WorldWideScience

Sample records for kupffer cell heterogeneity

  1. Kupffer Cells in the Liver

    Science.gov (United States)

    Dixon, Laura J.; Barnes, Mark; Tang, Hui; Pritchard, Michele T.; Nagy, Laura E.

    2016-01-01

    Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. PMID:23720329

  2. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  3. Fibronectin and Kupffer cell function in fulminant hepatic failure

    International Nuclear Information System (INIS)

    Imawari, M.; Hughes, R.D.; Gove, C.D.; Williams, R.

    1985-01-01

    The relationship between plasma fibronectin, in vitro plasma opsonic activity, which measures the biological activity of fibronectin, and in vivo Kupffer cell function, as assessed by the systemic clearance of microaggregated [ 125 I]albumin, were determined simultaneously in 15 patients with fulminant hepatic failure and 12 normal subjects. Both the plasma fibronectin and plasma opsonic activity were significantly reduced in patients with fulminant hepatic failure, while the systemic clearance of microaggregated albumin was decreased. There was a significant correlation between plasma fibronectin and the plasma opsonic activity on admission, but no correlation could be detected between either parameter and the clearance of microaggregated albumin. A gelatin-derived plasma expander was shown to block the plasma opsonic activity both in vitro and in vivo. The low plasma fibronectin and decreased clearance of microaggregated albumin in fulminant hepatic failure reflect different aspects of the overall impairment of Kupffer cell function

  4. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  5. Immunomodulation by gadolinium chloride-induced Kupffer cell phagocytosis blockade

    International Nuclear Information System (INIS)

    Lazar, G.; Husztik, E.; Kiss, I.; Szakacs, J.; Olah, J.

    1998-01-01

    Gadolinium chloride (GdCl 3 ), a rare earth metal salt, depresses macrophage activity, and is commonly used to study the physiology of the reticuloendothelial system. In the present work, the effect of GdCl 3 -induced Kupffer cell blockade on the humoral immune response in mice to sheep red blood cells (SRBC) was investigated. Kupffer cell phagocytosis blockade was found to increase both the primary and secondary immune responses to SRBC. The primary immune response was significantly augmented in animals injected intravenously with GdCl 3 2, 3 or 4 days before injection of the cellular antigen, but GdCl 3 injected 7 days before the antigen did not modify the immune response. Increased secondary humoral immune responses were also observed. When GdCl 3 was injected 2 days before the second dose of antigen, the numbers of both IgM and IgG-producing plaque forming cells were augmented. GdCl 3 injected 2 days before the first dose of SRBC did not modify the humoral immune response. Earlier studies with 51 Cr-labelled foreign red blood cells suggested that the augmentation of the humoral immune response in GdCl 3 -pretreated mice is a consequence of the spillover of the antigen from the liver into the spleen and other extrahepatic reticuloendothelial organs. (orig.)

  6. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  7. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  8. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    Science.gov (United States)

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e

  9. Demonstration of glucose-6-phosphate dehydrogenase in rat Kupffer cells by a newly-developed ultrastructural enzyme-cytochemistry

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2009-06-01

    Full Text Available Although various tissue macrophages possess high glucose- 6-phosphate dehydrogenase (G6PD activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells has not been determined.We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.

  10. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    Science.gov (United States)

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  11. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  12. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver

    DEFF Research Database (Denmark)

    Aparicio-Vergara, Marcela; Tencerova, Michaela; Morgantini, Cecilia

    2017-01-01

    Liver perfusion is a common technique used to isolate parenchymal and non-parenchymal liver cells for in vitro experiments. This method allows hepatic cells to be separated based on their size and weight, by centrifugation using a density gradient. To date, other methods allow the isolation of only...... one viable hepatic cellular fraction from a single mouse; either parenchymal (hepatocytes) or non-parenchymal cells (i.e., Kupffer cells or hepatic stellate cells). Here, we describe a method to isolate both hepatocytes and Kupffer cells from a single mouse liver, thereby providing the unique...... advantage of studying different liver cell types that have been isolated from the same organism....

  13. Isoferritins in rat Kupffer cells, hepatocytes, and extrahepatic macrophages. Biosynthesis in cell suspensions and cultures in response to iron

    International Nuclear Information System (INIS)

    Doolittle, R.L.; Richter, G.W.

    1981-01-01

    Cultures of Kupffer cells and of hepatocytes, prepared from single rat livers, synthesized ferritin protein equally efficiently. In culture but not in suspension, both sorts of cells responded significantly to stimulation with iron by increased ferritin synthesis. As determined by isoelectric focusing, the isoferritin profiles of newly synthesized 14 -labeled Kupffer cell and hepatocyte ferritin were identical, each having three bands. However, unlabeled ferritin, extracted from nonparenchymal liver cells (mainly Kupffer and endothelial cells) of iron-loaded rats, contained an acidic isoferritin that was not present in hepatocyte ferritin. Investigation of ferritin synthesis in cultured peritoneal and alveolar macrophages yielded similar results. The isofocusing profile of newly synthesized peritoneal macrophage ferritin was indistinguishable from the profile of fresh Kupffer cell or hepatocyte ferritin. Thus, the three isoferritins common to Kupffer cells, hepatocytes, and extrahepatic macrophages are neither cell- nor tissue-specific. However, modifications on intracellular storage may affect the isofocusing properties. The findings, although consistent with the LnH24-n subunit model of ferritin protein, indicate identical restrictive genomic control of the H:L ratios in these sorts of cells. Further, they make it probable that Kupffer cell ferritin iron, originating by endogenous synthesis, is the principal source of Kupffer cell hemosiderin iron

  14. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Knook, D.L.

    1982-01-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA 125 I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA 125 I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA 125 I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA 125 I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA 125 I. The intracellular degradation of CA 125 I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA 125 I occurred within the Kupffer cell lysosomes

  15. Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Barelds, R.J.; Knook, D.L.

    1985-01-01

    There are many indications that the functional capacity of the reticuloendothelial system (RES) declines with age. The aim of this study was to investigate the cellular basis of age-related changes in the clearance function of the RES. The experiments were focused mainly on Kupffer and endothelial cells of the liver which represent a major part of the RES and are primarily responsible for clearance of colloidal material from the circulation. The clearance capacity of the RES was tested clinically and experimentally by intravenous injection of colloids, such as radiolabeled heat-aggregated colloidal albumin. Age-related changes in the endocytosis of 125 I-labeled colloidal albumin (CA) in rats were determined by clearance and organ distribution of different doses of intravenously injected CA, uptake of CA by Kupffer and endothelial liver cells in vivo as determined after isolation of the cells from injected rats and kinetic studies on CA uptake by Kupffer cells in culture. The results show that, at a low dose, the clearance of CA is primarily determined by liver blood flow. At a higher saturating dose, plasma clearance and uptake by the liver are not significantly decreased with age. Endocytosis by endothelial cells, which accounts for about 60% of that of the whole liver, is also unchanged with age. In contrast, a significant decrease in endocytic capacity was observed for Kupffer cells in vivo. This age-related functional decline was also observed in Kupffer cells which were isolated from rats of different ages and maintained in culture

  16. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity

    NARCIS (Netherlands)

    Stienstra, Rinke; Saudale, Fredy; Duval, Caroline; Keshtkar, Shohreh; Groener, Johanna E. M.; van Rooijen, Nico; Staels, Bart; Kersten, Sander; Müller, Michael

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  17. Kupffer cells promote hepatic steatosis via interleukin-1-dependent suppression of peroxisome proliferator-activated receptor activity

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.N.C.; Keshtkar, S.; Groener, C.; Rooijen, van N.; Staels, B.; Kersten, A.H.; Müller, M.R.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  18. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS

    DEFF Research Database (Denmark)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard

    2011-01-01

    INTRODUCTION: Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker...... in the patients (52.2 vs 30.4 μg/l, pportal hypertension. The activation was not alleviated by the mechanical...... reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension....

  19. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  20. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  1. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    International Nuclear Information System (INIS)

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; Rooijen, Nico van; Cherrington, Nathan J.; Manautou, Jose E.

    2009-01-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH

  2. Kupffer cell blockade prevents rejection of human insulinoma cell xenograft in rats

    International Nuclear Information System (INIS)

    Lazar, G. Jr.; Farkas, G.; Lazar, G.

    1998-01-01

    Alloantigens are recognized by T-cells in the context of both class I and class II antigen, but class II antigens predominate in the recognition of xenoantigens. Since class II molecules bind peptides derived from exogenous proteins that have been phagocytized and digested into small fragments by antigen presenting cells, in the present studies the effect of gadolinium chloride (GdCl 3 )-induced Kupffer cell blockade on the survival of discordant insulinoma cell xenografts was investigated. Insulinoma cells isolated by means of collagenase from human insulinoma and cultured were transplanted through the v. portae into the liver of streptozotocin-induced diabetic, male, CFY inbred rats. In the control, streptozotocin-treated rats, the decrease in blood glucose level was only transitory, in contrast with the GdCl 3 -pretreated diabetic rats, which remained normoglycaemic during the 2-week observation period. Histologically, in the liver and lung of rats pre-treated with GdCl 3 , large areas of extensively proliferating insulinoma cells were seen, whereas no insulinoma cells were seen in either the liver or the lung of diabetic-control rats, not-treated with GdCl 3 . These studies suggest that the Kupffer cells play significant roles in the recognition of xenoantigens and the induction of xenograft rejection. (orig.)

  3. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury

    International Nuclear Information System (INIS)

    Kumagai, Kazuyoshi; Kiyosawa, Naoki; Ito, Kazumi; Yamoto, Takashi; Teranishi, Munehiro; Nakayama, Hiroyuki; Manabe, Sunao

    2007-01-01

    In our previous study, we found that cycloheximide (CHX) induces hepatocellular necrosis as well as hepatocellular apoptosis. This article evaluates the role of Kupffer cells on cycloheximide-induced hepatic injury using gadolinium chloride (GdCl 3 ) for the inhibition of Kupffer cells. One group of rats was treated with CHX (CHX group), and another was treated with GdCl 3 before being treated with the same dose of CHX (GdCl 3 /CHX group). The necrotic change in the GdCl 3 /CHX group was exacerbated under the induction of hepatocellular apoptosis by the CHX treatment. A substantial diminution of the number of ED1- or ED2-positive cells was demonstrated in the GdCl 3 /CHX group compared to the CHX group. In addition, the degree of decrease in ED2-positive cells was more apparent than that in ED1-positive cells. Increases in the mRNA levels of IL-10 and Stat3 were observed in the CHX group, but not in the GdCl 3 /CHX group. On the other hand, the hepatic mRNA levels of chemokines and adhesion molecules such as Ccl20, LOX-1, and E-selectin were significantly increased only in the GdCl 3 /CHX group. Thus, Kupffer cell inactivation by the GdCl 3 treatment leads to a loss of the capacity to produce IL-10, supposedly resulting in the enhancement of pro-inflammatory cytokine activities such as tumor necrosis factor (TNF) signaling. These events are suggested to be a factor of the inflammatory exacerbation in the livers of the GdCl 3 /CHX group. In conclusion, Kupffer cells may play a role in protecting hepatic necroinflammatory changes by releasing anti-inflammatory cytokines following the hepatocellular apoptosis resulting from CHX treatment

  4. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  5. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  6. Fumonisin B1 hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride

    International Nuclear Information System (INIS)

    He, Quanren; Kim, Jiyoung; Sharma, Raghubir P.

    2005-01-01

    Fumonisin B 1 (FB 1 ) is a toxic and carcinogenic mycotoxin produced by Fusarium verticillioides found on corn worldwide. The biological effects of FB 1 are attributed to sphingolipid metabolism disruption as a result of ceramide synthase inhibition. Tumor necrosis factor α (TNFα) is an important modulator of FB 1 hepatotoxicity. Kupffer cells are major source of cytokine production in liver. In the present study we investigated the effects of Kupffer cell depletion by gadolinium on FB 1 hepatotoxicity in female BALB/c mice. Mice were given saline or 50 mg/kg of gadolinium chloride once via the tail vein; 16 h later they were treated with subcutaneous injections of vehicle or 2.25 mg/kg/day FB 1 in saline for three successive days. Gadolinium significantly attenuated FB 1 -induced increases in the activities of circulating alanine aminotransferase and aspartate aminotransferase and reduced the FB 1 -induced hepatocyte apoptosis and free sphinganine accumulation in liver. Both gadolinium and FB 1 treatments individually increased the expression of selected cell signal factors; e.g., TNFα, TNF receptor 1, TNF-related apoptosis-inducing ligand, lymphotoxin β, interferon γ, and transforming growth factor β1; gadolinium chloride did not alter FB 1 -induced expression of the above genes. Results indicated that Kupffer cells play a role in FB 1 hepatotoxicity. Decreased FB 1 -induced sphinganine accumulation and increased protective TNFα signaling by gadolinium chloride may in part account for its ameliorating effect on FB 1 liver damage

  7. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  8. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Cunningham Michael

    2006-01-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  9. Can technetium-labelled millimicrospheres be used to measure Kupffer-cell function

    International Nuclear Information System (INIS)

    Pearson, H.J.; Chamberlain, J.; Anderson, J.; Bowry, V.; Bell, P.R.F.

    1985-01-01

    It has been suggested that sodium pertechnetate sup(99m)Tc millimicrospheres can be used to measure Kupffercell function. We studied animals and humans to show whether the clearance and catabolism of sup(99m)Tc-labelled millimicrospheres can be used as a measure of Kupffer-cell function. Comparison with albumin 125 I-microaggregates clearance of human serum albumin failed to demonstrate that they can be used for this purpose. We suggest that their blood clearance is mainly an expression of liver blood flow. (orig.)

  10. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS.

    Science.gov (United States)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard; Moestrup, Søren K; Riggio, Oliviero; Ridola, Lorenzo; Aagaard, Niels Kristian; Møller, Holger Jon; Vilstrup, Hendrik

    2011-10-01

    Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker of macrophage activation, before and after reduction of portal venous pressure gradient by insertion of a transjugular intrahepatic portosystemic shunt (TIPS) in patients with cirrhosis. sCD163 was measured in 11 controls and 36 patients before and 1, 4 and 26 weeks after TIPS. We used lipopolysaccharide binding protein (LBP) levels as a marker of endotoxinaemia. Liver function and clinical status of the patients were assessed by galactose elimination capacity and Model for End Stage Liver Disease score. The sCD163 concentration was more than threefold higher in the patients than in the controls (median 5.22 mg/l vs 1.45 mg/l, pportal venous pressure gradient (r(2)=0.24, pportal vein (pportal hypertension. The activation was not alleviated by the mechanical reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension.

  11. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  12. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  13. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes

    NARCIS (Netherlands)

    Watchorn, T.M.; Dowidar, N.; Dejong, C.H.; Waddell, I.D.; Garden, O.J.; Ross, J.A.

    2005-01-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells,

  14. Pivotal roles of Kupffer cells in the progression and regression of DDC-induced chronic cholangiopathy.

    Science.gov (United States)

    Jemail, Leila; Miyao, Masashi; Kotani, Hirokazu; Kawai, Chihiro; Minami, Hirozo; Abiru, Hitoshi; Tamaki, Keiji

    2018-04-23

    Kupffer cells (KCs) are key players in maintaining tissue homeostasis and are involved in various liver diseases. However, the roles of KCs in the pathogenesis of cholangiopathy are largely unknown. We aimed to investigate the precise roles of KCs in both the progression and regression phases of the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced cholangiopathy model. In the early phase of DDC-induced cholangiopathy, the number of KCs significantly increased over time. Moreover, KCs were associated with abnormal phenotypic changes in other liver cells, such as hepatocytes, biliary epithelial cells, liver sinusoidal endothelial cells, and hepatic stellate cells. In contrast, KC depletion by clodronate administration suppressed the progression of the disease, and maintained the phenotypes of other cells. In the regression phase, the numbers of KCs significantly decreased, and the cells redifferentiated to their quiescent state. In contrast, KC depletion delayed the recovery of cells by maintaining other liver cells in an active state. These findings suggest that KCs play detrimental roles in the progression phase; however, they are beneficial in the regression phase by mediating interactions between other liver cells. Our data provide new insights into the roles of KCs in the pathogenesis of cholangiopathy.

  15. Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed

    2011-08-01

    Full Text Available Abstract Background Advances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups, 12 GNPs-treated rats groups and one control group (NG. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days, size 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. In addition, inflammatory cell infiltration, Kupffer cells hyperplasia, central veins intima disruption, hepatic strands dilatation and occasional fatty change together with a loss of normal architechiture of hepatic strands were also seen. Conclusions The alterations induced by the administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. These alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the

  16. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    Science.gov (United States)

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  17. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation.

    Science.gov (United States)

    Bieghs, Veerle; Walenbergh, Sofie M A; Hendrikx, Tim; van Gorp, Patrick J; Verheyen, Fons; Olde Damink, Steven W; Masclee, Ad A; Koek, Ger H; Hofker, Marten H; Binder, Christoph J; Shiri-Sverdlov, Ronit

    2013-08-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation. The transition from steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Under normal conditions, lipoproteins that are endocytosed by Kupffer cells (KCs) are easily transferred from the lysosomes into the cytoplasm. Oxidized LDL (oxLDL) that is taken up by the macrophages in vitro is trapped within the lysosomes, while acetylated LDL (acLDL) is leading to normal lysosomal hydrolysis, resulting in cytoplasmic storage. We have recently demonstrated that hepatic inflammation is correlated with lysosomal trapping of lipids. So far, a link between lysosomal trapping of oxLDL and inflammation was not established. We hypothesized that lysosomal trapping of oxLDL in KCs will lead to hepatic inflammation. Ldlr(-/-) mice were injected with LDL, acLDL and oxLDL and sacrificed after 2, 6 and 24 h. Electron microscopy of KCs demonstrated that after oxLDL injection, small lipid inclusions were present inside the lysosomes after all time points and were mostly pronounced after 6 and 24 h. In contrast, no lipid inclusions were present inside KCs after LDL or acLDL injection. Hepatic expression of several inflammatory genes and scavenger receptors was higher after oxLDL injections compared with LDL or acLDL. These data suggest that trapping of oxLDL inside lysosomes of KCs in vivo is causally linked to increased hepatic inflammatory gene expression. Our novel observations provide new bases for prevention and treatment of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Fumonisin B{sub 1} hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    He, Quanren [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States); Kim, Jiyoung [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States); Sharma, Raghubir P [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States)

    2005-02-01

    Fumonisin B{sub 1} (FB{sub 1}) is a toxic and carcinogenic mycotoxin produced by Fusarium verticillioides found on corn worldwide. The biological effects of FB{sub 1} are attributed to sphingolipid metabolism disruption as a result of ceramide synthase inhibition. Tumor necrosis factor {alpha} (TNF{alpha}) is an important modulator of FB{sub 1} hepatotoxicity. Kupffer cells are major source of cytokine production in liver. In the present study we investigated the effects of Kupffer cell depletion by gadolinium on FB{sub 1} hepatotoxicity in female BALB/c mice. Mice were given saline or 50 mg/kg of gadolinium chloride once via the tail vein; 16 h later they were treated with subcutaneous injections of vehicle or 2.25 mg/kg/day FB{sub 1} in saline for three successive days. Gadolinium significantly attenuated FB{sub 1}-induced increases in the activities of circulating alanine aminotransferase and aspartate aminotransferase and reduced the FB{sub 1}-induced hepatocyte apoptosis and free sphinganine accumulation in liver. Both gadolinium and FB{sub 1} treatments individually increased the expression of selected cell signal factors; e.g., TNF{alpha}, TNF receptor 1, TNF-related apoptosis-inducing ligand, lymphotoxin {beta}, interferon {gamma}, and transforming growth factor {beta}1; gadolinium chloride did not alter FB{sub 1}-induced expression of the above genes. Results indicated that Kupffer cells play a role in FB{sub 1} hepatotoxicity. Decreased FB{sub 1}-induced sphinganine accumulation and increased protective TNF{alpha} signaling by gadolinium chloride may in part account for its ameliorating effect on FB{sub 1} liver damage.

  19. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  20. Thyroid Hormone-Induced Cytosol-to-Nuclear Translocation of Rat Liver Nrf2 Is Dependent on Kupffer Cell Functioning

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available L-3,3′,5-triiodothyronine (T3 administration upregulates nuclear factor-E2-related factor 2 (Nrf2 in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl3; 10 mg/kg i.v. 72 h before T3 [0.1 mg/kg i.p.] or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T3, and determinations were performed 2 h after T3. T3 increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1, catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl3 treatment prior to T3, an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T3-induced tumor necrosis factor-α (TNF-α response was eliminated by previous GdCl3 administration. Similar to GdCl3, apocynin given before T3 significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T3. This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl3 or apocynin given prior to T3, thus hindering Nrf2 activation.

  1. Failure to demonstrate a major role for Kupffer cells and radiosensitive leukocytes in immunoglobulin-mediated elimination of Trypanosoma musculi

    International Nuclear Information System (INIS)

    Kongshavn, P.A.; Shaw, K.; Ghadirian, E.; Ulczak, O.

    1990-01-01

    Previous studies have indicated that elimination of parasitemia in Trypanosoma musculi infection is brought about by immunoglobulin G2a antibodies, C3, and an effector cell. Experiments were designed to identify the putative effector cell by using several approaches. Infected C5-deficient or C5-sufficient mice treated with silica particles or given 900 rads of radiation 3 days earlier effectively eliminated trypanosomes following administration of immune plasma (IP). Silica-treated, noninfected mice given T. musculi preincubated with IP also cleared the parasites. Radiolabeling studies revealed that uptake of the cleared trypanosomes by the liver in normal mice was relatively low and fell only slightly (19%) in silica-treated mice. In contrast, uptake of radiolabeled sheep erythrocytes by the liver was normally much higher and fell drastically (7%) in silica-treated mice. Mice were then immunocompromised by 900 rads of radiation, silica particles, and anti-platelet serum combined before IP-sensitized trypanosomes were given. Leukocyte and platelet counts were both reduced by 95% and sheep erythrocyte uptake by the liver fell from 77 to 5%; however, greater than 99% of the injected trypanosomes were cleared in these mice and uptake of radiolabeled trypanosomes by the liver was similar to that of normal mice. Lastly, in anesthetized mice in which Kupffer cells were excluded surgically from the circulation, greater than 99% of the IP-sensitized trypanosomes disappeared rapidly from the blood. Only 7% of the radiolabel was found in the liver versus 60% in sham-operated mice. The results are interpreted as showing that hepatic Kupffer cells play a minor role in the immune elimination of T. musculi. Likewise, radiosensitive leukocytes and platelets are unlikely to be sole candidates for the putative effector cell that mediates a cure of murine trypanosomiasis

  2. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Grønbaek, H; Sandahl, T D; Mortensen, C

    2012-01-01

    BACKGROUND: Activation of Kupffer cells may be involved in the pathogenesis of portal hypertension by release of vasoconstrictive substances and fibrosis due to co-activation of hepatic stellate cells. AIM: To study soluble plasma (s) CD163, a specific marker of activated macrophages......, as a biomarker for portal hypertension in patients with liver cirrhosis. METHODS: We measured sCD163 concentration and the hepatic venous pressure gradient (HVPG) by liver vein catheterisation in 81 cirrhosis patients (Child-Pugh CP-A: n = 26, CP-B: n = 29, CP-C: n = 26) and 22 healthy subjects. We also measured...... for HVPG. These findings support a primary role of macrophage activation in portal hypertension, and may indicate a target for biological intervention....

  3. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink

    DEFF Research Database (Denmark)

    Sepehri, Mitra; Steen Sejersen, Tobias; Qvortrup, Klaus

    2017-01-01

    AIM: Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace....... Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). RESULTS: TEM identified intracellular tattoo pigments...... in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs...

  4. Amphiphilic core shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells

    Directory of Open Access Journals (Sweden)

    Liu Z

    2016-06-01

    Full Text Available Zuojin Liu,1,* Dechao Niu,2,3,* Junyong Zhang,1 Wenfeng Zhang,1 Yuan Yao,2 Pei Li,2 Jianping Gong1 1Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 2Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 3Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs. In this article, we demonstrate that amphiphilic core–shell nanoparticles (NPs consisting of well-defined hydrophobic poly(methyl methacrylate (PMMA cores and branched polyethyleneimine (PEI shells (denoted as PEI@PMMA NPs are efficient nanocarriers to deliver microRNA (miRNA-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1. The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%. Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in

  5. Predominance of Th1 response, increase of megakaryocytes and Kupffer cells are related to survival in Trypanosoma cruzi infected mice treated with Lycopodium clavatum.

    Science.gov (United States)

    Falkowski-Temporini, Gislaine Janaina; Lopes, Carina Ribeiro; Massini, Paula Fernanda; Brustolin, Camila Fernanda; Sandri, Patricia Flora; Ferreira, Érika Cristina; Aleixo, Denise Lessa; Pala, Nelson Roberto; de Araújo, Silvana Marques

    2016-12-01

    We investigated the number of megakaryocytes, Kupffer cells and ratios of Th1/Th2 and Th1/Th17 cytokines in survival of mice infected with Y strain of Trypanosoma cruzi and treated with Lycopodium clavatum. In a blind, randomized and controlled assay, Swiss male mice, 8weeks-old, infected with 1400 trypomastigotes (Y strain) were divided into groups and treated with: GLy - Lycopodium clavatum dynamization13c and GCI - alcohol solution 7° GL (vehicle medicine). The treatment was offered two days before infection and on the 2nd, 4th and 6th days after infection, overnight (1mL/100mL) and ad libitum. Parameters assessed were: survival rate, number of megakaryocytes and Kupffer cells, cytokines dosage (TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17), Th1/Th2 and Th1/Th17 ratios. The increase in megakaryocytes, Kupffer cells, predominance of Th1 response, with increased TNF-α, IL-10, TNF-α/IL-4, TNF-α/IL-17 and decreased IL-6 IL-6/IL-4, are related to increased survival in mice infected with T. cruzi and treated with Lycopodium clavatum 13c. This result demonstrates the possibility of an alternative approach for the treatment of Chagas disease with dynamized drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Re-evaluation of thin layer chromatography as an alternative method for the quantification of prostaglandins from rat Kupffer cells.

