WorldWideScience

Sample records for kupffer cell blockade

  1. Immunomodulation by gadolinium chloride-induced Kupffer cell phagocytosis blockade

    International Nuclear Information System (INIS)

    Lazar, G.; Husztik, E.; Kiss, I.; Szakacs, J.; Olah, J.

    1998-01-01

    Gadolinium chloride (GdCl 3 ), a rare earth metal salt, depresses macrophage activity, and is commonly used to study the physiology of the reticuloendothelial system. In the present work, the effect of GdCl 3 -induced Kupffer cell blockade on the humoral immune response in mice to sheep red blood cells (SRBC) was investigated. Kupffer cell phagocytosis blockade was found to increase both the primary and secondary immune responses to SRBC. The primary immune response was significantly augmented in animals injected intravenously with GdCl 3 2, 3 or 4 days before injection of the cellular antigen, but GdCl 3 injected 7 days before the antigen did not modify the immune response. Increased secondary humoral immune responses were also observed. When GdCl 3 was injected 2 days before the second dose of antigen, the numbers of both IgM and IgG-producing plaque forming cells were augmented. GdCl 3 injected 2 days before the first dose of SRBC did not modify the humoral immune response. Earlier studies with 51 Cr-labelled foreign red blood cells suggested that the augmentation of the humoral immune response in GdCl 3 -pretreated mice is a consequence of the spillover of the antigen from the liver into the spleen and other extrahepatic reticuloendothelial organs. (orig.)

  2. Kupffer cell blockade prevents rejection of human insulinoma cell xenograft in rats

    International Nuclear Information System (INIS)

    Lazar, G. Jr.; Farkas, G.; Lazar, G.

    1998-01-01

    Alloantigens are recognized by T-cells in the context of both class I and class II antigen, but class II antigens predominate in the recognition of xenoantigens. Since class II molecules bind peptides derived from exogenous proteins that have been phagocytized and digested into small fragments by antigen presenting cells, in the present studies the effect of gadolinium chloride (GdCl 3 )-induced Kupffer cell blockade on the survival of discordant insulinoma cell xenografts was investigated. Insulinoma cells isolated by means of collagenase from human insulinoma and cultured were transplanted through the v. portae into the liver of streptozotocin-induced diabetic, male, CFY inbred rats. In the control, streptozotocin-treated rats, the decrease in blood glucose level was only transitory, in contrast with the GdCl 3 -pretreated diabetic rats, which remained normoglycaemic during the 2-week observation period. Histologically, in the liver and lung of rats pre-treated with GdCl 3 , large areas of extensively proliferating insulinoma cells were seen, whereas no insulinoma cells were seen in either the liver or the lung of diabetic-control rats, not-treated with GdCl 3 . These studies suggest that the Kupffer cells play significant roles in the recognition of xenoantigens and the induction of xenograft rejection. (orig.)

  3. Kupffer Cells in the Liver

    Science.gov (United States)

    Dixon, Laura J.; Barnes, Mark; Tang, Hui; Pritchard, Michele T.; Nagy, Laura E.

    2016-01-01

    Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. PMID:23720329

  4. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  5. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    Science.gov (United States)

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e

  6. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  7. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  8. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Knook, D.L.

    1982-01-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA 125 I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA 125 I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA 125 I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA 125 I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA 125 I. The intracellular degradation of CA 125 I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA 125 I occurred within the Kupffer cell lysosomes

  9. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  10. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  11. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    Science.gov (United States)

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  12. Isoferritins in rat Kupffer cells, hepatocytes, and extrahepatic macrophages. Biosynthesis in cell suspensions and cultures in response to iron

    International Nuclear Information System (INIS)

    Doolittle, R.L.; Richter, G.W.

    1981-01-01

    Cultures of Kupffer cells and of hepatocytes, prepared from single rat livers, synthesized ferritin protein equally efficiently. In culture but not in suspension, both sorts of cells responded significantly to stimulation with iron by increased ferritin synthesis. As determined by isoelectric focusing, the isoferritin profiles of newly synthesized 14 -labeled Kupffer cell and hepatocyte ferritin were identical, each having three bands. However, unlabeled ferritin, extracted from nonparenchymal liver cells (mainly Kupffer and endothelial cells) of iron-loaded rats, contained an acidic isoferritin that was not present in hepatocyte ferritin. Investigation of ferritin synthesis in cultured peritoneal and alveolar macrophages yielded similar results. The isofocusing profile of newly synthesized peritoneal macrophage ferritin was indistinguishable from the profile of fresh Kupffer cell or hepatocyte ferritin. Thus, the three isoferritins common to Kupffer cells, hepatocytes, and extrahepatic macrophages are neither cell- nor tissue-specific. However, modifications on intracellular storage may affect the isofocusing properties. The findings, although consistent with the LnH24-n subunit model of ferritin protein, indicate identical restrictive genomic control of the H:L ratios in these sorts of cells. Further, they make it probable that Kupffer cell ferritin iron, originating by endogenous synthesis, is the principal source of Kupffer cell hemosiderin iron

  13. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  14. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  15. Demonstration of glucose-6-phosphate dehydrogenase in rat Kupffer cells by a newly-developed ultrastructural enzyme-cytochemistry

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2009-06-01

    Full Text Available Although various tissue macrophages possess high glucose- 6-phosphate dehydrogenase (G6PD activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells has not been determined.We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.

  16. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver

    DEFF Research Database (Denmark)

    Aparicio-Vergara, Marcela; Tencerova, Michaela; Morgantini, Cecilia

    2017-01-01

    Liver perfusion is a common technique used to isolate parenchymal and non-parenchymal liver cells for in vitro experiments. This method allows hepatic cells to be separated based on their size and weight, by centrifugation using a density gradient. To date, other methods allow the isolation of only...... one viable hepatic cellular fraction from a single mouse; either parenchymal (hepatocytes) or non-parenchymal cells (i.e., Kupffer cells or hepatic stellate cells). Here, we describe a method to isolate both hepatocytes and Kupffer cells from a single mouse liver, thereby providing the unique...... advantage of studying different liver cell types that have been isolated from the same organism....

  17. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury

    International Nuclear Information System (INIS)

    Kumagai, Kazuyoshi; Kiyosawa, Naoki; Ito, Kazumi; Yamoto, Takashi; Teranishi, Munehiro; Nakayama, Hiroyuki; Manabe, Sunao

    2007-01-01

    In our previous study, we found that cycloheximide (CHX) induces hepatocellular necrosis as well as hepatocellular apoptosis. This article evaluates the role of Kupffer cells on cycloheximide-induced hepatic injury using gadolinium chloride (GdCl 3 ) for the inhibition of Kupffer cells. One group of rats was treated with CHX (CHX group), and another was treated with GdCl 3 before being treated with the same dose of CHX (GdCl 3 /CHX group). The necrotic change in the GdCl 3 /CHX group was exacerbated under the induction of hepatocellular apoptosis by the CHX treatment. A substantial diminution of the number of ED1- or ED2-positive cells was demonstrated in the GdCl 3 /CHX group compared to the CHX group. In addition, the degree of decrease in ED2-positive cells was more apparent than that in ED1-positive cells. Increases in the mRNA levels of IL-10 and Stat3 were observed in the CHX group, but not in the GdCl 3 /CHX group. On the other hand, the hepatic mRNA levels of chemokines and adhesion molecules such as Ccl20, LOX-1, and E-selectin were significantly increased only in the GdCl 3 /CHX group. Thus, Kupffer cell inactivation by the GdCl 3 treatment leads to a loss of the capacity to produce IL-10, supposedly resulting in the enhancement of pro-inflammatory cytokine activities such as tumor necrosis factor (TNF) signaling. These events are suggested to be a factor of the inflammatory exacerbation in the livers of the GdCl 3 /CHX group. In conclusion, Kupffer cells may play a role in protecting hepatic necroinflammatory changes by releasing anti-inflammatory cytokines following the hepatocellular apoptosis resulting from CHX treatment

  18. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    International Nuclear Information System (INIS)

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; Rooijen, Nico van; Cherrington, Nathan J.; Manautou, Jose E.

    2009-01-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH

  19. Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Barelds, R.J.; Knook, D.L.

    1985-01-01

    There are many indications that the functional capacity of the reticuloendothelial system (RES) declines with age. The aim of this study was to investigate the cellular basis of age-related changes in the clearance function of the RES. The experiments were focused mainly on Kupffer and endothelial cells of the liver which represent a major part of the RES and are primarily responsible for clearance of colloidal material from the circulation. The clearance capacity of the RES was tested clinically and experimentally by intravenous injection of colloids, such as radiolabeled heat-aggregated colloidal albumin. Age-related changes in the endocytosis of 125 I-labeled colloidal albumin (CA) in rats were determined by clearance and organ distribution of different doses of intravenously injected CA, uptake of CA by Kupffer and endothelial liver cells in vivo as determined after isolation of the cells from injected rats and kinetic studies on CA uptake by Kupffer cells in culture. The results show that, at a low dose, the clearance of CA is primarily determined by liver blood flow. At a higher saturating dose, plasma clearance and uptake by the liver are not significantly decreased with age. Endocytosis by endothelial cells, which accounts for about 60% of that of the whole liver, is also unchanged with age. In contrast, a significant decrease in endocytic capacity was observed for Kupffer cells in vivo. This age-related functional decline was also observed in Kupffer cells which were isolated from rats of different ages and maintained in culture

  20. Kupffer cells promote hepatic steatosis via interleukin-1-dependent suppression of peroxisome proliferator-activated receptor activity

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.N.C.; Keshtkar, S.; Groener, C.; Rooijen, van N.; Staels, B.; Kersten, A.H.; Müller, M.R.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  1. Fibronectin and Kupffer cell function in fulminant hepatic failure

    International Nuclear Information System (INIS)

    Imawari, M.; Hughes, R.D.; Gove, C.D.; Williams, R.

    1985-01-01

    The relationship between plasma fibronectin, in vitro plasma opsonic activity, which measures the biological activity of fibronectin, and in vivo Kupffer cell function, as assessed by the systemic clearance of microaggregated [ 125 I]albumin, were determined simultaneously in 15 patients with fulminant hepatic failure and 12 normal subjects. Both the plasma fibronectin and plasma opsonic activity were significantly reduced in patients with fulminant hepatic failure, while the systemic clearance of microaggregated albumin was decreased. There was a significant correlation between plasma fibronectin and the plasma opsonic activity on admission, but no correlation could be detected between either parameter and the clearance of microaggregated albumin. A gelatin-derived plasma expander was shown to block the plasma opsonic activity both in vitro and in vivo. The low plasma fibronectin and decreased clearance of microaggregated albumin in fulminant hepatic failure reflect different aspects of the overall impairment of Kupffer cell function

  2. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Cunningham Michael

    2006-01-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  3. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS

    DEFF Research Database (Denmark)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard

    2011-01-01

    INTRODUCTION: Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker...... in the patients (52.2 vs 30.4 μg/l, pportal hypertension. The activation was not alleviated by the mechanical...... reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension....

  4. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  5. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  6. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity

    NARCIS (Netherlands)

    Stienstra, Rinke; Saudale, Fredy; Duval, Caroline; Keshtkar, Shohreh; Groener, Johanna E. M.; van Rooijen, Nico; Staels, Bart; Kersten, Sander; Müller, Michael

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  7. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  8. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  9. Fumonisin B1 hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride

    International Nuclear Information System (INIS)

    He, Quanren; Kim, Jiyoung; Sharma, Raghubir P.

    2005-01-01

    Fumonisin B 1 (FB 1 ) is a toxic and carcinogenic mycotoxin produced by Fusarium verticillioides found on corn worldwide. The biological effects of FB 1 are attributed to sphingolipid metabolism disruption as a result of ceramide synthase inhibition. Tumor necrosis factor α (TNFα) is an important modulator of FB 1 hepatotoxicity. Kupffer cells are major source of cytokine production in liver. In the present study we investigated the effects of Kupffer cell depletion by gadolinium on FB 1 hepatotoxicity in female BALB/c mice. Mice were given saline or 50 mg/kg of gadolinium chloride once via the tail vein; 16 h later they were treated with subcutaneous injections of vehicle or 2.25 mg/kg/day FB 1 in saline for three successive days. Gadolinium significantly attenuated FB 1 -induced increases in the activities of circulating alanine aminotransferase and aspartate aminotransferase and reduced the FB 1 -induced hepatocyte apoptosis and free sphinganine accumulation in liver. Both gadolinium and FB 1 treatments individually increased the expression of selected cell signal factors; e.g., TNFα, TNF receptor 1, TNF-related apoptosis-inducing ligand, lymphotoxin β, interferon γ, and transforming growth factor β1; gadolinium chloride did not alter FB 1 -induced expression of the above genes. Results indicated that Kupffer cells play a role in FB 1 hepatotoxicity. Decreased FB 1 -induced sphinganine accumulation and increased protective TNFα signaling by gadolinium chloride may in part account for its ameliorating effect on FB 1 liver damage

  10. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes

    International Nuclear Information System (INIS)

    Souhami, R.L.; Patel, H.M.; Ryman, B.E.

    1981-01-01

    The blood clearance and tissue distribution of liposomes have been studied in mice subjected to reticuloendothelial blockade with dextran sulphate or carbon. The liposomes have been labelled in the lipid membranes with [ 3 H]-cholesterol, [ 14 C]phosphatidylcholine and/or 99 sup(m)Tc and the content with [ 14 C]inulin. Reticuloendothelial blockade has been shown to slow the rate of clearance of neutral, positively and negatively charged liposomes and of both small unilamellar vesicles and large multilamellar vesicles. In normal animals, the liver uptake accounted for only 20-55% of the total injected radioactivity, the amount varying with the charge and size of the liposomes. Following blockade, the liver uptake of charged and neutral multilamellar liposomes was depressed. This was also true for negatively charged small unilamellar vesicles. The degree of depression of hepatic uptake was between 25-50%, which contrasts with the 80-90% reduction in uptake of a wholly phagocytosed particle (sheep red cells). This difference suggets that mechanisms other than Kupffer cell phagocytosis are also responsible for the normal uptake of liposomes into the liver. In the case of neutral and positively charged small unilamellar vesicles, delayed clearance due to blockade was not associated with depressed hepatic uptake. The site of action of blockading agents for these preparations is not clear. With all preparations of liposomes, blockade produced a slight and variable increase in uptake in the lung and spleen. The alteration of distribution of liposomes by reticuloendothelial blockade is therefore not great and the value of the technique in modifying the tissue distribution of substances within liposomes may be limited. (orig.)

  11. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS.

    Science.gov (United States)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard; Moestrup, Søren K; Riggio, Oliviero; Ridola, Lorenzo; Aagaard, Niels Kristian; Møller, Holger Jon; Vilstrup, Hendrik

    2011-10-01

    Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker of macrophage activation, before and after reduction of portal venous pressure gradient by insertion of a transjugular intrahepatic portosystemic shunt (TIPS) in patients with cirrhosis. sCD163 was measured in 11 controls and 36 patients before and 1, 4 and 26 weeks after TIPS. We used lipopolysaccharide binding protein (LBP) levels as a marker of endotoxinaemia. Liver function and clinical status of the patients were assessed by galactose elimination capacity and Model for End Stage Liver Disease score. The sCD163 concentration was more than threefold higher in the patients than in the controls (median 5.22 mg/l vs 1.45 mg/l, pportal venous pressure gradient (r(2)=0.24, pportal vein (pportal hypertension. The activation was not alleviated by the mechanical reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension.

  12. Can technetium-labelled millimicrospheres be used to measure Kupffer-cell function

    International Nuclear Information System (INIS)

    Pearson, H.J.; Chamberlain, J.; Anderson, J.; Bowry, V.; Bell, P.R.F.

    1985-01-01

    It has been suggested that sodium pertechnetate sup(99m)Tc millimicrospheres can be used to measure Kupffercell function. We studied animals and humans to show whether the clearance and catabolism of sup(99m)Tc-labelled millimicrospheres can be used as a measure of Kupffer-cell function. Comparison with albumin 125 I-microaggregates clearance of human serum albumin failed to demonstrate that they can be used for this purpose. We suggest that their blood clearance is mainly an expression of liver blood flow. (orig.)

  13. Fumonisin B{sub 1} hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    He, Quanren [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States); Kim, Jiyoung [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States); Sharma, Raghubir P [Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389 (United States)

    2005-02-01

    Fumonisin B{sub 1} (FB{sub 1}) is a toxic and carcinogenic mycotoxin produced by Fusarium verticillioides found on corn worldwide. The biological effects of FB{sub 1} are attributed to sphingolipid metabolism disruption as a result of ceramide synthase inhibition. Tumor necrosis factor {alpha} (TNF{alpha}) is an important modulator of FB{sub 1} hepatotoxicity. Kupffer cells are major source of cytokine production in liver. In the present study we investigated the effects of Kupffer cell depletion by gadolinium on FB{sub 1} hepatotoxicity in female BALB/c mice. Mice were given saline or 50 mg/kg of gadolinium chloride once via the tail vein; 16 h later they were treated with subcutaneous injections of vehicle or 2.25 mg/kg/day FB{sub 1} in saline for three successive days. Gadolinium significantly attenuated FB{sub 1}-induced increases in the activities of circulating alanine aminotransferase and aspartate aminotransferase and reduced the FB{sub 1}-induced hepatocyte apoptosis and free sphinganine accumulation in liver. Both gadolinium and FB{sub 1} treatments individually increased the expression of selected cell signal factors; e.g., TNF{alpha}, TNF receptor 1, TNF-related apoptosis-inducing ligand, lymphotoxin {beta}, interferon {gamma}, and transforming growth factor {beta}1; gadolinium chloride did not alter FB{sub 1}-induced expression of the above genes. Results indicated that Kupffer cells play a role in FB{sub 1} hepatotoxicity. Decreased FB{sub 1}-induced sphinganine accumulation and increased protective TNF{alpha} signaling by gadolinium chloride may in part account for its ameliorating effect on FB{sub 1} liver damage.

  14. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    Science.gov (United States)

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  15. Thyroid Hormone-Induced Cytosol-to-Nuclear Translocation of Rat Liver Nrf2 Is Dependent on Kupffer Cell Functioning

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available L-3,3′,5-triiodothyronine (T3 administration upregulates nuclear factor-E2-related factor 2 (Nrf2 in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl3; 10 mg/kg i.v. 72 h before T3 [0.1 mg/kg i.p.] or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T3, and determinations were performed 2 h after T3. T3 increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1, catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl3 treatment prior to T3, an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T3-induced tumor necrosis factor-α (TNF-α response was eliminated by previous GdCl3 administration. Similar to GdCl3, apocynin given before T3 significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T3. This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl3 or apocynin given prior to T3, thus hindering Nrf2 activation.

  16. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  17. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes

    NARCIS (Netherlands)

    Watchorn, T.M.; Dowidar, N.; Dejong, C.H.; Waddell, I.D.; Garden, O.J.; Ross, J.A.

    2005-01-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells,

  18. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  19. Predominance of Th1 response, increase of megakaryocytes and Kupffer cells are related to survival in Trypanosoma cruzi infected mice treated with Lycopodium clavatum.

