7 (KCNQ) potassium channels consists of five members. Kv7.2 and 3 are the primary molecular correlates of the M-current, but also Kv7.4 and Kv7.5 display M-current characteristics. M-channel modulators include blockers (e.g., linopirdine) for cognition enhancement and openers (e.g...

  6. Kv10.1 potassium channel: from the brain to the tumors.

    Science.gov (United States)

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  7. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    2011-01-01

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE 01 -TE 10 mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ((ge) 1 μs) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 μs pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated that two of

  8. In vitro measurement of CT density and estimation of stenosis related to coronary soft plaque at 100 kV and 120 kV on ECG-triggered scan

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Jun, E-mail: horiguch@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Fujioka, Chikako, E-mail: fujioka@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Kiguchi, Masao, E-mail: kiguchi@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Yamamoto, Hideya, E-mail: hideyayama@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Shen, Yun, E-mail: Yuna.Shen@ge.com [CT Lab of Great China, GE Healthcare, L12 and L15, Office Tower, Langham Place, 8 Argyle Street, Mongkok Kowloon (Hong Kong); Kihara, Yasuki, E-mail: ykihara@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan)

    2011-02-15

    Purpose: The purpose of the study was to compare 100 kV and 120 kV prospective electrocardiograph (ECG)-triggered axial coronary 64-detector CT angiography (64-MDCTA) in soft plaque diagnosis. Materials and methods: Coronary artery models (n = 5) with artificial soft plaques (-32 HU to 53 HU at 120 kV) with three stenosis levels (25%, 50% and 75%) on a cardiac phantom (mimicking slim patient's environment) were scanned in heart rates of 55, 60 and 65 beats per minute (bpm). Four kinds of intracoronary enhancement (205 HU, 241 HU, 280 HU and 314 HU) were simulated. The soft plaque density and the measurement error of stenosis (in percentage), evaluated by two independent observers, were compared between 100 kV and 120 kV. The radiation dose was estimated. Results: Interobserver correlation of the measurement was excellent (density; r = 0.95 and stenosis measure; r = 0.97). Neither the density of soft plaque nor the measurement error of stenosis was different between 100 kV and 120 kV (p = 0.22 and 0.08). The estimated radiation doses were 2.0 mSv and 3.3 mSv (in 14 cm coverage) on 100 kV and 120 kV prospective ECG-triggered axial scans, respectively. Conclusion: The 100 kV prospective ECG-triggered coronary MDCTA has comparable performance to 120 kV coronary CTA in terms of soft plaque densitometry and measurement of stenosis, with a reduced effective dose of 2 mSv.

  9. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  10. Status of rf development work on a ferrite tuned amplifier cavity for the TRIUMF KAON factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.

    1987-01-01

    Of the five synchrotron rings in the proposed TRIUMF KAON factory, the Booster ring to accelerate the proton beam from 440 MeV to 3 GeV has the most demanding rf requirements, primarily because of the relatively large frequency swing of 46.1 MHz to 61.1 MHz at a high repetition rate of 50 Hz. In the current reference design, the Booster lattice has twelve 3.9 m drift spaces with 2.5 m in each drift space available for installation of rf cavities to provide a required effective acceleration voltage of up to 600 kV per turn i.e. 50 kV per cavity. Design and development studies of a suitable cavity-amplifier system are in progress. For the initial reference design a system based on the one used in the Fermilab booster synchrotron has been chosen. That is, a double-gap drift-tube cavity with parallel-biased ferrite tuners and excited with a directly coupled Eimac Y567B tetrode. To meet the tuning and voltage requirements within the various mechanical and other constraints such as tube-to-gap voltage ratio, ferrite power density and available space, the reference design had to be further modified and a cold model of the cavity and tuners was constructed from copper-covered cardboard cylinders. From the results of the cold model measurements a new reference design was established and design work has begun on a full power prototype of the cavity-amplifier system

  11. Component development for X-band above 100 MW

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Studzinski, M.

    1991-05-01

    The requirement for some of the components described in this paper began with the Relativistic Klystron program done in collaboration with LLNL and LBL. This effort culminated in a klystron operating at 11.4 GHz delivering 330 MW into a pair of high-gradient accelerating structures. The electron beam for this klystron was formed in a 1 MeV induction linac at a very low duty cycle. The subsequent RF source development work at SLAC for the Next Linear Collider utilized some of these components, and required further and new development of others, work reliably at higher average power. 6 refs., 6 figs., 1 tab

  12. Notes on the rf system for the SLC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, H.

    1984-10-17

    The proposed arrangement of accelerator structures, waveguide feeds and klystrons is shown. A 50 MW klystron at 20-3C will provide power for the high-field capture section immediately following the target. About 1 meter downstream of this section there will be a standard girder of four 3.05-meter SLAC constant gradient accelerator sections. These will be powered by a klystron at station 20-3D. Current thinking is that this will also be a 50 MW tube, but 35 MW might well be sufficient. Both stations will be SLEDded. The length of the rectangular waveguide feed to the capture section will be approximately 132 ft, and the attenuation will be about 0.97 db. The corresponding numbers for the feed to the standard girder are 153 ft and 1.07 db. In CN-268 dated 6/22/84: Positron Source: First 50 Nanoseconds, K. Moffeit shows that good positron acceptance requires very high accelerating fields (on the order of 70 MV/m) in the first meter following the target. Various ways of approaching this gradient in a 1-meter section have been examined.