    Science.gov (United States)

    Pestel, Sabine; Jungermann, Kurt; Schieferdecker, Henrike L

    2005-01-01

    In contrast to conventionally used immunoassays, thin layer chromatography (TLC)--by prelabeling of cells with radioactive arachidonic acid (AA)--allows to differentiate between cellularly built and added prostanoids and thus to investigate feedback effects of prostanoids on their own release. PGD2, TXB2 and PGE2 released from zymosan-stimulated Kupffer cells were separated with distinct RF-values, corresponding to those of the pure substances. Quantification of PGD2 and PGE2 gave comparable results with TLC and immunoassays, but measurement in the presence of added prostanoids was only possible with TLC. Moreover TLC was superior to immunoassays in having a longer linear range while being comparably sensitive. Cellularly built TXB2 in its radioactively labeled form was not detectable by TLC. Inhibition of TXB2 release by externally added AA or technical artifacts were excluded, suggesting that the cellular AA-pools used for prostaglandin and thromboxane synthesis differ in their accessibility for added AA. Thus, TLC is a simple, sensitive and precise method for the quantification of cellularly built prostaglandins but not of thromboxane even in the presence of added prostanoids.

  7. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Takuto Oyama

    2016-06-01

    Full Text Available Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA. MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF and low-biofilm formers (L-BF. These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections.

  8. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  9. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Lynette Beattie

    2010-03-01

    Full Text Available Kupffer cells (KCs represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8(+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8(+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.

  10. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink.

    Science.gov (United States)

    Sepehri, Mitra; Sejersen, Tobias; Qvortrup, Klaus; Lerche, Catharina M; Serup, Jørgen

    2017-01-01

    Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace tattoo pigments in internal organs in mice extensively tattooed with 2 different tattoo ink products. Three groups of mice were studied, i.e., 10 tattooed black, 10 tattooed red, and 5 untreated controls. They were tattooed on the entire back with commercial tattoo inks, black and red. Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). TEM identified intracellular tattoo pigments in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs. The study demonstrated black and red tattoo pigment deposits in the liver; thus, tattoo pigment distributed from the tattooed skin via the blood stream to this important organ of detoxification. The finding adds a new dimension to tattoo pigment distribution in the body, i.e., as observed via the blood in addition to the lymphatic pathway. © 2017 S. Karger AG, Basel.

  11. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy

    NARCIS (Netherlands)

    Surewaard, Bas G.J.; Kubes, Paul

    2017-01-01

    It is central to the field of bacterial pathogenesis to define how bacteria are killed by phagocytic cells. During phagocytosis, the microbe is localized to the phagolysosome where crucial defense mechanisms such as acidification and production of reactive oxygen species (ROS) are initiated. This

  13. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    Science.gov (United States)

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  14. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2013-01-01

    Full Text Available High doses of acetaminophen (APAP; N-acetyl-p-aminophenol cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg. Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity.

  15. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  16. Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-01-01

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47 phox -null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47 phox -null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47 phox -null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase

  17. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    Directory of Open Access Journals (Sweden)

    Victoria Kegel

    2015-01-01

    Full Text Available Drug induced liver injury (DILI is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2±0.9×106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay and cell activity (XTT assay. The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production.

  18. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    Science.gov (United States)

    Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg

    2015-01-01

    Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234

  19. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    Science.gov (United States)

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  20. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Directory of Open Access Journals (Sweden)

    Xiang Y. Kong

    2014-03-01

    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  1. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve

    2010-01-01

    and eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...... inhibition of AA-dependent PGE(2) synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially...

  2. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    Directory of Open Access Journals (Sweden)

    Miriam Maraslioglu

    2014-01-01

    Full Text Available Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS. We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.

  3. A primary study on the phagocytic activity of Kupffer cells with superparamagnetic iron oxide particles enhanced MR imaging in a rat nonalcoholic steatohepatitis model

    International Nuclear Information System (INIS)

    Jiao Zhiyun; Li Cheng; Ma Zhanlong; Chen Wenjuan

    2010-01-01

    Objective: To investigate the feasibility of using superparamgnetic iron oxide (SPIO) as MRI contrast agent to assess rat nonalcoholic steatohepatitis Kupffer cells (KC) function. Methods: Twenty male SD rats were randomly divided into A and B groups, group A (n=10) was the experimental group fed high fat diet, group B (n=10) was the control group fed normal diet. After 8 weeks, plain MR and SPIO enhanced MR were performed in all the rats. Blood lipids were measured, and HE and Perl's blue staining in all livers specimen was done. The related results of the staining were analyzed with t test. Results: Group A TC and TG levels [(6.58 ± 1.25) and (1.53 ± 0.23) mmol/L respectively] were significantly higher than group B[(1.64 ± 0.22) and (0.55 ± 0.14) mmol/L respectively] (t=11.716 and 11.588, P 1 WI, ad statistically significant differences (t=-18.451 and -16.240, P 2 WI, T 2 WI and T 1 WI (t=10.745, 19.800, 39.168 and 92.785, P<0.01). Typical histological hepatic lesions of NASH were observed in group A, Perl's staining-positive particles in group A (2.33 ± 0.50) were fewer than in group B (4) (t=-10.000, P<0.01). Conclusion: The high-fat diet induced model of SD rats was close to the human NASH and was easy to establish. Clinical application of SPIO enhanced MR successfullly assessed the phagocytic activity of KC in the study, and it suggested that the pathogenesis of NASH was related to the decreased phagocytic activity of KC. (authors)

  4. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Directory of Open Access Journals (Sweden)

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  5. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers.

    Science.gov (United States)

    Jemnitz, Katalin; Bátai-Konczos, Attila; Szabó, Mónika; Ioja, Enikő; Kolacsek, Orsolya; Orbán, Tamás I; Török, György; Homolya, László; Kovács, Eszter; Jablonkai, István; Veres, Zsuzsa

    2017-02-01

    Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca 2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca 2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca 2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca 2+ oscillation and sustained Ca 2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca 2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury.

    Science.gov (United States)

    Imarisio, Chiara; Alchera, Elisa; Bangalore Revanna, Chandrashekar; Valente, Guido; Follenzi, Antonia; Trisolini, Elena; Boldorini, Renzo; Carini, Rita

    2017-11-01

    Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Assessment of hepatocyte and kupffer cell function using Tc-99m DISIDA/Tc-99m tin colloid in thioacetamide-induced liver injury

    International Nuclear Information System (INIS)

    Ahn, B. C.; Chun, K. A.; Lee, J.; Lee, K. B.

    1997-01-01

    Toxic liver injury is not unusual in clinical field and liver biopsy is one of the most accurate method to define the severity of liver injury. But occasionally, it is impossible to obtain liver tissue in patients with acute toxic liver injury. The aim of this study is to evaluate the possibility of liver scintigraphy with Tc-99m DISIDA or Tc-99m tin colloid as a non-invasive tool in predicting functional status of hepatocyte and Kupffer cell and severity of liver injury. Intraperitoneal injection of thioacetamide was performed to make acute liver injury in mice and rats, and liver status was assessed by pathologic specimen and scintigraphic methods. Scintigraphic evaluation were performed by biodistribution of Tc-99m DISIDA or Tc-99m tin colloid in thioacetamide-treated mice. Liver time-activity curves were generated. Comparison between histologic data and scintigraphic data was done with SAS program. Thioacetamide-treated mice demonstrated hepatocyte necrosis in histologic examination and low liver/blood uptake ratios in biodistribution studies using both radiotracers. Biodistribution study using Tc-99m tin colloid revealed increased lung radioactivity in thioacetamide-treated mice. Twenty-four hours after thioacetamide administration, thioacetamide-treated rats demonstrated maximal hepatocyte necrosis and inflammation in histologic finding and delayed maximal uptake time (Tmax) and prolonged half time (T 1/2 ) of liver time-activity curve in liver scintigraphy. Histologic results and scintigraphic data were well correlated, and these two scintigraphic parameters (Tmax T 1/2 ) seemed to be good predictors of histologic change of liver. These data showed that liver injury could be assessed by non-invasive scintigraphic study in rat and mouse. This experimental study might be used as a animal model to evaluate the liver protecting drugs, and this scintigraphic study could be applied to acute toxic hepatitis for assessment of liver status in men

  8. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2016-10-01

    Full Text Available Abstract Background Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. Methods In this study, we established an arterialized mouse non-heart-beating (NHB liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion. Results MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation. Conclusion Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.

  9. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    Science.gov (United States)

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  10. Targeting population heterogeneity for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Carlqvist, Magnus; Helmark, S.

    the heterogeneity level of the population. To further investigate these phenomena and gain a deeper understanding of population heterogeneity, Saccharomyces cerevisiae growth reporter strains based on the expression of green fluorescent protein (GFP) were constructed which enabled us to perform single cell level...... analysis, and thereby created the possibility to map population heterogeneity. A factorial design with pH, glucose concentration and oxygen level was performed in batch cultivations using the growth reporter strains to evaluate the effect of those environmental factors on heterogeneity level and amount......To achieve an efficient production process, it is essential to optimize both the strain and the cultivation conditions. Traditionally, a microbial population has been considered homogeneous in optimization studies of fermentation processes. However, research has shown that a typical microbial...

  11. Phenotype heterogeneity in cancer cell populations

    International Nuclear Information System (INIS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-01-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  12. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  13. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  14. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  15. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  16. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  17. Cell plasticity and heterogeneity in cancer.

    Science.gov (United States)

    Marjanovic, Nemanja D; Weinberg, Robert A; Chaffer, Christine L

    2013-01-01

    Heterogeneity within a given cancer arises from diverse cell types recruited to the tumor and from genetic and/or epigenetic differences amongst the cancer cells themselves. These factors conspire to create a disease with various phenotypes. There are 2 established models of cancer development and progression to metastatic disease. These are the clonal evolution and cancer stem cell models. The clonal evolution theory suggests that successive mutations accumulating in a given cell generate clonal outgrowths that thrive in response to microenvironmental selection pressures, dictating the phenotype of the tumor. The alternative cancer stem cell (CSC) model suggests that cancer cells with similar genetic backgrounds can be hierarchically organized according to their tumorigenic potential. Accordingly, CSCs reside at the apex of the hierarchy and are thought to possess the majority of a cancer's tumor-initiating and metastatic ability. A defining feature of this model is its apparent unidirectional nature, whereby CSCs undergo symmetric division to replenish the CSC pool and irreversible asymmetric division to generate daughter cells (non-CSCs) with low tumorigenic potential. However, evolving evidence supports a new model of tumorigenicity, in which considerable plasticity exists between the non-CSC and CSC compartments, such that non-CSCs can reacquire a CSC phenotype. These findings suggest that some tumors may adhere to a plastic CSC model, in which bidirectional conversions are common and essential components of tumorigenicity. Accumulating evidence surrounding the plasticity of cancer cells, in particular, suggests that aggressive CSCs can be created de novo within a tumor. Given the current focus on therapeutic targeting of CSCs, we discuss the implications of non-CSC-to-CSC conversions on the development of future therapies. © 2012 American Association for Clinical Chemistry

  18. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  19. Adjoint spectrum calculation in fuel heterogeneous cells

    International Nuclear Information System (INIS)

    Suster, Luis Carlos

    1998-01-01

    In most codes for cells calculation, the multigroup cross sections are generated taking into consideration the conservation of the reaction rates in the forward spectrum. However, for certain uses of the perturbation theory it's necessary to use the average of the parameters for energy macrogroups over the forward and the adjoint spectra. In this thesis the adjoint spectrum was calculated from the adjoint neutron balance equations, that were obtained for a heterogeneous unit cell. The collision probabilities method was used to obtain these equations. In order optimize the computational run-time, the Gaussian quadrature method was used in the calculation of the neutron balance equations, forward and adjoint. This method of integration was also used for the Doppler broadening functions calculation, necessary for obtaining the energy dependent cross sections. In order to calculate the reaction rates and the average cross sections, using both the forward and the adjoint neutron spectra, the most important resonances of the U 238 were considered. The results obtained with the method show significant differences for the different cross sections weighting schemes. (author)

  20. Sampling strategies to capture single-cell heterogeneity

    OpenAIRE

    Satwik Rajaram; Louise E. Heinrich; John D. Gordan; Jayant Avva; Kathy M. Bonness; Agnieszka K. Witkiewicz; James S. Malter; Chloe E. Atreya; Robert S. Warren; Lani F. Wu; Steven J. Altschuler

    2017-01-01

    Advances in single-cell technologies have highlighted the prevalence and biological significance of cellular heterogeneity. A critical question is how to design experiments that faithfully capture the true range of heterogeneity from samples of cellular populations. Here, we develop a data-driven approach, illustrated in the context of image data, that estimates the sampling depth required for prospective investigations of single-cell heterogeneity from an existing collection of samples. ...

  1. In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells

    NARCIS (Netherlands)

    Fluiter, K.; van der Westhuijzen, D. R.; van Berkel, T. J.

    1998-01-01

    High density lipoprotein cholesteryl esters (HDL-CE) are selectively taken up by liver parenchymal cells without parallel apolipoprotein uptake. This selective uptake route forms an important step in the so-called reverse cholesterol transport. Scavenger receptor BI (SR-BI) is the only known HDL

  2. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....

  3. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Minnema-Luiting, Jorien; Vroman, Heleen; Aerts, Joachim; Cornelissen, Robin

    2018-03-30

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.

  4. Origins and implications of pluripotent stem cell variability and heterogeneity

    Science.gov (United States)

    Cahan, Patrick; Daley, George Q.

    2014-01-01

    Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field. PMID:23673969

  5. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations

    Science.gov (United States)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  6. Origins and implications of pluripotent stem cell variability and heterogeneity

    OpenAIRE

    Cahan, Patrick; Daley, George Q.

    2013-01-01

    Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent...

  7. The many faces of hematopoietic stem cell heterogeneity

    Science.gov (United States)

    2016-01-01

    Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity. PMID:27965438

  8. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cell Load Balancing in Heterogeneous Scenarios

    DEFF Research Database (Denmark)

    Eduardo, Simao; Rodrigues, Antonio; Mihovska, Albena D.

    2013-01-01

    . It jointly performs congestion control and inter-cell interference avoidance by means of a utility describing the cell's channel. Centralized and uncoordinated schemes are studied. The first is defined as an integer linear program, while the second builds on the best channel utility developed for the first...

  10. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    Science.gov (United States)

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  11. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.

    1979-01-01

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  12. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  13. Heterogeneous response of isolated adult rat heart cells to insulin

    International Nuclear Information System (INIS)

    Haworth, R.A.; Hunter, D.R.; Berkoff, H.A.

    1984-01-01

    3-O-Methylglucose uptake by Ca2+-resistant adult rat heart cells in suspension was measured, free of artifactual inhibitor-insensitive uptake, and with an accuracy of +/- 1.9% pellet water. (Ca2+-resistant cells are cells which retain their original rod-shaped morphology in the presence of physiological levels of Ca2+.) High levels of insulin (10(-6) M) stimulated the rate of 3-O-methylglucose uptake approximately 10-fold. In the presence of low levels of insulin (3 X 10(-11) M, 10(-10) M) uptake was biphasic; it could not be described by a single exponential function within experimental error, but required the sum of two exponentials. Deviation from a single exponential function was not so great with high levels of insulin (10(-6) M) or no insulin. Cell sugar uptake was also investigated using autoradiography of cells which had accumulated [2-14C]deoxyglucose under similar conditions. This showed considerable heterogeneity of 2-deoxyglucose uptake by cells treated with low levels of insulin, but significantly less heterogeneity of 2-deoxyglucose uptake by cells treated with high levels of insulin. It is concluded that the deviation of 3-O-methylglucose uptake from a single exponential observed at low insulin levels can be accounted for in terms of a heterogeneous response of cells to insulin

  14. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T.

    1991-01-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients

  15. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  16. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  17. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    Directory of Open Access Journals (Sweden)

    Jan Krivanek

    2017-06-01

    Full Text Available Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.

  18. Interpreting heterogeneity in intestinal tuft cell structure and function.

    Science.gov (United States)

    Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob; Coffey, Robert J; Lau, Ken S

    2018-05-01

    Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.

  19. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  20. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  1. Functional heterogeneity of side population cells in skeletal muscle

    International Nuclear Information System (INIS)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2006-01-01

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31 - CD45 - SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31 - CD45 - SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31 - CD45 - SP cells participate in muscle regeneration

  2. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  3. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  4. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  5. Ciliary heterogeneity within a single cell: the Paramecium model.

    Science.gov (United States)

    Aubusson-Fleury, Anne; Cohen, Jean; Lemullois, Michel

    2015-01-01

    Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity. Copyright © 2015. Published by Elsevier Inc.

  6. Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Guedes, Ana M V; Henrique, Domingos; Abranches, Elsa

    2016-01-01

    Mouse Embryonic Stem cells (mESCs) show heterogeneous and dynamic expression of important pluripotency regulatory factors. Single-cell analysis has revealed the existence of cell-to-cell variability in the expression of individual genes in mESCs. Understanding how these heterogeneities are regulated and what their functional consequences are is crucial to obtain a more comprehensive view of the pluripotent state.In this chapter we describe how to analyze transcriptional heterogeneity by monitoring gene expression of Nanog, Oct4, and Sox2, using single-molecule RNA FISH in single mESCs grown in different cell culture medium. We describe in detail all the steps involved in the protocol, from RNA detection to image acquisition and processing, as well as exploratory data analysis.

  7. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.

    Science.gov (United States)

    Yu, Vionnie W C; Yusuf, Rushdia Z; Oki, Toshihiko; Wu, Juwell; Saez, Borja; Wang, Xin; Cook, Colleen; Baryawno, Ninib; Ziller, Michael J; Lee, Eunjung; Gu, Hongcang; Meissner, Alexander; Lin, Charles P; Kharchenko, Peter V; Scadden, David T

    2016-11-17

    Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  9. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    Directory of Open Access Journals (Sweden)

    Anna Meilana

    2015-08-01

    Full Text Available BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin, it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis. SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play

  10. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    Science.gov (United States)

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  11. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.

    Science.gov (United States)

    Melo-Gonzalez, Felipe; Hepworth, Matthew R

    2017-03-01

    Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR + ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  12. Mass spectrometric production of heterogeneous metal clusters using Knudsen cell

    Directory of Open Access Journals (Sweden)

    Veljković Filip M.

    2016-01-01

    Full Text Available Knudsen effusion mass spectrometry or high-temperature method of mass spectrometry for decades gives new information about saturated vapor of hardly volatile compounds and it is an important method in the discovery of many new molecules, radicals, ions and clusters present in the gas phase. Since pioneering works until now, this method has been successfully applied to a large number of systems (ores, oxides, ceramics, glass materials, borides, carbides, sulfides, nitrates, metals, fullerenes, etc which led to the establishment of various research branches such as chemistry of clusters. This paper describes the basic principles of Knudsen cell use for both identification of chemical species created in the process of evaporation and determination of their ionization energies. Depending on detected ions intensities and the partial pressure of each gaseous component, as well as on changes in partial pressure with temperature, Knudsen cell mass spectrometry enables the determination of thermodynamic parameters of the tested system. A special attention is paid to its application in the field of small heterogeneous and homogeneous clusters of alkali metals. Furthermore, experimental results for thermodynamic parameters of some clusters, as well as capabilities of non-standard ways of using Knudsen cells in the process of synthesis of new clusters are presented herein. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  13. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  14. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Hendriksen, Morten; Sørensen, Preben Graae

    2013-01-01

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredict...

  15. Yeast cells contain a heterogeneous population of peroxisomes that segregate asymmetrically during cell division

    NARCIS (Netherlands)

    Kumar, Sanjeev; de Boer, Rinse; van der Klei, Ida J

    2018-01-01

    Here we used fluorescence microscopy and a peroxisome-targeted tandem fluorescent protein timer to determine the relative age of peroxisomes in yeast. Our data indicate that yeast cells contain a heterogeneous population of relatively old and younger peroxisomes. During budding the peroxisome

  16. Experimental methods and modeling techniques for description of cell population heterogeneity

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Nierychlo, M.; Lundin, L.

    2011-01-01

    With the continuous development, in the last decades, of analytical techniques providing complex information at single cell level, the study of cell heterogeneity has been the focus of several research projects within analytical biotechnology. Nonetheless, the complex interplay between environmen......With the continuous development, in the last decades, of analytical techniques providing complex information at single cell level, the study of cell heterogeneity has been the focus of several research projects within analytical biotechnology. Nonetheless, the complex interplay between...

  17. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-gamma.

    Science.gov (United States)

    Coppen, S R; Newsam, R; Bull, A T; Baines, A J

    1995-04-20

    The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.

  18. CellPilot: Seamless communication within Cell BE and heterogeneous clusters

    International Nuclear Information System (INIS)

    Girard, N; Carter, J; Gardner, W B; Grewal, G

    2010-01-01

    The Pilot library is targeted to novice scientific programmers within High Performance Computing. The CellPilot library extends the Pilot library to the Cell Broadband Engine processor and heterogeneous clusters. Using Pilot's process and channel abstractions, the CellPilot library can create a process on any of the processor types, both PPEs and SPEs, across the cluster. Communication is achieved by creating a channel between any two processes, and using the write/read channel functions in the participating processes. The CellPilot library uses MPI for the inter-node communication and the Cell SDK within a Cell node. All the architecture specific details of Cell communications are hidden from the user.

  19. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    Science.gov (United States)

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-04-17

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5+ cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5+ cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. NERON-Computing system for PHWR reactor cells and heterogeneous parameter calculations

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Slavnicu, S.D.

    1976-04-01

    A system of codes for PHWR type reactors is presented. The system includes the cell code NERO and a code PARETE for monopolar and dipolar heterogeneous calculations. A general theory of dipolar flux is necessary for a more accurate evaluation of void coefficient and diffusion moderator coefficient is given. The determination of monopolar and dipolar heterogeneous parameters is very useful for heterogeneous methods developped especially for HWR reactors during the last years. (author)

  1. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0251 TITLE: “Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA...Heterogeneity in Metabolic Disease Using Single- Cell RNA-Seq 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Linus Tzu-Yen...ABSTRACT We have developed a robust protocol to generate single cell transcriptional profiles from subcutaneous adipose tissue samples of both human

  2. Supervised learning methods in modeling of CD4+ T cell heterogeneity

    OpenAIRE

    Lu, Pinyi; Abedi, Vida; Mei, Yongguo; Hontecillas, Raquel; Hoops, Stefan; Carbo, Adria; Bassaganya-Riera, Josep

    2015-01-01

    Background Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into T...

  3. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  4. Heterogeneity of smooth muscle cells in tunica media of aorta in ...

    African Journals Online (AJOL)

    ... of the tunica media of goat aorta are phenotypically heterogeneous and run in multiple directions. These characteristics probably confer mechanical strength and functional plasticity to the aortic wall. Designers of aortic substitutes should bear this in mind. Keywords: Vascular, Smooth Muscle Cells, Heterogeneity, Aorta ...

  5. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression.

    Science.gov (United States)

    Lin, Che-Yi; Tsai, Ming-Yuan; Liu, Yu-Hsiu; Lu, Yu-Fen; Chen, Yi-Chung; Lai, Yun-Ren; Liao, Hsin-Chi; Lien, Huang-Wei; Yang, Chung-Hsiang; Huang, Chang-Jen; Hwang, Sheng-Ping L

    2017-07-17

    Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed

  6. Cell wall heterogeneity in root development of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Marc Somssich

    2016-08-01

    Full Text Available Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signalling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modelling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.

  7. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells.

    Science.gov (United States)

    Hald, Bjørn Olav; Garkier Hendriksen, Morten; Sørensen, Preben Graae

    2013-05-15

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredictable. In heterogeneous populations, synchronization of events becomes a cardinal problem-particularly for phase coherence in oscillating systems. The present article presents a novel strategy for construction of large-scale simulation programs of heterogeneous biological entities. The strategy is designed to be tractable, to handle heterogeneity and to handle computational cost issues simultaneously, primarily by writing a generator of the 'model to be simulated'. We apply the strategy to model glycolytic oscillations among thousands of yeast cells coupled through the extracellular medium. The usefulness is illustrated through (i) benchmarking, showing an almost linear relationship between model size and run time, and (ii) analysis of the resulting simulations, showing that contrary to the experimental situation, synchronous oscillations are surprisingly hard to achieve, underpinning the need for tools to study heterogeneity. Thus, we present an efficient strategy to model the biological heterogeneity, neglected by ordinary mean-field models. This tool is well posed to facilitate the elucidation of the physiologically vital problem of synchronization. The complete python code is available as Supplementary Information. bjornhald@gmail.com or pgs@kiku.dk Supplementary data are available at Bioinformatics online.