    Science.gov (United States)

    Falkowski-Temporini, Gislaine Janaina; Lopes, Carina Ribeiro; Massini, Paula Fernanda; Brustolin, Camila Fernanda; Sandri, Patricia Flora; Ferreira, Érika Cristina; Aleixo, Denise Lessa; Pala, Nelson Roberto; de Araújo, Silvana Marques

    2016-12-01

    We investigated the number of megakaryocytes, Kupffer cells and ratios of Th1/Th2 and Th1/Th17 cytokines in survival of mice infected with Y strain of Trypanosoma cruzi and treated with Lycopodium clavatum. In a blind, randomized and controlled assay, Swiss male mice, 8weeks-old, infected with 1400 trypomastigotes (Y strain) were divided into groups and treated with: GLy - Lycopodium clavatum dynamization13c and GCI - alcohol solution 7° GL (vehicle medicine). The treatment was offered two days before infection and on the 2nd, 4th and 6th days after infection, overnight (1mL/100mL) and ad libitum. Parameters assessed were: survival rate, number of megakaryocytes and Kupffer cells, cytokines dosage (TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17), Th1/Th2 and Th1/Th17 ratios. The increase in megakaryocytes, Kupffer cells, predominance of Th1 response, with increased TNF-α, IL-10, TNF-α/IL-4, TNF-α/IL-17 and decreased IL-6 IL-6/IL-4, are related to increased survival in mice infected with T. cruzi and treated with Lycopodium clavatum 13c. This result demonstrates the possibility of an alternative approach for the treatment of Chagas disease with dynamized drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pivotal roles of Kupffer cells in the progression and regression of DDC-induced chronic cholangiopathy.

    Science.gov (United States)

    Jemail, Leila; Miyao, Masashi; Kotani, Hirokazu; Kawai, Chihiro; Minami, Hirozo; Abiru, Hitoshi; Tamaki, Keiji

    2018-04-23

    Kupffer cells (KCs) are key players in maintaining tissue homeostasis and are involved in various liver diseases. However, the roles of KCs in the pathogenesis of cholangiopathy are largely unknown. We aimed to investigate the precise roles of KCs in both the progression and regression phases of the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced cholangiopathy model. In the early phase of DDC-induced cholangiopathy, the number of KCs significantly increased over time. Moreover, KCs were associated with abnormal phenotypic changes in other liver cells, such as hepatocytes, biliary epithelial cells, liver sinusoidal endothelial cells, and hepatic stellate cells. In contrast, KC depletion by clodronate administration suppressed the progression of the disease, and maintained the phenotypes of other cells. In the regression phase, the numbers of KCs significantly decreased, and the cells redifferentiated to their quiescent state. In contrast, KC depletion delayed the recovery of cells by maintaining other liver cells in an active state. These findings suggest that KCs play detrimental roles in the progression phase; however, they are beneficial in the regression phase by mediating interactions between other liver cells. Our data provide new insights into the roles of KCs in the pathogenesis of cholangiopathy.

  1. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  2. Failure to demonstrate a major role for Kupffer cells and radiosensitive leukocytes in immunoglobulin-mediated elimination of Trypanosoma musculi

    International Nuclear Information System (INIS)

    Kongshavn, P.A.; Shaw, K.; Ghadirian, E.; Ulczak, O.

    1990-01-01

    Previous studies have indicated that elimination of parasitemia in Trypanosoma musculi infection is brought about by immunoglobulin G2a antibodies, C3, and an effector cell. Experiments were designed to identify the putative effector cell by using several approaches. Infected C5-deficient or C5-sufficient mice treated with silica particles or given 900 rads of radiation 3 days earlier effectively eliminated trypanosomes following administration of immune plasma (IP). Silica-treated, noninfected mice given T. musculi preincubated with IP also cleared the parasites. Radiolabeling studies revealed that uptake of the cleared trypanosomes by the liver in normal mice was relatively low and fell only slightly (19%) in silica-treated mice. In contrast, uptake of radiolabeled sheep erythrocytes by the liver was normally much higher and fell drastically (7%) in silica-treated mice. Mice were then immunocompromised by 900 rads of radiation, silica particles, and anti-platelet serum combined before IP-sensitized trypanosomes were given. Leukocyte and platelet counts were both reduced by 95% and sheep erythrocyte uptake by the liver fell from 77 to 5%; however, greater than 99% of the injected trypanosomes were cleared in these mice and uptake of radiolabeled trypanosomes by the liver was similar to that of normal mice. Lastly, in anesthetized mice in which Kupffer cells were excluded surgically from the circulation, greater than 99% of the IP-sensitized trypanosomes disappeared rapidly from the blood. Only 7% of the radiolabel was found in the liver versus 60% in sham-operated mice. The results are interpreted as showing that hepatic Kupffer cells play a minor role in the immune elimination of T. musculi. Likewise, radiosensitive leukocytes and platelets are unlikely to be sole candidates for the putative effector cell that mediates a cure of murine trypanosomiasis

  3. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Lynette Beattie

    2010-03-01

    Full Text Available Kupffer cells (KCs represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8(+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8(+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.

  4. Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed

    2011-08-01

    Full Text Available Abstract Background Advances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups, 12 GNPs-treated rats groups and one control group (NG. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days, size 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. In addition, inflammatory cell infiltration, Kupffer cells hyperplasia, central veins intima disruption, hepatic strands dilatation and occasional fatty change together with a loss of normal architechiture of hepatic strands were also seen. Conclusions The alterations induced by the administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. These alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the

  5. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Grønbaek, H; Sandahl, T D; Mortensen, C

    2012-01-01

    BACKGROUND: Activation of Kupffer cells may be involved in the pathogenesis of portal hypertension by release of vasoconstrictive substances and fibrosis due to co-activation of hepatic stellate cells. AIM: To study soluble plasma (s) CD163, a specific marker of activated macrophages......, as a biomarker for portal hypertension in patients with liver cirrhosis. METHODS: We measured sCD163 concentration and the hepatic venous pressure gradient (HVPG) by liver vein catheterisation in 81 cirrhosis patients (Child-Pugh CP-A: n = 26, CP-B: n = 29, CP-C: n = 26) and 22 healthy subjects. We also measured...... for HVPG. These findings support a primary role of macrophage activation in portal hypertension, and may indicate a target for biological intervention....

  6. Amphiphilic core shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells

    Directory of Open Access Journals (Sweden)

    Liu Z

    2016-06-01

    Full Text Available Zuojin Liu,1,* Dechao Niu,2,3,* Junyong Zhang,1 Wenfeng Zhang,1 Yuan Yao,2 Pei Li,2 Jianping Gong1 1Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 2Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 3Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs. In this article, we demonstrate that amphiphilic core–shell nanoparticles (NPs consisting of well-defined hydrophobic poly(methyl methacrylate (PMMA cores and branched polyethyleneimine (PEI shells (denoted as PEI@PMMA NPs are efficient nanocarriers to deliver microRNA (miRNA-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1. The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%. Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in

  7. PD-1 Blockade Expands Intratumoral Memory T Cells

    DEFF Research Database (Denmark)

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse

    2016-01-01

    by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single-cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid......-derived suppressor cells significantly increased in patients' biopsies taken on treatment. The percentage of cells with a regulatory T-cell phenotype, monocytes, and natural killer cells did not change while on PD-1 blockade therapy. CD8+ memory T cells were the most prominent phenotype that expanded intratumorally...... on therapy. However, the frequency of CD4+ effector memory T cells significantly decreased on treatment, whereas CD4+ effector T cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 was detected in two patients...

  8. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2016-10-01

    Full Text Available Abstract Background Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. Methods In this study, we established an arterialized mouse non-heart-beating (NHB liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion. Results MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation. Conclusion Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.

  9. PD-1 Blockade Can Restore Functions of T-Cells in Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma In Vitro.

    Directory of Open Access Journals (Sweden)

    Lina Quan

    Full Text Available Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+DLBCL is an aggressive malignancy that is largely resistant to current therapeutic regimens, and is an attractive target for immune-based therapies. Anti-programmed death-1 (PD-1 antibodies showed encouraging anti-tumor effects in both preclinical models and advanced solid and hematological malignancies, but its efficacy against EBV+DLBCL is unknown. Herein, we performed experiments using co-culture system with T cells and lymphoma cell lines including EBV+DLBCL and EBV-DLBCL [including germinal center B-cell like (GCB-DLBCL and non-GCB-DLBCL] in vitro. We show that lymphoma cells augmented the expression of PD-1 on T cells, decreased the proliferation of T cells, and altered the secretion of multiple cytokines. However, through PD-1 blockade, these functions could be largely restored. Notbaly, the effect of PD-1 blockade on antitumor immunity was more effective in EBV+DLBCL than that in EBV-DLBCL in vitro. These results suggest that T-cell exhaustion and immune escape in microenvironment is one of the mechanisms underlying DLBCL; and PD-1 blockade could present as a efficacious immunotherapeutic treatment for EBV+DLBCL.

  10. Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-01-01

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47 phox -null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47 phox -null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47 phox -null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase

  11. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  12. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    Science.gov (United States)

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  13. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression.

    Science.gov (United States)

    Lin, Che-Yi; Tsai, Ming-Yuan; Liu, Yu-Hsiu; Lu, Yu-Fen; Chen, Yi-Chung; Lai, Yun-Ren; Liao, Hsin-Chi; Lien, Huang-Wei; Yang, Chung-Hsiang; Huang, Chang-Jen; Hwang, Sheng-Ping L

    2017-07-17

    Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed

  14. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  15. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations

    Science.gov (United States)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  16. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    Science.gov (United States)

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  17. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink

    DEFF Research Database (Denmark)

    Sepehri, Mitra; Steen Sejersen, Tobias; Qvortrup, Klaus

    2017-01-01

    AIM: Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace....... Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). RESULTS: TEM identified intracellular tattoo pigments...... in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs...

  18. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  19. Re-evaluation of thin layer chromatography as an alternative method for the quantification of prostaglandins from rat Kupffer cells.

    Science.gov (United States)

    Pestel, Sabine; Jungermann, Kurt; Schieferdecker, Henrike L

    2005-01-01

    In contrast to conventionally used immunoassays, thin layer chromatography (TLC)--by prelabeling of cells with radioactive arachidonic acid (AA)--allows to differentiate between cellularly built and added prostanoids and thus to investigate feedback effects of prostanoids on their own release. PGD2, TXB2 and PGE2 released from zymosan-stimulated Kupffer cells were separated with distinct RF-values, corresponding to those of the pure substances. Quantification of PGD2 and PGE2 gave comparable results with TLC and immunoassays, but measurement in the presence of added prostanoids was only possible with TLC. Moreover TLC was superior to immunoassays in having a longer linear range while being comparably sensitive. Cellularly built TXB2 in its radioactively labeled form was not detectable by TLC. Inhibition of TXB2 release by externally added AA or technical artifacts were excluded, suggesting that the cellular AA-pools used for prostaglandin and thromboxane synthesis differ in their accessibility for added AA. Thus, TLC is a simple, sensitive and precise method for the quantification of cellularly built prostaglandins but not of thromboxane even in the presence of added prostanoids.

  20. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  1. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  2. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve

    2010-01-01

    and eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...... inhibition of AA-dependent PGE(2) synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially...

  3. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    International Nuclear Information System (INIS)

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki

    2006-01-01

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated

  4. Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Schaub, M; Issazadeh-Navikas, Shohreh; Stadlbauer, T H

    1999-01-01

    Blockade of the CD28-B7 or CD40L-CD40 T cell costimulatory signals prevents induction of experimental autoimmune encephalomyelitis (EAE). However, the effect of simultaneous blockade of these signals in EAE is unknown. We show that administration of either MR1 (to block CD40L) or CTLA4Ig (to block...... B7) after immunization or after the first attack protects from EAE. Treatment with a combination of CTLA4Ig and MR1 provides additive protection, and is associated with complete absence of mononuclear cell infiltrates in the central nervous system, and marked suppression of proliferation of primed T...... cells in the periphery. Selective B7-1 blockade did not protect from EAE. These observations have implications for therapy of autoimmune diseases....

  5. HTLV-1 specific CD8+ T cell function augmented by blockade of 2B4/CD48 interaction in HTLV-1 infection.

    Directory of Open Access Journals (Sweden)

    Chibueze Chioma Ezinne

    Full Text Available CD8+ T cell response is important in the response to viral infections; this response though is regulated by inhibitory receptors. Expression of inhibitory receptors has been positively correlated with CD8+ T cell exhaustion; the consequent effect of simultaneous blockade of these inhibitory receptors on CD8+ T cell response in viral infections have been studied, however, the role of individual blockade of receptor-ligand pair is unclear. 2B4/CD48 interaction is involved in CD8+T cell regulation, its signal transducer SAP (signaling lymphocyte activation molecule (SLAM-associated protein is required for stimulatory function of 2B4/CD244 on lymphocytes hence, we analyzed 2B4/CD244 (natural killer cell receptor and SAP (signaling lymphocyte activation molecule(SLAM-associated protein on total CD8+ and HTLV-1 specific CD8+T cells in HTLV-1 infection and the effect of blockade of interaction with ligand CD48 on HTLV-1 specific CD8+ T cell function. We observed a high expression of 2B4/CD244 on CD8+ T cells relative to uninfected and further upregulation on HTLV-1 specific CD8+ T cells. 2B4+ CD8+ T cells exhibited more of an effector and terminally differentiated memory phenotype. Blockade of 2B4/CD48 interaction resulted in improvement in function via perforin expression and degranulation as measured by CD107a surface mobilization on HTLV-1 specific CD8+ T cells. In the light of these findings, we thus propose an inhibitory role for 2B4/CD48 interaction on CD8+T cell function.

  6. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    ... types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression ...

  7. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Takuto Oyama

    2016-06-01

    Full Text Available Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA. MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF and low-biofilm formers (L-BF. These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections.

  8. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2013-01-01

    Full Text Available High doses of acetaminophen (APAP; N-acetyl-p-aminophenol cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg. Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity.

  9. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    Science.gov (United States)

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  10. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Yool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

  11. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  12. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  13. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  14. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    Science.gov (United States)

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  15. Combining G-CSF with a blockade of adhesion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells.

    Science.gov (United States)

    Christ, O; Kronenwett, R; Haas, R; Zöller, M

    2001-03-01

    Mobilization of hematopoietic progenitor cells is achieved mainly by application of growth factors and, more recently, by blockade of adhesion. In this report, we describe the advantages of a combined treatment with granulocyte colony-stimulating factor (G-CSF) and anti-VLA4 (CD49d)/anti-CD44 as compared to treatment with the individual components. Mobilization by intravenous injection of anti-CD44, anti-VLA4, or G-CSF was controlled in spleen and bone marrow with regard to frequencies of multipotential colony-forming unit (C-CFU), marrow repopulating ability, long-term reconstitution, recovery of myelopoiesis, and regain of immunocompetence. Mobilization by anti-CD44 had a strong effect on expansion of early progenitor cells in the bone marrow, while the recovery in the spleen was poor. In anti-CD49d-mobilized noncommitted and committed progenitors, progenitor expansion was less pronounced, but settlement in the spleen was quite efficient. Thus, anti-CD44 and anti-CD49d differently influenced mobilization. Accordingly, mobilization and recovery after transfer were improved by combining anti-CD44 with anti-CD49d treatment. Mobilization by G-CSF was most efficient with respect to recovery of progenitor cells in the spleen. However, when transferring G-CSF-mobilized cells, regain of immunocompetence was strongly delayed. This disadvantage could be overridden when progenitor cells were mobilized via blockade of adhesion and when expansion of these mobilized progenitor cells was supported by low-dose G-CSF only during the last 24 hours before transfer. Mobilization of pluripotent progenitor cells via antibody blockade of CD44 or CD49d or via G-CSF relies on distinct mechanisms. Therefore, the reconstitutive capacity of a transplant can be significantly improved by mobilization regimens combining antibody with low-dose G-CSF treatment.

  16. Blockade of the SNARE protein syntaxin 1 inhibits glioblastoma tumor growth.

    Directory of Open Access Journals (Sweden)

    Fausto Ulloa

    Full Text Available Glioblastoma (GBM is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1 function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.

  17. Blockade of mast cell activation reduces cutaneous scar formation.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG, on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  18. Interleukin-1 antagonists and other cytokine blockade strategies for type 1 diabetes

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, Thomas

    2012-01-01

    Proinflammatory cytokines stimulate adaptive immunity and attenuate T cell regulation and tolerance induction. They also profoundly impair β-cell function, proliferation, and viability, activities of similar importance in the context of type 1 diabetes (T1D). Detailed knowledge of the molecular...... mechanisms of β-cell toxicity has been gathered within the last 2-3 decades. However, the efficacy of individual proinflammatory cytokine blockade in animal models of T1D has been inconsistent and generally modest, except in the context of islet transplantation. This suggests that the timing of the cytokine...... blockade relative to anti-β-cell immune activation is critical, and that combination therapy may be required. In randomized, placebo-controlled, clinical trials of limited power, TNF-α (but not IL-1) blockade has yielded moderate but significant improvements in glycemia, insulin requirement, and β...

  19. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  20. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    Directory of Open Access Journals (Sweden)

    Victoria Kegel

    2015-01-01

    Full Text Available Drug induced liver injury (DILI is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2±0.9×106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay and cell activity (XTT assay. The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production.

  1. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    Science.gov (United States)

    Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg

    2015-01-01

    Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234

  2. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  3. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    Science.gov (United States)

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  4. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    Science.gov (United States)

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Influence of beta blockade on gastric acid secretion and changes in gastric mucosal blood flow before and after parietal cell vagotomy in dogs and man

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Bekker, C

    1983-01-01

    The aim of the present study was, in paired experiments in dogs, to examine the effect of beta-receptor blockade on gastric acid secretion and mucosal blood flow before and after parietal cell vagotomy (PCV). The secretory response to pentagastrin was reduced after vagotomy. beta-Adrenergic block......The aim of the present study was, in paired experiments in dogs, to examine the effect of beta-receptor blockade on gastric acid secretion and mucosal blood flow before and after parietal cell vagotomy (PCV). The secretory response to pentagastrin was reduced after vagotomy. beta...

  6. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function.

    Science.gov (United States)

    Garrett, Joan T; Sutton, Cammie R; Kuba, María Gabriela; Cook, Rebecca S; Arteaga, Carlos L

    2013-02-01

    Dual blockade of HER2 with trastuzumab and lapatinib or with pertuzumab is a superior treatment approach compared with single-agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphoinositide 3-kinase (PI3K)/AKT causes a transcriptional and posttranslational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies. We hypothesized that suppression of HER3 would synergize with dual blockade of HER2 in breast cancer cells sensitive and refractory to HER2 antagonists. Inhibition of HER2/HER3 in HER2(+) breast cancer cell lines was evaluated by Western blotting. We analyzed drug-induced apoptosis and two- and three-dimensional growth in vitro. Growth inhibition of PI3K was examined in vivo in xenografts treated with combinations of trastuzumab, lapatinib, and the HER3-neutralizing monoclonal antibody U3-1287. Treatment with U3-1287 blocked the upregulation of total and phosphorylated HER3 that followed treatment with lapatinib and trastuzumab and, in turn, enhanced the antitumor action of the combination against trastuzumab-sensitive and -resistant cells. Mice bearing HER2(+) xenografts treated with lapatinib, trastuzumab, and U3-1287 exhibited fewer recurrences and better survival than mice treated with lapatinib and trastuzumab. Dual blockade of HER2 with trastuzumab and lapatinib does not eliminate the compensatory upregulation of HER3. Therapeutic inhibitors of HER3 should be considered as part of multidrug combinations aimed at completely and rapidly disabling the HER2 network in HER2-overexpressing breast cancers.

  7. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation.