  13. Bladder contractility is modulated by Kv7 channels in pig detrusor

    DEFF Research Database (Denmark)

    Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja

    2013-01-01

    Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view...... relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P...

  14. Final configuration with assembly assessment of the 100 kV high voltage bushing for the Indian test facility

    International Nuclear Information System (INIS)

    Sharma, Dheeraj Kumar; Shah, Sejal; Venkata Nagaraju, M.; Bandyopadhyay, Mainak; Rotti, Chandramouli; Chakraborty, Arun Kumar

    2015-01-01

    The Indian Test Facility (INTF) of Neutral Beam (NB) system is an Indian voluntary effort for the full characterization of the diagnostic neutral beam which is the part of ITER's neutral beam system. The design activities of INTF NB system are completed. The INTF High Voltage Bushing (HVB), which is one of the component of NB system, is designed to connect all the required feedlines, e.g. electrical busbars, RF co-axial lines, diagnostic lines and hydraulic and gas feed lines, carried by the transmission line from the HV deck to the Beam Source of NB system. It forms the primary vacuum boundary and provides 100 kV isolation for INTF beam operation. The entire feedlines pass through a metallic plate of HVB called Dished Head (DH) where all the feedlines converge. The overall diameter of DH is 847 mm which is governed by the diameter of the Porcelain insulator which is meant for 100 kV isolation. The effective diameter where all the feedlines converge at the dished head is ∼ 600 mm which is quite a challenge to accommodate 26 feedlines each of average diameter 60 mm. Electrical feedlines require Vacuum-Electrical feedthroughs for voltage isolation whereas water and gas lines are considered to be directly welded with the DH except one water line which requires 12 kV voltage isolation with respect to DH. For RF lines, different scheme is considered which includes separate Electrical Feedthrough and Vacuum Barrier. To provide connection to electrical cables of heaters and thermocouples, 4 numbers of multipin vacuum compatible electrical feedthroughs are provided which can accommodate ∼250 cables. Due to space constraints, Vacuum-Electrical Feedthroughs are considered to be welded with the DH and therefore they shall be of metal-ceramic-metal configuration to allow welding. To avoid undue loading on the ceramic part, the feedlines are supported additionally at DH using vacuum compatible and electrically insulating material. One more important aspect of the INTF

  15. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  16. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  17. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  18. Capabilities, performance, and future possibilities of high frequency polyphase resonant converters

    International Nuclear Information System (INIS)

    Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.

    2004-01-01

    High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse

  19. Touch and step potential analysis at 23.9kV to 4.16kV & 13.8kV to 4.16kV distribution substations with pad-mounted transformers, floating grounds, and other exposed ungrounded metal bodies using WinIGS

    Science.gov (United States)

    Guzman, David G.

    An electrical substation is composed of various subsystems that allow for the effective and safe operation of the power grid. One of the subsystems integrating a conventional substation is defined as the ground grid system. This system allows for the effective operation of the power grid and all the electrical equipment connected to it by providing a ground potential reference, commonly known as the system ground. In addition, the ground grid system provides safety to the workers and the public transiting inside or living nearby a substation by reducing the step and touch potential (or voltage) levels present during a system fault. In today's utility industry practices there is an increasing trend for using pad-mounted electrical equipment for substation applications in an effort to construct new or upgrade existing electrical facilities inside limited property spaces. This thesis work presents an analysis for the effects of touch and step voltages at existing distribution substations where 23.9kV to 4.16kV & 13.8kV to 4.16kV pad-mounted transformers and other pad-mounted switchgear was installed to replace the traditional station class equipment. Moreover, this study will expose modeling techniques employed to define and determine the effects of floating grounds and other exposed metal bodies inside or surrounding these substations using WinIGS; this is in an effort to determine any risks of electric shock associated with this type of installations. The results presented in this work are intended to verify the requirements for the ground grid analysis and design for 4.16kV distribution substations with pad-mounted equipment in order to prevent dangerous step and touch voltage levels appearing at these sites during system faults; and ultimately prevent exposing individuals to the risk of an electric shock.