  8. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  9. Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Ishikawa, Ken-ichi; Kawai, Seiko; Koyama-Saegusa, Kumiko; Ishikawa, Atsuko; Imai, Takashi; Shimada, Yutaka; Inazawa, Johji

    2005-01-01

    Morphologically heterogeneous colonies were formed from a cultured cell line (KYSE70) established from one human esophageal carcinoma tissue. Two subclones were separated from a single clone (clone 13) of KYSE70 cells. One subclone (clone 13-3G) formed mainly mounding colonies and the other (clone 13-6G) formed flat, diffusive colonies. X-irradiation stimulated the cells to dedifferentiate from the mounding state to the flat, diffusive state. Clone 13-6G cells were more radiosensitive than the other 3 cell lines. Clustering analysis for gene expression level by oligonucleotide microarray demonstrated that in the radiosensitive clone 13-6G cells, expression of genes involved in cell adhesion was upregulated, but genes involved in the response to DNA damage stimulus were downregulated. The data demonstrated that a single cancer cell had the potential to produce progeny heterogeneous in terms of morphology, radiation sensitivity and gene expression, and irradiation enhanced the dedifferentiation of cancer cells. (author)

  10. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    Science.gov (United States)

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  11. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  12. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    OpenAIRE

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-01-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic ...

  13. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    Science.gov (United States)

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-02-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells.

  14. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    Directory of Open Access Journals (Sweden)

    Jeong-Gyun Kim

    Full Text Available Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  15. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    Science.gov (United States)

    Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  16. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone.

    Science.gov (United States)

    Rushing, Gabrielle; Ihrie, Rebecca A

    2016-08-01

    The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including

  17. Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus.

    Science.gov (United States)

    Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi

    2018-04-01

    Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  18. Non-genetic heterogeneity, criticality and cell differentiation.

    Science.gov (United States)

    Pal, Mainak; Ghosh, Sayantari; Bose, Indrani

    2014-11-27

    The different cell types in a living organism acquire their identity through the process of cell differentiation in which multipotent progenitor cells differentiate into distinct cell types. Experimental evidence and analysis of large-scale microarray data establish the key role played by a two-gene motif in cell differentiation in a number of cell systems. The two genes express transcription factors which repress each other's expression and autoactivate their own production. A number of theoretical models have recently been proposed based on the two-gene motif to provide a physical understanding of how cell differentiation occurs. In this paper, we study a simple model of cell differentiation which assumes no cooperativity in the regulation of gene expression by the transcription factors. The latter repress each other's activity directly through DNA binding and indirectly through the formation of heterodimers. We specifically investigate how deterministic processes combined with stochasticity contribute in bringing about cell differentiation. The deterministic dynamics of our model give rise to a supercritical pitchfork bifurcation from an undifferentiated stable steady state to two differentiated stable steady states. The stochastic dynamics of our model are studied using the approaches based on the Langevin equations and the linear noise approximation. The simulation results provide a new physical understanding of recent experimental observations. We further propose experimental measurements of quantities like the variance and the lag-1 autocorrelation function in protein fluctuations as the early signatures of an approaching bifurcation point in the cell differentiation process.

  19. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    Science.gov (United States)

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  20. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir

    2008-01-01

    development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...... are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can...

  1. Functional heterogeneity and heritability in CHO cell populations.

    Science.gov (United States)

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and

  2. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  3. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    ... types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression ...

  4. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  5. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  6. Targeting population heterogeneity in Saccharomyces cerevisiae batch fermentation for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    )). Significant gradients of e.g. dissolved oxygen, substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells experience rapid changes in environmental conditions as they circulate throughout the reactor, which might pose stress on the cells...... and affect their metabolism and consequently affect the heterogeneity level of the population. To further investigate these phenomena and gain a deeper understanding of population heterogeneity, Saccharomyces cerevisiae growth reporter strains based on the expression of green fluorescent protein (GFP) were...... environmental factors on heterogeneity level and amount of living cells. A highly dynamic behavior with regard to subpopulation distribution during the different growth stages was seen for the batch cultivations. Moreover, it could be demonstrated that the glucose concentration had a clear influence...

  7. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  8. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.

    Science.gov (United States)

    Liu, Mingshan; Liu, Yang; Di, Jiabo; Su, Zhe; Yang, Hong; Jiang, Beihai; Wang, Zaozao; Zhuang, Meng; Bai, Fan; Su, Xiangqian

    2017-11-23

    Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity (ITH) of rectal tumors. We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at the multi-region and the single-cell levels. A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naïve from the same molecular subtype are quite different. Our results suggest each tumor possesses its own architecture, which may result in different diagnosis, prognosis, and drug responses. Remarkable ITH exists in the two patients we have studied, providing a preliminary impression of ITH in rectal cancer.

  9. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  10. Single-Cell RNA-Seq Reveals Transcriptional Heterogeneity in Latent and Reactivated HIV-Infected Cells.

    Science.gov (United States)

    Golumbeanu, Monica; Cristinelli, Sara; Rato, Sylvie; Munoz, Miguel; Cavassini, Matthias; Beerenwinkel, Niko; Ciuffi, Angela

    2018-04-24

    Despite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle toward HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV-infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation. Our analysis identified transcriptional programs leading to successful reactivation of HIV expression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  13. Reversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Lina; Abou-Antoun, Thamara; Vukmanovic, Stanislav; Sandler, Anthony D., E-mail: asandler@childrensnational.org [The Joseph E. Robert Center for Surgical Care, Children’s National Medical Center, Washington, DC (United States); The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC (United States)

    2012-08-02

    We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity, and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin, and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic, and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  14. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  15. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    Science.gov (United States)

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  16. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  17. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Directory of Open Access Journals (Sweden)

    David P Stonko

    Full Text Available Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of

  18. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Science.gov (United States)

    Stonko, David P; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E

    2015-01-01

    Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.

  19. Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments.

    Science.gov (United States)

    van den Ham, H-J; Andeweg, A C; de Boer, R J

    2013-11-01

    Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses. © 2013 John Wiley & Sons Ltd.

  20. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Science.gov (United States)

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  1. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-10-01

    Full Text Available We systematically studied the expression of more than fifty histone and DNA (demethylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.

  2. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    Science.gov (United States)

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  3. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Michelle M. Logsdon

    2018-03-01

    Full Text Available Model bacteria, such as E. coli and B. subtilis, tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  4. SinCHet: a MATLAB toolbox for single cell heterogeneity analysis in cancer.

    Science.gov (United States)

    Li, Jiannong; Smalley, Inna; Schell, Michael J; Smalley, Keiran S M; Chen, Y Ann

    2017-09-15

    Single-cell technologies allow characterization of transcriptomes and epigenomes for individual cells under different conditions and provide unprecedented resolution for researchers to investigate cellular heterogeneity in cancer. The SinCHet ( gle ell erogeneity) toolbox is developed in MATLAB and has a graphical user interface (GUI) for visualization and user interaction. It analyzes both continuous (e.g. mRNA expression) and binary omics data (e.g. discretized methylation data). The toolbox does not only quantify cellular heterogeneity using S hannon P rofile (SP) at different clonal resolutions but also detects heterogeneity differences using a D statistic between two populations. It is defined as the area under the P rofile of S hannon D ifference (PSD). This flexible tool provides a default clonal resolution using the change point of PSD detected by multivariate adaptive regression splines model; it also allows user-defined clonal resolutions for further investigation. This tool provides insights into emerging or disappearing clones between conditions, and enables the prioritization of biomarkers for follow-up experiments based on heterogeneity or marker differences between and/or within cell populations. The SinCHet software is freely available for non-profit academic use. The source code, example datasets, and the compiled package are available at http://labpages2.moffitt.org/chen/software/ . ann.chen@moffitt.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Non-invasive quality evaluation of confluent cells by image-based orientation heterogeneity analysis.

    Science.gov (United States)

    Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji

    2016-02-01

    In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2016-01-01

    and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular......Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional...... and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures...

  7. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals.

    Science.gov (United States)

    Li, J; Gonzalez, J M; Walker, D K; Hersom, M J; Ealy, A D; Johnson, S E

    2011-06-01

    Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.

  8. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    Science.gov (United States)

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  9. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    International Nuclear Information System (INIS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Park, Joong Yull; Kang, AhRan; Lee, Sang-Hoon; Takayama, Shuichi

    2015-01-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm 2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis. (paper)

  10. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  11. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals

    Directory of Open Access Journals (Sweden)

    Anetzberger Claudia

    2012-09-01

    Full Text Available Abstract Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection and exoproteolytic activity (fluorescence of a promoter::gfp fusion, in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  12. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity.

    Science.gov (United States)

    Hamidouche, Zahia; Rother, Karen; Przybilla, Jens; Krinner, Axel; Clay, Denis; Hopp, Lydia; Fabian, Claire; Stolzing, Alexandra; Binder, Hans; Charbord, Pierre; Galle, Joerg

    2017-03-01

    The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704. © The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals.

    Science.gov (United States)

    Anetzberger, Claudia; Schell, Ursula; Jung, Kirsten

    2012-09-18

    Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter::gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  14. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells.

    Science.gov (United States)

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo

    2015-10-01

    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A review of recent progress in heterogeneous silicon tandem solar cells

    Science.gov (United States)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  16. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    Science.gov (United States)

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with

  17. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  18. Does heterogeneity of pimonidazole labelling correspond to the heterogeneity of radiation-response of FaDu human squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Yaromina, Ala; Hoelscher, Tobias; Eicheler, Wolfgang; Rosner, Andrea; Krause, Mechthild; Hessel, Franziska; Petersen, Cordula; Thames, Howard D.; Baumann, Michael; Zips, Daniel

    2005-01-01

    Background and purpose: Pimonidazole is a marker for hypoxic cells which are radioresistant and thereby important for the outcome of radiotherapy. The present study evaluates heterogeneity in pimonidazole binding within and between tumours and relates the results to the heterogeneity of radiation response in the same tumour cell line. Materials and methods: FaDu, a poorly differentiated human squamous cell carcinoma line, was transplanted subcutaneously into the right hind-leg of NMRI nude mice. Tumours were irradiated with graded single doses either under ambient or clamped blood flow conditions and local tumour control was evaluated after 120 days. Complete dose-response curves for local tumour control were generated and the slope, a measure of heterogeneity of radiation response, was determined. In parallel, 12 unirradiated tumours were examined histologically. Seven serial 10 μm cross-sections per tumour were evaluated using fluorescence microscopy and computerised image analysis to determine the pimonidazole hypoxic fraction (pHF). Heterogeneity in pHF was quantified by its coefficient of variation (CV). Poisson-based model calculations considering the intertumoural heterogeneity of pHF were performed and the slopes of the predicted and the observed dose-response curves were compared. Results: The mean pHF was 11% [CV 50%] when one central section per tumour was evaluated. Measurements of multiple sections per tumour resulted in a mean pHF of 12% [CV 46%] (P=0.7). Intertumoural heterogeneity in pHF was more pronounced than heterogeneity in individual tumours by a factor of 2. Model calculations based on the variability in pHF resulted in similar slopes of the dose-response curve for local tumour control in comparison with the observed slope when the heterogeneity in an unknown and arbitrarily chosen additional radiobiologically relevant parameter, in this example clonogen density, was taken into account. Conclusions: While the average pimonidazole hypoxic

  19. Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Fraser I. Young

    2016-01-01

    Full Text Available Cellular heterogeneity presents an important challenge to the development of cell-based therapies where there is a fundamental requirement for predictable and reproducible outcomes. Transplanted Dental Pulp Stem/Progenitor Cells (DPSCs have demonstrated early promise in experimental models of spinal cord injury and stroke, despite limited evidence of neuronal and glial-like differentiation after transplantation. Here, we report, for the first time, on the ability of single cell-derived clonal cultures of murine DPSCs to differentiate in vitro into immature neuronal-like and oligodendrocyte-like cells. Importantly, only DPSC clones with high nestin mRNA expression levels were found to successfully differentiate into Map2 and NF-positive neuronal-like cells. Neuronally differentiated DPSCs possessed a membrane capacitance comparable with primary cultured striatal neurons and small inward voltage-activated K+ but not outward Na+ currents were recorded suggesting a functionally immature phenotype. Similarly, only high nestin-expressing clones demonstrated the ability to adopt Olig1, Olig2, and MBP-positive immature oligodendrocyte-like phenotype. Together, these results demonstrate that appropriate markers may be used to provide an early indication of the suitability of a cell population for purposes where differentiation into a specific lineage may be beneficial and highlight that further understanding of heterogeneity within mixed cellular populations is required.

  20. Regional heterogeneity of endothelial cells in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Cringle, Stephen J; Morgan, William H; Yu, Dao-Yi

    2013-09-01

    The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Human Innate Lymphoid Cell Subsets Possess Tissue-Type Based Heterogeneity in Phenotype and Frequency

    DEFF Research Database (Denmark)

    Simoni, Yannick; Fehlings, Michael; Kloverpris, Henrik N.

    2017-01-01

    Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors...... to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells...... that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals...

  2. Heterogeneity in white blood cells has potential to confound DNA methylation measurements.

    Directory of Open Access Journals (Sweden)

    Bjorn T Adalsteinsson

    Full Text Available Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179 and in two white blood cell fractions (n = 20, isolated using density gradient centrifugation, in four CGIs (CpG Islands located in genes HHEX (10 CpG sites assayed, KCNJ11 (8 CpGs, KCNQ1 (4 CpGs and PM20D1 (7 CpGs. Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter explained up to 40% (p<0.0001 of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.

  3. Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68

    Science.gov (United States)

    Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.

    2015-01-01

    CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997

  4. Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation

    Science.gov (United States)

    Kalasin, Surachate

    signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.

  5. Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer

    DEFF Research Database (Denmark)

    Mezheyeuski, Artur; Lindh, Maja Bradic; Guren, Tormod Kyrre

    2016-01-01

    of vessel characteristics and PC, which was applied to two collections of human metastatic colorectal cancer (mCRC).Initial analyses identified marker-defined subsets of PC, including cells expressing PDGFR-β or α-SMA or both markers. PC subsets were largely independently expressed in a manner unrelated......Perivascular cells (PC) were recently implied as regulators of metastasis and immune cell activity. Perivascular heterogeneity in clinical samples, and associations with other tumor features and outcome, remain largely unknown.Here we report a novel method for digital quantitative analyses...... to vessel density and size. Association studies implied specific oncogenic mutations in malignant cells as determinants of PC status. Semi-quantitative and digital-image-analyses-based scoring of the NORDIC-VII cohort identified significant associations between low expression of perivascular PDGFR-α and -β...

  6. Application of phasor plot and autofluorescence correction for study of heterogeneous cell population

    Science.gov (United States)

    Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.

    2014-01-01

    Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662

  7. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory

    Science.gov (United States)

    Uematsu, Akira; Tan, Bao Zhen

    2015-01-01

    Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494

  8. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells.

    Directory of Open Access Journals (Sweden)

    Amin El-Heliebi

    Full Text Available The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold and U-CH1 (3.7-fold cells. The mannosyltransferase ALG11 (695-fold and the phosphatase subunit PPP2CB (18.6-fold were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology.

  9. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Directory of Open Access Journals (Sweden)

    Carlos Díaz-Castillo

    2017-11-01

    Full Text Available Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications.

  10. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Science.gov (United States)

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  11. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  12. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

    Science.gov (United States)

    Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K

    2017-03-03

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6  cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

  13. Functions of Heterogeneous Nuclear Ribonucleoproteins in Stem Cell Potency and Differentiation

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.

  14. GoIFISH: a system for the quantification of single cell heterogeneity from IFISH images.

    Science.gov (United States)

    Trinh, Anne; Rye, Inga H; Almendro, Vanessa; Helland, Aslaug; Russnes, Hege G; Markowetz, Florian

    2014-08-26

    Molecular analysis has revealed extensive intra-tumor heterogeneity in human cancer samples, but cannot identify cell-to-cell variations within the tissue microenvironment. In contrast, in situ analysis can identify genetic aberrations in phenotypically defined cell subpopulations while preserving tissue-context specificity. GoIFISHGoIFISH is a widely applicable, user-friendly system tailored for the objective and semi-automated visualization, detection and quantification of genomic alterations and protein expression obtained from fluorescence in situ analysis. In a sample set of HER2-positive breast cancers GoIFISHGoIFISH is highly robust in visual analysis and its accuracy compares favorably to other leading image analysis methods. GoIFISHGoIFISH is freely available at www.sourceforge.net/projects/goifish/.

  15. Heterogeneity within the spleen colony-forming cell population in rat bone marrow

    International Nuclear Information System (INIS)

    Martens, A.C.; van Bekkum, D.W.; Hagenbeek, A.

    1986-01-01

    The pluripotent hemopoietic stem cell (HSC) of the rat can be enumerated in a spleen colony assay (SCA) in rats as well as mice. After injection of rat bone marrow into lethally irradiated mice, macroscopically visible spleen colonies (CFU-S) are found from day 6 through 14, but the number varies on consecutive days. In normal bone marrow a constant ratio of day-8 to day-12 colony numbers is observed. However, this ratio is changed after in vivo treatment of rats with cyclophosphamide, as well as after in vitro treatment of rat bone marrow with cyclophosphamide derivatives. This indicates that the CFU-S that form colonies on day 8 react differently to this treatment than the CFU-S that form colonies on day 12, and suggests heterogeneity among the CFU-S population. Posttreatment regrowth of day-8 and day-12 CFU-S is characterized by differences in population-doubling times (Td = 0.85 days vs 1.65 days). Another argument in support of the postulate of heterogeneity within the rat CFU-S population is derived from the fact that (in contrast to normal rat spleen) the spleen of leukemic rats contains high numbers of CFU-S that show a ratio of day-8 to day-12 CFU-S of 4.5, which is different than that observed for a CFU-S population in normal bone marrow (a ratio of 2.4). It is concluded that, in rat hemopoiesis, two populations of spleen colony-forming cells can be distinguished using the rat-to-mouse SCA. This indicates that mouse and rat hemopoiesis are comparable in this respect and that heterogeneity in the stem cell compartment is a general phenomenon

  16. Heterogeneity of astrocytes: from development to injury - single cell gene expression.

    Directory of Open Access Journals (Sweden)

    Vendula Rusnakova

    Full Text Available Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50. The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20 was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50. Within 14 days after ischemia (D3, D7, D14, additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3, transcriptionally active early reactive glia (mainly from D7 and permanent reactive glia (solely from D14. Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.

  17. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  18. Calculation of the thermal utilization factor in a heterogeneous slab cell scattering neutrons anisotropically

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, A M; Elsherbiny, E M; Sobhy, M [Reactor departement, nuclear research centre, Inshaas, (Egypt)

    1995-10-01

    The P{sub n}-spatial expansion method has been used for calculating the one speed transport utilization factor in heterogenous slab cells in which neutrons may scatter anisotropically; by considering the P{sup 1-} approximation with a two-term scattering kernel in both the fuel and moderator regions, an analytical expression for the disadvantage factor has been derived. The numerical results obtained have been shown to be much better than those calculated by the usual P{sup 1-} and P{sup 3-} approximations and comparable with those obtained by some exact methods. 3 tabs.

  19. AFG-MONSU. A program for calculating axial heterogeneities in cylindrical pin cells

    International Nuclear Information System (INIS)

    Neltrup, H.; Kirkegaard, P.

    1978-08-01

    The AGF-MONSU program complex is designed to calculate the flux in cylindrical fuel pin cells into which heterogeneities are introduced in a regular array. The theory - integral transport theory combined with Monte Carlo by help of a superposition principle - is described in some detail. Detailed derivation of the superposition principle as well as the formulas used in the DIT (Discrete Integral Transport) method is given in the appendices along with a description of the input structure of the AFG-MONSU program complex. (author)

  20. Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification.

    Directory of Open Access Journals (Sweden)

    Olivier Espitia

    Full Text Available Vascular calcification is a strong and independent predictive factor for cardiovascular complications and mortality. Our previous work identified important discrepancies in plaque composition and calcification types between carotid and femoral arteries. The objective of this study is to further characterize and understand the heterogeneity in vascular calcification among vascular beds, and to identify molecular mechanisms underlying this process. We established ECLAGEN biocollection that encompasses human atherosclerotic lesions and healthy arteries from different locations (abdominal, thoracic aorta, carotid, femoral, and infrapopliteal arteries for histological, cell isolation, and transcriptomic analysis. Our results show that lesion composition differs between these locations. Femoral arteries are the most calcified arteries overall. They develop denser calcifications (sheet-like, nodule, and are highly susceptible to osteoid metaplasia. These discrepancies may derive from intrinsic differences between SMCs originating from these locations, as microarray analysis showed specific transcriptomic profiles between primary SMCs isolated from each arterial bed. These molecular differences translated into functional disparities. SMC from femoral arteries showed the highest propensity to mineralize due to an increase in basal TGFβ signaling. Our results suggest that biological heterogeneity of resident vascular cells between arterial beds, reflected by our transcriptomic analysis, is critical in understanding plaque biology and calcification, and may have strong implications in vascular therapeutic approaches.

  1. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    Science.gov (United States)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  2. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Anna Babayan

    Full Text Available BACKGROUND: Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs. METHODS: A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. RESULTS: CTCs were detected in blood of 16 from 35 analyzed patients (46%, with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69% of the CTC positive cases, including blood samples with only ER-negative CTCs (19% and samples with both ER-positive and ER-negative CTCs (50%. No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. CONCLUSION: CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process.

  3. Heterogeneity of Estrogen Receptor Expression in Circulating Tumor Cells from Metastatic Breast Cancer Patients

    Science.gov (United States)

    Babayan, Anna; Hannemann, Juliane; Spötter, Julia; Müller, Volkmar

    2013-01-01

    Background Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER) positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs). Methods A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient) were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. Results CTCs were detected in blood of 16 from 35 analyzed patients (46%), with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69%) of the CTC positive cases, including blood samples with only ER-negative CTCs (19%) and samples with both ER-positive and ER-negative CTCs (50%). No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. Conclusion CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process. PMID:24058649

  4. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Carlo A Rossi

    2010-01-01

    Full Text Available Satellite cells (SCs represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC present in major proportion (approximately 75% and the high proliferative clones (HPC, present instead in minor amount (approximately 25%. LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m, ATP balance and Reactive Oxygen Species (ROS generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.

  5. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells

    Science.gov (United States)

    Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.

    2017-10-01

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  6. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity?

    Science.gov (United States)

    Frossi, Barbara; Mion, Francesca; Sibilano, Riccardo; Danelli, Luca; Pucillo, Carlo E M

    2018-03-01

    Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effects of ultraviolet irradiation and postirradiation incubation on heterogeneous nuclear RNA size in murine cells

    International Nuclear Information System (INIS)

    Ali, R.; Sauerbier, W.