    Science.gov (United States)

    Bieghs, Veerle; Walenbergh, Sofie M A; Hendrikx, Tim; van Gorp, Patrick J; Verheyen, Fons; Olde Damink, Steven W; Masclee, Ad A; Koek, Ger H; Hofker, Marten H; Binder, Christoph J; Shiri-Sverdlov, Ronit

    2013-08-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation. The transition from steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Under normal conditions, lipoproteins that are endocytosed by Kupffer cells (KCs) are easily transferred from the lysosomes into the cytoplasm. Oxidized LDL (oxLDL) that is taken up by the macrophages in vitro is trapped within the lysosomes, while acetylated LDL (acLDL) is leading to normal lysosomal hydrolysis, resulting in cytoplasmic storage. We have recently demonstrated that hepatic inflammation is correlated with lysosomal trapping of lipids. So far, a link between lysosomal trapping of oxLDL and inflammation was not established. We hypothesized that lysosomal trapping of oxLDL in KCs will lead to hepatic inflammation. Ldlr(-/-) mice were injected with LDL, acLDL and oxLDL and sacrificed after 2, 6 and 24 h. Electron microscopy of KCs demonstrated that after oxLDL injection, small lipid inclusions were present inside the lysosomes after all time points and were mostly pronounced after 6 and 24 h. In contrast, no lipid inclusions were present inside KCs after LDL or acLDL injection. Hepatic expression of several inflammatory genes and scavenger receptors was higher after oxLDL injections compared with LDL or acLDL. These data suggest that trapping of oxLDL inside lysosomes of KCs in vivo is causally linked to increased hepatic inflammatory gene expression. Our novel observations provide new bases for prevention and treatment of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Blockade of CD26-mediated T cell costimulation with soluble caveolin-1-Ig fusion protein induces anergy in CD4{sup +}T cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Kei [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Uchiyama, Masahiko [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Computational Intelligence and System Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Hatano, Ryo; Takasawa, Wataru; Endo, Yuko [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Dang, Nam H. [Department of Hematologic Malignancies, Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-08-21

    CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy.

  9. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  11. Immunogenic Chemotherapy Sensitizes Renal Cancer to Immune Checkpoint Blockade Therapy in Preclinical Models.

    Science.gov (United States)

    Cui, Shujin

    2017-07-11

    BACKGROUND Renal cell carcinoma (RCC) is among the most common malignant cancers of males worldwide. For advanced RCC patients, there still is no effective therapy. Immune checkpoint blockade therapies have shown benefits for many cancers, but previous clinical trials of immune checkpoint blockade therapies in RCC patients achieved only modest results. MATERIAL AND METHODS We explored the effects of combining chemotherapy with immune checkpoint blockade therapy in RCC xenograft mouse models. We also studied the potential mechanisms by which chemotherapy might enhance the efficacy of immune checkpoint blockade therapy, both in vitro and in vivo. RESULTS Our results showed that many commonly used chemotherapy agents can induce immunogenic marker release in RCC cell lines. Importantly, the RCC xenograft mouse model mice who received the combination treatment of 5-fluorouracil (5-FU) and anti-programmed cell death-ligand 1 (PD-L1) antibodies (Abs) had longer survival times compared to those who received 5-FU or anti-PD-L1 Abs alone. Also, increased key cytokines that promote tumor immunity, such as IL-2, IFN-γ, and TNF-α, as well as tumor-infiltrating cytotoxic T cells, were also increased after the combination treatment. CONCLUSIONS We conclude that 5-FU can sensitize RCC to anti-PD-L1 treatment by releasing the immune suppression in the tumor microenvironment.

  12. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    International Nuclear Information System (INIS)

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users

  13. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    Science.gov (United States)

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  14. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    OpenAIRE

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then...

  15. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    Science.gov (United States)

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  17. α-blockade, apoptosis, and prostate shrinkage: how are they related?

    Science.gov (United States)

    Chłosta, Piotr; Drewa, Tomasz; Kaplan, Steven

    2013-01-01

    The α1-adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1-adrenoreceptor antagonist, α-blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. We have shown how discoveries related to stem cells can influence our understanding of α-blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1-receptor antagonists.

  18. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  19. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  1. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  2. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    Directory of Open Access Journals (Sweden)

    Jeong-Gyun Kim

    Full Text Available Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  3. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    Science.gov (United States)

    Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  4. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  5. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink.

    Science.gov (United States)

    Sepehri, Mitra; Sejersen, Tobias; Qvortrup, Klaus; Lerche, Catharina M; Serup, Jørgen

    2017-01-01

    Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace tattoo pigments in internal organs in mice extensively tattooed with 2 different tattoo ink products. Three groups of mice were studied, i.e., 10 tattooed black, 10 tattooed red, and 5 untreated controls. They were tattooed on the entire back with commercial tattoo inks, black and red. Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). TEM identified intracellular tattoo pigments in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs. The study demonstrated black and red tattoo pigment deposits in the liver; thus, tattoo pigment distributed from the tattooed skin via the blood stream to this important organ of detoxification. The finding adds a new dimension to tattoo pigment distribution in the body, i.e., as observed via the blood in addition to the lymphatic pathway. © 2017 S. Karger AG, Basel.

  6. Contemporary views on the lawfulness of naval blockades

    NARCIS (Netherlands)

    Fink, M.D.

    2011-01-01

    The traditional law of blockade has several technical requirements that if not met renders a blockade unlawful. These traditional requirements balance the interests of the belligerent and neutrals. A more contemporary view on the law of blockade, however, emphasizes that blockades are also subject

  7. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  8. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo.

    Science.gov (United States)

    Koo, G C; Blake, J T; Talento, A; Nguyen, M; Lin, S; Sirotina, A; Shah, K; Mulvany, K; Hora, D; Cunningham, P; Wunderler, D L; McManus, O B; Slaughter, R; Bugianesi, R; Felix, J; Garcia, M; Williamson, J; Kaczorowski, G; Sigal, N H; Springer, M S; Feeney, W

    1997-06-01

    The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.

  9. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    Science.gov (United States)

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  10. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  11. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  12. PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model.

    Directory of Open Access Journals (Sweden)

    Shi-Dong Ma

    2016-05-01

    Full Text Available Epstein-Barr virus (EBV infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81 in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans.

  13. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade

    OpenAIRE

    Mohamed B. Ezzelarab; Lien Lu; William F. Shufesky; Adrian E. Morelli; Adrian E. Morelli; Angus W. Thomson; Angus W. Thomson

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differ...

  14. Time-specific blockade of PDGFR with Imatinib (Glivec®) causes cataract and disruption of lens fiber cells in neonatal mice.

    Science.gov (United States)

    Zhou, Yin-Pin; He, Yang-Tao; Chen, Cheng-Li; Ji, Jun; Niu, Jian-Qin; Wang, Han-Zhi; Li, Shi-Feng; Huang, Lan; Mei, Feng

    2011-03-01

    This study aimed at investigating the response of lens epithelial cells in postnatal mice to Imatinib (Glivec®, a potent inhibitor of platelet-derived growth factor receptor (PDGFR)) treatment. Mouse eyes were sampled 10 days after administration of Imatinib (0.5 mg·g(-1)·day(-1)) for 3 days, at either 7, 14, or 21 days postpartum. Structural changes of lens were revealed by routine H.E. staining. Levels of proliferation and apoptosis were revealed by BrdU incorporation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively, and immunofluorescent staining with anti-PDGFRα antibody was carried out on the sections of eyeball. PDGFRα and p-PDGFRαprotein levels were evaluated by Western blot. Our results indicated that administration of Imatinib led to blockade of PDGFR signaling. Formation of cataracts was found only in those mice where treatment started from 7 days postpartum (P7), but was not observed in those samples from P14 nor P21. Fiber cells were disorganized in cataract lens core as observed histologically, and migration of epithelial cells was also inhibited. No apoptosis was detected with the TUNEL method. Our results indicated blockade of PDGFR at the neonatal stage (P7) would lead to cataracts and lens fiber cells disorganization, suggesting that PDGFR signaling plays a time-specific and crucial role in the postnatal development of lens in the mouse, and also may provide a new approach to produce a congenital cataract animal model.

  15. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  16. Neuraxial blockade for external cephalic version: Cost analysis.

    Science.gov (United States)

    Yamasato, Kelly; Kaneshiro, Bliss; Salcedo, Jennifer

    2015-07-01

    Neuraxial blockade (epidural or spinal anesthesia/analgesia) with external cephalic version increases the external cephalic version success rate. Hospitals and insurers may affect access to neuraxial blockade for external cephalic version, but the costs to these institutions remain largely unstudied. The objective of this study was to perform a cost analysis of neuraxial blockade use during external cephalic version from hospital and insurance payer perspectives. Secondarily, we estimated the effect of neuraxial blockade on cesarean delivery rates. A decision-analysis model was developed using costs and probabilities occurring prenatally through the delivery hospital admission. Model inputs were derived from the literature, national databases, and local supply costs. Univariate and bivariate sensitivity analyses and Monte Carlo simulations were performed to assess model robustness. Neuraxial blockade was cost saving to both hospitals ($30 per delivery) and insurers ($539 per delivery) using baseline estimates. From both perspectives, however, the model was sensitive to multiple variables. Monte Carlo simulation indicated neuraxial blockade to be more costly in approximately 50% of scenarios. The model demonstrated that routine use of neuraxial blockade during external cephalic version, compared to no neuraxial blockade, prevented 17 cesarean deliveries for every 100 external cephalic versions attempted. Neuraxial blockade is associated with minimal hospital and insurer cost changes in the setting of external cephalic version, while reducing the cesarean delivery rate. © 2015 The Authors. Journal of Obstetrics and Gynaecology Research © 2015 Japan Society of Obstetrics and Gynecology.

  17. Why not treat human cancer with interleukin-1 blockade?

    NARCIS (Netherlands)

    Dinarello, C.A.

    2010-01-01

    The clinical successes of targeting angiogenesis provide a basis for trials of interleukin-1 (IL-1) blockade and particularly anti-IL-1beta as an add-on therapy in human metastatic disease. In animal studies for over 20 years, IL-1 has been demonstrated to increase adherence of tumor cells to the

  18. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    Directory of Open Access Journals (Sweden)

    Miriam Maraslioglu

    2014-01-01

    Full Text Available Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS. We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.

  19. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Directory of Open Access Journals (Sweden)

    Xiang Y. Kong

    2014-03-01

    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  20. CD4 Depletion or CD40L Blockade Results in Antigen-Specific Tolerance in a Red Blood Cell Alloimmunization Model

    Directory of Open Access Journals (Sweden)

    Prabitha Natarajan

    2017-08-01

    Full Text Available Approximately 3–10% of human red blood cell (RBC transfusion recipients form alloantibodies to non-self, non-ABO blood group antigens expressed on donor RBCs, with these alloantibodies having the potential to be clinically significant in transfusion and pregnancy settings. However, the majority of transfused individuals never form detectable alloantibodies. Expanding upon observations that children initially transfused with RBCs at a young age are less likely to form alloantibodies throughout their lives, we hypothesized that “non-responders” may not only be ignorant of antigens on RBCs but instead tolerized. We investigated this question in a reductionist murine model, in which transgenic donors express the human glycophorin A (hGPA antigen in an RBC-specific manner. Although wild-type mice treated with poly IC and transfused with hGPA RBCs generated robust anti-hGPA IgG alloantibodies that led to rapid clearance of incompatible RBCs, those transfused in the absence of an adjuvant failed to become alloimmunized. Animals depleted of CD4+ cells or treated with CD40L blockade prior to initial hGPA RBC exposure, in the presence of poly IC, failed to generate detectable anti-hGPA IgG alloantibodies. These non-responders to a primary transfusion remained unable to generate anti-hGPA IgG alloantibodies upon secondary hGPA exposure and did not prematurely clear transfused hGPA RBCs even after their CD4 cells had returned or their CD40L blockade had resolved. This observed tolerance was antigen (hGPA specific, as robust IgG responses to transfused RBCs expressing a third-party antigen occurred in all studied groups. Experiments completed in an RBC alloimmunization model that allowed evaluation of antigen-specific CD4+ T-cells (HOD (hen egg lysozyme, ovalbumin, and human duffyb demonstrated that CD40L blockade prevented the expansion of ovalbumin 323-339 specific T-cells after HOD RBC transfusion and also prevented germinal center formation. Taken

  1. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    Science.gov (United States)

    Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre; Spencer, Christine N.; Prieto, Peter A.; Miller, John P.; Gopalakrishnan, Vancheswaran; Wang, Feng; Cooper, Zachary A.; Reddy, Sangeetha M.; Gumbs, Curtis; Little, Latasha; Chang, Qing; Chen, Wei-Shen; Wani, Khalida; Petaccia De Macedo, Mariana; Chen, Eveline; Austin-Breneman, Jacob L.; Jiang, Hong; Roszik, Jason; Tetzlaff, Michael T.; Davies, Michael A.; Gershenwald, Jeffrey E.; Tawbi, Hussein; Lazar, Alexander J.; Hwu, Patrick; Hwu, Wen-Jen; Diab, Adi; Glitza, Isabella C.; Patel, Sapna P.; Woodman, Scott E.; Amaria, Rodabe N.; Prieto, Victor G.; Hu, Jianhua; Sharma, Padmanee; Allison, James P.; Chin, Lynda; Zhang, Jianhua; Wargo, Jennifer A.; Futreal, P. Andrew

    2018-01-01

    Immune checkpoint blockade produces clinical benefit in many patients. However better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1), and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T-cell receptor sequencing (TCR-seq) and whole exome sequencing (WES) within the same cohort, and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of copy number alterations identified a higher burden of copy number loss in non-responders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was non-redundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy. PMID:28251903

  2. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    Science.gov (United States)

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade.

  3. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

    Science.gov (United States)

    Holmgaard, Rikke B.; Brachfeld, Alexandra; Gasmi, Billel; Jones, David R.; Mattar, Marissa; Doman, Thompson; Murphy, Mary; Schaer, David; Wolchok, Jedd D.; Merghoub, Taha

    2016-01-01

    ABSTRACT Colony stimulating factor-1 (CSF-1) is produced by a variety of cancers and recruits myeloid cells that suppress antitumor immunity, including myeloid-derived suppressor cells (MDSCs.) Here, we show that both CSF-1 and its receptor (CSF-1R) are frequently expressed in tumors from cancer patients, and that this expression correlates with tumor-infiltration of MDSCs. Furthermore, we demonstrate that these tumor-infiltrating MDSCs are highly immunosuppressive but can be reprogrammed toward an antitumor phenotype in vitro upon CSF-1/CSF-1R signaling blockade. Supporting these findings, we show that inhibition of CSF-1/CSF-1R signaling using an anti-CSF-1R antibody can regulate both the number and the function of MDSCs in murine tumors in vivo. We further find that treatment with anti-CSF-1R antibody induces antitumor T-cell responses and tumor regression in multiple tumor models when combined with CTLA-4 blockade therapy. However, this occurs only when administered after or concurrent with CTLA-4 blockade, indicating that timing of each therapeutic intervention is critical for optimal antitumor responses. Importantly, MDSCs present within murine tumors after CTLA-4 blockade showed increased expression of CSF-1R and were capable of suppressing T cell proliferation, and CSF-1/CSF-1R expression in the human tumors was not reduced after treatment with CTLA-4 blockade immunotherapy. Taken together, our findings suggest that CSF-1R-expressing MDSCs can be targeted to modulate the tumor microenvironment and that timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to checkpoint based immunotherapy. Significance: Infiltration by immunosuppressive myeloid cells contributes to tumor immune escape and can render patients resistant or less responsive to therapeutic intervention with checkpoint blocking antibodies. Our data demonstrate that blocking CSF-1/CSF-1R signaling using a monoclonal antibody directed to CSF-1R can regulate both the number

  4. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  5. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    Science.gov (United States)

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  6. Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Mao, Liang; Fan, Teng-Fei; Wu, Lei; Yu, Guang-Tao; Deng, Wei-Wei; Chen, Lei; Bu, Lin-Lin; Ma, Si-Rui; Liu, Bing; Bian, Yansong; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-09-01

    Immature myeloid cells including myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) promote tumour growth and metastasis by facilitating tumour transformation and angiogenesis, as well as by suppressing antitumour effector immune responses. Therefore, strategies designed to reduce MDSCs and TAMs accumulation and their activities are potentially valuable therapeutic goals. In this study, we show that negative immune checkpoint molecule B7-H3 is significantly overexpressed in human head and neck squamous cell carcinoma (HNSCC) specimen as compared with normal oral mucosa. Using immunocompetent transgenic HNSCC models, we observed that targeting inhibition of B7-H3 reduced tumour size. Flow cytometry analysis revealed that targeting inhibition of B7-H3 increases antitumour immune response by decreasing immunosuppressive cells and promoting cytotoxic T cell activation in both tumour microenvironment and macroenvironment. Our study provides direct in vivo evidence for a rationale for B7-H3 blockade as a future therapeutic strategy to treat patients with HNSCC. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Signal one and two blockade are both critical for non-myeloablative murine HSCT across a major histocompatibility complex barrier.

    Directory of Open Access Journals (Sweden)

    Kia J Langford-Smith

    Full Text Available Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM:blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan. We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success.

  8. Signal one and two blockade are both critical for non-myeloablative murine HSCT across a major histocompatibility complex barrier.

    Science.gov (United States)

    Langford-Smith, Kia J; Sandiford, Zara; Langford-Smith, Alex; Wilkinson, Fiona L; Jones, Simon A; Wraith, J Ed; Wynn, Robert F; Bigger, Brian W

    2013-01-01

    Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT) is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM):blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg) and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan). We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success.

  9. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase.

    Science.gov (United States)

    Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio

    2016-08-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study

  10. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase

    Science.gov (United States)

    Sharma, Rajni; Di Dalmazi, Giulia

    2016-01-01

    Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory

  11. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy

    Directory of Open Access Journals (Sweden)

    Junyu Long

    2017-08-01

    Full Text Available Abstract Gastrointestinal (GI malignancies are the most prevalent tumors worldwide, with increasing incidence and mortality. Although surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy have led to significant advances in the treatment of GI cancer patients, overall survival is still low. Therefore, alternative strategies must be identified to improve patient outcomes. In the tumor microenvironment, tumor cells can escape the host immune response through the interaction of PD-1 and PD-L, which inhibits the function of T cells and tumor-infiltrating lymphocytes while increasing the function of immunosuppressive T regulatory cells. The use of an anti-PD-1/PD-L blockade enables reprogramming of the immune system to efficiently identify and kill tumor cells. In recent years, the efficacy of PD-1/PD-L blockade has been demonstrated in many tumors, and this treatment is expected to be a pan-immunotherapy for tumors. Here, we review the signaling pathway underlying the dysregulation of PD-1/PD-L in tumors, summarize the current clinical data for PD-1/PD-L inhibitors in GI malignancies, and discuss road toward precision immunotherapy in relation to PD-1/PD-L blockade. The preliminary data for PD-1/PD-L inhibitors are encouraging, and the precision immunotherapy of PD-1/PD-L inhibitors will be a viable and pivotal clinical strategy for GI cancer therapy.

  12. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy.

    Science.gov (United States)

    Long, Junyu; Lin, Jianzhen; Wang, Anqiang; Wu, Liangcai; Zheng, Yongchang; Yang, Xiaobo; Wan, Xueshuai; Xu, Haifeng; Chen, Shuguang; Zhao, Haitao

    2017-08-03

    Gastrointestinal (GI) malignancies are the most prevalent tumors worldwide, with increasing incidence and mortality. Although surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy have led to significant advances in the treatment of GI cancer patients, overall survival is still low. Therefore, alternative strategies must be identified to improve patient outcomes. In the tumor microenvironment, tumor cells can escape the host immune response through the interaction of PD-1 and PD-L, which inhibits the function of T cells and tumor-infiltrating lymphocytes while increasing the function of immunosuppressive T regulatory cells. The use of an anti-PD-1/PD-L blockade enables reprogramming of the immune system to efficiently identify and kill tumor cells. In recent years, the efficacy of PD-1/PD-L blockade has been demonstrated in many tumors, and this treatment is expected to be a pan-immunotherapy for tumors. Here, we review the signaling pathway underlying the dysregulation of PD-1/PD-L in tumors, summarize the current clinical data for PD-1/PD-L inhibitors in GI malignancies, and discuss road toward precision immunotherapy in relation to PD-1/PD-L blockade. The preliminary data for PD-1/PD-L inhibitors are encouraging, and the precision immunotherapy of PD-1/PD-L inhibitors will be a viable and pivotal clinical strategy for GI cancer therapy.

  13. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    Science.gov (United States)

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  14. Localized CD47 blockade enhances immunotherapy for murine melanoma.