  20. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  1. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    Science.gov (United States)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  2. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  3. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  4. Positron acceleration to 200 MeV

    International Nuclear Information System (INIS)

    Leboutet, H.

    1983-01-01

    220 MeV is the energy that has to be obtained in routine operation. A standard 12m girder with SLED II can give 220 MeV minus a few percent due to not riding at the crest of the wave. In order to have the 200 MeV with only one girder, a klystron at full power all the time would be required - kept brand new. Then, for safety it is necessary to use two klystrons as designated in the SLC design. Having two klystrons gives freedom for the choice of the best arrangement. Since there will be excess rf power, it can be traded against higher gradient, shorter waveguides, larger apertures (lower shunt impedence)

  5. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  6. Modern thyratron crowbar protection systems

    International Nuclear Information System (INIS)

    Judd, D.A.; Kettle, L.J.; Menown, H.; Newton, B.P.; Nicholls, N.S.; Sheldrake, R.

    1992-01-01

    Two thyratron crowbar systems for high-power klystrons used in linear accelerators are described. The first, contained in an oil filled tank, is a complete system to protect a klystron powered from a 100-kV, 20-A d.c. supply. In the second system a CX1722 glass thyratron, operating in air, has been retrofitted to a test equipment, in place of a spark gap, to protect an Inductive Output Tube (IOT). An important parameter in the choice of the crowbar thyratron is the total coulombs to be switched. Measurements of these follow-on currents are presented. (R.P.) 4 refs.; 10 figs

  7. HVDC transmission preferred to 750 kV ac

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-25

    It is unlikely that there will be a need in Britain for ac transmission voltages above 400 kV. But with the growing load density in the large conurbations with no possibility of local generation, high voltage dc transmission is likely to be most useful. It was concluded that by 1971 the 400 kV supergrid would be nation-wide and 6,200 circuit miles should be in service. With the expansion to accommodate the large new generating stations, the 400 kV supergrid would become an extremely high power distribution network rather than a transmission system. A higher voltage for transmission is outside the rational limit of speculation for a country the size of Britain.

  8. Second generation SLAC modulator

    International Nuclear Information System (INIS)

    Donaldson, A.R.; Cron, J.C.; Hanselman, R.R.

    1986-06-01

    The Stanford Linear Accelerator Laboratory has undertaken the construction of a single pass electron-positron collider. In order to reach required beam energy 235 new klystrons needed upgraded modulator systems. The collider will use 50 GeV electrons and positrons. The increase in accelerator energy from the present 30 GeV necessitates the replacement of existing 35 MW klystrons with new 67 MW units. The doubling of klystron output power required a redesign of the modulator system. The 67 MW klystron needs a 350 kV beam voltage pulse with a 3.7 μs pulse width. A new pulse transformer was designed to deliver the increased voltage and pulse width. Pulse cable design was evaluated to obtain increased reliability of that critical element. The modulator, with the exception of its power supply, was rebuilt to produce the required power increase while enhancing reliability and improving maintainability. An investigation of present thyratron switch tube performance under the new operating conditions resulted in agitation and some warranted panic but these conditions were mitigated after several successful experiments and some evolutionary narrowing of the klystron pulse width. The discussion will cover the upgraded modulator system specifications and some details of the new pulse transformer tank, pulse cable, modulator, and modulator switch tube

  9. Overvoltages transferred from a network of 220 kV to 15.65 kV level of the step-up transformer in HPP 'Bajina Bašta'

    Directory of Open Access Journals (Sweden)

    Vukelja Petar

    2011-01-01

    Full Text Available The paper presents the results of research in lightning surge waves and switching overvoltages transferred from a network of 220 kV to the 15.65 kV level of the step-up transformer in HPP 'Bajina Bašta'. Analysis of survey results lead to conclusion that transferred overvoltages can endanger 15.65 kV transformer windings and stator winding insulation. It was therefore suggested for the protection of the 15.65 kV isolation to install metal oxide surge arresters at a suitable place between the power generator bus bars and earthing.

  10. Design of a 300 GHZ broadband coupler and RF-structure

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Carlsten, B.E.; Earley, L.M.; Sigler, F.E.; Potter, J.M.; Schulze, M.E.

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 95 and 300 GHz structures. They aim at power generation from low power (100W-2kW) with a round electron beam (120kV, 0.1-1.0 A) to high power (2-100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design of a 300 GHz RF-structure with a broadband (> 6% bandwidth) power coupler is presented. The choice of two input/output waveguides, a special coupling region and the structure parameters are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented. We are investigating planar micro-fabricated traveling-wave tube amplifiers as sources for the generation of millimeter waves from 95 to 300 GHz. While for low energy applications narrow structures with pencil beams are proposed, for high energy operation flat, thin sheet beams are required. For the latter vane-loaded rectangular waveguides that operate in a slow-wave mode matched to the velocity of the electron beam are especially well suited. The 300 GHz effort initially is limited to narrow structures for pencil beams. The main emphasis for this work are the study of fabrication issues and the understanding of features that allow a broadband operation (5-10% bandwidth).