    1978-01-01

    We have analyzed the decrease in synthesis of individual size classes of heterogeneous nuclear RNA (hnRNA) in ultraviolet (uv)-irradiated Merwin plasmacytoma (MPC-11) cells at various times of postirradiation incubation. HnRNA from nonirradiated control cells is distributed over a wide range from approximately 60S to 5S, with 42S RNA carrying more label than any other size class. HnRNA from uv-irradiated cells shows a dose-dependent shift in size distribution toward lower molecular weight. The size distribution of hnRNA synthesized after prolonged times of postirradiation incubation is restored toward normal, i.e., synthesis of long RNA molecules increases relative to the synthesis of short ones. Analysis of the total number of hnRNA chains synthesized during a 20-min [ 3 H]uridine pulse shows a considerable eduction in their number with increasing uv dose. Murine cell lines are excision-repair-deficient but capable of post replication repair inhibited by caffeine. HnRNA transcripts of cells incubated in its presence were studied. The caffeine, which has no effect on hnRNA size in control cells, inhibits to a considerable extent the restoration of full-length transcripts during postirradiation incubation. The lack of excision repair in MPC-11 was confirmed by the analysis of pyrimidine dimers in trichloracetic acid-insoluble and soluble fractions within 8 h of postirradiation incubation. The size of parental and daughter strand DNA in uv-irradiated cells was correlated with RNA transcript size. The parental DNA in these experiments does not change its size as a consequence of uv exposure and postirradiation incubation. In contrast, daughter DNA strands are short in uv-irradiated cells and they increase in size during postirradiation incubation to reach the size of parental strands after 8 h

  8. Transformation of Epithelial Ovarian Cancer Stemlike Cells into Mesenchymal Lineage via EMT Results in Cellular Heterogeneity and Supports Tumor Engraftment

    Science.gov (United States)

    Jiang, Hua; Lin, Xiaolong; Liu, Yingtao; Gong, Wenjia; Ma, Xiaoling; Yu, Yinhua; Xie, Yi; Sun, Xiaoxi; Feng, Youji; Janzen, Viktor; Chen, Tong

    2012-01-01

    Ovarian cancers are heterogeneous and contain stemlike cells that are able to self-renew and are responsible for sustained tumor growth. Metastasis in the peritoneal cavity occurs more frequently in ovarian cancer than in other malignancies, but the underlying mechanism remains largely unknown. We have identified that ovarian cancer stemlike cells (CSCs), which were defined as side population (SP) cells, were present in patients’ ascitic fluid and mesenchymally transformed cell lines, ES-2 and HO-8910PM. SP cells, which were sorted from both cell lines and implanted into immunocompromised mice, were localized to the xenografted tumor boundary. In addition, SP cells exhibited an epithelial phenotype and showed a distinct gene expression profile with reduced expression of cell adhesion molecules (CAMs), indicating that SP cells exert an important role in ovarian cancer progression on the basis of their delicate interaction with the surrounding microenvironment and anatomical localization in tumors. In contrast, non-SP cells exhibited a more mesenchymal phenotype and showed more increased invasive potential than SP cells. This heterogeneity was observed as an endogenous transformation via the epithelial–mesenchymal transition (EMT) process. Inhibition of the EMT process by Snail1 silencing reduced the SP cell frequency, and affected their invasive capacity and engraftment. These findings illustrate the interplay between epithelial ovarian CSCs and the EMT, and exert a link to explain tumor heterogeneity and its necessity for ovarian cancer maintenance, metastasis and progression. PMID:22801793

  9. Simian T Lymphotropic Virus 1 Infection of Papio anubis: tax Sequence Heterogeneity and T Cell Recognition.

    Science.gov (United States)

    Termini, James M; Magnani, Diogo M; Maxwell, Helen S; Lauer, William; Castro, Iris; Pecotte, Jerilyn; Barber, Glen N; Watkins, David I; Desrosiers, Ronald C

    2017-10-15

    Baboons naturally infected with simian T lymphotropic virus (STLV) are a potentially useful model system for the study of vaccination against human T lymphotropic virus (HTLV). Here we expanded the number of available full-length baboon STLV-1 sequences from one to three and related the T cell responses that recognize the immunodominant Tax protein to the tax sequences present in two individual baboons. Continuously growing T cell lines were established from two baboons, animals 12141 and 12752. Next-generation sequencing (NGS) of complete STLV genome sequences from these T cell lines revealed them to be closely related but distinct from each other and from the baboon STLV-1 sequence in the NCBI sequence database. Overlapping peptides corresponding to each unique Tax sequence and to the reference baboon Tax sequence were used to analyze recognition by T cells from each baboon using intracellular cytokine staining (ICS). Individual baboons expressed more gamma interferon and tumor necrosis factor alpha in response to Tax peptides corresponding to their own STLV-1 sequence than in response to Tax peptides corresponding to the reference baboon STLV-1 sequence. Thus, our analyses revealed distinct but closely related STLV-1 genome sequences in two baboons, extremely low heterogeneity of STLV sequences within each baboon, no evidence for superinfection within each baboon, and a ready ability of T cells in each baboon to recognize circulating Tax sequences. While amino acid substitutions that result in escape from CD8 + T cell recognition were not observed, premature stop codons were observed in 7% and 56% of tax sequences from peripheral blood mononuclear cells from animals 12141 and 12752, respectively. IMPORTANCE It has been estimated that approximately 100,000 people suffer serious morbidity and 10,000 people die each year from the consequences associated with human T lymphotropic virus (HTLV) infection. There are no antiviral drugs and no preventive vaccine. A

  10. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    Science.gov (United States)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group

  11. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  12. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  13. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  14. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  15. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  16. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  17. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus.

    Directory of Open Access Journals (Sweden)

    Jean-Claude Garaud

    Full Text Available Systemic lupus erythematosous (SLE is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and EGR1. However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum, and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can lead to human lupus.

  18. Results of investigations in a fast reactor configuration with a strong heterogeneous cell structure

    International Nuclear Information System (INIS)

    Lehmann, E.; Albert, D.; Dietze, K.; Faehrmann, K.; Hansen, W.; Huettel, G.; Wand, H.; Osmera, B.

    1984-11-01

    Investigations of the neutron flux spectrum, of the energy dependent importance function and of sample reactivities were performed in a fast reactor configuration characterized by a marked neutronic microstructure which is produced by the insertion of pellets of polyethylene and cadmium. Contrary to results of calculations with a homogenized composition, values obtained by means of the tree programs CARMEN, YARAB and P1X, developed in Rossendorf, agree well with measurements. Furthermore it could be shown that an adjoint weighting for the determination of cell-averaged values of the importance function is justified. In a configuration with larger heterogeneity induced by the aggregation of four uranium pellets significant spectral differences between uranium and material zones, respectively, show up in activation measurements as well as in sample reactivity determinations. (author)

  19. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    Science.gov (United States)

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  20. Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome.

    Directory of Open Access Journals (Sweden)

    Shahrzad Shirazi Fard

    Full Text Available Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.

  1. Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms.

    Science.gov (United States)

    Amantonico, Andrea; Urban, Pawel L; Fagerer, Stephan R; Balabin, Roman M; Zenobi, Renato

    2010-09-01

    Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.

  2. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation

    Directory of Open Access Journals (Sweden)

    Hisham Mohammed

    2017-08-01

    Full Text Available The mouse inner cell mass (ICM segregates into the epiblast and primitive endoderm (PrE lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.

  3. Effect of heterogeneity on the characterization of cell membrane compartments: I. Uniform size and permeability.

    Science.gov (United States)

    Hall, Damien

    2010-03-15

    Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis

  4. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics

    International Nuclear Information System (INIS)

    Chen, Weiqiang; Allen, Steven G.; Reka, Ajaya Kumar; Qian, Weiyi; Han, Shuo; Zhao, Jianing; Bao, Liwei; Keshamouni, Venkateshwar G.; Merajver, Sofia D.; Fu, Jianping

    2016-01-01

    Circulating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population. We developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples. Our CTC capture chip utilized the differential adhesion preference of cancer cells to nanoroughened etched glass surfaces as compared to normal blood cells and thus did not depend on the physical size or surface protein expression of CTCs. The microfluidic CTC capture chip was able to achieve a superior capture yield for both epithelial cell adhesion molecule positive (EpCAM+) and EpCAM- cancer cells in blood samples. Additionally, the microfluidic CTC chip captured CTCs undergoing transforming growth factor beta-induced epithelial-to-mesenchymal transition (TGF-β-induced EMT) with dynamically down-regulated EpCAM expression. In a mouse model of human breast cancer using EpCAM positive and negative cell lines, the number of CTCs captured correlated positively with the size of the primary tumor and was independent of their EpCAM expression. Furthermore, in a syngeneic mouse model of lung cancer using cell lines with differential metastasis capability, CTCs were captured from all mice with detectable primary tumors independent of the cell lines’ metastatic ability. The microfluidic CTC capture chip using a novel nanoroughened glass substrate is broadly applicable to capturing heterogeneous CTC populations of clinical interest independent of their surface marker expression and metastatic propensity. We were able to capture CTCs from a non-metastatic lung cancer model, demonstrating the potential of the chip to collect the entirety of CTC populations including subgroups of distinct biological and phenotypical properties. Further

  5. Mast cell heterogeneity and anti-inflammatory annexin A1 expression in leprosy skin lesions.

    Science.gov (United States)

    Costa, Maurício B; Mimura, Kallyne K O; Freitas, Aline A; Hungria, Emerith M; Sousa, Ana Lúcia O M; Oliani, Sonia M; Stefani, Mariane M A

    2018-03-29

    Mast cells (MCs) have important immunoregulatory roles in skin inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory protein that can be expressed by mast cells, neutrophils, eosinophils, monocytes, epithelial and T cells. This study investigated MCs heterogeneity and ANXA1 expression in human dermatoses with special emphasis in leprosy. Sixty one skin biopsies from 2 groups were investigated: 40 newly diagnosed untreated leprosy patients (18 reaction-free, 11 type 1 reaction/T1R, 11 type 2 reaction/T2R); 21 patients with other dermatoses. Tryptase/try+ and chymase/chy + phenotypic markers and toluidine blue stained intact/degranulated MC counts/mm 2 were evaluated. Try + /chy + MCs and ANXA1 were identified by streptavidin-biotin-peroxidase immunostaining and density was reported. In leprosy, degranulated MCs outnumbered intact ones regardless of the leprosy form (from tuberculoid/TT to lepromatous/LL), leprosy reactions (reactional/reaction-free) and type of reaction (T1R/T2R). Compared to other dermatoses, leprosy skin lesions showed lower numbers of degranulated and intact MCs. Try + MCs outnumbered chy + in leprosy lesions (reaction-free/reactional, particularly in T2R), but not in other dermatoses. Compared to other dermatoses, ANXA1 expression, which is also expressed in mast cells, was higher in the epidermis of leprosy skin lesions, independently of reactional episode. In leprosy, higher MC degranulation and differential expression of try + /chy + subsets independent of leprosy type and reaction suggest that the Mycobacterium leprae infection itself dictates the inflammatory MCs activation in skin lesions. Higher expression of ANXA1 in leprosy suggests its potential anti-inflammatory role to maintain homeostasis preventing tissue and nerve damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells.

    Science.gov (United States)

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Iemura, Masashi; Kohara, Arihiro

    2016-06-01

    Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Evaluation of three-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell carcinoma and its significance].

    Science.gov (United States)

    Zhou, Hui; Liu, Jinkang; Chen, Shengxi; Xiong, Zeng; Zhou, Jianhua; Tong, Shiyu; Chen, Hao; Zhou, Moling

    2012-06-01

    To explore the degree, mechanism and clinical significance of three-dimensional tumor microvascular architecture phenotype heterogeneity (3D-TMAPH) in non-small cell carcinoma (NSCLC). Twenty-one samples of solitary pulmonary nodules were collected integrally. To establish two-dimensional tumor microvascular architecture phenotype (2D-TMAP) and three-dimensional tumor microvascular architecture phenotype (3D-TMAP), five layers of each nodule were selected and embedded in paraffin. Test indices included the expressions of vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), EphB4, ephfinB2 and microvascular density marked by anti-CD34 (CD34-MVD). The degrees of 3D-TMAPH were evaluated by the coefficient of variation and extend of heterogeneity. Spearman rank correlation analysis was used to investigate the relationships between 2D-TMAP, 3D-TMAP and clinicopathological features. 3D-TMAPH showed that 2D-TMAP heterogeneity was expressed in the tissues of NSCLC. The heterogeneities in the malignant nodules were significantly higher than those in the active inflammatory nodules and tubercular nodules. In addition, different degrees of heterogeneity of CD34-MVD and PCNA were found in NSCLC tissues. The coefficients of variation of CD34- MVD and PCNA were positively related to the degree of differentiation (all P0.05). The level of heterogeneity of various expression indexes (ephrinB2, EphB4, VEGF) in NSCLC tissues were inconsistent, but there were no significant differences in heterogeneity in NSCLC tissues with different histological types (P>0.05). 3D-TMAPH exists widely in the microenvironment during the genesis and development of NSCLC and has a significant impact on its biological complexity.

  8. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  9. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

    Science.gov (United States)

    Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V

    2018-06-13

    Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.

  10. Dynamic single-cell analysis of Saccharomyces cerevisiae under process perturbation: Comparison of different methods for monitoring the intensity of population heterogeneity

    DEFF Research Database (Denmark)

    Delvigne, Frank; Baert, Jonathan; Gofflot, Sébastien

    2015-01-01

    BACKGROUND: Single cell biology has attracted a lot of attention in recent years and has led to numerous fundamental results pointing out the heterogeneity of clonal cell populations. In this context, microbial phenotypic heterogeneity under bioprocessing conditions needs to be further investigat...

  11. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells.

    Science.gov (United States)

    Han, Z C; Du, W J; Han, Z B; Liang, L

    2017-01-01

    Mesenchymal stem cells (MSCs) are being tested in several biological systems and clinical settings with the aim of exploring their therapeutic potentials for a variety of diseases. MSCs are also known to be heterogeneous populations with variable functions. In the context of this multidimensional complexity, a recurrent question is what source or population of MSCs is suitable for specific clinical indications. Here, we reported that the biological features of MSCs varied with the individual donor, the tissue source, the culture condition and the subpopulations. Placental chorionic villi (CV) derived MSCs exhibited superior activities of immunomodulation and pro-angiogenesis compared to MSCs derived from bone marrow (BM), adipose and umbilical cord (UC). We identified a subpopulation of CD106(VCAM-1)+MSCs, which are present richly in placental CV, moderately in BM, and lowly in adipose and UC. The CD106+MSCs possess significantly increased immunomodutory and pro-angiogenic activities compared to CD106-MSCs. Analysis of gene expression and cytokine secretion revealed that CD106+MSCs highly expressed several immnumodulatory and pro-angiogenic cytokines. Our data offer new insights on the identification and selection of suitable source or population of MSCs for clinical applications. Further efforts should be concentrated on standardizing methods which will ultimately allow the validation of MSC products with defined biomarkers as predictive of potency in suitable pre-clinical models and clinical settings.

  12. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells

    Science.gov (United States)

    Jiang, Chuanpeng; Zhang, Pengpeng

    2018-02-01

    Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.

  13. Comparative evaluation of optical methods and conventional isotope techniques for the detection of insulin receptors in heterogenous cell systems

    International Nuclear Information System (INIS)

    Thun, C.

    1984-01-01

    The findings of studies using radioactively labelled (I-125) insulin to characterise its binding to various heterogenous cell systems had led to a classification of the relevant receptors with those of high affinity and low capacity or vice versa. This, in turn, raised questions as to the binding properties of each individual cell or cell material of a heterogenous nature. Apparently homogenous (lymphocytes) and heterogenous (blood and islet cells) cell populations were investigated on the basis of various techniques for the separate evaluation of individual cells, which were cytofluorometry using FITC insulin and the analysis of gold insulin under the electron microscope. For the association kinetics and equilibration analysis or affinity and receptor quantity a radioactive tracer and light microscope were used. Insulin was shown to bind to erythrocytes, reticulocytes, monocytes and lymphocytes and this result finds confirmation in the relevant literature. Furthermore, binding parameters could be determined for isolated islet cells. Cytofluorometry pointed to the fact that the insulin receptors of an apparently homogenous cell system differed in affinity and number and permitted the use of a multiple parameter procedure. Thus, it holds out promise as a method to be routinely used in the clinical diagnosis of binding parameters, without requiring previous separation procedures that are complicated or involve a loss of material. Transmission electron microscopy permitted conclusions to be drawn as to the type of cell to which insulin is attached. Owing to the use of gold insulin it was possible to throw some light on the factors determining the fate of membrane-bound insulin during its uptake into the cell. (TRV) [de

  14. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

    Science.gov (United States)

    Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory

    2017-01-07

    Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

  15. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations

    International Nuclear Information System (INIS)

    Wong, Nelson K Y; Fuller, Megan; Sung, Sandy; Wong, Fred; Karsan, Aly

    2012-01-01

    Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors, but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue, we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct, which inhibits signaling through all Notch receptors, and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease, but not a complete abrogation, of these cells in dnMAML-expressing cells. Interestingly, when assessed in secondary assays in vitro or in vivo, there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool, which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population

  16. Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients.

    Science.gov (United States)

    Onsum, Matthew D; Geretti, Elena; Paragas, Violette; Kudla, Arthur J; Moulis, Sharon P; Luus, Lia; Wickham, Thomas J; McDonagh, Charlotte F; MacBeath, Gavin; Hendriks, Bart S

    2013-11-01

    Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. N-methylation of the heterogeneous nuclear ribonucleoproteins in HeLa cells

    International Nuclear Information System (INIS)

    Rieker, J.P.

    1984-01-01

    Several of the core proteins on the 40S heterogeneous nuclear ribonucleoprotein particles (hnRNP) from HeLa cells contain N/sup G/,N/sup G/-dimethyl-L-arginine (uDMA). 3-deazaadenosine (c 3 Ado), an inhibitor of and substrate for s-adenosyl-L-homocysteine hydrolase, has been used to study the methylation patterns of the individual polypeptides. Trimethyllysine and uDMA formation in total cellular protein were inhibited in the presence of the drug while other methylated basic amino acids were unaffected. This inhibition was reversed within 60 min after removal of the drug from the medium. Monolayer HeLa cultures were incubated with [methyl- 3 H]-L-methoinine for 12 hours in the presence of 50 uM c 3 Ado. Purified particles were obtained by centrifugation of nuclear extracts on sucrose density gradients. The core proteins were isolated by two-dimensional gel electrophoresis, acid hydrolyzed and analyzed for radioactivity incorporated into methionine and methylated basic amino acids. The ratio of radioactivity incorporated into uDMA relative to that into methionine for the two major particle proteins with molecular weights of 31,000 (A 1 ) and 43,000 (A 2 ) was about 2.0 and 0.2 in control cultures. In the presence of c 3 Ado, these ratios were depressed 60 to 80%. Results of pulse-chase experiments suggested that A 1 and A 2 are metabolically stable proteins (t/sub 0.5/ > 75 hr), whether or not the proteins were undermethylated. Monomethyl-L-arginine may be a precursor in the formation of u-DMA

  18. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma.

    Science.gov (United States)

    Glas, Martin; Coch, Christoph; Trageser, Daniel; Dassler, Juliane; Simon, Matthias; Koch, Philipp; Mertens, Jerome; Quandel, Tamara; Gorris, Raphaela; Reinartz, Roman; Wieland, Anja; Von Lehe, Marec; Pusch, Annette; Roy, Kristin; Schlee, Martin; Neumann, Harald; Fimmers, Rolf; Herrlinger, Ulrich; Brüstle, Oliver; Hartmann, Gunther; Besch, Robert; Scheffler, Björn

    2013-06-01

    Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain. Copyright © 2013 AlphaMed Press.

  19. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  20. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  1. A study on cell heterogeneity effects in the Monju core. Evaluation using the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Morohashi, Yuko; Ishibashi, Junichi; Nishi, Hiroshi

    2002-03-01

    The criticality analysis of the MONJU initial critical core was conducted based on conventional methods developed by the JUPITER program. Effective cross sections were created, considering self-shielding effects, from the JAERI Fast Set (JFS-3-J3.2); group constants in 70 energy groups, which were processed from the Japanese Evaluated Nuclear Data Library (JENDL-3.2). These were used in the standard calculation method: a 3-Dimensional Hexagonal-Z whole core calculation by diffusion theory. This standard calculation, however, involves several approximations. The continuous neutron energy spectrum is divided into 70 discrete energy groups and continuous spatial coordinates are represented by assembly-wise spatial meshes. Original transport equations are solved by diffusion theory (isotropic scattering) approximation and fine structures in fuel assemblies, such as fuel pins or wrapper tubes, are processed into cell-wise homogeneous mixture. To improve the accuracy of the results, these approximations are compensated for by applying corresponding correction factors. Cell heterogeneity effects, among them, were evaluated to be 0.3-0.4% Δk/kk' by diffusion calculations based on the group constants, obtained by heterogeneous cell model calculations. This method, however, has the drawback that it assumes that there is no interdependency of the related approximations; energy grouping, diffusion approximation, etc. A study on cell heterogeneity effects has been conducted using the continuous energy Monte Carlo method to validate the adequacy of this non-interdependency assumption. As a result, cell heterogeneity effects slightly larger than those from conventional methods have been obtained: 0.54% Δk/kk' for the initial critical core, and 0.50% Δk/kk' for the initial full power core. Dependency on plutonium enrichment and fuel temperature has also been identified, which implies the dependency of the cell heterogeneity effects on the specific core conditions. Grouping

  2. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    Directory of Open Access Journals (Sweden)

    Rachid A. El-Aouar Filho

    2017-05-01

    Full Text Available Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.

  3. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  4. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  5. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival

    International Nuclear Information System (INIS)

    Ganeshan, Balaji; Miles, Ken; Panayiotou, Elleny; Burnand, Kate; Dizdarevic, Sabina

    2012-01-01

    To establish the potential for tumour heterogeneity in non-small cell lung cancer (NSCLC) as assessed by CT texture analysis (CTTA) to provide an independent marker of survival for patients with NSCLC. Tumour heterogeneity was assessed by CTTA of unenhanced images of primary pulmonary lesions from 54 patients undergoing 18 F-fluorodeoxyglucose (FDG) PET-CT for staging of NSCLC. CTTA comprised image filtration to extract fine, medium and coarse features with quantification of the distribution of pixel values (uniformity) within the filtered images. Receiver operating characteristics identified thresholds for PET and CTTA parameters that were related to patient survival using Kaplan-Meier analysis. The median (range) survival was 29.5 (1-38) months. 24, 10, 14 and 6 patients had tumour stages I, II, III and IV respectively. PET stage and tumour heterogeneity assessed by CTTA were significant independent predictors of survival (PET stage: Odds ratio 3.85, 95% confidence limits 0.9-8.09, P = 0.002; CTTA: Odds ratio 56.4, 95% confidence limits 4.79-666, p = 0.001). SUV was not a significantly associated with survival. Assessment of tumour heterogeneity by CTTA of non-contrast enhanced images has the potential for to provide a novel, independent predictor of survival for patients with NSCLC. (orig.)

  6. Energy Efficient Pico Cell Range Expansion and Density Joint Optimization for Heterogeneous Networks with eICIC

    Directory of Open Access Journals (Sweden)

    Yanzan Sun

    2018-03-01

    Full Text Available Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells, have been deemed a promising paradigm to support the deluge of data traffic with higher spectral efficiency and Energy Efficiency (EE. In order to deploy pico cells in reality, the density of Pico Base Stations (PBSs and the pico Cell Range Expansion (CRE are two important factors for the network spectral efficiency as well as EE improvement. However, associated with the range and density evolution, the inter-tier interference within the heterogeneous architecture will be challenging, and the time domain Enhanced Inter-cell Interference Coordination (eICIC technique becomes necessary. Aiming to improve the network EE, the above factors are jointly considered in this paper. More specifically, we first derive the closed-form expression of the network EE as a function of the density of PBSs and pico CRE bias based on stochastic geometry theory, followed by a linear search algorithm to optimize the pico CRE bias and PBS density, respectively. Moreover, in order to realize the pico CRE bias and PBS density joint optimization, a heuristic algorithm is proposed to achieve the network EE maximization. Numerical simulations show that our proposed pico CRE bias and PBS density joint optimization algorithm can improve the network EE significantly with low computational complexity.

  7. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis.

    Science.gov (United States)

    Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma

    2018-03-15

    Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic

  8. The heterogeneous response method applied to couple the average pin cell and bulk moderator in cluster geometry

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1986-01-01

    The first step towards evaluation of the neutron flux throughout a fuel cluster usually consists of obtaining the multigroup flux distribution in the average pin cell and in the circular outside system of shroud and bulk moderator. Here, an application of the so-called heterogeneous response method (HRM) is described to find this multigroup flux. The rather complex geometry is reduced to a microsystem, the average pin cell, and the outside or macrosystem of shroud and bulk moderator. In each of these systems, collision probabilities are used to obtain their response fluxes caused by sources and in-currents. The two systems are then coupled by cosine currents across that fraction of the average pin-cell boundary, called 'window', that represents the average common boundary between pin cells and the outside system. (author)

  9. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Science.gov (United States)

    Janardhanan, Vinod M.; Deutschmann, Olaf

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.

  10. Imaging Tumor Response and Tumoral Heterogeneity in Non-Small Cell Lung Cancer Treated With Antiangiogenic Therapy: Comparison of the Prognostic Ability of RECIST 1.1, an Alternate Method (Crabb), and Image Heterogeneity Analysis.

    Science.gov (United States)

    Yip, Connie; Tacelli, Nunzia; Remy-Jardin, Martine; Scherpereel, Arnaud; Cortot, Alexis; Lafitte, Jean-Jacques; Wallyn, Frederic; Remy, Jacques; Bassett, Paul; Siddique, Musib; Cook, Gary J R; Landau, David B; Goh, Vicky

    2015-09-01

    We aimed to assess computed tomography (CT) intratumoral heterogeneity changes, and compared the prognostic ability of the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, an alternate response method (Crabb), and CT heterogeneity in non-small cell lung cancer treated with chemotherapy with and without bevacizumab. Forty patients treated with chemotherapy (group C) or chemotherapy and bevacizumab (group BC) underwent contrast-enhanced CT at baseline and after 1, 3, and 6 cycles of chemotherapy. Radiologic response was assessed using RECIST 1.1 and an alternate method. CT heterogeneity analysis generating global and locoregional parameters depicting tumor image spatial intensity characteristics was performed. Heterogeneity parameters between the 2 groups were compared using the Mann-Whitney U test. Associations between heterogeneity parameters and radiologic response with overall survival were assessed using Cox regression. Global and locoregional heterogeneity parameters changed with treatment, with increased tumor heterogeneity in group BC. Entropy [group C: median -0.2% (interquartile range -2.2, 1.7) vs. group BC: 0.7% (-0.7, 3.5), P=0.10] and busyness [-27.7% (-62.2, -5.0) vs. -11.5% (-29.1, 92.4), P=0.10] showed a greater reduction in group C, whereas uniformity [1.9% (-8.0, 9.8) vs. -5.0% (-13.9, 5.6), P=0.10] showed a relative increase after 1 cycle but did not reach statistical significance. Two (9%) and 1 (6%) additional responders were identified using the alternate method compared with RECIST in group C and group BC, respectively. Heterogeneity parameters were not significant prognostic factors. The alternate response method described by Crabb identified more responders compared with RECIST. However, both criteria and baseline imaging heterogeneity parameters were not prognostic of survival.

  11. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Ah [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Young [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Oh, Keunhee; Lee, Dong-Sup [Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Transplantation Research Institute, Seoul National University College of Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Min Kyung; Kim, Seong Who [Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jang, Mi; Lee, Gene [Lab of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Oh, Yeon-Mok; Lee, Sang Do [Department of Pulmonary and Critical Care Medicine, Asthma Center and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Dong Soon, E-mail: soonlee@snu.ac.kr [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  12. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kim, Jung-Ah; Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok; Kim, Seon Young; Oh, Keunhee; Lee, Dong-Sup; Kim, Min Kyung; Kim, Seong Who; Jang, Mi; Lee, Gene; Oh, Yeon-Mok; Lee, Sang Do; Lee, Dong Soon

    2015-01-01

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  13. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir

    2008-01-01

    development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...