    Science.gov (United States)

    Ingram, Jessica R; Blomberg, Olga S; Sockolosky, Jonathan T; Ali, Lestat; Schmidt, Florian I; Pishesha, Novalia; Espinosa, Camilo; Dougan, Stephanie K; Garcia, K Christopher; Ploegh, Hidde L; Dougan, Michael

    2017-09-19

    CD47 is an antiphagocytic ligand broadly expressed on normal and malignant tissues that delivers an inhibitory signal through the receptor signal regulatory protein alpha (SIRPα). Inhibitors of the CD47-SIRPα interaction improve antitumor antibody responses by enhancing antibody-dependent cellular phagocytosis (ADCP) in xenograft models. Endogenous expression of CD47 on a variety of cell types, including erythrocytes, creates a formidable antigen sink that may limit the efficacy of CD47-targeting therapies. We generated a nanobody, A4, that blocks the CD47-SIRPα interaction. A4 synergizes with anti-PD-L1, but not anti-CTLA4, therapy in the syngeneic B16F10 melanoma model. Neither increased dosing nor half-life extension by fusion of A4 to IgG2a Fc (A4Fc) overcame the issue of an antigen sink or, in the case of A4Fc, systemic toxicity. Generation of a B16F10 cell line that secretes the A4 nanobody showed that an enhanced response to several immune therapies requires near-complete blockade of CD47 in the tumor microenvironment. Thus, strategies to localize CD47 blockade to tumors may be particularly valuable for immune therapy.

  15. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.

    Science.gov (United States)

    Ochiai, Tomoki; Saito, Shigeru; Yamanaka, Futoshi; Shishido, Koki; Tanaka, Yutaka; Yamabe, Tsuyoshi; Shirai, Shinichi; Tada, Norio; Araki, Motoharu; Naganuma, Toru; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2018-04-01

    The persistence of left ventricular (LV) hypertrophy is associated with poor clinical outcomes after transcatheter aortic valve implantation (TAVI) for aortic stenosis. However, the optimal medical therapy after TAVI remains unknown. We investigated the effect of renin-angiotensin system (RAS) blockade therapy on LV hypertrophy and mortality in patients undergoing TAVI. Between October 2013 and April 2016, 1215 patients undergoing TAVI were prospectively enrolled in the Optimized CathEter vAlvular iNtervention (OCEAN)-TAVI registry. This cohort was stratified according to the postoperative usage of RAS blockade therapy with angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARBs). Patients with at least two prescriptions dispensed 180 days apart after TAVI and at least a 6-month follow-up constituted the RAS blockade group (n=371), while those not prescribed any ACE inhibitors or ARBs after TAVI were included in the no RAS blockade group (n=189). At 6 months postoperatively, the RAS blockade group had significantly greater LV mass index regression than the no RAS blockade group (-9±24% vs -2±25%, p=0.024). Kaplan-Meier analysis revealed a significantly lower cumulative 2-year mortality in the RAS blockade than that in the no RAS blockade group (7.5% vs 12.5%; log-rank test, p=0.031). After adjusting for confounding factors, RAS blockade therapy was associated with significantly lower all-cause mortality (HR, 0.45; 95% CI 0.22 to 0.91; p=0.025). Postoperative RAS blockade therapy is associated with greater LV mass index regression and reduced all-cause mortality. These data need to be confirmed by a prospective randomised controlled outcome trial. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade

    Directory of Open Access Journals (Sweden)

    Mohamed B. Ezzelarab

    2018-02-01

    Full Text Available Donor-derived regulatory dendritic cell (DCreg infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag 4 (CTLA4 and programmed cell death protein 1 (PD1 by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig is associated with reduced differentiation and development of regulatory T cells (Treg. We hypothesized that upregulation of CTLA4 by donor-reactive CD4+ T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4+ T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4+CTLA4hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4+CTLA4hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  17. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    Directory of Open Access Journals (Sweden)

    Melanie Werner

    Full Text Available Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen.Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity.Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7 hepatocytes, 1.8 ± 0.5 × 10(6 Kupffer cells, 4.3 ± 1.9 × 10(5 liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5 stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7% and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2% and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+ (97.8 ± 1.1% and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%. These cells further exhibited retinol (vitamin A-mediated autofluorescence.Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  18. Objective neuromuscular monitoring of neuromuscular blockade in Denmark

    DEFF Research Database (Denmark)

    Söderström, C M; Eskildsen, K Z; Gätke, M R

    2017-01-01

    BACKGROUND: Neuromuscular blocking agents are commonly used during general anaesthesia but can lead to postoperative residual neuromuscular blockade and associated morbidity. With appropriate objective neuromuscular monitoring (objNMM) residual blockade can be avoided. In this survey, we investig...

  19. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors

    Science.gov (United States)

    Wei, Junping; Yang, Xiao Yi; Lei, Gangjun; Wang, Tao; Liu, Cong-Xiao; Morse, Michael A.; Gouin, Kenneth; Knott, Simon R. V.; Hartman, Zachary C.

    2018-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB. PMID:29721371

  20. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.

    Science.gov (United States)

    Crosby, Erika J; Wei, Junping; Yang, Xiao Yi; Lei, Gangjun; Wang, Tao; Liu, Cong-Xiao; Agarwal, Pankaj; Korman, Alan J; Morse, Michael A; Gouin, Kenneth; Knott, Simon R V; Lyerly, H Kim; Hartman, Zachary C

    2018-01-01

    Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.

  1. CLEC4F is an inducible C-type lectin in F4/80-positive cells and is involved in alpha-galactosylceramide presentation in liver.

    Directory of Open Access Journals (Sweden)

    Chih-Ya Yang

    Full Text Available CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal, N-acetylgalactosamine (GalNAc, and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/- mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5 but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells.

  2. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    Science.gov (United States)

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  3. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts.

    Directory of Open Access Journals (Sweden)

    Kiersten Marie Miles

    Full Text Available The Notch ligand Delta-like 4 (Dll4 is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC.Severe combined immunodeficiency (SCID mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36-62% that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38-54% and ziv-aflibercept (46%. Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72-80% growth inhibition, including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.

  4. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Grepper Susan

    2009-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is an aggressive cancer, and is the third leading cause of cancer death worldwide. Standard therapy is ineffective partly because HCC is intrinsically resistant to conventional chemotherapy. Its poor prognosis and limited treatment options make it critical to develop novel and selective chemotherapeutic agents. Since the Wnt/β-catenin pathway is essential in HCC carcinogenesis, we studied the inhibition of Wnt-1-mediated signaling as a potential molecular target in HCC. Results We demonstrated that Wnt-1 is highly expressed in human hepatoma cell lines and a subgroup of human HCC tissues compared to paired adjacent non-tumor tissues. An anti-Wnt-1 antibody dose-dependently decreased viability and proliferation of Huh7 and Hep40 cells over-expressing Wnt-1 and harboring wild type β-catenin, but did not affect normal hepatocytes with undetectable Wnt-1 expression. Apoptosis was also observed in Huh7 and Hep40 cells after treatment with anti-Wnt-1 antibody. In these two cell lines, the anti-Wnt-1 antibody decreased β-catenin/Tcf4 transcriptional activities, which were associated with down-regulation of the endogenous β-catenin/Tcf4 target genes c-Myc, cyclin D1, and survivin. Intratumoral injection of anti-Wnt-1 antibody suppressed in vivo tumor growth in a Huh7 xenograft model, which was also associated with apoptosis and reduced c-Myc, cyclin D1, and survivin expressions. Conclusion Our results suggest that Wnt-1 is a survival factor for HCC cells, and that the blockade of Wnt-1-mediated signaling may offer a potential pathway-specific therapeutic strategy for the treatment of a subgroup of HCC that over-expresses Wnt-1.

  5. Neuromuscular blockade in the elderly patient

    Directory of Open Access Journals (Sweden)

    Lee LA

    2016-06-01

    Full Text Available Luis A Lee, Vassilis Athanassoglou, Jaideep J Pandit Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK Abstract: Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids. Other drugs (atracurium, cisatracurium have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. Keywords: anesthesia, elderly, drugs, pharmacokinetics, pharmacodynamics 

  6. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers.

    Science.gov (United States)

    Jemnitz, Katalin; Bátai-Konczos, Attila; Szabó, Mónika; Ioja, Enikő; Kolacsek, Orsolya; Orbán, Tamás I; Török, György; Homolya, László; Kovács, Eszter; Jablonkai, István; Veres, Zsuzsa

    2017-02-01

    Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca 2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca 2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca 2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca 2+ oscillation and sustained Ca 2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca 2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    that CD28-B7 blockade by systemic administration of CTLA4Ig prevents actively induced EAE. Since CTLA4Ig binds to both B7-1 and B7-2, we used a mutant form of CTLA4Ig (CTLA4IgY100F) that binds only B7-1, to study the role of B7-1 blockade in this model. Such a reagent avoids the potential of signaling...... treated with systemic CTLA4gY100F did not. More importantly, systemic administration of CTLA4IgY100F abrogated the protective effect of ex vivo treated APCs. These data suggest an important regulatory role for B7-1, perhaps through binding to CTLA4, in this model of EAE. Understanding the role......Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown...

  8. Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of stem cells from apical papillae.

    Science.gov (United States)

    Zhou, Meng; Guo, Shuyu; Yuan, Lichan; Zhang, Yuxin; Zhang, Mengnan; Chen, Huimin; Lu, Mengting; Yang, Jianrong; Ma, Junqing

    2017-12-01

    During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.

  9. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T.

    1991-01-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients

  10. Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil

    Directory of Open Access Journals (Sweden)

    Vasilios Papademetriou

    2001-03-01

    Full Text Available Several studies indicate that blockade of the renin-angiotensin-aldosterone system (RAAS can prevent atherosclerosis and vascular events, but the precise mechanisms involved are still unclear. In this study, we investigated the effect of the AT 1-receptor blocker, candesartan, in the prevention of atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL rabbits and also the effect of AT1-receptor blockade in the uptake of oxidised LDL by macrophage cell cultures. In the first set of experiments, 12 WHHL rabbits were randomly assigned to three groups: placebo, atenolol 5 mg/kg daily or candesartan 2 mg/kg daily for six months. Compared with controls and atenolol-treated rabbits, candesartan treatment resulted in a significant 50—60% reduction of atherosclerotic plaque formation and a 66% reduction in cholesterol accumulation in the thoracic aorta.Studies in macrophage cultures indicated that candesartan prevented uptake of oxidised LDL-(oxLDL-cholesterol by cultured macrophages. Candesartan inhibited the uptake of oxLDL in a dose-dependent manner, reaching a maximum inhibition of 70% at concentrations of 5.6 µg/ml. Further studies in other animal models and well-designed trials in humans are warranted to further explore the role of AT1-receptor blockade in the prevention of atherosclerosis.

  11. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  12. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... measured at PACU entry. Zero out of 74 sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch® SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], P

  13. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  14. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien

    2013-01-01

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  15. Graft-versus-host disease is enhanced by selective CD73 blockade in mice.

    Directory of Open Access Journals (Sweden)

    Long Wang

    Full Text Available CD73 functions as an ecto-5'-nucleotidase to produce extracellular adenosine that has anti-inflammatory and immunosuppressive activity. We here demonstrate that CD73 helps control graft-versus-host disease (GVHD in mouse models. Survival of wild-type (WT recipients of either allogeneic donor naïve CD73 knock-out (KO or WT T cells was similar suggesting that donor naïve T cell CD73 did not contribute to GVHD. By contrast, donor CD73 KO CD4(+CD25(+ regulatory T cells (Treg had significantly impaired ability to mitigate GVHD mortality compared to WT Treg, suggesting that CD73 on Treg is critical for GVHD protection. However, compared to donor CD73, recipient CD73 is more effective in limiting GVHD. Pharmacological blockade of A2A receptor exacerbated GVHD in WT recipients, but not in CD73 KO recipients, suggesting that A2 receptor signaling is primarily implicated in CD73-mediated GVHD protection. Moreover, pharmacological blockade of CD73 enzymatic activity induced stronger alloreactive T cell activity, worsened GVHD and enhanced the graft-versus-leukemia (GVL effect. These findings suggest that both donor and recipient CD73 protects against GVHD but also limits GVL effects. Thus, either enhancing or blocking CD73 activity has great potential clinical application in allogeneic bone marrow transplants.

  16. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  17. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  18. The impact of acute preoperative beta-blockade on perioperative ...

    African Journals Online (AJOL)

    To determine the impact of acute preoperative β-blockade on the incidence of perioperative cardiovascular morbidity and all- ... Our findings suggest that acute preoperative β-blockade is associated with an increased risk of perioperative cardiac ..... Shammash JB, Trost JC, Gold JM, Berlin JA, Golden MA, Kimmel SE.

  19. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    OpenAIRE

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min...

  20. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Science.gov (United States)

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  1. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Kimberly M Ramonell

    Full Text Available Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  2. Assessment of hepatocyte and kupffer cell function using Tc-99m DISIDA/Tc-99m tin colloid in thioacetamide-induced liver injury

    International Nuclear Information System (INIS)

    Ahn, B. C.; Chun, K. A.; Lee, J.; Lee, K. B.

    1997-01-01

    Toxic liver injury is not unusual in clinical field and liver biopsy is one of the most accurate method to define the severity of liver injury. But occasionally, it is impossible to obtain liver tissue in patients with acute toxic liver injury. The aim of this study is to evaluate the possibility of liver scintigraphy with Tc-99m DISIDA or Tc-99m tin colloid as a non-invasive tool in predicting functional status of hepatocyte and Kupffer cell and severity of liver injury. Intraperitoneal injection of thioacetamide was performed to make acute liver injury in mice and rats, and liver status was assessed by pathologic specimen and scintigraphic methods. Scintigraphic evaluation were performed by biodistribution of Tc-99m DISIDA or Tc-99m tin colloid in thioacetamide-treated mice. Liver time-activity curves were generated. Comparison between histologic data and scintigraphic data was done with SAS program. Thioacetamide-treated mice demonstrated hepatocyte necrosis in histologic examination and low liver/blood uptake ratios in biodistribution studies using both radiotracers. Biodistribution study using Tc-99m tin colloid revealed increased lung radioactivity in thioacetamide-treated mice. Twenty-four hours after thioacetamide administration, thioacetamide-treated rats demonstrated maximal hepatocyte necrosis and inflammation in histologic finding and delayed maximal uptake time (Tmax) and prolonged half time (T 1/2 ) of liver time-activity curve in liver scintigraphy. Histologic results and scintigraphic data were well correlated, and these two scintigraphic parameters (Tmax T 1/2 ) seemed to be good predictors of histologic change of liver. These data showed that liver injury could be assessed by non-invasive scintigraphic study in rat and mouse. This experimental study might be used as a animal model to evaluate the liver protecting drugs, and this scintigraphic study could be applied to acute toxic hepatitis for assessment of liver status in men

  3. From Napoleon To Netanyahu: Blockading Through Two Centuries

    Science.gov (United States)

    2016-04-01

    Hemisphere. With a range of only 2,500 miles per load of coal, steam powered ships could not reach Europe without refueling. Blockading actions at Vera ...BIBLIOGRAPHY Calore, Paul. Naval Campaigns of the Civil War. Jefferson, NC: McFarland and Co., 2003. Davis, Lance E . and Stanley L...Lance E . Davis and Stanley L. Engerman, Naval Blockades in Peace and War: An Economic History Since 1750

  4. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  5. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jenstrup, M T; Jæger, P; Lund, J

    2012-01-01

    Total knee arthroplasty (TKA) is associated with intense post-operative pain. Besides providing optimal analgesia, reduction in side effects and enhanced mobilization are important in this elderly population. The adductor-canal-blockade is theoretically an almost pure sensory blockade. We hypothe...... hypothesized that the adductor-canal-blockade may reduce morphine consumption (primary endpoint), improve pain relief, enhance early ambulation ability, and reduce side effects (secondary endpoints) after TKA compared with placebo.......Total knee arthroplasty (TKA) is associated with intense post-operative pain. Besides providing optimal analgesia, reduction in side effects and enhanced mobilization are important in this elderly population. The adductor-canal-blockade is theoretically an almost pure sensory blockade. We...

  6. Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ production from tumor-infiltrating cells by PD-L1 blockade.

    Directory of Open Access Journals (Sweden)

    Naoya Maekawa

    Full Text Available Programmed death 1 (PD-1, an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1, its ligand, together induce the "exhausted" status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1-expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed.

  7. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis

    DEFF Research Database (Denmark)

    Köhler, Ralf; Wulff, Heike; Eichler, Ines

    2003-01-01

    hyperplasia was accompanied by decreased neointimal cell content, with no change in the rate of apoptosis or collagen content. CONCLUSIONS: The switch toward IKCa1 expression may promote excessive neointimal VSMC proliferation. Blockade of IKCa1 could therefore represent a new therapeutic strategy to prevent...

  8. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.

    Science.gov (United States)

    Hardcastle, Jayson; Mills, Lisa; Malo, Courtney S; Jin, Fang; Kurokawa, Cheyne; Geekiyanage, Hirosha; Schroeder, Mark; Sarkaria, Jann; Johnson, Aaron J; Galanis, Evanthia

    2017-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor and has a dismal prognosis. Measles virus (MV) therapy of GBM is a promising strategy due to preclinical efficacy, excellent clinical safety, and its ability to evoke antitumor pro-inflammatory responses. We hypothesized that combining anti- programmed cell death protein 1 (anti-PD-1) blockade and MV therapy can overcome immunosuppression and enhance immune effector cell responses against GBM, thus improving therapeutic outcome. In vitro assays of MV infection of glioma cells and infected glioma cells with mouse microglia ± aPD-1 blockade were established to assess damage associated molecular pattern (DAMP) molecule production, migration, and pro-inflammatory effects. C57BL/6 or athymic mice bearing syngeneic orthotopic GL261 gliomas were treated with MV, aPD-1, and combination treatment. T2* weighted immune cell-specific MRI and fluorescence activated cell sorting (FACS) analysis of treated mouse brains was used to examine adaptive immune responses following therapy. In vitro, MV infection induced human GBM cell secretion of DAMP (high-mobility group protein 1, heat shock protein 90) and upregulated programmed cell death ligand 1 (PD-L1). MV infection of GL261 murine glioma cells resulted in a pro-inflammatory response and increased migration of BV2 microglia. In vivo, MV+aPD-1 therapy synergistically enhanced survival of C57BL/6 mice bearing syngeneic orthotopic GL261 gliomas. MRI showed increased inflammatory cell influx into the brains of mice treated with MV+aPD-1; FACS analysis confirmed increased T-cell influx predominantly consisting of activated CD8+ T cells. This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment. © The Author(s) 2016. Published by Oxford University Press

  9. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    Science.gov (United States)

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    Science.gov (United States)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  11. A primary study on the phagocytic activity of Kupffer cells with superparamagnetic iron oxide particles enhanced MR imaging in a rat nonalcoholic steatohepatitis model

    International Nuclear Information System (INIS)

    Jiao Zhiyun; Li Cheng; Ma Zhanlong; Chen Wenjuan

    2010-01-01

    Objective: To investigate the feasibility of using superparamgnetic iron oxide (SPIO) as MRI contrast agent to assess rat nonalcoholic steatohepatitis Kupffer cells (KC) function. Methods: Twenty male SD rats were randomly divided into A and B groups, group A (n=10) was the experimental group fed high fat diet, group B (n=10) was the control group fed normal diet. After 8 weeks, plain MR and SPIO enhanced MR were performed in all the rats. Blood lipids were measured, and HE and Perl's blue staining in all livers specimen was done. The related results of the staining were analyzed with t test. Results: Group A TC and TG levels [(6.58 ± 1.25) and (1.53 ± 0.23) mmol/L respectively] were significantly higher than group B[(1.64 ± 0.22) and (0.55 ± 0.14) mmol/L respectively] (t=11.716 and 11.588, P 1 WI, ad statistically significant differences (t=-18.451 and -16.240, P 2 WI, T 2 WI and T 1 WI (t=10.745, 19.800, 39.168 and 92.785, P<0.01). Typical histological hepatic lesions of NASH were observed in group A, Perl's staining-positive particles in group A (2.33 ± 0.50) were fewer than in group B (4) (t=-10.000, P<0.01). Conclusion: The high-fat diet induced model of SD rats was close to the human NASH and was easy to establish. Clinical application of SPIO enhanced MR successfullly assessed the phagocytic activity of KC in the study, and it suggested that the pathogenesis of NASH was related to the decreased phagocytic activity of KC. (authors)

  12. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  13. Predictors of responses to immune checkpoint blockade in advanced melanoma

    DEFF Research Database (Denmark)

    Jacquelot, N; Roberti, M P; Enot, D P

    2017-01-01

    Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs....... Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we...