  11. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  12. A study of a transverse optical klystron experiment in adone (TOKA)

    International Nuclear Information System (INIS)

    Boscolo, I.; Stagno, V.; Bari Univ.

    1982-01-01

    The storage ring operation of a free electron laser (FEL) can be improved by a prebunching of the electron beam. We study in this paper a layout working as a transverse optical klystron (TOK). The enhancement of the single pass gain and the consequent reduction of the wiggler length in the TOK compared with the FEL suggests that the first device is more suitable for a storage ring such as Adone, where the straight sections are about 2 m long. The figures of the TOKA are carried out using as much as possible the hardware of the FEL experiment which is in progress at Adone (LELA experiment). (orig.)

  13. SU-D-BRA-07: Applications of Combined KV/MV CBCT Imaging with a High-DQE MV Detector

    International Nuclear Information System (INIS)

    Bazalova-Carter, M; Newson, M; Wang, A; Star-Lack, J; Wu, M; Xing, L; Fahrig, R; Ansbacher, W

    2016-01-01

    Purpose: To investigate whether a high detection quantum efficiency (DQE) MV detector makes combined kV/MV CBCT clinically practical. Methods: Combined kV/MV CBCT was studied for scan time reduction (STR) and metal artifact reduction (MAR). 6MV CBCT data (dose rate = 0.017 MU/degree) were collected using 1) a novel focused pixelated cadmium tungstate (CWO) scintillator (15mm thickness, DQE(0) = 22%, 0.784mm pixel pitch) coupled to a flat panel imager, and 2) a commercial portal imager with a 133mg/cm"2 gadolinium oxysulfide (GOS) screen (DQE(0) = 1.2%). The 100kVp data were acquired using a commercial imager employing a columnar cesium iodide scintillator (DQE(0) = 70%) with a dose rate of 0.0016 cGy/degree. For STR, MV and kV projections spanning 105° were combined to constitute a complete CBCT scan. Total dose was ∼2cGy and acquisition time was 18s. For MAR, only the metalcorrupted pixels in the kV projections were replaced with MV data resulting in a total dose of less than 1cGy for a 360° scan. Image quality was assessed using an 18-cm diameter electron density phantom with nine tissue inserts, some of which were replaced with steel rods for MAR studies. Results: The CWO contrast-to-noise ratio (CNR) was ∼4.0x higher than the GOS CNR and was ∼4.8x lower than the kV CNR when normalized for dose. When CWO MV data were combined with kV data for STR, all contrast inserts were visible, but only two were detectable in the composite kV/GOS image. Metal artifacts were greatly reduced using the kV/MV MAR technique with all contrast inserts clearly visible in the composite kV/CWO image but only two inserts visible in the composite kV/GOS image. Conclusion: We have demonstrated that a high DQE MV detector significantly improves kV/MV CBCT image quality thus enabling scan time reduction and metal artifact reduction without a severe dose penalty. AW and JS-L are employees of Varian, RF is an employee of Siemens.

  14. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  15. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  16. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D

    2009-01-01

    that K(v)7.x especially K(v)7.4 and K(v)7.5 are expressed in different regions of the murine gastrointestinal tract and blockers of K(v)7 channels augment inherent contractile activity. Drugs that selectively block K(v)7.4/7.5 might be promising therapeutics for the treatment of motility disorders...

  17. The analog computation and contrast test of leaked electromagnetic noise in the klystron corridor

    International Nuclear Information System (INIS)

    Tao Xiaoping; Wang Guicheng

    2001-01-01

    In order to obtain a better understand of the characteristics and location of noise source, the leaked electromagnetic noise in the klystron corridor of NSRL has been analogously calculated. The computational method and formula of high frequency leaked noise of the modulator were given. On-the-spot contrast tests have been made on the base of analog computation. The contrast test results show reasonableness of analog computation and whereby offer a theoretic base for reducing noise leakage in corridor

  18. The importance of immunohistochemical analyses in evaluating the phenotype of Kv channel knockout mice.

    Science.gov (United States)

    Menegola, Milena; Clark, Eliana; Trimmer, James S

    2012-06-01

    To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  19. Analysis of the 35 KV substation secondary system

    Science.gov (United States)

    Zhao, Yong; Jiang, Jianguo; Jiang, Chunlei; Ren, Shuang; Liu, Songbin

    2017-04-01

    This paper analyzes the status of the two system of some 35KV users' substation in Daqing oil field, the deficiencies of the two system of the existing 35KV substation are found out. And put forward the opinion of acceptance in the future work. I hope it can able to work in the future on the protection of professional help.

  20. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.