  14. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  15. A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix.

    Science.gov (United States)

    Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro

    2016-01-01

    Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image

  16. A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria employing fluorescent dyes.

    Directory of Open Access Journals (Sweden)

    Daria Tashyreva

    Full Text Available Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, 'dead cell' nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4',6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales, and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i active and intact; (ii injured but active; (iii metabolically inactive but intact; (iv inactive and injured, or dead.

  17. RELATIONSHIP BETWEEN EXPRESSION OF MATRIX METALLOPROTEINASES AND MORPHOLOGICAL HETEROGENEITY, TUMOR DIFFERENTIATION AND LYMPHOGENOUS METASTASIS OF SQUAMOUS CELL LARYNGEAL CARCINOMA

    Directory of Open Access Journals (Sweden)

    О. V. Savenkova

    2015-01-01

    Full Text Available The study included 58 patients with stage Т1–3N0–3M0–1 squamous cell laryngeal carcinoma. The age range was from 31 to 77 years. Patients received no cancer treatment before surgery. The expression of metalloproteinases (ММP-1, -2, -9, their inhibitors (TIMP-1, -2 and inductor of metalloproteinase expression (CD147 were determined in tumor cells of different structures of squamous cell carcinoma using immunohistochemical method. Results were compared with the presence of lymphogenous metastases. Results. Five morphological structures of squamous cell carcinomas were studied: with keratinization (type 1, with cells of basaloid and acanthocyte types without kartinization (type 2, with cells of basaloid type (type 3, with pronounced cellular polymorphism (type 4 and single tumor cells (type 5. With regard to combination of these structures, tumors were divided into high-grade, low-grade and mixed tumor structures. In tumors without lymphogenous metastases, the increased expression of ММP-1, -2, and-9 was only revealed in discrete cells. In tumors with lymphogenic metastases, the increased MMP-9 expression was observed in more differentiated structures of 1, 2 and 3 types. Less frequent lymphogenous metastasis of vocal cord carcinomas was associated only with tumors of mixed structure, in which the expression of TIMP1 was reduced.  Conclusion. To assess the histological differentiation of squamous cell carcinoma of the larynx, it should be considered a combination of high and low-grade tumor structures. The expression of metalloproteinases should be studied considering morphological heterogeneity of squamous cell carcinomas. The frequency of lymphogenous metastasis of high-or low-grade squamous cell carcinoma of the vocal cords did not differ from that of squamous cell carcinoma of the supra-glottal area. The frequency of lymphogenous metastasis was significantly lower in mixed squamous cell carcinomas of the vocal cords than in similar

  18. Green heterogeneous small-cell networks: Toward reducing the CO2 emissions of mobile communications industry using uplink power adaptation

    KAUST Repository

    Shakir, Muhammad Zeeshan; Qaraqe, Khalid A.; Tabassum, Hina; Alouini, Mohamed-Slim; Serpedin, Erchin; Imran, Muhammad Ali

    2013-01-01

    Heterogeneous small cell networks, or Het- SNets, are considered as a standard part of future mobile networks in which multiple lowpower low-cost user deployed base stations complement the existing macrocell infrastructure. This article proposes an energy-efficient deployment of the cells where the small cell base stations are arranged around the edge of the reference macrocell, and the deployment is referred to as cell-on-edge (COE) deployment. The proposed deployment ensures an increase in the network spectral and energy efficiency by facilitating cell edge mobile users with small cells. Moreover, COE deployment guarantees reduction of the carbon footprint of mobile operations by employing adaptive uplink power control. In order to calibrate the reduction in CO2 emissions, this article quantifies the ecological and associated economical impacts of energy savings in the proposed deployment. Simulation results quantify the improvements in CO2 emissions and spectral and energy gains of the proposed COE deployment compared to macro-only networks and typical small cell deployment strategies where small cells are randomly deployed within a given macrocell. © 2013 IEEE.

  19. Green heterogeneous small-cell networks: Toward reducing the CO2 emissions of mobile communications industry using uplink power adaptation

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-06-01

    Heterogeneous small cell networks, or Het- SNets, are considered as a standard part of future mobile networks in which multiple lowpower low-cost user deployed base stations complement the existing macrocell infrastructure. This article proposes an energy-efficient deployment of the cells where the small cell base stations are arranged around the edge of the reference macrocell, and the deployment is referred to as cell-on-edge (COE) deployment. The proposed deployment ensures an increase in the network spectral and energy efficiency by facilitating cell edge mobile users with small cells. Moreover, COE deployment guarantees reduction of the carbon footprint of mobile operations by employing adaptive uplink power control. In order to calibrate the reduction in CO2 emissions, this article quantifies the ecological and associated economical impacts of energy savings in the proposed deployment. Simulation results quantify the improvements in CO2 emissions and spectral and energy gains of the proposed COE deployment compared to macro-only networks and typical small cell deployment strategies where small cells are randomly deployed within a given macrocell. © 2013 IEEE.

  20. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  1. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  2. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  3. Micro-view-cell for phase behaviour and in situ Raman analysis of heterogeneously catalysed CO2 hydrogenation

    Science.gov (United States)

    Reymond, Helena; Rudolf von Rohr, Philipp

    2017-11-01

    The operando study of CO2 hydrogenation is fundamental for a more rational optimisation of heterogeneous catalyst and reactor designs. To further complement the established efficiency of microreactors in reaction screening and bridge the operating and optical gaps, a micro-view-cell is presented for Raman microscopy at extreme conditions with minimum flow interference for genuine reaction analysis. Based on a flat sapphire window unit sealed in a plug flow-type enclosure holding the sample, the cell features unique 14 mm working distance and 0.36 numerical aperture and resists 400 °C and 500 bars. The use of the cell as an in situ tool for fast process monitoring and surface catalyst characterisation is demonstrated with phase behaviour and chemical analysis of the methanol synthesis over a commercial Cu/ZnO/Al2O3 catalyst.

  4. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia

    DEFF Research Database (Denmark)

    Rosenberg, Tine; Aaberg-Jessen, Charlotte; Petterson, Stine Asferg

    2018-01-01

    AIM: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. MATERIALS & METHODS: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9...... and VEGF) and stem cell markers (CD133, nestin and musashi-1) were investigated by immunohistochemistry. RESULTS: Hypoxia markers as well as CD133 and partially nestin increased in long-term hypoxia. The proliferation rate and spheroid size were highest in normoxia. CONCLUSION: We found differences...... in hypoxia and stem cell marker profiles between the patient-derived glioblastoma cultures. This heterogeneity should be taken into consideration in development of future therapeutic strategies....

  5. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  6. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    Science.gov (United States)

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transcriptional profiling of dividing tumor cells detects intratumor heterogeneity linked to cell proliferation in a brain tumor model

    Czech Academy of Sciences Publication Activity Database

    Endaya, B.; Lam, P.Y.P.; Meedeniya, A.C.B.; Neužil, Jiří

    2016-01-01

    Roč. 10, č. 1 (2016), s. 126-137 ISSN 1574-7891 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Intratumor heterogeneity * Click chemistry * Proliferation * Gene profiling Subject RIV: FD - Oncology ; Hematology Impact factor: 5.314, year: 2016

  8. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.

    Science.gov (United States)

    Smith, Tyrel T; Moffett, Howell F; Stephan, Sirkka B; Opel, Cary F; Dumigan, Amy G; Jiang, Xiuyun; Pillarisetty, Venu G; Pillai, Smitha P S; Wittrup, K Dane; Stephan, Matthias T

    2017-06-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

  9. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    Science.gov (United States)

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated

  10. Heterogeneous vesicles in mucous epithelial cells of posterior esophagus of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2015-08-01

    Full Text Available The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultrastructural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E. Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM. The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i electron-lucent vesicles mucous cell (ELV-MC; ii electron-dense vesicles mucous cell (EDV-MC; and iii mixed vesicles mucous cell (MV-MC.

  11. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    Science.gov (United States)

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  12. A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Nan Sook Lee

    Full Text Available Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+ beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+ phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+ and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.

  13. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    International Nuclear Information System (INIS)

    Horio, M.; Collart, F.R.; Huberman, E.

    1993-01-01

    We investigated the role of reactive oxygen intermediates and protein kinase C (PKC) in induction of c-jun gene expression in human ML-2 leukemic cells and normal DET-551 fibroblasts by comparing the effects of either ionizing radiation or H 2 O 2 exposure in the presence or absence of appropriate inhibitors. In these cell types, the radiation and H 2 O 2 -mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, an antioxidant, or H7, an inhibitor of PKC and cAMP-dependent protein kinase (PKA), but not by HA1004, an inhibitor of PKA. These results suggest a role for PKC and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in radiation- or H 2 O 2 -induced c-jun gene expression in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma, and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H 2 O 2 . Exposure to radiation or to hydrogen peroxide produced a varied response which ranged from little or no induction to a more than two orders of magnitude increase in the steady-state level of the c-jun mRNA

  14. Population heterogeneity in the surface expression of Ulex europaeus I-lectin (UEA I)-binding sites in cultured malignant and transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, I.; Lehtonen, E.; Naervaenen, O.; Leivo, I.; Lehto, V.P.

    1985-11-01

    We studied the binding of fluorochrome-coupled Ulex europaeus I-lectin (UEA-I) to cultured malignant cells: all human malignant and transformed cells and also mouse teratocarcinoma cells examined gave a homogeneous cell membrane-type of surface staining only in some of the cells. Such a population heterogeneity appeared to be independent of the cell cycle. Instead, other lectin conjugates used bound homogeneously to all cell. In permeabilized cells, a juxtanuclear reticular staining of the Golgi apparatus was seen in the UEA-I-positive cells. No staining of the pericellular matrix components, produced by malignant cells grown in serum-free culture medium, could be obtained with TRITC-UEA-I. UEA-I-lectin recognized most polypeptides from A8387 fibrosarcoma cells and HeLa cells, metabolically labelled with (/sup 3/H)fucose. Furthermore, surface labelling of these cells with the neuraminidase-galactose oxidase/sodium borohydride method disclosed that both UEA-I and Ricinus communis agglutinin I revealed the same major surface glycoproteins. Results with metabolically labelled cells showed, in addition, that UEA-I-lectin did not bind to secreted glycoproteins produced by A8387 cells and recognized by other lectins. The results indicate that transformed and malignant cells show a distinct population heterogeneity in their expression of some cell surface-associated fucosyl glycoconjugates. The results also suggest that malignant cells can glycosylate their membrane and secreted glycoproteins in a different manner.

  15. Computational modeling of heterogeneity and function of CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Adria eCarbo

    2014-07-01

    Full Text Available The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation.

  16. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  17. Heterogeneity of Osteosarcoma Cell Lines Led to Variable Responses in Reprogramming

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture. PMID:25170299

  18. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M.; Deutschmann, Olaf [Institute for Chemical Technology and Polymer Chemistry, Engesserstr. 20, D-76131 Karlsruhe, University of Karlsruhe (TH) (Germany)

    2006-11-22

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH{sub 4} (3% H{sub 2} O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary. (author)

  19. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  20. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers.

    Science.gov (United States)

    Cleary, Allison S; Leonard, Travis L; Gestl, Shelley A; Gunther, Edward J

    2014-04-03

    Cancer genome sequencing studies indicate that a single breast cancer typically harbours multiple genetically distinct subclones. As carcinogenesis involves a breakdown in the cell-cell cooperation that normally maintains epithelial tissue architecture, individual subclones within a malignant microenvironment are commonly depicted as self-interested competitors. Alternatively, breast cancer subclones might interact cooperatively to gain a selective growth advantage in some cases. Although interclonal cooperation has been shown to drive tumorigenesis in fruitfly models, definitive evidence for functional cooperation between epithelial tumour cell subclones in mammals is lacking. Here we use mouse models of breast cancer to show that interclonal cooperation can be essential for tumour maintenance. Aberrant expression of the secreted signalling molecule Wnt1 generates mixed-lineage mammary tumours composed of basal and luminal tumour cell subtypes, which purportedly derive from a bipotent malignant progenitor cell residing atop a tumour cell hierarchy. Using somatic Hras mutations as clonal markers, we show that some Wnt tumours indeed conform to a hierarchical configuration, but that others unexpectedly harbour genetically distinct basal Hras mutant and luminal Hras wild-type subclones. Both subclones are required for efficient tumour propagation, which strictly depends on luminally produced Wnt1. When biclonal tumours were challenged with Wnt withdrawal to simulate targeted therapy, analysis of tumour regression and relapse revealed that basal subclones recruit heterologous Wnt-producing cells to restore tumour growth. Alternatively, in the absence of a substitute Wnt source, the original subclones often evolve to rescue Wnt pathway activation and drive relapse, either by restoring cooperation or by switching to a defector strategy. Uncovering similar modes of interclonal cooperation in human cancers may inform efforts aimed at eradicating tumour cell communities.

  1. Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2014-12-01

    This paper presents a tractable mathematical framework to analyze the spectral and energy efficiency of an operator initiated deployment of the small-cells (e.g., femtocells) where the small-cell base stations are deliberately positioned around the edge of the macrocell. The considered deployment facilitates the cell-edge mobile users in terms of their coverage, spectral, and energy efficiency and is referred to as cell-on-edge (COE) configuration. The reduction in energy consumption is achieved by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral efficiency and exact expressions for the energy efficiency of the mobile users in the considered COE configuration over generalized-K fading channels. Besides the COE configuration, the derived bounds are also shown to be useful in evaluating the performance of random small-cell deployments, e.g., uniformly distributed small-cells. Simulation results are presented to demonstrate the improvements in spectral and energy efficiency of the COE configuration with respect to macro-only networks and other unplanned deployment strategies. © 2014 Elsevier B.V. All rights reserved.

  2. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  3. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  4. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity.

    Science.gov (United States)

    Schillaci, Odessa; Fontana, Simona; Monteleone, Francesca; Taverna, Simona; Di Bella, Maria Antonietta; Di Vizio, Dolores; Alessandro, Riccardo

    2017-07-05

    The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.

  5. Phytosterols Promote Liver Injury and Kupffer Cell Activation in Parenteral Nutrition–Associated Liver Disease

    Science.gov (United States)

    El Kasmi, Karim C.; Anderson, Aimee L.; Devereaux, Michael W.; Vue, Padade M.; Zhang, Wujuan; Setchell, Kenneth D. R.; Karpen, Saul J.; Sokol, Ronald J.

    2014-01-01

    Parenteral nutrition–associated liver disease (PNALD) is a serious complication of PN in infants who do not tolerate enteral feedings, especially those with acquired or congenital intestinal diseases. Yet, the mechanisms underlying PNALD are poorly understood. It has been suggested that a component of soy oil (SO) lipid emulsions in PN solutions, such as plant sterols (phytosterols), may be responsible for PNALD, and that use of fish oil (FO)–based lipid emulsions may be protective. We used a mouse model of PNALD combining PN infusion with intestinal injury to demonstrate that SO-based PN solution causes liver damage and hepatic macrophage activation and that PN solutions that are FO-based or devoid of all lipids prevent these processes. We have furthermore demonstrated that a factor in the SO lipid emulsions, stigmasterol, promotes cholestasis, liver injury, and liver macrophage activation in this model and that this effect may be mediated through suppression of canalicular bile transporter expression (Abcb11/BSEP, Abcc2/MRP2) via antagonism of the nuclear receptors Fxr and Lxr, and failure of up-regulation of the hepatic sterol exporters (Abcg5/g8/ABCG5/8). This study provides experimental evidence that plant sterols in lipid emulsions are a major factor responsible for PNALD and that the absence or reduction of plant sterols is one of the mechanisms for hepatic protection in infants receiving FO-based PN or lipid minimization PN treatment. Modification of lipid constituents in PN solutions is thus a promising strategy to reduce incidence and severity of PNALD. PMID:24107776

  6. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation

    NARCIS (Netherlands)

    Bieghs, Veerle; Walenbergh, Sofie M. A.; Hendrikx, Tim; van Gorp, Patrick J.; Verheyen, Fons; Olde Damink, Steven W.; Masclee, Ad A.; Koek, Ger H.; Hofker, Marten H.; Binder, Christoph J.; Shiri-Sverdlov, Ronit

    Background & Aims: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation. The transition from steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Under normal conditions, lipoproteins that are

  7. Polar solvent modification of x ray induced potentially lethal damage in heterogeneous human colon tumor cells in vitro

    International Nuclear Information System (INIS)

    Arundel, C.M.; Leith, J.T.; Dexter, D.L.; Glicksman, A.S.

    1984-01-01

    Two subpopulations of tumor cells (clones A and D) obtained from a human colon adenocarcinoma were examined for their sensitivities to x-irradiation as unfed, early plateau phase cultures. Both the single dose survival curves and the kinetics of potentially lethal damage recovery (PLDR) were determined for the two tumor lines. Also, possible modification of PLDR by N,N-dimethylformamide (DMF), which has previously been shown to enhance the radiosensitivity of exponentially growing tumor cells, was investigated by adding DMF (0.8% v/v) to plateau phase cultures immediately after irradiation, and determining effects on the extent of PLDR. For non-DMF treated cells, the survival curve parameters of the diploid (clone D) and aneuploid (clone A) lines were very similar. Using initial survival levels of 3.5% (clone D) or 5.5% (clone A) to investigate PLDR, it was found that the increase in survival for clone D was 2.2, while the SFR for clone A was 1.6. DMF did not change either the kinetics or extent of PLDR in these two tumor lines when added to cultures immediately after irradiation. These results indicate that significant heterogeneity in PLDR exists between these closely related tumor subpopulations

  8. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch.

    Science.gov (United States)

    Walther, Jason; Lu, Jiuyi; Hollenbach, Myles; Yu, Marcella; Hwang, Chris; McLarty, Jean; Brower, Kevin

    2018-05-30

    In this study, we compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach was applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch, and ATF filtration for perfusion. Product concentration in fed-batch was 2.5 times greater than perfusion, while average productivity in perfusion was 7.5 times greater than fed-batch. PCA revealed more variability in the cell environment and metabolism during the fed-batch run. LDH measurements showed that exposure of product to cell lysate was 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also had higher purity and lower half-antibody. Glycosylation was similar across both culture modes. The first perfusion harvest slice for both product types showed different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial. This article is protected by copyright. All rights reserved.

  9. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    Science.gov (United States)

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates M.

  10. Combined Impact of Heterogeneous Lifetime and Gettering on Solar Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, A.; Wagner, H.; Hofstetter, J.; Avci, I.; Canizo, C.; Buonassisi, T.

    2015-03-23

    We couple numerical process and device simulations to provide a framework for understanding the combined effects of as-grown wafer impurity distribution, processing parameters, and solar cell architecture. For this study, we added the Impurity-to-Efficiency simulator to Synopsys’ Sentaurus Process software using the Alagator Scripting Language. Our results quantify how advanced processing can eliminate differences in efficiency due to different as-grown impurity concentrations and due to different area fractions of defective wafer regions. We identify combinations of as-grown impurity distributions and process parameters that produce solar cells limited by point defects and those that are limited by precipitated impurities. Gettering targeted at either point defect or precipitate reduction can then be designed and applied to increase cell efficiency. We also visualize the post-processing iron and total recombination distributions in 2D maps of the wafer cross-section. PV researchers and companies can input their initial iron distributions and processing parameters into our software and couple the resulting process simulation results with a solar cell device design of interest to conduct their own analyses. The Alagator scripts we developed are freely available online at http://pv.mit.edu/impurity-to-efficiency-i2e-simulator-for-sentaurus-tcad/.

  11. Effects of cell asymmetry on the performance of a large heterogeneous critical assembly

    International Nuclear Information System (INIS)

    Scholtyssek, W.; Humbert, G.; Martini, M.; Norvez, G.

    1981-09-01

    Calculations were performed to investigate asymmetry effects observed in the RACINE reference configuration. The perturbation sources -material shifts in fissile rodlet cells- were identified and influences on various experimental parameters were estimated. Improvements of the relatively simple methods used in this work could lead to applications, considering similar effects, in project calculations for large power reactor cores

  12. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga

    2015-01-01

    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrate...

  13. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  14. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    International Nuclear Information System (INIS)

    Sugimasa, Hironobu; Taniue, Kenzui; Kurimoto, Akiko; Takeda, Yasuko; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells

  15. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimasa, Hironobu; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Kurimoto, Akiko [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 (Japan); Takeda, Yasuko; Kawasaki, Yoshihiro [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2015-03-27

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells.

  16. Performance Analysis of enhanced Inter-cell Interference Coordination in LTE-Advanced Heterogeneous Networks

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus I.

    2012-01-01

    The performance of enhanced Inter-Cell Interference Coordination (eICIC) for Long Term Evolution (LTE)- Advanced with co-channel deployment of both macro and pico is analyzed. The use of pico-cell Range Extension (RE) and time domain eICIC (TDM muting) is combined. The performance is evaluated...... in the downlink by means of extensive system level simulations that follow the 3GPP guidelines. The overall network performance is analyzed for different number of pico-eNBs, transmit power levels, User Equipment (UE) distributions, and packet schedulers. Recommended settings of the RE offset and TDM muting ratio...... in different scenarios are identified. The presented performance results and findings can serve as input to guidelines for co-channel deployment of macro and pico-eNBs with eICIC....

  17. Heterogeneity of the radiosensitivity and origins of tissue macrophage colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Oghiso, Yoichi; Yamada, Yutaka (National Inst. of Radiological Sciences, Chiba (Japan))

    1992-12-01

    Previous studies suggest that the radiosensitivity and origin of tissue macrophage precursors differ from those of hemopoietic macrophage colony-forming units (CFU-Ms) committed to macrophage-lineage cells. We assessed the origins of tissue macrophage colony-forming cells (M-CFCs) in mice by comparing their kinetics and radiosensitivities in the normal steady state and under the conditions of bone marrow depletion by [sup 89]Sr-administration and/or splenectomy. The results indicate that the radiosensitive peritoneal M-CFCs elicited by thioglycollate are derived from bone marrow macrophage precursors; where as alveolar M-CFCs, which are radioresistant, are self-sustained locally and independent of hemopoietic macrophage precursors. In contrast, highly radiosensitive liver M-CFCs are probably derived from CFU-Ms that appear to be propagated in the spleen in association with hemopoietic responses. (author).

  18. Heterogeneity of Astrocytes: From Development to Injury - Single Cell Gene Expression

    Czech Academy of Sciences Publication Activity Database

    Rusňáková, Vendula; Honsa, Pavel; Džamba, Dávid; Stahlberg, A.; Kubista, Mikael; Anděrová, Miroslava

    2013-01-01

    Roč. 8, č. 8 (2013), e69734 E-ISSN 1932-6203 R&D Projects: GA ČR GA13-02154S Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50390703 Keywords : Single cell expression profiling * astrocytes * GenEx Subject RIV: EB - Genetics ; Molecular Biology; FH - Neurology (UEM-P) Impact factor: 3.534, year: 2013

  19. Determining space-energy distribution of thermal neutrons in heterogeneous cylindrically symmetric reactor cell, Master Thesis

    International Nuclear Information System (INIS)

    Matausek, M. V.

    1966-06-01

    A combination of multigroup method and P 3 approximation of spherical harmonics method was chosen for calculating space-energy distribution of thermal neutron flux in elementary reactor cell. Application of these methods reduced solution of complicated transport equation to the problem of solving an inhomogeneous system of six ordinary firs-order differential equations. A procedure is proposed which avoids numerical solution and enables analytical solution when applying certain approximations. Based on this approach, computer codes were written for ZUSE-Z-23 computer: SIGMA code for calculating group constants for a given material; MULTI code which uses results of SIGMA code as input and calculates spatial ana energy distribution of thermal neutron flux in a reactor cell. Calculations of thermal neutron spectra for a number of reactor cells were compared to results available from literature. Agreement was satisfactory in all the cases, which proved the correctness of the applied method. Some possibilities for improving the precision and acceleration of the calculation process were found during calculation. (author)

  20. Tumor cell heterogeneity in Small Cell Lung Cancer (SCLC: phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT and DNA methylation changes.

    Directory of Open Access Journals (Sweden)

    Alexander Krohn

    Full Text Available Small Cell Lung Cancer (SCLC is a specific subtype of lung cancer presenting as highly metastatic disease with extremely poor prognosis. Despite responding initially well to chemo- or radiotherapy, SCLC almost invariably relapses and develops resistance to chemotherapy. This is suspected to be related to tumor cell subpopulations with different characteristics resembling stem cells. Epithelial-Mesenchymal Transition (EMT is known to play a key role in metastatic processes and in developing drug resistance. This is also true for NSCLC, but there is very little information on EMT processes in SCLC so far. SCLC, in contrast to NSCLC cell lines, grow mainly in floating cell clusters and a minor part as adherent cells. We compared these morphologically different subpopulations of SCLC cell lines for EMT and epigenetic features, detecting significant differences in the adherent subpopulations with high levels of mesenchymal markers such as Vimentin and Fibronectin and very low levels of epithelial markers like E-cadherin and Zona Occludens 1. In addition, expression of EMT-related transcription factors such as Snail/Snai1, Slug/Snai2, and Zeb1, DNA methylation patterns of the EMT hallmark genes, functional responses like migration, invasion, matrix metalloproteases secretion, and resistance to chemotherapeutic drug treatment all differed significantly between the sublines. This phenotypic variability might reflect tumor cell heterogeneity and EMT during metastasis in vivo, accompanied by the development of refractory disease in relapse. We propose that epigenetic regulation plays a key role during phenotypical and functional changes in tumor cells and might therefore provide new treatment options for SCLC patients.