  14. Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo.

    Science.gov (United States)

    Zundler, Sebastian; Schillinger, Daniela; Fischer, Anika; Atreya, Raja; López-Posadas, Rocío; Watson, Alastair; Neufert, Clemens; Atreya, Imke; Neurath, Markus F

    2017-11-01

    Therapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEβ7 and α4β7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut. We explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice. High expression of αEβ7 was noted on CD8 + and CD4 + Th9 cells, while α4β7 was expressed on CD8 + , Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor β were key inducers of αEβ7 on human T cells, while butyric acid suppressed αEβ7. In comparison to α4β7 blockade via vedolizumab, blockade of β7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8 + and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEβ7 expression was higher on CD8 + T cells from patients with IBD under vedolizumab therapy. AEβ7 is of key relevance for gut trafficking of IBD CD8 + T cells and CD4 + Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEβ7 in addition to α4β7 may be particularly effective in intestinal disorders with expansion of CD8 + and Th9 cells such as IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Identification of Adenovirus Serotype 5 Hexon Regions That Interact with Scavenger Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Reeti; Reddy, Vijay S.; Nemerow, Glen R.; Barry, Michael A. (Scripps); (Mayo)

    2012-05-04

    Most of an intravenous dose of species C adenovirus serotype 5 (Ad5) is destroyed by liver Kupffer cells. In contrast, another species C virus, Ad6, evades these cells to mediate more efficient liver gene delivery. Given that this difference in Kupffer cell interaction is mediated by the hypervariable (HVR) loops of the virus hexon protein, we genetically modified each of the seven HVRs of Ad5 with a cysteine residue to enable conditional blocking of these sites with polyethylene glycol (PEG). We show that these modifications do not affect in vitro virus transduction. In contrast, after intravenous injection, targeted PEGylation at HVRs 1, 2, 5, and 7 increased viral liver transduction up to 20-fold. Elimination or saturation of liver Kupffer cells did not significantly affect this increase in the liver transduction. In vitro, PEGylation blocked uptake of viruses via the Kupffer cell scavenger receptor SRA-II. These data suggest that HVRs 1, 2, 5, and 7 of Ad5 may be involved in Kupffer cell recognition and subsequent destruction. These data also demonstrate that this conditional genetic-chemical mutation strategy is a useful tool for investigating the interactions of viruses with host tissues.

  16. Checkpoint blockade in combination with cancer vaccines.

    Science.gov (United States)

    Morse, Michael A; Lyerly, H Kim

    2015-12-16

    Checkpoint blockade, prevention of inhibitory signaling that limits activation or function of tumor antigen-specific T cells responses, is revolutionizing the treatment of many poor prognosis malignancies. Indeed monoclonal antibodies that modulate signaling through the inhibitory molecules CTLA-4 and PD-1 are now clinically available; however, many tumors, demonstrate minimal response suggesting the need for combinations with other therapeutic strategies. Because an inadequate frequency of activated tumor antigen-specific T cells in the tumor environment, the so-called non-inflamed phenotype, is observed in some malignancies, other rationale partners are modalities that lead to enhanced T cell activation (vaccines, cytokines, toll-like receptor agonists, and other anticancer therapies such as chemo-, radio- or targeted therapies that lead to release of antigen from tumors). This review will focus on preclinical and clinical data supporting the use of cancer vaccines with anti-CTLA-4 and anti-PD-1/PD-L1 antibodies. Preliminary preclinical data demonstrate enhanced antitumor activity although the results in human studies are less clear. Broader combinations of multiple immune modulators are now under study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    Science.gov (United States)

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  18. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    Science.gov (United States)

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  19. Costimulation blockade and regulatory T-cells in a non-human primate model of kidney allograft transplantation

    NARCIS (Netherlands)

    Haanstra, Krista Geraldine

    2008-01-01

    Successful tolerance induction therapies in rodents are for the most part unsuccessful in larger primates. Costimulation blockade by anti-CD40 or anti-CD40 + anti-CD86 in the life-supporting kidney allograft model in the rhesus monkey prevented graft rejection during treatment but did not induce

  20. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    Science.gov (United States)

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  1. Neural control of colonic cell proliferation.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  2. Impaired Tumor-infiltrating T Cells in Patients with COPD Impacts Lung Cancer Response to PD-1 Blockade.

    Science.gov (United States)

    Biton, Jérôme; Ouakrim, Hanane; Dechartres, Agnès; Alifano, Marco; Mansuet-Lupo, Audrey; Si, Han; Halpin, Rebecca; Creasy, Todd; Bantsimba-Malanda, Claudie; Arrondeau, Jennifer; Goldwasser, François; Boudou-Rouquette, Pascaline; Fournel, Ludovic; Roche, Nicolas; Burgel, Pierre-Régis; Goc, Jeremy; Devi-Marulkar, Priyanka; Germain, Claire; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Damotte, Diane

    2018-03-08

    Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. To study the impact of COPD on the immune contexture of non-small cell lung cancer (NSCLC). We performed in depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patients' survival (n=435). Tumor-infiltrating T lymphocyte (TILs) exhaustion by flow cytometry (n=50) was also investigated. The effectiveness of an anti-PD-1 treatment (nivolumab) was evaluated in 39 advanced-stage NSCLC patients. All data were analyzed according to patients' COPD status. Measurments and Main Results: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 advanced-stage NSCLC patients treated by an anti-PD-1 antibody showed longer progression free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. COPD is associated with an increased sensitivity of CD8 TILs to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.

  3. Neuraxial blockade for external cephalic version: a systematic review.

    Science.gov (United States)

    Sultan, P; Carvalho, B

    2011-10-01

    The desire to decrease the number of cesarean deliveries has renewed interest in external cephalic version. The rationale for using neuraxial blockade to facilitate external cephalic version is to provide abdominal muscular relaxation and reduce patient discomfort during the procedure, so permitting successful repositioning of the fetus to a cephalic presentation. This review systematically examined the current evidence to determine the safety and efficacy of neuraxial anesthesia or analgesia when used for external cephalic version. A systematic literature review of studies that examined success rates of external cephalic version with neuraxial anesthesia was performed. Published articles written in English between 1945 and 2010 were identified using the Medline, Cochrane, EMBASE and Web of Sciences databases. Six, randomized controlled studies were identified. Neuraxial blockade significantly improved the success rate in four of these six studies. A further six non-randomized studies were identified, of which four studies with control groups found that neuraxial blockade increased the success rate of external cephalic version. Despite over 850 patients being included in the 12 studies reviewed, placental abruption was reported in only one patient with a neuraxial block, compared with two in the control groups. The incidence of non-reassuring fetal heart rate requiring cesarean delivery in the anesthesia groups was 0.44% (95% CI 0.15-1.32). Neuraxial blockade improved the likelihood of success during external cephalic version, although the dosing regimen that provides optimal conditions for successful version is unclear. Anesthetic rather than analgesic doses of local anesthetics may improve success. The findings suggest that neuraxial blockade does not compromise maternal or fetal safety during external cephalic version. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma

    Science.gov (United States)

    Zolkind, Paul; Przybylski, Dariusz; Marjanovic, Nemanja; Nguyen, Lan; Lin, Tianxiang; Johanns, Tanner; Alexandrov, Anton; Zhou, Liye; Allen, Clint T.; Miceli, Alexander P.; Schreiber, Robert D.; Artyomov, Maxim; Dunn, Gavin P.; Uppaluri, Ravindra

    2018-01-01

    Head and neck squamous cell carcinomas (HNSCC) are an ideal immunotherapy target due to their high mutation burden and frequent infiltration with lymphocytes. Preclinical models to investigate targeted and combination therapies as well as defining biomarkers to guide treatment represent an important need in the field. Immunogenomics approaches have illuminated the role of mutation-derived tumor neoantigens as potential biomarkers of response to checkpoint blockade as well as representing therapeutic vaccines. Here, we aimed to define a platform for checkpoint and other immunotherapy studies using syngeneic HNSCC cell line models (MOC2 and MOC22), and evaluated the association between mutation burden, predicted neoantigen landscape, infiltrating T cell populations and responsiveness of tumors to anti-PD1 therapy. We defined dramatic hematopoietic cell transcriptomic alterations in the MOC22 anti-PD1 responsive model in both tumor and draining lymph nodes. Using a cancer immunogenomics pipeline and validation with ELISPOT and tetramer analysis, we identified the H-2Kb-restricted ICAM1P315L (mICAM1) as a neoantigen in MOC22. Finally, we demonstrated that mICAM1 vaccination was able to protect against MOC22 tumor development defining mICAM1 as a bona fide neoantigen. Together these data define a pre-clinical HNSCC model system that provides a foundation for future investigations into combination and novel therapeutics. PMID:29423108

  5. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury.

    Science.gov (United States)

    Imarisio, Chiara; Alchera, Elisa; Bangalore Revanna, Chandrashekar; Valente, Guido; Follenzi, Antonia; Trisolini, Elena; Boldorini, Renzo; Carini, Rita

    2017-11-01

    Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica.

    Directory of Open Access Journals (Sweden)

    Sha Zhou

    2016-10-01

    Full Text Available More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1 signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined.Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2 cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver.Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology.

  7. Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade

    Directory of Open Access Journals (Sweden)

    Ikebuchi Ryoyo

    2011-09-01

    Full Text Available Abstract The inhibitory receptor programmed death-1 (PD-1 and its ligand, programmed death-ligand 1 (PD-L1 are involved in immune evasion mechanisms for several pathogens causing chronic infections. Blockade of the PD-1/PD-L1 pathway restores anti-virus immune responses, with concomitant reduction in viral load. In a previous report, we showed that, in bovine leukemia virus (BLV infection, the expression of bovine PD-1 is closely associated with disease progression. However, the functions of bovine PD-L1 are still unknown. To investigate the role of PD-L1 in BLV infection, we identified the bovine PD-L1 gene, and examined PD-L1 expression in BLV-infected cattle in comparison with uninfected cattle. The deduced amino acid sequence of bovine PD-L1 shows high homology to the human and mouse PD-L1. The proportion of PD-L1 positive cells, especially among B cells, was upregulated in cattle with the late stage of the disease compared to cattle at the aleukemic infection stage or uninfected cattle. The proportion of PD-L1 positive cells correlated positively with prediction markers for the progression of the disease such as leukocyte number, virus load and virus titer whilst on the contrary, it inversely correlated with the degree of interferon-gamma expression. Blockade of the PD-1/PD-L1 pathway in vitro by PD-L1-specific antibody upregulated the production of interleukin-2 and interferon-gamma, and correspondingly, downregulated the BLV provirus load and the proportion of BLV-gp51 expressing cells. These data suggest that PD-L1 induces immunoinhibition in disease progressed cattle during chronic BLV infection. Therefore, PD-L1 would be a potential target for developing immunotherapies against BLV infection.

  8. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    Science.gov (United States)

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  9. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  10. Interaction of antibiotics on pipecuronium-induced neuromuscular blockade.

    Science.gov (United States)

    de Gouw, N E; Crul, J F; Vandermeersch, E; Mulier, J P; van Egmond, J; Van Aken, H

    1993-01-01

    To measure the interaction of two antibiotics (clindamycin and colistin) on neuromuscular blockade induced by pipecuronium bromide (a new long-acting, steroidal, nondepolarizing neuromuscular blocking drug). Prospective, randomized, placebo-controlled study. Inpatient gynecologic and gastroenterologic service at a university medical center. Three groups of 20 ASA physical status I and II patients with normal kidney and liver function, taking no medication, and undergoing elective surgery under general anesthesia. Anesthesia was induced with propofol and alfentanil intravenously (IV) and maintained with a propofol infusion and 60% nitrous oxide in oxygen. Pipecuronium bromide 50 micrograms/kg was administered after reaching a stable baseline of single-twitch response. At 25% recovery of pipecuronium-induced neuromuscular blockade, patients received one of two antibiotics, clindamycin 300 mg or colistin 1 million IU, or a placebo. The recovery index (RI, defined as time from 25% to 75% recovery of neuromuscular blockade) was measured using the single-twitch response of the adductor pollicis muscle with supramaximal stimulation of the ulnar nerve at the wrist. RI after administration of an antibiotic (given at 25% recovery) was measured and compared with RI of the control group using Student's unpaired t-test. Statistical analyses of the results showed a significant prolongation of the recovery time (from 25% to 75% recovery) of 40 minutes for colistin. When this type of antibiotic is used during anesthesia with pipercuronium as a muscle relaxant, one must be aware of a significant prolongation of an already long-acting neuromuscular blockade and (although not observed in this study) possible problems in antagonism.

  11. Survey of external cephalic version for breech presentation and neuraxial blockade use.

    Science.gov (United States)

    Weiniger, Carolyn F; Sultan, Pervez; Dunn, Ashley; Carvalho, Brendan

    2016-11-01

    Neuraxial blockade may increase external cephalic version (ECV) success rates. This survey aimed to assess the frequency and characteristics of neuraxial blockade used to facilitate ECV. We surveyed Society for Obstetric Anesthesia and Perinatology members regarding ECV practice using a 15-item survey developed by 3 obstetric anesthesiologists and tested for face validity. The survey was e-mailed in January 2015 and again in February 2015 to the 1056 Society of Obstetric Anesthesiology and Perinatology members. We present descriptive statistics of responses. Our survey response rate was 322 of 1056 (30.5%). Neuraxial blockade was used for ECV always by 18 (5.6%), often by 52 (16.1%), sometimes by 98 (30.4%), rarely by 78 (24.2%), and never by 46 (14.3%) of respondents. An anesthetic sensory block target was selected by 141 (43.8%) respondents, and analgesic by 102 (31.7%) respondents. Epidural drug doses ranged widely, including sufentanil 5-25 μg; lidocaine 1% or 2% 10-20 mL, bupivacaine 0.0625% to 0.5% 6-15 mL, and ropivacaine 0.2% 20 mL. Intrathecal bupivacaine was used by 182 (56.5%) respondents; the most frequent doses were 2.5 mg used by 24 (7.5%), 7.5 mg used by 35 (10.9%), and 12 mg used by 30 (9.3%). Neuraxial blockade is not universally offered to facilitate ECV, and there is wide variability in neuraxial blockade techniques, in drugs and doses administered, and in the sensory blockade (anesthetic or analgesic) targeted. Future studies need to evaluate and remove barriers to allow for more widespread use of neuraxial blockade for pain relief and to optimize ECV success rates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Reversal of neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a synthetic gamma-cyclodextrin derivative. The current study determined the feasibility of reversal of rocuronium-induced profound neuromuscular blockade with sugammadex in the

  13. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice.

    Science.gov (United States)

    Pearson, Todd; Markees, Thomas G; Serreze, David V; Pierce, Melissa A; Marron, Michele P; Wicker, Linda S; Peterson, Laurence B; Shultz, Leonard D; Mordes, John P; Rossini, Aldo A; Greiner, Dale L

    2003-07-01

    Curing type 1 diabetes by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. Most islet allotransplant tolerance induction protocols have been tested in nonobese diabetic (NOD) mice, and most have failed. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Out of concern that NOD biology could be misleading in this regard, we tested the hypothesis that autoimmunity and resistance to transplantation tolerance in NOD mice are distinct phenotypes. Unexpectedly, we observed that (NOD x C57BL/6)F(1) mice, which have no diabetes, nonetheless resist prolongation of skin allografts by costimulation blockade. Further analyses revealed that the F(1) mice shared the dendritic cell maturation defects and abnormal CD4(+) T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice can be dissociated genetically. The outcomes of tolerance induction protocols tested in NOD mice may not accurately predict outcomes in human subjects.

  14. Effect of spinal sympathetic blockade upon postural changes of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Skagen, K; Haxholdt, O; Henriksen, O

    1982-01-01

    local nervous blockade was induced by Lidocaine in 133Xe labelled subcutaneous tissue on one side. During epidural blockade and tilt blood flow increased by 12% whereas blood flow decreased by 30% on the control side. Thus epidural blockade had no influence on the vasoconstrictor response...

  15. Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection

    Science.gov (United States)

    Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.

    2011-01-01

    Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630

  16. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Directory of Open Access Journals (Sweden)

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  17. Dual Blockade of the Renin-angiotensin-aldosterone System in Type 2 Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Yan-Huan Feng

    2016-01-01

    Full Text Available Objective: To examine the efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system (RAAS among patients with type 2 diabetic kidney disease. Data Sources: We searched the major literature repositories, including the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE, for randomized clinical trials published between January 1990 and October 2015 that compared the efficacy and safety of the use of dual blockade of the RAAS versus the use of monotherapy, without applying any language restrictions. Keywords for the searches included "diabetic nephropathy," "chronic kidney disease," "chronic renal insufficiency," "diabetes mellitus," "dual therapy," "combined therapy," "dual blockade," "renin-angiotensin system," "angiotensin-converting enzyme inhibitor," "angiotensin-receptor blocker," "aldosterone blockade," "selective aldosterone blockade," "renin inhibitor," "direct renin inhibitor," "mineralocorticoid receptor blocker," etc. Study Selection: The selected articles were carefully reviewed. We excluded randomized clinical trials in which the kidney damage of patients was related to diseases other than diabetes mellitus. Results: Combination treatment with an angiotensin-converting enzyme inhibitor supplemented by an angiotensin II receptor blocking agent is expected to provide a more complete blockade of the RAAS and a better control of hypertension. However, existing literature has presented mixed results, in particular, related to patient safety. In view of this, we conducted a comprehensive literature review in order to explain the rationale for dual blockade of the RAAS, and to discuss the pros and cons. Conclusions: Despite the negative results of some recent large-scale studies, it may be immature to declare that the dual blockade is a failure because of the complex nature of the RAAS surrounding its diversified functions and utility. Further trials are warranted to study the combination therapy as an

  18. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  19. Current hot spot in the spin-valley blockade in carbon nanotubes

    Science.gov (United States)

    Széchenyi, Gábor; Pályi, András

    2013-12-01

    We present a theoretical study of the spin-valley blockade transport effect in a double quantum dot defined in a straight carbon nanotube. We find that intervalley scattering due to short-range impurities completely lifts the spin-valley blockade and induces a large leakage current in a certain confined range of the external magnetic field vector. This current hot spot emerges due to different effective magnetic fields acting on the spin-valley qubit states of the two quantum dots. Our predictions are compared to a recent measurement [F. Pei , Nat. Nanotech.1748-338710.1038/nnano.2012.160 7, 630 (2012)]. We discuss the implications for blockade-based schemes for qubit initialization/readout and motion sensing of nanotube-based mechanical resonators.

  20. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis

    OpenAIRE

    Lebre, M.C.; Vergunst, C.E.; Choi, I.Y.K.; Aarrass, S.; Oliveira, A.S.F.; Wyant, T.; Horuk, R.; Reedquist, K.A.; Tak, P.P.

    2011-01-01

    BACKGROUND: The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model. METHODOLOGY/PRINCIPAL FINDINGS: Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either ...

  1. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep.

    Directory of Open Access Journals (Sweden)

    Joanne O Davidson

    Full Text Available Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age. Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6 or vehicle infusion for controls (occlusion-vehicle group, n = 7. Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05, with reduced neuronal loss in the caudate and putamen (p<0.05, but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05 and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05, with a significant increase in proliferation (p<0.05. Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.