  1. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    Science.gov (United States)

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed. Copyright © 2014. Published by Elsevier B.V.

  2. Inter and Intratumour Heterogeneity: A Barrier to Individualized Medical Therapy in Renal Cell Carcinoma?

    International Nuclear Information System (INIS)

    Fisher, Rosalie; Larkin, James; Swanton, Charles

    2012-01-01

    There are nearly 9000 new diagnoses of renal cell carcinoma (RCC) each year in the United Kingdom, and nearly 60,000 in the United States (Jemal et al., 2010; UK, 2011; Jemal et al., 2010; Cancer Research UK, 2011). Nephrectomy for localized disease may be curative, but ∼50% of patients present with or subsequently develop metastatic disease (Motzer et al., 1996; Leibovich et al., 2003), which is inevitably fatal. In general, these patients require palliative systemic therapy, but metastatic RCC (mRCC) has historically been refractory to cytotoxic and hormonal therapy (Harris, 1983; Yagoda and Bander, 1989). Prior to 2007, immunotherapy with interferon-alpha or interleukin-2 was the mainstay of treatment, with modest benefits at best (Motzer et al., 2002b; Coppin et al., 2005). Since then, seven molecularly targeted agents have been approved for use in mRCC, all of which have been shown in phase III randomized clinical trials to improve disease control and which now represent the standards of care (Escudier et al., 2007a,b; Hudes et al., 2007; Motzer et al., 2007, 2010; Rini et al., 2008, 2011; Sternberg et al., 2010). Sunitinib, sorafenib, pazopanib, and axitinib are orally administered inhibitors of multiple tyrosine kinase receptors, with variable affinity for the vascular endothelial growth factor receptor (VEGF-R), and provide tumor control through suppression of angiogenesis, as does the monoclonal antibody to VEGF, bevacizumab. Temsirolimus and everolimus are mammalian target of rapamycin (mTOR) inhibitors; the mTOR pathway is a key component of the PI3K/Akt pathway which mediates tumor cell proliferation and survival via cell cycle regulatory proteins (Schmelzle and Hall, 2000; Fingar et al., 2004) and is also thought to influence angiogenesis (Del Bufalo et al., 2006; Thomas et al.,). A therapeutic approach which targets critical biological signaling pathways has clearly been the most successful strategy to treat mRCC to date, however, anti-VEGF and anti

  3. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, Jeroen E. J.; Hovenga, Sjoerd; Vellenga, Edo; Bos, Nicolaas A.

    2004-01-01

    Multiple Myeloma (MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome. Although

  4. Heterogeneity in the multiple myeloma tumor clone

    NARCIS (Netherlands)

    Guikema, JEJ; Hovenga, S; Vellenga, E; Bos, NA

    Multiple Myeloma ( MM) is a plasma cell malignancy which is characterized by a very heterogeneous disease outcome. Heterogeneity in plasma cell characteristics, including morphology, maturation status, immunophenotype and genetic abnormalities partly account for the variable disease outcome.

  5. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    International Nuclear Information System (INIS)

    Olsson, Eleonor; Lövgren, Kristina; Fernö, Mårten; Grabau, Dorthe; Borg, Åke; Hegardt, Cecilia; Honeth, Gabriella; Bendahl, Pär-Ola; Saal, Lao H; Gruvberger-Saal, Sofia; Ringnér, Markus; Vallon-Christersson, Johan; Jönsson, Göran; Holm, Karolina

    2011-01-01

    The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44 + /CD24 - phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to

  6. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Directory of Open Access Journals (Sweden)

    Vallon-Christersson Johan

    2011-09-01

    Full Text Available Abstract Background The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. Methods We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Results Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. Conclusions We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in

  7. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  8. Heterogeneity of Prognostic Profiles in Non-small Cell Lung Cancer: Too Many Variables but a Few Relevant

    International Nuclear Information System (INIS)

    Camara, Agustin Gomez de la; Lopez-Encuentra, Angel; Ferrando, Paloma

    2005-01-01

    Objective: Many prognostic factors, exceeding 150, for non-small cell lung cancer (NSCLC) are mentioned in the literature. The different statistical weight of the some variables at issue, their heterogeneity and their clinical uselessness is reviewed. Study design and setting: Survival analysis of a cohort of NSCLC operated (n = 1730, 1993-1997) was carried out utilizing different statistical approaches: Cox proportional hazard analysis (CPHA), logistic regression (LRA), and recursive partitioning (CART). Results: CPHA identified 13 prognostic variables and 11 LRA. Of the 17 possible variables, 10 are coincident. CART provided five different diagnostic groups but only three differentiated survival levels. Parsimonious models were constructed including only T and N cancer staging variables. Areas under the ROC curve of 0.68 and 0.68 were found for CPHA and LGA parsimonious models respectively, and 0.72 and 0.71 for complete models. Conclusion: Variables with a minimal impact on the respective models and thus with little or scarce predictive clinical repercussion were identified. Differences in the prognostic profile of survival can be caused by the different methodological approaches used. No relevant differences were found between the parsimonious and complete models. Although the amount of information managed is considerable, there continues to be a large predictive gap yet to be explained

  9. Bidirectional interconversion of stem and non-stem cancer cell populations: A reassessment of theoretical models for tumor heterogeneity

    NARCIS (Netherlands)

    van Neerven, Sanne M.; Tieken, Mathijs; Vermeulen, Louis; Bijlsma, Maarten F.

    2016-01-01

    Resolving the origin of intratumor heterogeneity has proven to be one of the central challenges in cancer research during recent years. Two theoretical models explaining the emergence of intratumor heterogeneity have come to dominate cancer biology literature: the clonal evolution model and the

  10. Time lapse microscopy observation of cellular structural changes and image analysis of drug treated cancer cells to characterize the cellular heterogeneity.

    Science.gov (United States)

    Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram

    2015-01-01

    The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. © 2014 Wiley Periodicals, Inc.

  11. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  12. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  13. [Mesh structure of two-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell lung cancer].

    Science.gov (United States)

    Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua

    2009-11-01

    To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.

  14. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Stefanovski, Darko [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19348 (United States); Tang, George [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Wawrowsky, Kolja [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Liu, Naiyou; Fair, Jeffrey H. [Department of Surgery and UF Health Comprehensive Transplant Center, University of Florida College of Medicine, Gainesville, FL 32608 (United States)

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  15. Candidates for Intensive Local Treatment in cIIIA-N2 Non-Small Cell Lung Cancer: Deciphering the Heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo (Japan); Goto, Yasushi; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako [Department of Radiation Therapy, National Cancer Center Hospital, Tokyo (Japan); Tamura, Tomohide [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Ohe, Yuichiro [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo (Japan)

    2016-01-01

    Purpose: The purpose of this study was to refine the heterogeneous clinical stage IIIA non-small cell lung cancer (NSCLC) with N2 nodes status (cIIIA-N2) by clinicopathological characteristics before treatment. Methods and Materials: We analyzed data of consecutive patients with cIIIA-N2 NSCLC diagnosed between 1997 and 2010 and treated by chemoradiation therapy (CRT). The appearance of the mediastinal lymph nodes (MLNs) was classified into discrete or infiltrative according to the criteria proposed by the American College of Chest Physicians. In addition, the extent of MLN involvement (MLNI) was classified as limited (close to the primary tumor) or extensive (including upper MLNI in the case of tumors in the lower lobes and vice versa). Results: A total of 148 patients with cIIIA-N2 NSCLC was treated by CRT. The patient characteristics were as follows: males: 118; females: 30; median age: 62 years; appearance of the involved MLNs: 85 discrete, 63 infiltrative; extent of MLNI: 82 limited, 66 extensive; histology: 36 squamous, 112 nonsquamous. The median progression-free survival (PFS) and median overall survival (OS) in the entire subject population were 9.9 and 34.7 months, respectively. A discrete appearance of the involved MLNs and a limited extent of MLNI contributed significantly to a better PFS and OS. The percentages of cases with relapses within the irradiated field classified according to the characteristics of the MLNs were as follows; appearance of the MLNs (24.6% discrete, 18.9% infiltrative); extent of MLNI (25.9 limited, 17.9% extensive). Conclusions: Those with a discrete appearance of the involved MLNs and a limited extent of MLNI at diagnosis could show relatively more favorable outcomes and could be candidates for multimodality therapy.

  16. Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    Directory of Open Access Journals (Sweden)

    A. E. Greijer

    2012-01-01

    Full Text Available Epstein-Barr virus (EBV driven post-transplant lymphoproliferative disease (PTLD is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n=5, solid organ transplant recipients (SOT; n=15, and SOT having chronic elevated EBV-DNA load (n=12. In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8 or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA.

  17. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  18. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL cells are heterogeneous population lacking Oct-4A expression.

    Directory of Open Access Journals (Sweden)

    Krzysztof Szade

    Full Text Available Murine very small embryonic-like (VSEL cells, defined by the Lin(-Sca-1(+CD45(- phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-Sca(+CD45(- population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs or endothelial progenitor cells (EPCs. The study evidenced that murine Lin(-Sca-1(+CD45(- population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+KDR(-, c-Kit(-KDR(+, and c-Kit(-KDR(- subpopulations could be distinguished, while c-Kit(+KDR(+ events were very rare. The c-Kit(+KDR(- subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-KDR(+ cells. The c-Kit(-KDR(-FSC(low subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-Sca-1(+CD45(-FSC(low population, even by single-cell qRT-PCR. We also found that the Lin(-Sca-1(+CD45(-c-Kit(+ subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+c-Kit(+Lin(- (SKL CD34(-CD45(-CD105(+ cells, expressing particular HSC markers. Co-culture of Lin(-Sca-1(+CD45(-FSC(low with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-CD105(+ subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-Sca-1(+CD45(-FSC(low cells are

  19. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    Science.gov (United States)

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  20. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    Science.gov (United States)

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  1. Heterogeneous Gossip

    Science.gov (United States)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  2. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    International Nuclear Information System (INIS)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping; Hock, Janet M.

    2006-01-01

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H 2 O 2 )-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H 2 O 2 treatment. H 2 O 2 induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed

  3. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study

    Science.gov (United States)

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-01-01

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs. Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients. PMID:27391263

  4. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: A report from the PETRUS prospective study.

    Science.gov (United States)

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-08-23

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs.Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients.

  5. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032

    International Nuclear Information System (INIS)

    Sambade, Maria J.; Peters, Eldon C.; Thomas, Nancy E.; Kaufmann, William K.; Kimple, Randall J.; Shields, Janiel M.

    2011-01-01

    Purpose: To assess the relative radiosensitivities of a large collection of melanoma cell lines and to determine whether pharmacologic inhibition of mutant B-RAF with PLX-4032 can radiosensitize B-Raf+ melanoma cells. Materials and methods: A large collection of melanoma cell lines (n = 37) were treated with 0-8 Gy IR and clonogenic survival assays used to generate survival curves to rank relative radiosensitivities among the cell lines. The ability of a B-RAF inhibitor, PLX-4032, to radiosensitize highly radioresistant B-Raf+ cells was also assessed by clonogenic cell survival and spheroid invasion assays and the effects of treatment on the cell cycle assessed by FACS. Results: Melanoma cell lines displayed a very large, heterogeneous range of SF2 values (1.002-0.053) with a mean of 0.51. Cell lines with surviving fractions of 0.29 or less at SF2 and SF4 were observed at a high frequency of 18.9% and 70.2%, respectively. Treatment of B-Raf+ cells with the B-RAF inhibitor PLX-4032 in combination with radiation provided enhanced inhibition of both colony formation and invasion, and radiosensitized cells through an increase in G 1 arrest. Conclusions: Our data suggest that melanomas are not uniformly radioresistant with a significant subset displaying inherent radiosensitivity. Pharmacologic inhibition of B-RAF with PLX-4032 effectively radiosensitized B-Raf+ melanoma cells suggesting that this combination approach could provide improved radiotherapeutic response in B-Raf+ melanoma patients.

  6. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  7. Evidence for the re-establishment of a heterogeneity in radiosensitivity among spermatogonial stem cells repopulating the mouse testis following depletion by X-rays

    International Nuclear Information System (INIS)

    Cattanach, B.M.; Barlow, J.H.

    1984-01-01

    Earlier studies have shown that the spermatogonial stem cells of the mouse testis recovering from previous radiation or chemical mutagen exposure give subnormal yields of genetic damage with subsequent X-irradiation. This response has been investigated further: (a) with a high, 9-Gy X-ray dose given 4, 12 or 21 days after a 1-Gy conditioning dose and (b) with a 1 + 7-Gy, 24-h fractionation regime given 4 or 14 days after a 1-Gy conditioning dose. The results of the experiments suggest that a heterogeneity in radiosensitivity, such as exists in unirradiated stem cell populations and absent 24-48 h after radiation depletion, is quickly re-established among the stem cells repopulating the testis. And that the newly established heterogeneity is removed by the second 1-Gy conditioning dose. With longer intervals between treatments, genetic yields consistent with additivity were obtained in Expt. 1; less clear results were obtained in Expt. 2. Comparison with earlier data generally suggested that the duration of the repopulating period is dose-dependent. In a third experiment evidence was obtained that genetic damage induced by X-irradiation can be reduced by a subsequent treatment with triethylenemelamine (TEM) during the repopulating phase. This confirmed an earlier finding. Such an interaction could not be demonstrated with two X-ray treatments. An explanation for the X-ray/TEM interaction is offered. (Auth.)

  8. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro.

    OpenAIRE

    Brown, W C; Woods, V M; Dobbelaere, D A; Logan, K S

    1993-01-01

    The central role of T cells in the immune response against hemoprotozoan parasites, both as helper cells for T cell-dependent antibody production and as effector cells acting on intracellular parasites through the elaboration of cytokines, has prompted an investigation of the bovine cellular immune response against Babesia bovis antigens. CD4+ T helper (Th) cell clones generated from four B. bovis-immune cattle by in vitro stimulation with a soluble or membrane-associated merozoite antigen we...

  9. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.

    Science.gov (United States)

    Feng, Hao; Ou, Bao-Chi; Zhao, Jing-Kun; Yin, Shuai; Lu, Ai-Guo; Oechsle, Eva; Thasler, Wolfgang E

    2017-09-01

    Pancreatic cancer 3D in vitro models including multicellular tumor spheroid (MCTS), single cell-derived tumor spheroid (SCTS), tissue-derived tumor spheroid, and organotypic models provided powerful platforms to mimic in vivo tumor. Recent work supports that circulating tumor cell (CTC) clusters are more efficient in metastasis seeding than single CTCs. The purpose of this study is to establish 3D culture models which can mimic single CTC, monoclonal CTC clusters, and the expansion of macrometastases. Seven pancreatic ductal adenocarcinoma cell lines were used to establish MCTS and SCTS using hanging drop and ultra-low attachment plates. Spheroid immunofluorescence staining, spheroid formation assay, immunoblotting, and literature review were performed to investigate molecular biomarkers and the morphological characteristics of pancreatic tumor spheroids. Single cells experienced different growth patterns to form SCTS, like signet ring-like cells, blastula-like structures, and solid core spheroids. However, golf ball-like hollow spheroids could also be detected, especially when DanG and Capan-1 cells were cultivated with fibroblast-conditioned medium (p cell lines could also establish tumor spheroid with hanging drop plates by adding methylated cellulose. Tumor spheroids derived from pancreatic cancer cell line DanG possessed asymmetrically distributed proliferation center, immune-checkpoint properties. ß-catenin, Ki-67, and F-actin were active surrounding the crater-like structure distributing on the inner layer of viable rim cover of the spheroids, which was relevant to well-differentiated tumor cells. It is possible to establish 3D CTC cluster models from homogenous PDA cell lines using hanging drop and ultra-low attachment plates. PDA cell line displays its own intrinsic properties or heterogeneity. The mechanism of formation of the crater-like structure as well as golf ball-like structure needs further exploration.

  10. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  11. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    Directory of Open Access Journals (Sweden)

    Xufeng Fu

    2018-02-01

    Full Text Available Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma. Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP. The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the

  12. Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Science.gov (United States)

    Rao, Sambasiva P.; Sancho, Jose; Campos-Rivera, Juanita; Boutin, Paula M.; Severy, Peter B.; Weeden, Timothy; Shankara, Srinivas; Roberts, Bruce L.; Kaplan, Johanne M.

    2012-01-01

    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact. PMID:22761788

  13. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis.

    Directory of Open Access Journals (Sweden)

    Sambasiva P Rao

    Full Text Available Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs display the highest number while natural killer (NK cells, plasmacytoid dendritic cells (pDCs and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact.

  14. Molecular and stimulus-response profiles illustrate heterogeneity between peripheral and cord blood-derived human mast cells

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Frandsen, Pernille; Raaby, Ellen Margrethe Nedergaard

    2014-01-01

    Different protocols exist for in vitro development of HuMCs from hematopoietic stem cells, which results in distinct mast cells regarding molecular markers and activation patterns. Here, we introduce a SR profile using immunological, neurogenic, and pharmacological stimuli to characterize cellular...... functionality. Mast cells were obtained from three culture protocols using two types of PBdMCs (CD34(+) PBdMC or CD133(+) PBdMC) and one type of CBdMC (CD133(+) CBdMC). We analyzed resting cells for specific mast cell markers at protein and mRNA levels, thereby creating a molecular profile. To characterize......-IgE stimulation. Here, the SR profile identified the CD133(+) PBdMC as the most active cells regarding secretion of IL-10, IL-13, GM-CSF, and TNF-α. Cells from all three culture protocols, however, produced IL-10 spontaneously at comparable levels. We recommend validating mast cell cultures by means of molecular...

  15. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  16. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    Science.gov (United States)

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  17. Hematopoietic and Mesenchymal Stem Cells for the Treatment of Chronic Respiratory Diseases: Role of Plasticity and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Massimo Conese

    2014-01-01

    Full Text Available Chronic lung diseases, such as cystic fibrosis (CF, asthma, and chronic obstructive pulmonary disease (COPD are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs and mesenchymal stromal (stem cells (MSCs, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.

  18. Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity.

    Science.gov (United States)

    Conese, Massimo; Piro, Donatella; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2014-01-01

    Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.

  19. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines

    International Nuclear Information System (INIS)

    Dwarkanath, Bilikere S.; Zolzer, Frido; Chandana, Sudhir; Bauch, Thomas; Adhikari, Jawahar S.; Muller, Wolfgang U.; Streffer, Christian; Jain, Viney

    2001-01-01

    Purpose: The glucose analog and glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has been shown to differentially enhance the radiation damage in tumor cells by inhibiting the postirradiation repair processes. The present study was undertaken to examine the relationship between 2-DG-induced modification of energy metabolism and cellular radioresponses and to identify the most relevant parameter(s) for predicting the tumor response to the combined treatment of radiation + 2-DG. Methods and Materials: Six human tumor cell lines (glioma: BMG-1 and U-87, squamous cell carcinoma: 4451 and 4197, and melanoma: MeWo and Be-11) were investigated. Cells were exposed to 2 Gy of Co-60 γ-rays or 250 kVP X-rays and maintained under liquid-holding conditions 2-4 h to facilitate repair. 2-DG (5 mM, equimolar with glucose) that was added at the time of irradiation was present during the liquid holding. Glucose utilization, lactate production (enzymatic assays), and adenine nucleotides (high performance liquid chromatography and capillary isotachophoresis) were investigated as parameters of energy metabolism. Induction and repair of DNA damage (comet assay), cytogenetic damage (micronuclei formation), and cell death (macrocolony assay) were analyzed as parameters of radiation response. Results: The glucose consumption and lactate production of glioma cell lines (BMG-1 and U-87) were nearly 2-fold higher than the squamous carcinoma cell lines (4197 and 4451). The ATP content varied from 3.0 to 6.5 femto moles/cell among these lines, whereas the energy charge (0.86-0.90) did not show much variation. Presence of 2-DG inhibited the rate of glucose usage and glycolysis by 30-40% in glioma cell lines and by 15-20% in squamous carcinoma lines, while ATP levels reduced by nearly 40% in all the four cell lines. ATP:ADP ratios decreased to a greater extent (∼40%) in glioma cells than in squamous carcinoma 4451 and MeWo cells; in contrast, presence of 2-DG reduced ADP:AMP ratios by 3-fold in

  20. Evaluation of accessory cell heterogeneity. III. Role of dendritic cells in the in vitro activation of the antibody response to soluble antigens.

    Science.gov (United States)

    Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H

    1985-05-01

    Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.

  1. A plant culture (BY-2) widely used in molecular and cell studies is genetically unstable and highly heterogeneous

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Lim, K. Y.; Součková Skalická, Kamila; Matyášek, Roman; Leitch, A. R.

    2012-01-01

    Roč. 170, č. 3 (2012), s. 459-471 ISSN 0024-4074 R&D Projects: GA ČR(CZ) GAP501/10/0208 Institutional support: RVO:68081707 Keywords : cell biology * cell cycle * evolution Subject RIV: BO - Biophysics Impact factor: 2.589, year: 2012

  2. Clonal heterogeneity of small-cell anaplastic carcinoma of the lung demonstrated by flow-cytometric DNA analysis

    DEFF Research Database (Denmark)

    Vindeløv, L L; Hansen, H H; Christensen, I J

    1980-01-01

    Flow-cytometric DNA analysis yields information on ploidy and proliferative characteristics of a cell population. The analysis was implemented on small-cell anaplastic carcinoma of the lung using a rapid detergent technique for the preparation of fine-needle aspirates for DNA determination and a ...

  3. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium.

    Science.gov (United States)

    Cimini, Maria; Cannatá, Antonio; Pasquinelli, Gianandrea; Rota, Marcello; Goichberg, Polina

    2017-01-01

    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro

  4. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Maria Cimini

    Full Text Available Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI. However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium

  5. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor.

    Science.gov (United States)

    Vrolix, Kathleen; Fraussen, Judith; Losen, Mario; Stevens, Jo; Lazaridis, Konstantinos; Molenaar, Peter C; Somers, Veerle; Bracho, Maria Alma; Le Panse, Rozen; Stinissen, Piet; Berrih-Aknin, Sonia; Maessen, Jos G; Van Garsse, Leen; Buurman, Wim A; Tzartos, Socrates J; De Baets, Marc H; Martinez-Martinez, Pilar

    2014-08-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR-MG) is considered as a prototypic autoimmune disease. The thymus is important in the pathophysiology of the disease since thymus hyperplasia is a characteristic of early-onset AChR-MG and patients often improve after thymectomy. We hypothesized that thymic B cell and antibody repertoires of AChR-MG patients differ intrinsically from those of control individuals. Using immortalization with Epstein-Barr Virus and Toll-like receptor 9 activation, we isolated and characterized monoclonal B cell lines from 5 MG patients and 8 controls. Only 2 of 570 immortalized B cell clones from MG patients produced antibodies against the AChR (both clones were from the same patient), suggesting that AChR-specific B cells are not enriched in the thymus. Surprisingly, many B cell lines from both AChR-MG and control thymus samples displayed reactivity against striated muscle proteins. Striational antibodies were produced by 15% of B cell clones from AChR-MG versus 6% in control thymus. The IgVH gene sequence analysis showed remarkable similarities, concerning VH family gene distribution, mutation frequency and CDR3 composition, between B cells of AChR-MG patients and controls. MG patients showed clear evidence of clonal B cell expansion in contrast to controls. In this latter aspect, MG resembles multiple sclerosis and clinically isolated syndrome, but differs from systemic lupus erythematosus. Our results support an antigen driven immune response in the MG thymus, but the paucity of AChR-specific B cells, in combination with the observed polyclonal expansions suggest a more diverse immune response than expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A comprehensive review of nongenetic prognostic and predictive factors influencing the heterogeneity of outcomes in advanced non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Cuyún Carter G

    2014-10-01

    Full Text Available Gebra Cuyún Carter,1 Amy M Barrett,2 James A Kaye,3 Astra M Liepa,1 Katherine B Winfree,1 William J John1 1Eli Lilly and Company, Indianapolis, IN, USA; 2RTI Health Solutions, Research Triangle Park, NC, USA; 3RTI Health Solutions, Waltham, MA, USA Abstract: While there have been advances in treatment options for those with advanced non-small-cell lung cancer, unmet medical needs remain, partly due to the heterogeneity of treatment effect observed among patients. The goals of this literature review were to provide updated information to complement past reviews and to identify a comprehensive set of nongenetic prognostic and predictive baseline factors that may account for heterogeneity of outcomes in advanced non-small-cell lung cancer. A review of the literature between 2000 and 2010 was performed using PubMed, Embase, and Cochrane Library. All relevant studies that met the inclusion criteria were selected and data elements were abstracted. A classification system was developed to evaluate the level of evidence for each study. A total of 54 studies were selected for inclusion. Patient-related factors (eg, performance status, sex, and age were the most extensively researched nongenetic prognostic factors, followed by disease stage and histology. Moderately researched prognostic factors were weight-related variables and number or site of metastases, and the least studied were comorbidities, previous therapy, smoking status, hemoglobin level, and health-related quality of life/symptom severity. The prognostic factors with the most consistently demonstrated associations with outcomes were performance status, number or site of metastases, previous therapy, smoking status, and health-related quality of life. Of the small number of studies that assessed predictive factors, those that were found to be significantly predictive of outcomes were performance status, age, disease stage, previous therapy, race, smoking status, sex, and histology. These

  7. Giant cell tumor with secondary aneurysmal bone cyst shows heterogeneous metabolic pattern on {sup 18}F-FDG PET.CT: A case reort

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jeong; Kwon, Seong Young; Yoon, Yeon Hong [Chonnam National University Hwasun Hospital, Huasun (Korea, Republic of); Cho, Sang Geon; Kim, Jahae; Song, Ho Chun; Kim, Sung Sun; Park, Jin Gyoon [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2016-12-15

    Giant cell tumor (GCT) is a generally benign bone tumor accounting for approximately 5 % of all primary bone neoplasms. Cystic components in GCTs that indicate secondary aneurysmal bone cysts (ABCs) are reported in 14 % of GCTs. Although both of them have been described separately in previous reports that may show considerable fluorodeoxyglucose (FDG) uptake despite their benign nature, the findings of GCT with secondary ABC on 18F-FDG positron emission tomography/computed tomography (PET/CT) have not been well-known. We report a case of GCT with secondary ABC in a 26-year-old woman. 18F-FDG PET/CT revealed a heterogeneous hypermetabolic lesion in the left proximal femur with the maximum standardized uptake value of 4.7. The solid components of the tumor showed higher FDG uptake than the cystic components. These observations suggest that the ABC components in GCTs show heterogeneous metabolic patterns on {sup 18}F-FDG PET/CT.

  8. Giant cell tumor with secondary aneurysmal bone cyst shows heterogeneous metabolic pattern on "1"8F-FDG PET.CT: A case reort

    International Nuclear Information System (INIS)

    Park, Hee Jeong; Kwon, Seong Young; Yoon, Yeon Hong; Cho, Sang Geon; Kim, Jahae; Song, Ho Chun; Kim, Sung Sun; Park, Jin Gyoon

    2016-01-01

    Giant cell tumor (GCT) is a generally benign bone tumor accounting for approximately 5 % of all primary bone neoplasms. Cystic components in GCTs that indicate secondary aneurysmal bone cysts (ABCs) are reported in 14 % of GCTs. Although both of them have been described separately in previous reports that may show considerable fluorodeoxyglucose (FDG) uptake despite their benign nature, the findings of GCT with secondary ABC on 18F-FDG positron emission tomography/computed tomography (PET/CT) have not been well-known. We report a case of GCT with secondary ABC in a 26-year-old woman. 18F-FDG PET/CT revealed a heterogeneous hypermetabolic lesion in the left proximal femur with the maximum standardized uptake value of 4.7. The solid components of the tumor showed higher FDG uptake than the cystic components. These observations suggest that the ABC components in GCTs show heterogeneous metabolic patterns on "1"8F-FDG PET/CT

  9. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Correct specification of the left-right (L-R axis is important for organ morphogenesis. Conserved mechanisms involving cilia rotation inside node-like structures and asymmetric Nodal signaling in the lateral plate mesoderm (LPM, which are important symmetry-breaking events, have been intensively studied. In zebrafish, the clustering and migration of dorsal forerunner cells (DFCs is critical for the formation of the Kuppfer's vesicle (KV. However, molecular events underlying DFC clustering and migration are less understood. The WD-repeat proteins function in a variety of biological processes, including cytoskeleton assembly, intracellular trafficking, mRNA splicing, transcriptional regulation and cell migration. However, little is known about the function of WD-repeat proteins in L-R asymmetry determination. Here, we report the identification and functional analyses of zebrafish wdr18, a novel gene that encodes a WD-repeat protein that is highly conserved among vertebrate species. wdr18 was identified from a Tol2 transposon-mediated enhancer trap screen. Follow-up analysis of wdr18 mRNA expression showed that it was detected in DFCs or the KV progenitor cells and later in the KV at early somitogenesis stages. Morpholino knockdown of wdr18 resulted in laterality defects in the visceral organs, which were preceded by the mis-expression of Nodal-related genes, including spaw and pitx2. Examination of morphants at earlier stages revealed that the KV had fewer and shorter cilia which are immotile and a smaller cavity. We further investigated the organization of DFCs in wdr18 morphant embryos using ntl and sox17 as specific markers and found that the clustering and migration of DFC was altered, leading to a disorganized KV. Finally, through a combination of wdr18 and itgb1b morpholino injections, we provided evidence that wdr18 and itgb1b genetically interact in the laterality determination process. Thus, we reveal a new and essential role for WD

  10. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    Science.gov (United States)

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. © 2015 Wiley Periodicals, Inc.

  11. Intratumor heterogeneity and chemotherapy-induced changes in EGFR status in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Sørensen, Jens Benn

    2012-01-01

    Biomarker expression is increasingly being used to customize treatment in non-small cell lung cancer (NSCLC). The choice of systemic treatment usually depends on biomarker expression in the initial diagnostic biopsy taken before initiation of first-line treatment. Chemotherapy induces DNA damages...

  12. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia

    DEFF Research Database (Denmark)

    Rosenberg, Tine; Aaberg-Jessen, Charlotte; Petterson, Stine Asferg

    2018-01-01

    AIM: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. MATERIALS & METHODS: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9...

  13. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells

    DEFF Research Database (Denmark)

    Andersen, Thomas L; del Carmen Ovejero, Maria; Kirkegaard, Tove

    2004-01-01

    osteoclasts appears insensitive to MMP inhibitors. Our study shows that the confusion about osteoclastic MMPs in the literature reflects the remarkable ability of osteoclasts to adapt to their environment, as required by the structural or functional diversity of bone tissue. Our observations provide basic...... information needed for understanding the emerging role of MMPs in controlling cell signaling and bone resorption....

  14. Gamma-tubulin in Leishmania: cell cycle-dependent changes in subcellular localization and heterogeneity of its isoforms

    Czech Academy of Sciences Publication Activity Database

    Libusová, Lenka; Sulimenko, Tetyana; Sulimenko, Vadym; Hozák, Pavel; Dráber, Pavel

    2004-01-01

    Roč. 295, - (2004), s. 375-386 ISSN 0014-4827 R&D Projects: GA MŠk ME 310; GA MŠk LN00A026 Keywords : gamma-tubulin * cell cycle * Leishmania Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.007, year: 2004

  15. Heterogenous populations of cytotoxic cells in the peritoneal cavity of BALB/c mice immunized with allogeneic EL4 leukemia cells

    International Nuclear Information System (INIS)

    Zighelboim, J.; Bonavida, B.; Fahey, J.L.

    1974-01-01

    Adherent cells, presumably macrophages, obtained from the peritoneal cavity shortly after rejection of the allogeneic leukemia EL4, produced effective cell-mediated cytotoxicity (CMC) in vitro. These cytotoxic cells were sensitive to anti-macrophage serum and resistant to anti-thymocyte serum and 10,000 roentgen irradiation. In contrast, a second population of specifically cytotoxic cells were nonadherent, sensitive to x-rays and anti-thymocyte serum, but not to anti-macrophage serum. The two cell populations had a cooperative cytotoxic effect in vitro against allogeneic tumor cells

  16. Tumor Heterogeneity and Drug Resistance

    International Nuclear Information System (INIS)

    Kucerova, L.; Skolekova, S.; Kozovska, Z.

    2015-01-01

    New generation of sequencing methodologies revealed unexpected complexity and genomic alterations linked with the tumor subtypes. This diversity exists across the tumor types, histologic tumor subtypes and subsets of the tumor cells within the same tumor. This phenomenon is termed tumor heterogeneity. Regardless of its origin and mechanisms of development it has a major impact in the clinical setting. Genetic, phenotypic and expression pattern diversity of tumors plays critical role in the selection of suitable treatment and also in the prognosis prediction. Intratumoral heterogeneity plays a key role in the intrinsic and acquired chemoresistance to cytotoxic and targeted therapies. In this review we focus on the mechanisms of intratumoral and inter tumoral heterogeneity and their relationship to the drug resistance. Understanding of the mechanisms and spatiotemporal dynamics of tumor heterogeneity development before and during the therapy is important for the ability to design individual treatment protocols suitable in the given molecular context. (author)

  17. Phytosterols synergize with endotoxin to augment inflammation in Kupffer cells but alone have limited direct effect on hepatocytes

    Science.gov (United States)

    Phytosterols are implicated in the development of parenteral nutrition–associated liver disease. A newly proposed mechanism for phytosterol-mediated parenteral nutrition–associated liver disease is through phytosterol-facilitated hepatic proinflammatory cytokine release following exposure to intesti...

  18. Phytosterols have limited direct effect on hepatocyte transporter expression but synergize with endotoxin to enhance Kupffer cell inflammatory response

    Science.gov (United States)

    Phytosterols, non-nutritive components of soybean oil-based lipid emulsions (SO), have been implicated in the development of parenteral nutrition associated liver disease (PNALD). Phytosterols may drive the pathogenesis of PNALD through a two-hit mechanism: suppression of hepatic bile clearance thro...

  19. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture: promotion of morphological heterogeneity, modulation of progestin receptor induction; cell-substrate interactions on collagen gels.

    Science.gov (United States)

    Pourreau-Schneider, N; Berthois, Y; Mittre, H; Charpin, C; Jacquemier, J; Martin, P M

    1984-12-01

    In this study we observed the incidence of hormone sensitivity in the response of MCF-7 cells to estrogen stimulation when the cells were cultured in different contact environments (hydrophilic plastic, bovine corneal extracellular matrix, type I collagen and in suspension culture). The major purpose was to describe the influence of cell to cell and cell to substrate contacts on the morphological response to estrogen treatment. However, other parameters including growth and induction of progestin receptor were also explored, keeping in mind that the MCF-7 cell line, although representative of normal mammary epithelium in that it contains a similar hormone receptivity, was selected in vitro from a metastatic population in a pleural effusion. Although substrate conditions did not modify growth enhancement by estrogens, progestin receptor levels were significantly higher in three-dimensional spheroid cultures in which cell to cell contacts were optimal due to elimination of basal contact. A careful morphological survey of large surfaces lead to an objective opinion of the overall effect of the hormone treatment on the non-cloned cell line in which a marked heterogeneity in the response of individual cells was observed. In terms of morphofunctional differentiation, the edification of acini with dense microvillus coating was best in suspension culture. When sections were made perpendicular to the plane of cultures on collagen gel rafts two other phenomena were noted: decrease in intercellular junctions, resulting in reduced cell to cell cohesion, and accumulation biodegradation products in the collagen lattice. This suggested a hormone-mediated interaction between the metastatic cells and the fibrillar substrate, collagen I, one of the major constituents of tissue stroma. This estrogen response might be related to the metastatic phenotype and must be distinct from their hormone sensitivity in terms of growth and differentiation since hormone receptivity is generally

  20. All or none cell responses of Ca2+-dependent K channels elicited by calcium or lead in human red cells can be explained by heterogeneity of agonist distribution

    International Nuclear Information System (INIS)

    Alvarez, J.; Garcia-Sancho, J.; Herreros, B.

    1988-01-01

    We have studied the all or none cell response of Ca2+-dependent K+ channels to added Ca in human red cells depleted of ATP by incubation with iodoacetate and inosine. A procedure was used which allows separation and differential analysis of responding and nonresponding cells. Responding (H for heavy) cells incubated in medium containing 5 mM K lose KCl and water and increase their density to the point of sinking on diethylphthalate (specific gravity = 1.12) on centrifugation. Nonresponding (L for light) cells do not lose KCl at all. There is no intermediate behavior. Increasing the Ca concentration in the medium increases the fraction of cells which become H. No differences in the sensitivity to Ca2+ of the individual K+ channels were detected in inside-out vesicles prepared either from H or from L cells. The Ca content of H cells was higher than that of L cells. Cells depleted of ATP by incubation with iodoacetate and inosine sustain pump-leak Ca fluxes of about 15 mumol/liter cells per hour. ATP seems to be resynthesized in these cells at the expense of cell 2,3-diphosphoglycerate stores at a rate of about 150 mumol/liter cells per hour. Inhibition of 2,3-diphosphoglycerate phosphatase by tetrathionate increased 6-8 times the measured rate of uptake of external 45Ca. This was accompanied by an increase in the fraction of H cells. All or none cell responses of Ca2+-dependent K channels have also been evidenced in intact human red cells on addition of Pb. They have the same characteristics as those in responding and nonresponding cells. The detailed study of the kinetics of Pb-induced shrinkage of red cells suspended in medium containing 5 mM K showed that changes of Pb concentration changed not only the fraction of H cells but also the rate of shrinkage of responding cells. H cells generated by Pb treatment contained significantly more lead than L cells

  1. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    International Nuclear Information System (INIS)

    Yang, Ji Yeon; Ha, Seon-Ah; Yang, Yun-Sik; Kim, Jin Woo

    2010-01-01

    Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists

  2. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations.

    Directory of Open Access Journals (Sweden)

    Jo Meagan Garner

    Full Text Available Malignant glioblastoma (GBM is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal, which may arise from different glioblastoma stem-like cell (GSC populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs and spheroid cultures of GSCs (Sp-GSCs had high expression of stem cell markers (CD133, Sox2 and Nestin, but low expression of differentiation markers (βIII-tubulin and glial fibrillary acid protein. In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention.

  3. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources.

    Science.gov (United States)

    Bleda, Marta; Tarraga, Joaquin; de Maria, Alejandro; Salavert, Francisco; Garcia-Alonso, Luz; Celma, Matilde; Martin, Ainoha; Dopazo, Joaquin; Medina, Ignacio

    2012-07-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information. In addition, data size is increasingly becoming an obstacle when accessing or storing biological data. All these issues make very difficult to extract and integrate information from different sources, to analyze experiments or to access and query this information in a programmatic way. CellBase provides a solution to the growing necessity of integration by easing the access to biological data. CellBase implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. The database is hosted in our servers and is regularly updated. CellBase documentation can be found at http://docs.bioinfo.cipf.es/projects/cellbase.

  4. Heterogeneous chromatin target model

    International Nuclear Information System (INIS)

    Watanabe, Makoto

    1996-01-01

    The higher order structure of the entangled chromatin fibers in a chromosome plays a key role in molecular control mechanism involved in chromosome mutation due to ionizing radiations or chemical mutagens. The condensed superstructure of chromatin is not so rigid and regular as has been postulated in general. We have proposed a rheological explanation for the flexible network system ('chromatin network') that consists of the fluctuating assembly of nucleosome clusters linked with supertwisting DNA in a chromatin fiber ('Supertwisting Particulate Model'). We have proposed a 'Heterosensitive Target Model' for cellular radiosensitivity that is a modification of 'Heterogeneous Target Model'. The heterogeneity of chromatin target is derived from the highly condensed organization of chromatin segments consist of unstable and fragile sites in the fluctuating assembly of nucleosome clusters, namely 'supranucleosomal particles' or 'superbeads'. The models have been principally supported by our electron microscopic experiments employing 'surface - spreading whole - mount technique' since 1967. However, some deformation and artifacts in the chromatin structure are inevitable with these electron microscopic procedures. On the contrary, the 'atomic force microscope (AFM)' can be operated in liquid as well as in the air. A living specimen can be examined without any preparative procedures. Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. The living human chromosomes were submerged in a solution of culture medium and observed by AFM using a liquid immersion cell. The surface - spreading whole - mount technique was applicable for this observation. The particulate chromatin segments of nucleosome clusters were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (J.P.N.)

  5. A dominated and resistant subpopulation causes regrowth after response to 1,3-bis(2-chloroethyl)-1-nitrosourea treatment of a heterogeneous small cell lung cancer xenograft in nude mice

    DEFF Research Database (Denmark)

    Aabo, K; Roed, H; Vindeløv, L L

    1994-01-01

    In order to address the question of the influence of a primarily chemoresistant tumor cell subpopulation on the progression of a heterogeneous tumor after cytotoxic therapy, in vitro established human small cell lung cancer cell lines of a 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-sensitive (592...... was demonstrated in the 9:1 mixed tumors in which only 592 cells were detectable at the start of the treatment. The response was short and less pronounced compared with tumors containing only 592. In the regrowing tumors after treatment, only NYH was detected. In untreated 9:1 mixed control tumors, only 592 cells...

  6. Heterogeneity in Immune Marker Expression after Acquisition of Resistance to EGFR Kinase Inhibitors: Analysis of a Case with Small Cell Lung Cancer Transformation.

    Science.gov (United States)

    Suda, Kenichi; Murakami, Isao; Yu, Hui; Kim, Jihye; Ellison, Kim; Rivard, Christopher J; Mitsudomi, Tetsuya; Hirsch, Fred R

    2017-06-01

    Expression of immune markers is of scientific interest because of their potential roles as predictive biomarkers for immunotherapy. Although the microenvironment of metastatic tumors and/or therapy-inducible histological transformation may affect the expression of these immune markers, there are few data regarding this context. A 76-year-old never-smoking female with EGFR-mutated lung adenocarcinoma (AC) acquired resistance to gefitinib. After her death, an autopsy revealed SCLC transformation and EGFR T790M secondary mutation (T790M) as mutually exclusive resistance mechanisms occurring differently in different metastases; two liver metastases (SCLC versus AC with T790M) and two lymph node metastases (SCLC versus AC with T790M) were analyzed to compare the expression status of immune markers by immunohistochemistry and by an immune oncology gene expression panel. Programmed death ligand 1 (PD-L1) protein was partially expressed in tumor cells with AC lesions (T790M) but not in tumor cells with SCLC transformation. The liver metastasis with SCLC transformation showed no stromal PD-L1 expression and scant tumor-infiltrating lymphocytes, whereas the other lesions demonstrated stromal PD-L1 staining and infiltration of CD8-positive T cells. Data generated using an immuno-oncology gene expression panel indicated a higher level of T-cell costimulatory molecules and lower expression of type I interferon-regulated genes in lesions with SCLC transformation. These data highlight the heterogeneity of expression of immune markers depending on the metastatic sites and histological transformation and indicate that the biopsy specimen from one lesion may not be representative of immune marker status for all lesions. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  7. Design of a Heterotetravalent Synthetic Allergen That Reflects Epitope Heterogeneity and IgE Antibody Variability to Study Mast Cell Degranulation

    Science.gov (United States)

    Handlogten, Michael W.; Kiziltepe, Tanyel; Bilgicer, Basar

    2013-01-01

    SYNOPSIS This study describes the design of a heterotetravalent allergen (HtTA) as a multi-component experimental system that enables an integrative approach to study mast cell degranulation. The HtTA design allows presentation of two distinct haptens, each with a valency of two, thereby better reflecting the complexity of natural allergens by displaying epitope heterogeneity and IgE antibody variability. Using the HtTA design, synthetic allergens HtTA-1 and HtTA-2 were synthesized to model a combination of epitope/IgE affinities. HtTA-1 presented DNP and dansyl haptens (Kd = 22 and 54 nM for IgEDNP and IgEdansyl respectively), and HtTA-2 presented dansyl and the weak affinity DNP-Pro haptens (Kd = 550 nM for IgEDNP). Both HtTAs effectively induced degranulation when mast cells were primed with both IgEDNP and IgEdansyl antibodies. Interestingly, tetravalent DNP-Pro or bivalent dansyl were insufficient in stimulating a degranulation response, illustrating the significance of valency, affinity, and synergy in allergen-IgE interactions. Importantly, maximum degranulation with both HtTA-1 and HtTA-2 was observed when only 50% of the mast cell-bound IgEs were hapten specific (25% IgEdansyl + 25% IgEDNP). Taken together, this study establishes the HtTA system as a physiologically relevant experimental model and demonstrates its utility in elucidating critical mechanisms of mast cell degranulation. PMID:23050868

  8. Differential gene expression in Neurospora crassa cell types: heterogeneity and amplification of rRNA genes. Progress report, July 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Dutta, S.K.

    1981-01-01

    The significant results obtained during 1980-1981 year of the current research program are as follows: I. Studies on heterogeneity of multiple copies of rDNAs from N. crassa cell types are being continued, such as: (1) Autoradiographs of Southern transfers of EcoR 1 restricted fragments of nuclear DNA from conidia, germinated conidia (sprouts) and mycelia of N. crassa were compared after hybridization with 32 P-rDNA probe. The nuclear DNA of two hours sprout and of 16 hours mycelia gave similar hybridization patterns with EcoR 1 digest, but no such hybridization pattern was evident in conidial DNA digest; (2) Procedure for concentration of rDNAs from Neurospora species and cell types was standardized; restriction analysis of purified rDNAs is being done; (3) 35S total rDNA clone, 17S rDNA clone and 26S rDNA subclone are being used to see gross differences in the precursor rRNAs of different cell types; (4) Comparison of DNA:DNA homologies of rRNA genes with different Neurospora species. II. Post-mitochondrial DNAs of N. crassa are found to be rDNA-like and were further characterized by electron microscopic studies and are found to be approximately twice the size of SV-40 DNAs. These N. crassa post-mitochondrial DNAs hybridized with 32 P-labeled N. crassa nuclear DNAs. III. Previous studies on differential RNase sensitive DNA polymerase activity in N. Crassa cell types and on evolution of sexual morphogenesis in the genus Neurospora are completed and published. RNase sensitive DNA polymerase activity is found to be in the post-mitochondrial fraction. Heterothallism in the genus Neurospora is evolved from homothallism

  9. Early Change in Metabolic Tumor Heterogeneity during Chemoradiotherapy and Its Prognostic Value for Patients with Locally Advanced Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xinzhe Dong

    Full Text Available To observe the early change of metabolic tumor heterogeneity during chemoradiotherapy and to determine its prognostic value for patients with locally advanced non-small cell lung cancer (NSCLC.From January 2007 to March 2010, 58 patients with NSCLC were included who were received 18F-fluorodeoxyglucose (18F-FDG PET/CT before and following 40 Gy radiotherapy with the concurrent cisplatin-based chemotherapy (CCRT. Primary tumor FDG uptake heterogeneity was determined using global and local scale textural features extracted from standardized uptake value (SUV histogram analysis (coefficient of variation [COV], skewness, kurtosis, area under the curve of the cumulative SUV histogram [AUC-CSH] and normalized gray-level co-occurrence matrix (contrast, dissimilarity, entropy, homogeneity. SUVmax and metabolic tumor volume (MTV were also evaluated. Correlations were analyzed between parameters on baseline or during treatments with tumor response, progression-free survival (PFS, and overall survival (OS.Compared with non-responders, responders showed significantly greater pre-treatment COV, contrast and MTV (AUC = 0.781, 0.804, 0.686, respectively. Receiver-operating-characteristic curve analysis showed that early change of tumor textural analysis serves as a response predictor with higher sensitivity (73.2%~92.1% and specificity (80.0%~83.6% than baseline parameters. Change in AUC-CSH and dissimilarity during CCRT could also predict response with optimal cut-off values (33.0% and 28.7%, respectively. The patients with greater changes in contrast and AUC-CSH had significantly higher 5-year OS (P = 0.008, P = 0.034 and PFS (P = 0.007, P = 0.039. In multivariate analysis, only change in contrast was found as the independent prognostic factor of PFS (HR 0.476, P = 0.021 and OS (HR 0.519, P = 0.015.The metabolic tumor heterogeneity change during CCRT characterized by global and local scale textural features may be valuable for predicting treatment response

  10. Heterogeneity in radiosensitivity within esophageal cell line CaEs-17 and amplification of H-ras gene

    International Nuclear Information System (INIS)

    Wang Shunbao; Guo Lei; Niu Wenzhe

    1997-01-01

    Ten clones were picked from cultured colonies of CaEs-17 cell line and developed to a subcell line. The values of SF 2 were measured for each subcell line. Two radioresistant subcell lines, clone 7 and clone 10 were established. According to survival curve assay, for wild type, the value of D 0 was 1.57 Gy, D Q was 1.07 Gy, N was 1.96, SF 2 was 0.41. For clone 7, the value of D 0 was 1.64 Gy, D Q was 1.85 Gy, N was 3.07, SF 2 was 0.53. For clone 10, the value of D 0 was 1.58 Gy, D Q was 2.04 Gy, N was 3.63, SF 2 was 0.61. Clone 7 and clone 10 have much higher values of D Q and N than those of wild type. There was amplification of H-ras gene in clone 10 after 2 Gy irradiation. The amplification of H-ras gene in clone 10 after 2 Gy irradiation might be involved in hetero geneity of CaEs-17 cell line

  11. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    Science.gov (United States)

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  12. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    Science.gov (United States)

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  13. In vitro cytotoxicity of {sup 211}At-labeled trastuzumab in human breast cancer cell lines: effect of specific activity and HER2 receptor heterogeneity on survival fraction

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Department of Radiology, Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (United States); Carlin, Sean [Department of Radiology, Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (United States); Welsh, Phil [Department of Radiology, Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, P.O. Box 3808, Durham, NC 27710 (United States)]. E-mail: zalut001@mc.duke.edu

    2006-04-15

    Introduction: Radioimmunotherapy with anti-HER2 monoclonal antibodies (mAbs) such as trastuzumab is a promising strategy for treating HER2-positive breast and ovarian carcinoma patients. The objective of this study was to determine the cytotoxic effectiveness of trastuzumab labeled with the 7.2-h half-life {alpha}-particle emitter {sup 211}At. Methods: Experiments were performed on SKBr-3, BT-474 and the transfected MCF7/HER2-18 human breast carcinoma cell lines. Intrinsic radiosensitivity was determined after exposure to external beam irradiation. The cytotoxicity of {sup 211}At-labeled trastuzumab was measured by clonogenic assays. The distribution of HER2 receptor expression on the cell lines was measured using fluorescence-activated cell sorting. A pharmacokinetic (PK)/microdosimetric model was established to assess the effects of specific activity (SA), HER2 receptor expression and absorbed dose on survival fraction (SF). Results: With external beam irradiation, the 2-Gy SF for BT-474, SKBr-3 and MCF7/HER2-18 cells was 0.78, 0.53 and 0.64 Gy, respectively. Heterogeneous HER2 expression was observed, with a subpopulation of cells lacking measurable receptor (14.5%, SKBr-3; 0.34%, MCF-7/HER2; 1.73%, BT-474). When plotted as a function of activity concentration, SF curves were biphasic and inversely proportional to SA; however, when the model was applied and absorbed doses calculated, the SF curve was monoexponential independent of SA. Thus, the PK model was able to demonstrate the effects of competition between cold and labeled mAb. These studies showed that the relative biological effectiveness of {sup 211}At-labeled trastuzaumab was about 10 times higher than that of external beam therapy. Conclusion: These in vitro studies showed that {sup 211}At-labeled trastuzumab mAb is an effective cytotoxic agent for the treatment of HER2-positive tumor cells. The SA of the labeled mAb and the homogeneity of HER2 receptor expression are important variables influencing

  14. Heterogeneous resistance mechanisms in an EGFR exon 19-mutated non-small cell lung cancer patient treated with erlotinib

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Grauslund, Morten; Melchior, Linea C.