  2. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    Science.gov (United States)

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia. PMID:24865217

  3. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study.

    Science.gov (United States)

    Brueckmann, B; Sasaki, N; Grobara, P; Li, M K; Woo, T; de Bie, J; Maktabi, M; Lee, J; Kwo, J; Pino, R; Sabouri, A S; McGovern, F; Staehr-Rye, A K; Eikermann, M

    2015-11-01

    This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. Adult patients undergoing abdominal surgery received rocuronium, followed by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual neuromuscular blockade at PACU admission, defined as a train-of-four (TOF) ratio sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], Psugammadex vs usual care (14.7 vs. 18.6 min respectively; P=0.02). After abdominal surgery, sugammadex reversal eliminated residual neuromuscular blockade in the PACU, and shortened the time from start of study medication administration to the time the patient was ready for discharge from the operating room. Clinicaltrials.gov:NCT01479764. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade

    Directory of Open Access Journals (Sweden)

    David A. Schaer

    2018-03-01

    Full Text Available Summary: Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6, has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and in vitro assays to investigate the impact of abemaciclib on T cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased T cell inflammatory signature in tumors. Combination with anti-PD-L1 therapy led to complete tumor regressions and immunological memory, accompanied by enhanced antigen presentation, a T cell inflamed phenotype, and enhanced cell cycle control. In vitro, treatment with abemaciclib resulted in increased activation of human T cells and upregulated expression of antigen presentation genes in MCF-7 breast cancer cells. These data collectively support the clinical investigation of the combination of abemaciclib with agents such as anti-PD-L1 that modulate T cell anti-tumor immunity. : Schaer, Beckmann et al. describe unique immune-modulating properties of abemaciclib that include upregulation of antigen presentation on tumor cells and increased T cell activation. These activities synergize with anti-PD-L1 therapy to further enhance immune activation, including macrophage and DC antigen presentation, and also lead to a reciprocal increase in abemaciclib-dependent cell cycle gene regulation. Keywords: CDK4/6, abemaciclib, PD-1, PD-L1, combination immunotherapy, cancer

  5. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  6. Blockade of Ca2+-activated K+ channels in T cells: an option for the treatment of multiple sclerosis?

    DEFF Research Database (Denmark)

    Madsen, Lars Siim; Christophersen, Palle; Olesen, Søren-Peter

    2005-01-01

    Voltage- and Ca(2+)-dependent K(+) channels in the membrane of both T and B lymphocytes are important for the cellular immune response. In the current issue of the European Journal of Immunology, Reich et al. demonstrate that selective blockade of the intermediate-conductance Ca(2+)-activated K(+...

  7. Surgical Space Conditions During Low-Pressure Laparoscopic Cholecystectomy with Deep Versus Moderate Neuromuscular Blockade

    DEFF Research Database (Denmark)

    Staehr-Rye, Anne K; Rasmussen, Lars S.; Rosenberg, Jacob

    2014-01-01

    : In this assessor-blinded study, 48 patients undergoing elective laparoscopic cholecystectomy were administered rocuronium for neuromuscular blockade and randomized to either deep neuromuscular blockade (rocuronium bolus plus infusion maintaining a posttetanic count 0-1) or moderate neuromuscular blockade...... (rocuronium repeat bolus only for inadequate surgical conditions with spontaneous recovery of neuromuscular function). Patients received anesthesia with propofol, remifentanil, and rocuronium. The primary outcome was the proportion of procedures with optimal surgical space conditions (assessed by the surgeon...

  8. Neural Blockade for Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2014-01-01

    involved in neuropathic pain syndromes or to be used as a treatment in its own right. The purpose of this review was to examine the evidence for neural blockade as a potential diagnostic tool or treatment for persistent pain after breast cancer surgery. In this systematic review, we found only 7 studies (n......Persistent pain after breast cancer surgery is predominantly a neuropathic pain syndrome affecting 25% to 60% of patients and related to injury of the intercostobrachial nerve, intercostal nerves, and other nerves in the region. Neural blockade can be useful for the identification of nerves...

  9. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  10. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.

    Science.gov (United States)

    Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S

    2018-01-01

    Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle

  11. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives

    Directory of Open Access Journals (Sweden)

    Carron M

    2017-12-01

    Full Text Available Michele Carron, Francesco Bertoncello, Giovanna Ieppariello Department of Medicine, Anesthesiology, and Intensive Care, University of Padova, Padua, Italy Abstract: The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed. Keywords: sugammadex, aging, elderly, neuromuscular blockade, rocuronium, anesthesia, safety

  12. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Science.gov (United States)

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  13. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Uesato, Shin-ichi [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan); Watanabe, Kazushi [Proubase Technology Inc., Kanagawa 211-0063 (Japan); Tanimura, Susumu [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Koji, Takehiko [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kohno, Michiaki, E-mail: kohnom@nagasaki-u.ac.jp [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Proubase Technology Inc., Kanagawa 211-0063 (Japan); Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501 (Japan)

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  14. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-01-01

    Full Text Available Hepatitis B virus (HBV persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1. Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1 interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV, therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.

  15. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  16. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    Science.gov (United States)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  17. Effects of methyl palmitate on cytokine release, liver injury and survival in mice with sepsis.

    Science.gov (United States)

    Villa, P; Demitri, M T; Meazza, C; Sironi, M; Gnocchi, P; Ghezzi, P

    1996-12-01

    The effects of methyl palmitate (MP), a known inhibitor of Kupffer cells, were studied in a model of polymicrobial sepsis induced in CD-1 mice by cecal ligation and puncture (CLP). The inhibition of Kupffer cells by pretreatment with MP was shown by the reduced phagocytosis, the production of tumor necrosis factor (TNF) and interleukin-6 (IL-6) after lipopolysaccharide (LPS) challenge. The reduced activation of Kupffer cells resulted in lower levels of inflammatory products after CLP. TNF and IL-6 were significantly reduced in serum 2 h and 24 h respectively after CLP, interleukin-1 beta (IL-1 beta) was reduced in liver 4 h after CLP, nitric oxide (NO) and serum amyloid A (SAA) were significantly reduced 8 and 24 h respectively after CLP. Liver toxicity was significantly reduced in MP-treated mice and survival was significantly prolonged at all intervals, reaching 45% after six to ten days compared with 3% in control mice. These findings suggest that Kupffer cells play an important role in liver damage and survival in sepsis.

  18. Benefits and harms of perioperative beta-blockade

    DEFF Research Database (Denmark)

    Wetterslev, Jørn; Juul, Anne Benedicte

    2006-01-01

    randomized trials. However, confidence intervals of the intervention effects in the meta-analyses are wide, leaving room for both benefits and harms. The largest observational study performed suggests that perioperative beta-blockade is associated with higher mortality in patients with low cardiac risk...

  19. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    DEFF Research Database (Denmark)

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed signif...... determinants for the exercise-induced glucagon secretion in man. It is suggested that decreased glucose availability enhances the secretion of glucagon and epinephrine during prolonged exercise....

  20. Negative differential resistance in nanoscale transport in the Coulomb blockade regime

    International Nuclear Information System (INIS)

    Parida, Prakash; Lakshmi, S; Pati, Swapan K

    2009-01-01

    Motivated by recent experiments, we have studied the transport behavior of coupled quantum dot systems in the Coulomb blockade regime using the master (rate) equation approach. We explore how electron-electron interactions in a donor-acceptor system, resembling weakly coupled quantum dots with varying charging energy, can modify the system's response to an external bias, taking it from normal Coulomb blockade behavior to negative differential resistance (NDR) in the current-voltage characteristics.

  1. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  2. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  3. CTLA-4 blockade and the renaissance of cancer immunotherapy.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2013-12-01

    Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives.

    Science.gov (United States)

    Carron, Michele; Bertoncello, Francesco; Ieppariello, Giovanna

    2018-01-01

    The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed.

  5. Effects of defibrotide, a novel oligodeoxyribonucleotide, on ischaemia and reperfusion injury of the rat liver.

    Science.gov (United States)

    Kim, Kwang Joon; Shin, Yong Kyoo; Song, Jin Ho; Oh, Byung Kwon; Choi, Myung Sup; Sohn, Uy Dong

    2002-02-01

    1. The purpose of this study was to investigate the protective effects of defibrotide, a single-stranded polydeoxyribonucleotide, on ischaemia-reperfusion injury to the liver using a rat model. 2. Ischaemia of the left and median lobes was created by total inflow occlusion for 30 min followed by 60 min of reperfusion. Hepatic injury was assessed by the release of liver enzymes (alanine transferase, ALT and lactic dehydrogenase, LDH). Hepatic oxidant stress was measured by superoxide production, lipid peroxidation and nitrite/nitrate formation. Leukocyte-endothelium interaction and Kupffer cell mobilization were quantified by measuring hepatic myeloperoxidase (MPO), polymorphonuclear leukocyte adherence to superior mesenteric artery (SMA) and immunostaining of Kupffer cell. 3. Defibrotide treatment resulted in a significant inhibition of postreperfusion superoxide generation, lipid peroxidation, serum ALT activity, serum LDH activity, MPO activity, serum nitrite/nitrate level, leukocyte adherence to SMA, and Kupffer cell mobilization, indicating a significant attenuation of hepatic dysfunction. 4. A significant correlation existed between liver ischaemia/reperfusion and hepatic injury, suggesting that liver ischaemia/reperfusion injury is mediated predominantly by generation of oxygen free radicals and mobilization of Kupffer cells. 5. We conclude that defibrotide significantly protects the liver against liver ischaemia/reperfusion injury by interfering with Kupffer cell mobilization and formation of oxygen free radicals. This study provides strong evidence that defibrotide has important beneficial effects on acute inflammatory tissue injury such as that occurring in the reperfusion of the ischaemic liver.

  6. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    Science.gov (United States)

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  7. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Science.gov (United States)

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  8. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  9. Blockade of Aquaporin 1 Inhibits Proliferation, Motility, and Metastatic Potential of Mesothelioma In Vitro but not in an In Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Klebe

    2015-01-01

    Full Text Available Background. Malignant mesothelioma (MM is an aggressive tumor of the serosal membranes, mostly the pleura. It is related to asbestos exposure and has a poor prognosis. MM has a long latency period, and incidence is predicted to remain stable or increase until 2020. Currently, no biomarkers for a specific targeted therapy are available. Previously, we observed that expression of aquaporin 1 (AQP1 was an indicator of prognosis in two independent cohorts. Here we determine whether AQP1 inhibition has therapeutic potential in the treatment of MM. Methods. Functional studies were performed with H226 cells and primary MM cells harvested from pleural effusions. AQP1 expression and mesothelial phenotype was determined by immunohistochemistry. AQP1 function was inhibited by a pharmacological blocker (AqB050 or AQP1-specific siRNA. Cell proliferation, migration, and anchorage-independent cell growth were assessed. A nude mouse heterotopic xenograft model of MM was utilised for the in vivo studies. Results. Inhibition of AQP1 significantly decreases cell proliferation, metastatic potential, and motility without inducing nonspecific cytotoxicity or increasing apoptosis. In vivo blockade of AQP1 had no biologically significant effect on growth of established tumours. Conclusions. Targeted blockade of AQP1 restricts MM growth and migration in vitro. Further work is warranted to fully evaluate treatment potential in vivo.

  10. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.

    Science.gov (United States)

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-12-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174-5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 +/- 1.0 and 2.4 +/- 1.0 corrected increment units, respectively) compared to control (6.6 +/- 1.0) (P VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection.

  11. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells.

    Science.gov (United States)

    Ma, Hak-Ling; Napierata, Lee; Stedman, Nancy; Benoit, Stephen; Collins, Mary; Nickerson-Nutter, Cheryl; Young, Deborah A

    2010-02-01

    Patients with psoriasis and psoriatic arthritis respond well to tumor necrosis factor alpha (TNFalpha) blockers in general; however, there is now mounting evidence that a small cohort of patients with rheumatoid arthritis who receive TNFalpha blockers develop psoriasis. This study was undertaken to explore the mechanisms underlying TNFalpha blockade-induced exacerbation of skin inflammation in murine psoriasis-like skin disease. Skin inflammation was induced in BALB/c scid/scid mice after they received CD4+CD45RB(high)CD25- (naive CD4) T cells from donor mice. These mice were treated with either anti-interleukin-12 (anti-IL-12)/23p40 antibody or murine TNFRII-Fc fusion protein and were examined for signs of disease, including histologic features, various cytokine levels in the serum, and cytokine or FoxP3 transcripts in the affected skin and draining lymph node (LN) cells. In a separate study, naive CD4+ T cells were differentiated into Th1 or Th17 lineages with anti-CD3/28 magnetic beads and appropriate cytokines in the presence or absence of TNFalpha. Cytokine gene expression from these differentiated cells was also determined. Neutralization of TNFalpha exacerbated skin inflammation and markedly enhanced the expression of the proinflammatory cytokines IL-1beta, IL-6, IL-17, IL-21, and IL-22 but suppressed FoxP3 expression in the skin and reduced the number of FoxP3-positive Treg cells in the draining LNs. TNFalpha also demonstrated a divergent role during priming and reactivation of naive T cells. These results reveal a novel immunoregulatory role of TNFalpha on Th17 and Treg cells in some individuals, which may account for the exacerbation of skin inflammation in some patients who receive anti-TNF treatments.

  12. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways.

    Directory of Open Access Journals (Sweden)

    Christina Koers-Wunrau

    exclusively cell surface-bound endogenous TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival signaling pathways.

  14. Sodium intake, RAAS-blockade and progressive renal disease

    NARCIS (Netherlands)

    de Borst, Martin H; Navis, Gerjan

    Pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) by angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the current standard treatment to prevent progressive renal function loss in patients with chronic kidney disease. Yet in many patients the

  15. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  16. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  17. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use.

    Science.gov (United States)

    McCaffrey, Gwen; Thompson, Michelle L; Majuta, Lisa; Fealk, Michelle N; Chartier, Stephane; Longo, Geraldine; Mantyh, Patrick W

    2014-12-01

    Studies in animals and humans show that blockade of nerve growth factor (NGF) attenuates both malignant and nonmalignant skeletal pain. While reduction of pain is important, a largely unanswered question is what other benefits NGF blockade might confer in patients with bone cancer. Using a mouse graft model of bone sarcoma, we demonstrate that early treatment with an NGF antibody reduced tumor-induced bone destruction, delayed time to bone fracture, and increased the use of the tumor-bearing limb. Consistent with animal studies in osteoarthritis and head and neck cancer, early blockade of NGF reduced weight loss in mice with bone sarcoma. In terms of the extent and time course of pain relief, NGF blockade also reduced pain 40% to 70%, depending on the metric assessed. Importantly, this analgesic effect was maintained even in animals with late-stage disease. Our results suggest that NGF blockade immediately upon detection of tumor metastasis to bone may help preserve the integrity and use, delay the time to tumor-induced bone fracture, and maintain body weight. ©2014 American Association for Cancer Research.

  18. Anti-inflammatory liposomes have no impact on liver regeneration in rats

    DEFF Research Database (Denmark)

    Jepsen, Betina Norman; Andersen, Kasper Jarlhelt; Knudsen, Anders Riegels

    2015-01-01

    Introduction: Surgical resection is the gold standard in treatment of hepatic malignancies, giving the patient the best chance to be cured. The liver has a unique capacity to regenerate. However, an inflammatory response occurs during resection, in part mediated by Kupffer cells, that influences...... the speed of regeneration. The aim of this study was to investigate the effect of a Kupffer cell targeted anti-inflammatory treatment on liver regeneration in rats. Methods: Two sets of animals, each including four groups of eight rats, were included. Paired groups from each set received treatment......-6. Conclusion: Low dose dexamethasone targeted to Kupffer cells does not affect histological liver cell regeneration after 70% hepatectomy in rats, but reduces the inflammatory response judged by circulating markers of inflammation. (C) 2015 The Authors. Published by Elsevier Ltd on behalf of IJS...

  19. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  20. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury

    Science.gov (United States)

    Linares-Palomino, José; Husainy, Muhammad A; Lai, Vien K; Dickenson, John M; Galiñanes, Manuel

    2010-01-01

    Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoKATP channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37°C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoKATP channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury. PMID:20403980

  1. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  2. Continuous adductor-canal-blockade for adjuvant post-operative analgesia after major knee surgery: preliminary results

    DEFF Research Database (Denmark)

    Lund, J; Jenstrup, M T; Jæger, P

    2011-01-01

    -canal-blockade) after total knee arthroplasty (TKA). Finally, we performed cross-sectional MR scans of the adductor canal after injection of ropivacaine 30ml in one patient. The systematic literature search revealed only one controlled study, where selective blockade of the saphenous nerve was investigated...

  3. Intractable diarrhea in hyperthyroidism: management with beta-adrenergic blockade.

    Science.gov (United States)

    Bricker, L A; Such, F; Loehrke, M E; Kavanaugh, K

    2001-01-01

    To describe a patient with intractable diarrhea and thyrotoxic Graves' disease, for whom b-adrenergic blockade ultimately proved to be effective therapy for the diarrhea, and to review the types of hyperthyroidism-associated diarrhea. We present the clinical course of a young man with a prolonged siege of diarrhea that proved elusive to diagnostic inquiries and resistant to all means of management until its endocrine basis was discovered. Control of such cases with b-adrenergic blockade is discussed, as are the pathophysiologic bases of intestinal hypermotility in hyperthyroidism. A 26-year-old man with Down syndrome, and no prior gastrointestinal disorder, had insidious, chronic, constant diarrhea, which was associated with loss of 14 kg during a 5-month period. Numerous laboratory and imaging studies and endoscopic examinations failed to disclose the cause of the diarrhea. Furthermore, a broad range of antibiotics and other empiric remedies failed to control the problem. No other symptoms of hyperthyroidism were reported, but when the endocrinopathy was suspected and identified, the diarrhea was promptly controlled by treatment with propranolol. In patients with hyperthyroidism, two types of diarrheal disorders have been described-secretory diarrhea and steatorrhea; bile acid malabsorption may have a role in either of these settings. In addition to its capacity for blocking the peripheral effects of thyroid hormone on the heart and central nervous system, b-adrenergic blockade is effective in slowing intestinal transit time and ameliorating the uncommon diarrhea associated with hyperthyroidism. Thyroid hormone in excess, among its other possible effects on the gastrointestinal tract, may exert a stimulatory effect by means of intermediary sympathetic activation, as it does with the heart. Thus, sympathetic blockade can mimic the salutary effects on the gastrointestinal tract conventionally brought about by direct antithyroid therapy, and well before the

  4. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  5. Immune checkpoint blockade therapy: The 2014 Tang prize in biopharmaceutical science

    Directory of Open Access Journals (Sweden)

    Ya-Shan Chen

    2015-02-01

    Full Text Available The first Tang Prize for Biopharmaceutical Science has been awarded to Prof. James P. Allison and Prof. Tasuku Honjo for their contributions leading to an entirely new way to treat cancer by blocking the molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1 that turn off immune response. The treatment, called "immune checkpoint blockade therapy," has opened a new therapeutic era. Here the discoveries of the immune checkpoints and how they contribute to the maintenance of self-tolerance, as well as how to protect tissues from the excess immune responses causing damage are reviewed. The efforts made by Prof. Allison and Prof. Honjo for developing the most promising approaches to activate therapeutic antitumor immunity are also summarized. Since these certain immune checkpoint pathways appear to be one of the major mechanisms resulting in immune escape of tumors, the presence of anti-CTLA-4 and/or anti-PD-1 should contribute to removal of the inhibition signals for T cell activation. Subsequently, it will enhance specific T cell activation and, therefore, strengthen antitumor immunity.

  6. The effect of renin-angiotensin system blockade on renal protection in chronic kidney disease patients with hyperkalemia.