    2017-01-01

    Patients with epidermal growth factor receptor (EGFR) gene-mutated non-small cell lung cancer (NSCLC) obtain substantial clinical benefit from EGFR tyrosine-kinase inhibitors (TKIs), but will ultimately develop TKI-resistance resulting in median progression-free survival of 9–15 months during first......-line TKI-therapy. However, type and timing of TKI-resistance cannot be predicted and several mechanisms may simultaneously/subsequently occur during TKI-treatment. In this respect, we present a 49 year-old Caucasian male ex-smoker with metastatic pulmonary adenocarcinoma (ADC) that concomitantly harbored...... for SCLC combined with erlotinib continuation was implemented obtaining significant objective response. However, after completing 6 cycles of this combination, new pulmonary and hepatic metastases appeared and showed persistence of the original EGFR- and FGFR3-mutated ADC phenotype together...

  15. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  16. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  17. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    KAUST Repository

    Othman, Basmah A.

    2016-04-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  18. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    KAUST Repository

    Othman, Basmah A.; Greenwood, Christina; AbuElela, Ayman; Bharath, Anil A.; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen; Porter, Alexandra E.

    2016-01-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  19. Growth, cell population heterogeneity and DNA synthesis stimulation by amino acids and hormones of preneoplastic clones in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, M.J.; Domingo, J.

    1986-01-01

    The development of enzyme deficient foci during chemical carcinogenesis in rodent liver, the clonal origin of such hepatocyte populations and their involvement in the origin of hepatocellular carcinomas has been reported. From their three enzyme studies on serial liver sections and a carcinogenesis protocol including diethylnitrosamine and phenobarbital, they have concluded that foci with more deviated phenotypes grow faster than less deviated ones. The present paper reports the results of four carcinogenesis protocols consisting in one or two cycles of diethylnitrosamine and phenobarbital administration. The phenotype of each focus for the three enzymes (glucose-6-phosphatase, ATPase and 5'-nucleotidase) has been determined by superimposing tracings of serial sections stained for one enzyme. Seven different kinds of foci resulting from simple and combined enzyme deficiencies and also complex foci with smaller foci or subclones inside have been observed. Complex foci appear only in the carcinogenesis protocols with two cycles of diethylnitrosamine and phenobarbital. The number of foci correlates with the duration of the promotion phase (phenobarbital). In the four carcinogenesis protocols the relative proportions of the different foci phenotypes are the same, being the foci deficient only in glucose-6-phosphatase and the foci deficient only in ATPase the most abundant. On the average, complex foci have been found larger than foci without subclones. From comparisons between the number of foci per surface area of liver section and the number of subclones per surface area of focus section, a clear trend that enzyme alterations arise more frequently from cells already modified than from normal tissue can be shown.

  20. Microbial population heterogeneity versus bioreactor heterogeneity: evaluation of Redox Sensor Green as an exogenous metabolic biosensor

    DEFF Research Database (Denmark)

    Baert, Jonathan; Delepierre, Anissa; Telek, Samuel

    2016-01-01

    Microbial heterogeneity in metabolic performances has attracted a lot of attention, considering its potential impact on industrial bioprocesses. However, little is known about the impact of extracellular perturbations (i.e. bioreactor heterogeneity) on cell-to-cell variability in metabolic...

  1. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    Science.gov (United States)

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  2. Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells

    Science.gov (United States)

    Chun, Younghwa; Kim, Raehyung; Lee, Soojin

    2016-01-01

    Background Recent studies have shown that heterogeneous nuclear ribonucleoprotein U (hnRNP U), a component of the hnRNP complex, contributes to stabilize the kinetochore-microtubule interaction during mitosis. CENP-W was identified as an inner centromere component that plays crucial roles in the formation of a functional kinetochore complex. Results We report that hnRNP U interacts with CENP-W, and the interaction between hnRNP U and CENP-W mutually increased each other’s protein stability by inhibiting the proteasome-mediated degradation. Further, their co-localization was observed chiefly in the nuclear matrix region and at the microtubule-kinetochore interface during interphase and mitosis, respectively. Both microtubule-stabilizing and microtubule-destabilizing agents significantly decreased the protein stability of CENP-W. Furthermore, loss of microtubules and defects in microtubule organization were observed in CENP-W-depleted cells. Conclusion Our data imply that CENP-W plays an important role in the attachment and interaction between microtubules and kinetochore during mitosis. PMID:26881882

  3. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: A feasibility study

    International Nuclear Information System (INIS)

    Baardwijk, Angela van; Bosmans, Geert; Suylen, Robert Jan van; Kroonenburgh, Marinus van; Hochstenbag, Monique; Geskes, Gijs; Lambin, Philippe; De Ruysscher, Dirk

    2008-01-01

    We evaluated the feasibility to correlate intra-tumour heterogeneity as visualized on 18 F-FDG PET with histology for NSCLC. For this purpose we used an ex-vivo model. The procedure was feasible in all operated patients. We have shown that this method is suitable for correlating intra-tumour heterogeneity in tracer uptake with histology

  4. Inter-heterogeneity and intra-heterogeneity of α{sub v}β{sub 3} in non-small cell lung cancer and small cell lung cancer patients as revealed by {sup 68}Ga-RGD{sub 2} PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Fei; Li, Guoquan; Wang, Shengjun; Liu, Daliang; Zhang, Mingru; Zhao, Mingxuan; Yang, Weidong; Wang, Jing [Fourth Military Medical University, Department of Nuclear Medicine, Xijing Hospital, Xi' an (China); Wang, Zhe [Fourth Military Medical University, Department of Nuclear Medicine, Xijing Hospital, Xi' an (China); Fourth Military Medical University, Department of Pathology, Xijing Hospital, Xi' an (China)

    2017-08-15

    Integrin α{sub v}β{sub 3} is the therapeutic target of the anti-angiogenic drug cilengitide. The objective of this study was to compare α{sub v}β{sub 3} levels in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients, by using the positron emission tomography (PET) tracer {sup 68}Ga-labeled dimerized-RGD ({sup 68}Ga-RGD{sub 2}). Thirty-one patients with pathologically confirmed lung cancer were enrolled (21 were NSCLC and 10 were SCLC). PET/CT images were acquired using {sup 68}Ga-RGD{sub 2}.{sup 18}F-FDG PET/CT images were also acquired on the consecutive day as reference. The standard uptake values (SUV) and the tumor/nontarget (T/NT) values were quantitatively compared. Expression of the angiogenesis marker α{sub v}β{sub 3} in NSCLC and SCLC lesions was analyzed by immunohistochemistry. The {sup 18}F-FDG SUVmax and the SUVmean were not significantly different between NSCLC and SCLC patients. The {sup 68}Ga-RGD{sub 2} uptake of SCLC patients was at background levels in both SUV and T/NT measurements and was significantly lower than that of NSCLC patients. The range value of {sup 68}Ga-RGD{sub 2} SUVmean was 4.5 in the NSCLC group and 2.2 in the SCLC group, while the variation coefficient was 36.2% and 39.3% in NSCLC and SCLC primary lesions, respectively. Heterogeneity between primary lesions and putative distant metastases was also observed in some NSCLC cases. Immunostaining showed that α{sub v}β{sub 3} integrin was expressed in the cells and neovasculature of NSCLC lesions, while SCLC samples had negative expression. The uptake of {sup 68}Ga-RGD{sub 2} in SCLC patients is significantly lower than that in NSCLC patients, indicating a lower α{sub v}β{sub 3} target level for cilengitide in SCLC. Apparent intra-tumor heterogeneities of α{sub v}β{sub 3} also exist in both NSCLC and SCLC. Such inter- and intra-heterogeneity of α{sub v}β{sub 3} may potentially improve current applications of α{sub v}β{sub 3}-targeted therapy

  5. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Karin E Smedby

    2011-04-01

    Full Text Available Non-Hodgkin lymphoma (NHL represents a diverse group of hematological malignancies, of which follicular lymphoma (FL is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL-associated locus on 6p21.32, rs2647012 (OR(combined  = 0.64, P(combined  = 2 × 10(-21 located 962 bp away from rs10484561 (r(2<0.1 in controls. After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012:OR(adjusted  = 0.70, P(adjusted  =  4 × 10(-12; rs10484561:OR(adjusted  = 1.64, P(adjusted  = 5 × 10(-15. Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL-associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (OR(combined  = 1.36, P(combined  =  1.4 × 10(-7. Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL.

  6. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    Energy Technology Data Exchange (ETDEWEB)

    Balderson, M.J.; Kirkby, C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta (Canada)

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  7. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    International Nuclear Information System (INIS)

    Balderson, M.J.; Kirkby, C.

    2014-01-01

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted

  8. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs

    Directory of Open Access Journals (Sweden)

    Sveva Grande

    2018-01-01

    Full Text Available Clustering of patient-derived glioma stem-like cells (GSCs through unsupervised analysis of metabolites detected by magnetic resonance spectroscopy (MRS evidenced three subgroups, namely clusters 1a and 1b, with high intergroup similarity and neural fingerprints, and cluster 2, with a metabolism typical of commercial tumor lines. In addition, subclones generated by the same GSC line showed different metabolic phenotypes. Aerobic glycolysis prevailed in cluster 2 cells as demonstrated by higher lactate production compared to cluster 1 cells. Oligomycin, a mitochondrial ATPase inhibitor, induced high lactate extrusion only in cluster 1 cells, where it produced neutral lipid accumulation detected as mobile lipid signals by MRS and lipid droplets by confocal microscopy. These results indicate a relevant role of mitochondrial fatty acid oxidation for energy production in GSCs. On the other hand, further metabolic differences, likely accounting for different therapy responsiveness observed after etomoxir treatment, suggest that caution must be used in considering patient treatment with mitochondria FAO blockers. Metabolomics and metabolic profiling may contribute to discover new diagnostic or prognostic biomarkers to be used for personalized therapies.

  9. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  10. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald [VU University Medical Center, Department of Nuclear Medicine and PET Research, PO Box 7057, Amsterdam (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonary Diseases, Amsterdam (Netherlands)

    2011-09-15

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV{sub max}), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV{sub max} alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  11. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies

    International Nuclear Information System (INIS)

    Velden, Floris H.P. van; Cheebsumon, Patsuree; Yaqub, Maqsood; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Boellaard, Ronald; Smit, Egbert F.

    2011-01-01

    Standardized uptake values (SUV) are commonly used for quantification of whole-body [ 18 F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies. Changes in SUV following therapy, however, only provide a proper measure of response in case of homogeneous FDG uptake in the tumour. The purpose of this study was therefore to implement and characterize a method that enables quantification of heterogeneity in tumour FDG uptake. Cumulative SUV-volume histograms (CSH), describing % of total tumour volume above % threshold of maximum SUV (SUV max ), were calculated. The area under a CSH curve (AUC) is a quantitative index of tumour uptake heterogeneity, with lower AUC corresponding to higher degrees of heterogeneity. Simulations of homogeneous and heterogeneous responses were performed to assess the value of AUC-CSH for measuring uptake and/or response heterogeneity. In addition, partial volume correction and image denoising was applied prior to calculating AUC-CSH. Finally, the method was applied to a number of human FDG scans. Partial volume correction and noise reduction improved CSH curves. Both simulations and clinical examples showed that AUC-CSH values corresponded with level of tumour heterogeneity and/or heterogeneity in response. In contrast, this correspondence was not seen with SUV max alone. The results indicate that the main advantage of AUC-CSH above other measures, such as 1/COV (coefficient of variation), is the possibility to measure or normalize AUC-CSH in different ways. AUC-CSH might be used as a quantitative index of heterogeneity in tracer uptake. In response monitoring studies it can be used to address heterogeneity in response. (orig.)

  12. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    Science.gov (United States)

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH) 2 D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH) 2 D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH) 2 D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH) 2 D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH) 2 D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

    Science.gov (United States)

    Katoh, Masaru

    2017-01-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  14. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  15. Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage.

    Science.gov (United States)

    Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming

    2013-01-01

    To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, Pheterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.

  16. WE-E-17A-05: Complementary Prognostic Value of CT and 18F-FDG PET Non-Small Cell Lung Cancer Tumor Heterogeneity Features Quantified Through Texture Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Desseroit, M; Cheze Le Rest, C; Tixier, F [CHU Poitiers Poitiers (France); INSERM LaTIM UMR 1101, Brest (France); Majdoub, M; Visvikis, D; Hatt, M [INSERM LaTIM UMR 1101, Brest (France); Guillevin, R; Perdrisot, R [CHU Poitiers Poitiers (France)

    2014-06-15

    Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM. Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET

  17. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  18. Clinical heterogeneity in Fabry disease

    Directory of Open Access Journals (Sweden)

    G. N. Salogub

    2015-01-01

    Full Text Available Fabry disease is an X-linked, lysosomal storage disease (OMIM: 301500, caused by α-galactosidase A deficiency, resulting in accumulation of its substrates, glycosphingolipids, primarily – globotriaosylceramide, in the lysosomes of multiple cell types with multi-system clinical manifestations, even within the same family, including abnormalities of the central and peripheral nervous system, kidneys, heart, gastrointestinal tract, lungs, organ of vision. Clinical heterogeneity is often the reason of the delayed diagnosis. Nowadays enzyme replacement therapy has proved its efficiency in the treatment of Fabry disease. Including Fabry disease in the differential diagnosis of a large range of disorders is important because of its wide clinical heterogeneity and the possibility of an earlier intervention with a beneficial treatment.

  19. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  1. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    Directory of Open Access Journals (Sweden)

    Melanie Werner

    Full Text Available Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen.Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity.Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7 hepatocytes, 1.8 ± 0.5 × 10(6 Kupffer cells, 4.3 ± 1.9 × 10(5 liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5 stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7% and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2% and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+ (97.8 ± 1.1% and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%. These cells further exhibited retinol (vitamin A-mediated autofluorescence.Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  2. Neurobiological heterogeneity in ADHD

    NARCIS (Netherlands)

    de Zeeuw, P.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous disorder clinically. Symptoms take many forms, from subtle but pervasive attention problems or dreaminess up to disruptive and unpredictable behavior. Interestingly, early neuroscientific work on ADHD assumed either a

  3. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  4. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  5. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  6. An advanced method of heterogeneous reactor theory

    International Nuclear Information System (INIS)

    Kochurov, B.P.

    1994-08-01

    Recent approaches to heterogeneous reactor theory for numerical applications were presented in the course of 8 lectures given in JAERI. The limitations of initial theory known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in 1955 as Galanine-Feinberg heterogeneous theory:-matrix from of equations, -lack of consistent theory for heterogeneous parameters for reactor cell, -were overcome by a transformation of heterogeneous reactor equations to a difference form and by a development of a consistent theory for the characteristics of a reactor cell based on detailed space-energy calculations. General few group (G-number of groups) heterogeneous reactor equations in dipole approximation are formulated with the extension of two-dimensional problem to three-dimensions by finite Furie expansion of axial dependence of neutron fluxes. A transformation of initial matrix reactor equations to a difference form is presented. The methods for calculation of heterogeneous reactor cell characteristics giving the relation between vector-flux and vector-current on a cell boundary are based on a set of detailed space-energy neutron flux distribution calculations with zero current across cell boundary and G calculations with linearly independent currents across the cell boundary. The equations for reaction rate matrices are formulated. Specific methods were developed for description of neutron migration in axial and radial directions. The methods for resonance level's approach for numerous high-energy resonances. On the basis of these approaches the theory, methods and computer codes were developed for 3D space-time react or problems including simulation of slow processes with fuel burn-up, control rod movements, Xe poisoning and fast transients depending on prompt and delayed neutrons. As a result reactors with several thousands of channels having non-uniform axial structure can be feasibly treated. (author)

  7. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  8. Heterogeneity in both cytokine production and responsiveness of a panel of monoclonal human Epstein-Barr virus-transformed B-cell lines

    NARCIS (Netherlands)

    Jochems, G. J.; Klein, M. R.; Jordens, R.; Pascual-Salcedo, D.; van Boxtel-Oosterhof, F.; van Lier, R. A.; Zeijlemaker, W. P.

    1991-01-01

    To optimize growth and Ig production of in vitro-cultured Epstein-Barr virus (EBV)-transformed B cells, a panel of six monoclonal EBV B-cell lines was analyzed for autocrine growth factor production and responsiveness to various cytokines. Three cell lines produced Il-I and four produced Il-6,

  9. CLEC4F is an inducible C-type lectin in F4/80-positive cells and is involved in alpha-galactosylceramide presentation in liver.

    Directory of Open Access Journals (Sweden)

    Chih-Ya Yang

    Full Text Available CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal, N-acetylgalactosamine (GalNAc, and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/- mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5 but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells.

  10. Immunophenotype Heterogeneity in Nasal Glomangiopericytoma

    Directory of Open Access Journals (Sweden)

    Adriana Handra-Luca

    2015-01-01

    Full Text Available Nasal glomangiopericytoma is rare. The immunophenotype is heterogeneous, more frequently smooth-muscle-actin and CD34-positive. We report expression patterns for several vascular-related proteins such as CD99, CD146, Bcl2, and WT1 as well as for treatment-related proteins such as mTOR and EGFR in a nasal glomangiopericytoma. The patient (woman, 86 years presented with a left nasal tumefaction. The resected specimen (1.5-cm showed a glomangiopericytoma. Tumor cells expressed smooth-muscle-actin, CD31, CD34, and progesterone receptor. They also expressed the vascular-cell-related proteins Bcl2, CD99, CD146, and WT1, as well as mTOR and EGFR. Nasal glomangiopericytomas show immunohistochemical heterogeneity for vascular-related markers, suggesting a possible extensive pericytic differentiation. The expression of potential targets for drug treatments such as mTOR and EGFR may impact on the clinical follow-up of these tumors occurring at advanced ages, which may require complex surgery.

  11. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  12. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  13. Cancer heterogeneity and imaging.

    Science.gov (United States)

    O'Connor, James P B

    2017-04-01

    There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use. Copyright © 2016. Published by Elsevier Ltd.

  14. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  15. Heterogeneity and Networks

    OpenAIRE

    Goyal, S.

    2018-01-01

    This chapter shows that networks can have large and differentiated effects on behavior and then argues that social and economic pressures facilitate the formation of heterogenous networks. Thus networks can play an important role in understanding the wide diversity in human behaviour and in economic outcomes.

  16. Heterogeneous Computing in Economics

    DEFF Research Database (Denmark)

    Dziubinski, M.P.; Grassi, S.

    2014-01-01

    This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of C++ Accelerated Massive Parallelism (C++ AMP) recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (J Econ Dyn...

  17. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  18. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  19. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  20. Why does heterogeneity matter?

    Science.gov (United States)

    K.B. Pierce

    2007-01-01

    This is a review of the book "Ecosystem function in heterogeneous landscapes" published in 2005. The authors are G. Lovett, C. Jones, M.G. Turner, and K.C. Weathers. It was published by Springer, New York. The book is a synthesis of the 10th Gary conference held at the Institute of Ecosystem Studies in Millbrook, New York, in 2003.

  1. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  2. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Directory of Open Access Journals (Sweden)

    Maria-del-Mar Inda

    2014-01-01

    Full Text Available Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM, the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  3. Glioblastoma multiforme: a look inside its heterogeneous nature.

    Science.gov (United States)

    Inda, Maria-Del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  4. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    International Nuclear Information System (INIS)

    Inda, Maria-del-Mar; Bonavia, Rudy; Seoane, Joan

    2014-01-01

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape

  5. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Maria-del-Mar, E-mail: mminda@vhio.net; Bonavia, Rudy [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Seoane, Joan [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08035 (Spain)

    2014-01-27

    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  6. Implications of Heterogeneity in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Sanjay de Mel

    2014-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy in the world. Despite improvement in outcome, the disease is still incurable for most patients. However, not all myeloma are the same. With the same treatment, some patients can have very long survival whereas others can have very short survival. This suggests that there is underlying heterogeneity in myeloma. Studies over the years have revealed multiple layers of heterogeneity. First, clinical parameters such as age and tumor burden could significantly affect outcome. At the genetic level, there are also significant heterogeneity ranging for chromosome numbers, genetic translocations, and genetic mutations. At the clonal level, there appears to be significant clonal heterogeneity with multiple clones coexisting in the same patient. At the cell differentiation level, there appears to be a hierarchy of clonally related cells that have different clonogenic potential and sensitivity to therapies. These levels of complexities present challenges in terms of treatment and prognostication as well as monitoring of treatment. However, if we can clearly delineate and dissect this heterogeneity, we may also be presented with unique opportunities for precision and personalized treatment of myeloma. Some proof of concepts of such approaches has been demonstrated.

  7. Comparison of P2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response.

    Science.gov (United States)

    Allsup, D J; Boarder, M R

    1990-07-01

    Vascular endothelial cells from different parts of the circulation are known to show different functional responses, presumably corresponding to physiological roles. Previous studies have shown that ATP acts on P2 purinergic receptors of endothelial cells of major blood vessels, stimulating the formation of inositol phosphates. Here we have compared the action of ATP and congeners acting on endothelial cells of bovine thoracic aorta with cells derived from the microvasculature of bovine adrenal medulla. With measurement of total inositol phosphates, cells from the aorta showed a rank order of agonist potency of 2-methylthio-ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP greater than ATP greater than beta, gamma-imido-ATP greater than beta, gamma-methylene-ATP, consistent with action at receptors of the P2Y subtype. However, with adrenal cells the rank order of potency was ATP gamma S greater than ATP greater than beta, gamma-imido-ATP greater than ADP greater than beta, gamma-methylene-ATP = 2-methylthio-ATP. This profile is not consistent with either P2X or P2Y receptors. When the nature of this inositol phosphate response was analyzed with anion exchange chromatography, it was found that the aortic cells showed an inositol trisphosphate stimulation that peaked within a few seconds and rapidly declined, whereas the response of the adrenal medulla cells continued to rise through 5 min. Analysis of isomers of inositol phosphates revealed a different pattern of metabolism between the two cell types, which may account for the different time course of response. With adrenal cells, ATP at low micromolar concentrations caused a dose-dependent increase in levels of cyclic AMP and had a greater than additive effect on cyclic AMP levels when combined with submaximal stimulation by prostaglandin E2. These results suggest the presence of a P2Y receptor on aortic endothelial cells, with an 'atypical' purinocepter, i.e., neither P2X nor P2Y

  8. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  9. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Science.gov (United States)

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  10. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  11. Information and Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Qin, Zhenjiang

    2014-01-01

    In an incomplete market with heterogeneous prior beliefs, we show public information can have a substantial impact on the ex ante cost of capital, trading volume, and investor welfare. The Pareto effcient public information system is the system enjoying the maximum ex ante cost of capital...... and the maximum expected abnormal trading volume. Imperfect public information increases the gains-to-trade based on heterogeneously updated posterior beliefs. In an exchange economy, this leads to higher growth in the investors' certainty equivalents and, thus, a higher equilibrium interest rate, whereas the ex...... ante risk premium is unaffected by the informativeness of the public information system. Similar results are obtained in a production economy, but the impact on the ex ante cost of capital is dampened compared to the exchange economy due to welfare improving reductions in real investments to smooth...

  12. Micromechanics of heterogeneous materials

    CERN Document Server

    Buryachenko, Valeriy

    2007-01-01

    Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

  13. Percolation in Heterogeneous Media

    International Nuclear Information System (INIS)

    Vocka, Radim

    1999-01-01

    This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr

  14. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment

    International Nuclear Information System (INIS)

    Fletcher, M.P.

    1986-01-01

    Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3 H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT

  15. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  16. Brief report: benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: all markers are not equal.

    Science.gov (United States)

    Ramirez, Jean-Marie; Gerbal-Chaloin, Sabine; Milhavet, Ollivier; Qiang, Bai; Becker, Fabienne; Assou, Said; Lemaître, Jean-Marc; Hamamah, Samir; De Vos, John

    2011-09-01

    Pluripotent stem cells (PSC) are functionally characterized by their capacity to differentiate into all the cell types from the three germ layers. A