    Science.gov (United States)

    Lee, Ju-Hyun; Kwon, Young Eun; Park, Jung Tak; Lee, Mi Jung; Oh, Hyung Jung; Han, Seung Hyeok; Kang, Shin-Wook; Choi, Kyu Hun; Yoo, Tae-Hyun

    2014-12-01

    The aim of this study was to determine the effects of renin-angiotensin system (RAS) blockade maintenance on renal protection in chronic kidney disease (CKD) patients with hyperkalemia occurring during treatment with RAS blockade. CKD III or IV patients, who were prescribed with RAS blockers and also had hyperkalemia, were included. The study population was divided into two groups based on maintenance or withdrawal of RAS blocker. Renal outcomes (doubling of creatinine or end-stage renal disease) and incidence of hyperkalemia were compared between the two groups. Out of 258 subjects who developed hyperkalemia during treatment with RAS blockers, 150 (58.1%) patients continued on RAS blockades, while RAS blockades were discontinued for more than 3 months in the remaining 108 patients. Renal event-free survival was significantly higher in the maintenance group compared with the withdrawal group. Cox proportional hazard ratio for renal outcomes was 1.35 (95% CI: 1.08-1.92, p=0.04) in the withdrawal group compared with the maintenance group. However, the incidence of hyperkalemia and hyperkalemia-related hospitalization or mortality did not differ between the two groups. This study demonstrated that the maintenance of RAS blockade is beneficial for the preservation of renal function and relatively tolerable in patients with CKD and hyperkalemia occurring during treatment with RAS blockade. © The Author(s) 2014.

  7. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    Directory of Open Access Journals (Sweden)

    Sathananthan M

    2014-07-01

    Full Text Available Matheni Sathananthan,1 Sayeed Ikramuddin,2 James M Swain,3,6 Meera Shah,1 Francesca Piccinini,4 Chiara Dalla Man,4 Claudio Cobelli,4 Robert A Rizza,1 Michael Camilleri,5 Adrian Vella1 1Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA; 2Division of General Surgery, University of Minnesota, Minneapolis, MN, USA; 3Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA; 4Department of Information Engineering, University of Padua, Padua, Italy; 5Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; 6Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA Purpose: Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods: We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB. Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA to measure gastrointestinal transit. Insulin action and ß-cell responsivity indices were estimated using the minimal model. Results: Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose

  8. Neuromuscular blockade in cardiac surgery: An update for clinicians

    Directory of Open Access Journals (Sweden)

    Hemmerling Thomas

    2008-01-01

    Full Text Available There have been great advancements in cardiac surgery over the last two decades; the widespread use of off-pump aortocoronary bypass surgery, minimally invasive cardiac surgery, and robotic surgery have also changed the face of cardiac anaesthesia. The concept of "Fast-track anaesthesia" demands the use of nondepolarising neuromuscular blocking drugs with short duration of action, combining the ability to provide (if necessary sufficiently profound neuromuscular blockade during surgery and immediate re-establishment of normal neuromuscular transmission at the end of surgery. Postoperative residual muscle paralysis is one of the major hurdles for immediate or early extubation after cardiac surgery. Nondepolarising neuromuscular blocking drugs for cardiac surgery should therefore be easy to titrate, of rapid onset and short duration of action with a pathway of elimination independent from hepatic or renal dysfunction, and should equally not affect haemodynamic stability. The difference between repetitive bolus application and continuous infusion is outlined in this review, with the pharmacodynamic and pharmacokinetic characteristics of vecuronium, pancuronium, rocuronium, and cisatracurium. Kinemyography and acceleromyography are the most important currently used neuromuscular monitoring methods. Whereas monitoring at the adductor pollicis muscle is appropriate at the end of surgery, monitoring of the corrugator supercilii muscle better reflects neuromuscular blockade at more central, profound muscles, such as the diaphragm, larynx, or thoraco-abdominal muscles. In conclusion, cisatracurium or rocuronium is recommended for neuromuscular blockade in modern cardiac surgery.

  9. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  10. Epidural anaesthesia with levobupivacaine and ropivacaine : effects of age on the pharmacokinetics, neural blockade and haemodynamics

    NARCIS (Netherlands)

    Simon, Mischa J.G.

    2006-01-01

    Epidural neural blockade results from processes after the administration of a local anaesthetic in the epidural space until the uptake in neural tissue. The pharmacokinetics, neural blockade and haemodynamics after epidural anaesthesia may be influenced by several factors, with age as the most

  11. Effect of axillary blockade on regional cerebral blood flow during static handgrip

    DEFF Research Database (Denmark)

    Friedman, D B; Friberg, L; Mitchell, J H

    1991-01-01

    Regional cerebral blood flow (rCBF) was determined at rest and during static handgrip before and after regional blockade with lidocaine. A fast rotating single photon emission computer tomograph system with 133Xe inhalation was used at orbitomeatal plane (OM) +2.5 and +6.5 cm in eight subjects. M...... static handgrip, there was no increase in rCBF after partial sensory and motor blockade. Thus bilateral activation occurs in the premotor and motor sensory cortex during static handgrip, and this activation requires neural feedback from the contracting muscles....

  12. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.

    Science.gov (United States)

    Läubli, Heinz; Balmelli, Catharina; Kaufmann, Lukas; Stanczak, Michal; Syedbasha, Mohammedyaseen; Vogt, Dominik; Hertig, Astrid; Müller, Beat; Gautschi, Oliver; Stenner, Frank; Zippelius, Alfred; Egli, Adrian; Rothschild, Sacha I

    2018-05-22

    Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.

  13. Rocuronium blockade reversal with sugammadex vs. neostigmine

    DEFF Research Database (Denmark)

    Wu, Xinmin; Oerding, Helle; Liu, Jin

    2014-01-01

    BACKGROUND: This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 μg/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects. METHODS: This was a randomized, active-controlled, multicenter, safety-assessor......BACKGROUND: This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 μg/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects. METHODS: This was a randomized, active-controlled, multicenter, safety...... twitch reappearance, after last rocuronium dose, subjects received sugammadex 2 mg/kg or neostigmine 50 μg/kg plus atropine 10-20 μg/kg, according to randomization. Primary efficacy variable was time from sugammadex/neostigmine to recovery of the train-of-four (TOF) ratio to 0.9. RESULTS: Overall, 230...... Chinese subjects (sugammadex, n = 119, neostigmine, n = 111); and 59 Caucasian subjects (sugammadex, n = 29, neostigmine, n = 30) had evaluable data. Geometric mean (95% CI) time to recovery to TOF ratio 0.9 was 1.6 (1.5-1.7) min with sugammadex vs 9.1 (8.0-10.3) min with neostigmine in Chinese subjects...

  14. Immunohistochemical characterisation of the hepatic stem cell niche in feline hepatic lipidosis: a preliminary morphological study.

    Science.gov (United States)

    Valtolina, Chiara; Robben, Joris H; Favier, Robert P; Rothuizen, Jan; Grinwis, Guy Cm; Schotanus, Baukje A; Penning, Louis C

    2018-05-01

    Objectives The aim of this study was to describe the cellular and stromal components of the hepatic progenitor cell niche in feline hepatic lipidosis (FHL). Methods Immunohistochemical staining for the progenitor/bile duct marker (K19), activated Kupffer cells (MAC387), myofibroblasts (alpha-smooth muscle actin [α-SMA]) and the extracellular matrix component laminin were used on seven liver biopsies of cats with FHL and three healthy cats. Double immunofluorescence stainings were performed to investigate co-localisation of different cell types in the hepatic progenitor cell (HPC) niche. Results HPCs, Kupffer cells, myofibroblasts and laminin deposition were observed in the liver samples of FHL, although with variability in the expression and positivity of the different immunostainings between different samples. When compared with the unaffected cats where K19 positivity and minimal α-SMA and laminin positivity were seen mainly in the portal area, in the majority of FHL samples K19 and α-SMA-positive cells and laminin positivity were seen also in the periportal and parenchymatous area. MAC387-positive cells were present throughout the parenchyma. Conclusions and relevance This is a preliminary morphological study to describe the activation and co-localisation of components of the HPC niche in FHL. Although the HPC niche in FHL resembles that described in hepatopathies in dogs and in feline lymphocytic cholangitis, the expression of K19, α-SMA, MAC387 and lamin is more variable in FHL, and a common pattern of activation could not be established. Nevertheless, when HPCs were activated, a spatial association between HPCs and their niche could be demonstrated.

  15. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  16. Neurohumoral blockade in CHF management

    Directory of Open Access Journals (Sweden)

    Roland Willenbrock

    2000-03-01

    Full Text Available Is heart failure an endocrine disease? Historically, congestive heart failure (CHF has often been regarded as a mechanical and haemodynamic condition. However, there is now strong evidence that the activation of neuroendocrine systems, like the renin-angiotensin-aldosterone system (RAAS and sympathetic nervous system, as well as the activation of natriuretic peptides, endothelin and vasopressin, play key roles in the progression of CHF. In this context, agents targeting neurohormones offer a highly rational approach to CHF management, with ACE inhibitors, aldosterone antagonists and beta-adrenergic blockade improving the prognosis for many patients. Although relevant improvements in clinical status and survival can be achieved with these drug classes, mortality rates for patients with CHF are still very high. Moreover, most patients do not receive these proven life-prolonging drugs, partially due to fear of adverse events, such as hypotension (with ACE inhibitors, gynaecomastia (with spironolactone and fatigue (with beta-blockers.New agents that combine efficacy with better tolerability are therefore needed. The angiotensin II type 1 (AT1-receptor blockers have the potential to fulfil both these requirements, by blocking the deleterious cardiovascular and haemodynamic effects of angiotensin II while offering placebo-like tolerability. As shown with candesartan, AT1-receptor blockers also modulate the levels of other neurohormones, including aldosterone and atrial natriuretic peptide (ANP. Combined with its tight, long-lasting binding to AT1-receptors, this characteristic gives candesartan the potential for complete blockade of the RAAS-neurohormonal axis, along with the great potential to improve clinical outcomes.

  17. Reversal of prolonged rocuronium neuromuscular blockade with sugammadex in an obstetric patient with transverse myelitis.

    LENUS (Irish Health Repository)

    Weekes, G

    2010-07-01

    A 38-year-old wheelchair-bound primigravida with transverse myelitis presented at 38 weeks of gestation for elective caesarean section. Transverse myelitis, which is characterised by bilateral inflammation of the spinal cord and myelin destruction, is associated with myopathy, autonomic dysreflexia and pulmonary aspiration. Regional anaesthesia was contraindicated in this case as the patient had undergone two previous lumbar spinal fusion procedures. Rocuronium 1.2 mg\\/kg was used to facilitate rapid intubating conditions. The caesarean section proceeded uneventfully, but even after administration of neostigmine the patient exhibited prolonged neuromuscular blockade. After 3 h and 15 min sugammadex was obtained to reverse neuromuscular blockade; the drug was not stocked in our hospital. Sugammadex 4 mg\\/kg resulted in complete reversal of blockade after 2 min. We believe that myopathy associated with transverse myelitis led to the prolonged duration of action of rocuronium. Sugammadex is a relatively new drug with few reported side effects. In this case it was used to reverse neuromuscular blockade and prevented prolonged postoperative ventilatory support.

  18. Reversal of prolonged rocuronium neuromuscular blockade with sugammadex in an obstetric patient with transverse myelitis.

    LENUS (Irish Health Repository)

    Weekes, G

    2012-02-01

    A 38-year-old wheelchair-bound primigravida with transverse myelitis presented at 38 weeks of gestation for elective caesarean section. Transverse myelitis, which is characterised by bilateral inflammation of the spinal cord and myelin destruction, is associated with myopathy, autonomic dysreflexia and pulmonary aspiration. Regional anaesthesia was contraindicated in this case as the patient had undergone two previous lumbar spinal fusion procedures. Rocuronium 1.2 mg\\/kg was used to facilitate rapid intubating conditions. The caesarean section proceeded uneventfully, but even after administration of neostigmine the patient exhibited prolonged neuromuscular blockade. After 3 h and 15 min sugammadex was obtained to reverse neuromuscular blockade; the drug was not stocked in our hospital. Sugammadex 4 mg\\/kg resulted in complete reversal of blockade after 2 min. We believe that myopathy associated with transverse myelitis led to the prolonged duration of action of rocuronium. Sugammadex is a relatively new drug with few reported side effects. In this case it was used to reverse neuromuscular blockade and prevented prolonged postoperative ventilatory support.

  19. Ultrasound Guided Intercostobrachial Nerve Blockade in Patients with Persistent Pain after Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Duriaud, Helle M; Kehlet, Henrik

    2016-01-01

    BACKGROUND: Persistent pain after breast cancer surgery (PPBCS) affects 25 - 60% of breast cancer survivors and damage to the intercostobrachial nerve (ICBN) has been implicated as the cause of this predominantly neuropathic pain. Local anesthetic blockade of the ICBN could provide clues...... determined the sonoanatomy of the ICBN and part 2 examined effects of the ultrasound-guided ICBN blockade in patients with PPBCS. SETTING: Section for Surgical Pathophysiology at Rigshospitalet, Copenhagen, Denmark. METHODS: Part 1: Sixteen unoperated, pain free breast cancer patients underwent systematic...... to pathophysiological mechanisms as well as aiding diagnosis and treatment of PPBCS but has never been attempted. OBJECTIVES: To assess the feasibility of ICBN blockade and assess its effects on pain and sensory function in patients with PPBCS. STUDY DESIGN: This prospective pilot study was performed in 2 parts: Part 1...

  20. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer.

    Science.gov (United States)

    Einstein, David J; McDermott, David F

    2017-06-01

    Targeted and immune-based therapies have improved outcomes in advanced kidney cancer, yet novel strategies are needed to extend the duration of these benefits and expand them to more patients. Combined inhibition of vascular endothelial growth factor (VEGF) and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathways with therapeutic agents already in clinical use may offer such a strategy. Here, we describe the development and clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 inhibitors. We present preclinical evidence of interaction between these pathways and the rationale for combined blockade. Beyond well-known effects on pathologic angiogenesis, VEGF blockade also may decrease immune tolerance and enhance PD-1/PD-L1 blockade. We conclude with the results of several early trials of combined VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging antitumor activity, and we pose questions for future study.

  1. Evaluation of epidural blockade as therapy for patients with sciatica secondary to lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Rogerio Carlos Sanfelice Nunes

    2016-08-01

    Full Text Available ABSTRACT OBJECTIVE: Sciatic pain secondary to lumbar disc herniation is a complex condition that is often highly limiting. The causes of pain in disc herniation are multifactorial. Two physiopathological mechanisms are involved in discogenic pain: mechanical deformation of nerve roots and a biochemical inflammatory component resulting from contact between the intervertebral disc and neural tissue, by way of the nucleus pulposus. The aim of this study was to evaluate the efficacy and safety of epidural blockade as therapy for bulging lumbar disc herniation. METHODS: A clinical study was conducted based on a retrospective and prospective survey. The blockade consisted of interlaminar puncture and bolus drug delivery. The number of procedures varied according to the clinical response, as determined through weekly evaluations and then 30, 90, and 180 days after the final session. A total of 124 patients who received one to five blockades were evaluated. RESULTS: The success rate (defining success as a reduction in sciatic pain of at least 80% was 75.8%. CONCLUSION: The results demonstrated the therapeutic action of epidural blockade over the short term, i.e. in cases of acute pain, thus showing that intense and excruciating sciatic pain can be relieved through this technique. Because of the multifactorial genesis of sciatica and the difficulties encountered by healthcare professionals in treating this condition, epidural blockade can become part of therapeutic arsenal available. This procedure is situated between conservative treatment with an eminently clinical focus and surgical approaches.

  2. Continuous positive airway pressure breathing increases cranial spread of sensory blockade after cervicothoracic epidural injection of lidocaine.

    NARCIS (Netherlands)

    Visser, W.A.; Eerd, M.J. van; Seventer, R. van; Gielen, M.J.M.; Giele, J.L.P.; Scheffer, G.J.

    2007-01-01

    BACKGROUND: Continuous positive airway pressure (CPAP) increases the caudad spread of sensory blockade after low-thoracic epidural injection of lidocaine. We hypothesized that CPAP would increase cephalad spread of blockade after cervicothoracic epidural injection. METHODS: Twenty patients with an

  3. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  4. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    Science.gov (United States)

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  5. Terminal Complement Blockade after Hematopoietic Stem Cell Transplantation Is Safe without Meningococcal Vaccination.

    Science.gov (United States)

    Jodele, Sonata; Dandoy, Christopher E; Danziger-Isakov, Lara; Myers, Kasiani C; El-Bietar, Javier; Nelson, Adam; Wallace, Gregory; Teusink-Cross, Ashley; Davies, Stella M

    2016-07-01

    Eculizumab inhibits terminal complement-mediated intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and complement-mediated thrombotic microangiopathy (TMA) in patients with atypical hemolytic uremic syndrome and is now used as a first-line therapy in these diseases. Eculizumab is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) because of an increased risk of meningococcal infections in persons without adequate functional complement. Administration of meningococcal vaccine is required at least 2 weeks before administering the first dose of eculizumab, and this advice is included in the product label. Eculizumab use for treatment of TMA in hematopoietic stem cell transplantation (HSCT) recipients brings a significant dilemma regarding REMS required meningococcal vaccination. TMA after HSCT usually occurs within the first 100 days after transplantation when patients are severely immunocompromised and are not able to mount a response to vaccines. We evaluated 30 HSCT recipients treated with eculizumab for high-risk TMA without meningococcal vaccine. All patients received antimicrobial prophylaxis adequate for Neisseria meningitides during eculizumab therapy and for 8 weeks after discontinuation of the drug. Median time to TMA diagnosis was 28 days after transplant (range, 13.8 to 48.5). Study subjects received a median of 14 eculizumab doses (range, 2 to 38 doses) for HSCT-associated TMA therapy. There were no incidences of meningococcal infections. The incidences of bacterial and fungal bloodstream infections were similar in patients treated with eculizumab (n = 30) as compared with those with HSCT-associated TMA who did not receive any complement blocking therapy (n = 39). Our data indicate that terminal complement blockade in the early post-transplant period can be performed without meningococcal vaccination while using appropriate antimicrobial prophylaxis until complement

  6. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    Science.gov (United States)

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  8. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  9. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  10. T cell costimulation blockade promotes transplantation tolerance in combination with sirolimus and post-transplantation cyclophosphamide for haploidentical transplantation in children with severe aplastic anemia.

    Science.gov (United States)

    Jaiswal, Sarita Rani; Bhakuni, Prakash; Zaman, Shamsuz; Bansal, Satish; Bharadwaj, Priyanka; Bhargava, Sneh; Chakrabarti, Suparno

    2017-08-01

    We conducted a pilot study employing extended T cell costimulation blockade (COSBL) with Abatacept along with sirolimus and post-transplantation cyclophosphamide (PTCy) in 10 patients (median age 12) with severe aplastic anemia (SAA). Nine patients engrafted in the COSBL group, compared to all 10 patients (median 14 vs 13days) treated on PTCy protocols without abatacept (CONTROL group). The incidence of acute graft-versus-host disease (GVHD) was 10.5% in the COSBL group compared to 50% in the CONTROL group (p=0.04). Chronic GVHD (12.5% vs 56%, p=0.02) and CMV reactivation (30% vs 80%, p=0.03) were also reduced in the COSBL group. T and NK cell subset analysis revealed higher CD56 bright CD16 - NK cells in the CONTROL group (p=0.004), but similar CD56 dim CD16 + NK cells in both groups at day+30. Tregs (CD4 + CD25 + CD127 dim/- FoxP3+) were markedly higher in the COSBL group at day+30 (8.4% vs 1.1%) and the trend was maintained through day+90 (p<0.01). The GVHD and Disease-free survival at one year in the COSBL group was 80% vs. 30% in the CONTROL group (p=0.05). Our preliminary findings suggest that COSBL in combination with PTCy and sirolimus might augment transplantation tolerance in children with SAA, probably due to synergistic effect on early recovery of Tregs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enhancement of Muscle T Regulatory Cells and Improvement of Muscular Dystrophic Process in mdx Mice by Blockade of Extracellular ATP/P2X Axis.

    Science.gov (United States)

    Gazzerro, Elisabetta; Baldassari, Simona; Assereto, Stefania; Fruscione, Floriana; Pistorio, Angela; Panicucci, Chiara; Volpi, Stefano; Perruzza, Lisa; Fiorillo, Chiara; Minetti, Carlo; Traggiai, Elisabetta; Grassi, Fabio; Bruno, Claudio

    2015-12-01

    Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-β and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Minor Antigen Disparities Impede Induction of Long Lasting Chimerism and Tolerance through Bone Marrow Transplantation with Costimulation Blockade

    Directory of Open Access Journals (Sweden)

    Sinda Bigenzahn

    2016-01-01

    Full Text Available Mixed chimerism and tolerance can be successfully induced in rodents through allogeneic bone marrow transplantation (BMT with costimulation blockade (CB, but varying success rates have been reported with distinct models and protocols. We therefore investigated the impact of minor antigen disparities on the induction of mixed chimerism and tolerance. C57BL/6 (H2b mice received nonmyeloablative total body irradiation (3 Gy, costimulation blockade (anti-CD40L mAb and CTLA4Ig, and 2×107 bone marrow cells (BMC from either of three donor strains: Balb/c (H2d (MHC plus multiple minor histocompatibility antigen (mHAg mismatched, B10.D2 (H2d or B10.A (H2a (both MHC mismatched, but mHAg matched. Macrochimerism was followed over time by flow cytometry and tolerance was tested by skin grafting. 20 of 21 recipients of B10.D2 BMC but only 13 of 18 of Balb/c BMC and 13 of 20 of B10.A BMC developed stable long-term multilineage chimerism (p<0.05 for each donor strain versus B10.D2. Significantly superior donor skin graft survival was observed in successfully established long-term chimeras after mHAg matched BMT compared to mHAg mismatched BMT (p<0.05. Both minor and major antigen disparities pose a substantial barrier for the induction of chimerism while the maintenance of tolerance after nonmyeloablative BMT and costimulation blockade is negatively influenced by minor antigen disparities.

  13. Functional Expression of Programmed Death-Ligand 1 (B7-H1 by Immune Cells and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Gibbons Johnson

    2017-08-01

    Full Text Available The programmed death-1 (PD-1 and its ligand PD-L1 (B7-H1 signaling pathway has been the focus of much enthusiasm in the fields of tumor immunology and oncology with recent FDA approval of the anti-PD-1 antibodies pembrolizumab and nivolumab and the anti-PD-L1 antibodies durvalumab, atezolimuab, and avelumab. These therapies, referred to here as PD-L1/PD-1 checkpoint blockade therapies, are designed to block the interaction between PD-L1, expressed by tumor cells, and PD-1, expressed by tumor-infiltrating CD8+ T cells, leading to enhanced antitumor CD8+ T cell responses and tumor regression. The influence of PD-L1 expressed by tumor cells on antitumor CD8+ T cell responses is well characterized, but the impact of PD-L1 expressed by immune cells has not been well defined for antitumor CD8+ T cell responses. Although PD-L1 expression by tumor cells has been used as a biomarker in selection of patients for PD-L1/PD-1 checkpoint blockade therapies, patients whose tumor cells lack PD-L1 expression often respond positively to PD-L1/PD-1 checkpoint blockade therapies. This suggests that PD-L1 expressed by non-malignant cells may also contribute to antitumor immunity. Here, we review the functions of PD-L1 expressed by immune cells in the context of CD8+ T cell priming, contraction, and differentiation into memory populations, as well as the role of PD-L1 expressed by tumor cells in regulating antitumor CD8+ T cell responses.

  14. Stainable hepatic iron in 341 African American adults at coroner/medical examiner autopsy

    Directory of Open Access Journals (Sweden)

    Acton Ronald T

    2005-01-01

    Full Text Available Abstract Background Results of previous autopsy studies indicate that increased hepatic iron stores or hepatic iron overload is common in African Americans dying in hospitals, but there are no reports of hepatic iron content in other cohorts of African Americans. Methods We investigated the prevalence of heavy liver iron deposition in African American adults. Using established histochemical criteria, we graded Perls' acid ferrocyanide-reactive iron in the hepatocytes and Kupffer cells of 341 consecutive African American adults who were autopsied in the coroner/medical examiner office. Heavy staining was defined as grade 3 or 4 hepatocyte iron or grade 3 Kupffer cell iron. Results There were 254 men and 85 women (mean age ± 1 SD: 44 ± 13 y vs. 48 ± 14 y, respectively; p = 0.0255; gender was unstated or unknown in two subjects. Approximately one-third of subjects died of natural causes. Heavy staining was observed in 10.2% of men and 4.7% of women. 23 subjects had heavy hepatocyte staining only, six had heavy Kupffer cell staining only, and one had a mixed pattern of heavy staining. 15 subjects had histories of chronic alcoholism; three had heavy staining confined to hepatocytes. We analyzed the relationships of three continuous variables (age at death in years, hepatocyte iron grade, Kupffer cell iron grade and two categorical variables (sex, cause of death (natural and non-natural causes in all 341 subjects using a correlation matrix with Bonferroni correction. This revealed two positive correlations: hepatocyte with Kupffer cell iron grades (p Conclusions The present results confirm and extend previous observations that heavy liver iron staining is relatively common in African Americans. The pertinence of these observations to genetic and acquired causes of iron overload in African Americans is discussed.

  15. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Chen-Hui Ju

    2015-07-01

    Full Text Available Background/Aims: After myocardial infarction (MI, cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1 has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. Methods: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs stimulated by angiotensin II (Ang II was tested. Results: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. Conclusion: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

  16. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Dominguez, Helena; Storgaard, Heidi; Rask-Madsen, Christian

    2005-01-01

    OBJECTIVE: The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) impairs insulin action in insulin-sensitive tissues, such as fat, muscle and endothelium, and causes endothelial dysfunction. We hypothesized that TNF-alpha blockade with etanercept could reverse vascular and metabolic...... glucose uptake remained unchanged as well. Beta-cell function tended to improve. CONCLUSION: Although short-term etanercept treatment had a significant beneficial effect on systemic inflammatory markers, no improvement of vascular or metabolic insulin sensitivity was observed....

  17. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    Science.gov (United States)

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The effects of calcium channel blockade on agouti-induced obesity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Moustaid, N.; Zemel, M.B. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-01

    We have previously observed that obese viable yellow (A{sup vy}/a) mice exhibit increased intracellular Ca{sup 2+} ([Ca{sup 2+}]i) and fatty acid synthase (FAS) gene expression; further, recombinant agouti protein increases in cultured adipocytes and these effects are inhibited by Ca{sup 2+} channel blockade. Accordingly, we determined the effect of Ca{sup 2+} channel blockade (nifedipine for 4 wk) on FAS and obesity in transgenic mice expressing the agouti gene in a ubiquitous manner. The transgenic mice initially were significantly heavier (30.5 {+-} 0.6 vs. 27.3 {+-} 0.3 g; P<0.001) and exhibited a 0.81{degrees}C lower initial core temperature (P<0.0005), an approximately twofold increase in fat pad weights (P=0.002), a sevenfold increase in adipose FAS activity (P=0.009), and a twofold increase in plasma insulin level (P<0.05) compared to control mice. Nifedipine treatment resulted in an 18% decrease in fat pad weights (P<0.007) and a 74% decrease in adipose FAS activity (P=0.03), normalized circulating insulin levels and insulin sensitivity (P,0.05), and transiently elevated core temperature in the transgenic mice, but was without effect in the control mice. These data suggest that agouti regulates FAS, fat storage, and possibly thermogenesis, at least partially, via a [Ca{sup 2+}]{sub i}-dependent mechanism, and that Ca{sup 2+} channel blockade may partially attenuate agouti-induced obesity. 42 refs., 4 figs., 1 tab.

  19. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    Science.gov (United States)

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in

  20. Renal Kallikrein Activation and Renoprotection after Dual Blockade of Renin-Angiotensin System in Diet-Induced Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Xia Zou

    2015-01-01

    Full Text Available Purpose. The objective of this study is to investigate the effect of dual blockage of renin-angiotensin system (RAS on renal kallikrein expression and inflammatory response in diabetic nephropathy (DN. Methods. Rats were randomly divided into 5 groups with 10 rats in each group: normal control; DN model induced by high fat and high sucrose diets; and DN treated with either benazepril 10 mg/kg/d, irbesartan 30 mg/kg/d, or both. After 8-week treatment, we examined changes in the kidney histopathology, function and immunohistochemical stain of kallikrein, macrophage marker CD68, and profibrotic markers transforming growth factor- (TGF- β and α-smooth muscle action (SMA. Results. DN rats showed enlarged kidneys with glomerulosclerosis, interstitial chronic inflammation and fibrosis, and proteinuria. All the pathological damage and functional impairments were improved after the RAS blockades (all P<0.05. Compared with monotherapy, combined treatment further alleviated the kidney impairments in parallel to increased tubular immunoreactivity for kallikrein and decreased immunopositive cells for CD68, TGF-β, and α-SMA. Conclusion. The renoprotective effects of the dual RAS blockade in diabetic nephropathy may be attributed to improved tubular kallikrein expression and interstitial inflammatory response.

  1. Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension.

    Science.gov (United States)

    Gamboa, Alfredo; Figueroa, Rocío; Paranjape, Sachin Y; Farley, Ginnie; Diedrich, Andre; Biaggioni, Italo

    2016-10-01

    Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30blood flow (from 3.9±0.7 to 5.2±1.2 mL/100 mL per minute, P=0.078). As expected, NO-mediated vasodilation was blunted on the intact day compared with NO-independent vasodilation; forearm blood flow increased from 3.6±0.6 to 10.1±1.1 with the highest dose of nitroprusside, but only from 3.7±0.4 to 7.2±0.8 mL/100 mL per minute with the highest dose of acetylcholine, Pblood flow responses to acetylcholine were restored by autonomic blockade and were no longer different to nitroprusside (from 6.2±1.1 to 11.4±1.6 mL/100 mL per minute and from 5.2±0.9 to 12.5±0.9, respectively, P=0.58). Our results support the concept that sympathetic activation contributes to the impairment in NO-mediated vasodilation seen in obesity-associated hypertension and provides further rationale to explore it as a therapeutic target. © 2016 American Heart Association, Inc.

  2. Topological matter with collective encoding and Rydberg blockade

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2010-01-01

    We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string-net condens......-net condensates and to create and study the properties of their quasi-particle-like fundamental excitations....

  3. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    Science.gov (United States)

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  4. Effect of adductor-canal-blockade on established, severe post-operative pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jaeger, P; Grevstad, Ulrik; Henningsen, Maja

    2012-01-01

    In this proof-of-concept study, we investigated the effect of the predominantly sensory adductor-canal-blockade on established pain in the early post-operative period after total knee arthroplasty (TKA). We hypothesised that the adductor-canal-blockade would reduce pain during flexion of the knee...... (primary end point) and at rest, as well as reducing morphine consumption and morphine-related side effects (secondary outcomes) compared with placebo....

  5. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    International Nuclear Information System (INIS)

    Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar; Tokar, Erik J.; Kadiiska, Maria B.; Waalkes, Michael P.; Mason, Ronald P.; Chatterjee, Saurabh

    2013-01-01

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein

  6. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Seth, Ratanesh Kumar [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Tokar, Erik J. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Waalkes, Michael P. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Mason, Ronald P. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2013-06-15

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates

  7. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  8. Effective dermatomal blockade after subcostal transversus abdominis plane block

    DEFF Research Database (Denmark)

    Mitchell, Anja Ulrike; Torup, Henrik; Hansen, Egon G

    2012-01-01

    . Sensory assessment of a TAP block may guide the decision on the extent of the block. The purpose of this study was to investigate if the dermatomal extent of sensory blockade after injection of 20 ml 0.5% ropivacaine bilaterally into the TAP can be assessed using cold and pinprick sensation....

  9. Analgesic efficacy of the ultrasound-guided blockade of the transversus abdominis plane - a systematic review

    Directory of Open Access Journals (Sweden)

    Javier Ripollés

    2015-08-01

    Full Text Available BACKGROUND: The transverse abdominal plan blockade is a block of abdominal wall that has diffused rapidly in the clinical practice as part of a multimodal analgesia for abdominal surgery. The performance of the ultrasound-guided technique has allowed the lowering of potential complications, as well as new approaches that were carried out according to the descriptions, and the prospective studies would make it possible to utilize the transverse abdominal plan blockade in different surgical interventions; however, the results obtained in randomized clinical trials are inconsistent.OBJECTIVES: To prepare a systematic review aiming to determine the efficacy of the ultrasound-guided transverse abdominal plan blockade for different surgical interventions, as well as the indications according to the approaches and their influences.METHODS: Two research approaches, one manual, and the other in Pubmed returned 28 randomized clinical trials where intervention with ultrasound-guided transverse abdominal plan blockades was performed to compare the analgesic efficacy in contrast to another technique in adults, published between 2007 and October 2013, in English or Spanish, with Jadad score > 1, according to the inclusion criteria for this review. The authors analyzed independently all the randomized clinical trials.CONCLUSIONS: The transverse abdominal plan blockades have been shown to be an effective technique in colorectal surgery, cesarean section, cholecystectomy, hysterectomy, appendectomy, donor nephrectomy, retropubic prostatectomy, and bariatric surgery. However, the data found in randomized clinical trial are not conclusive, and as a result, it is necessary to develop new and well designed randomized clinical trial, with enough statistical power to compare different approaches, drugs, doses, and volumes for the same intervention, aiming to answer the current questions and their effects in the habitual clinical practice.

  10. Does perioperative tactile evaluation of the train-of-four response influence the frequency of postoperative residual neuromuscular blockade?

    DEFF Research Database (Denmark)

    Pedersen, T; Viby-Mogensen, J; Bang, U

    1990-01-01

    pancuronium), the anesthetists assessed the degree of neuromuscular blockade during operation and during recovery from neuromuscular blockade by manual evaluation of the response to TOF nerve stimulation. In the other two groups, one of which received vecuronium and the other pancuronium, the anesthetists...... evaluated the degree of neuromuscular blockade solely by clinical criteria. The use of a nerve stimulator was found to have no effect on the dose of relaxant given during anesthesia, on the need for supplementary doses of anticholinesterase in the recovery room, on the time from end of surgery to end...... of anesthesia, or on the incidence of postoperative residual neuromuscular blockade evaluated clinically. The median (and range of) TOF ratios recorded in the recovery room were 0.75 (0.33-0.96) and 0.79 (0.10-0.97) in the vecuronium groups monitored with and without a nerve stimulator, respectively...

  11. Liver scanning using indium-113m at the University Teaching Hospital, Lusaka, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Mulaisho, C [Nuclear Medicine Unit, Department of Medicine, University of Zambia, Lusaka, Zambia; Mumba, K N [Radio-isotope Research Unit, National Council for Scientific Research, Lusaka, Zambia

    1981-11-21

    Liver scanning using the radio-isotope indium-113m, can now be routinely perfomed at the University Teaching Hospital, Lusaka, Zambia. The dose used is 1 - 4 mCi. Liver scans have been performed on 48 subjects, including 10 healthy individuals 16 patients with histologically proven hepatocellular carcinoma, 11 with clinical and laboratory evidence of portal hypertension and 11 with miscellaneous illnesses. Seven representative scans are illustrated. The procedure is easy, and gives a fairly accurate functional estimate of Kupffer cell mass. In hepatoma the scan may be either larger than or smaller than normal and reflects more accurately the residual function of the Kupffer cells. In cirrhosis of the liver with portal hypertention, residual Kupffer cell mass is small. Consequently, most of the indium-113m is taken up by the splenic reticulo-endothelial system, resulting in a large spleen scan. This technique, although fraught with major limitations, is a useful additional diagnostic tool in the management of chronic liver disease.

  12. Effect of Dual Blockade of Renin-Angiotensin Aldosterone System ...

    African Journals Online (AJOL)

    Purpose: To investigate the dual effect of angiotensin blockade by irbesartan and enalapril on proteinuria in diabetic patients with azotemia. Methods: Patients with diabetes of > 5 years duration, proteinuria at a nephrotic level and serum creatinine > 1.5 mg/dL were enrolled in the study. Forty-five enrolled patients were ...

  13. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  14. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  15. Role of fatty-acid synthesis in dendritic cell generation and function.

    Science.gov (United States)

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  16. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  17. Use of ropivacain and lidocaine for axillary plexus blockade ...

    African Journals Online (AJOL)

    Use of ropivacain and lidocaine for axillary plexus blockade. ... of the juvenile anatomy, psychological barriers, time constraints on block ... children in the age group of 2 to 10 years and undergoing short upper limb surgery. ... Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free To Read ...

  18. Effects of dual renin-angiotensin system blockade on proteinuria in a ...

    African Journals Online (AJOL)

    Kidney diseases manifesting as proteinuria or elevated creatinine are increasingly prevalent complications of HIV infection. We report the effects of dual renin-angiotensin system blockade on proteinuria in a hypertensive black African HIV-infected patient.

  19. CARDIOVASCULAR ENDOCRINOLOGY Dual RAAS blockade has dual effects on outcome

    NARCIS (Netherlands)

    Heerspink, Hiddo J. Lambers; de Zeeuw, Dick

    Makani and colleagues report that dual blockade of the renin-angiotensin-aldosterone system is associated with harm despite previous studies showing that this approach decreases blood pressure and albuminuria. Do these results imply that we should abandon surrogate markers? Or should we become more

  20. Berry-phase blockade in single-molecule magnets

    OpenAIRE

    Gonzalez, Gabriel; Leuenberger, Michael N.

    2006-01-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the s...

  1. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1.

    Science.gov (United States)

    Osada, Takuya; Patel, Sandip P; Hammond, Scott A; Osada, Koya; Morse, Michael A; Lyerly, H Kim

    2015-06-01

    Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

  2. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade

    Science.gov (United States)

    Atkinson, Sara Marie; Hoffmann, Ute; Hamann, Alf; Bach, Emil; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Serikawa, Kyle; Fox, Brian; Kruse, Kim; Haase, Claus; Skov, Søren; Nansen, Anneline

    2016-01-01

    ABSTRACT Rodent models of arthritis have been extensively used in the elucidation of rheumatoid arthritis (RA) pathogenesis and are instrumental in the development of therapeutic strategies. Here we utilise delayed-type hypersensitivity arthritis (DTHA), a model in C57BL/6 mice affecting one paw with synchronised onset, 100% penetrance and low variation. We investigate the role of regulatory T cells (Tregs) in DTHA through selective depletion of Tregs and the role of IL-17 in connection with Treg depletion. Given the relevance of Tregs in RA, and the possibility of developing Treg-directed therapies, this approach could be relevant for advancing the understanding of Tregs in inflammatory arthritis. Selective depletion of Tregs was achieved using a Foxp3-DTR-eGFP mouse, which expresses the diphtheria toxin receptor (DTR) and enhanced green fluorescent protein (eGFP) under control of the Foxp3 gene. Anti-IL-17 monoclonal antibody (mAb) was used for IL-17 blockade. Numbers and activation of Tregs increased in the paw and its draining lymph node in DTHA, and depletion of Tregs resulted in exacerbation of disease as shown by increased paw swelling, increased infiltration of inflammatory cells, increased bone remodelling and increased production of inflammatory mediators, as well as increased production of anti-citrullinated protein antibodies. Anti-IL-17 mAb treatment demonstrated that IL-17 is important for disease severity in both the presence and absence of Tregs, and that IL-17 blockade is able to rescue mice from the exacerbated disease caused by Treg depletion and caused a reduction in RANKL, IL-6 and the number of neutrophils. We show that Tregs are important for the containment of inflammation and bone remodelling in DTHA. To our knowledge, this is the first study using the Foxp3-DTR-eGFP mouse on a C57BL/6 background for Treg depletion in an arthritis model, and we here demonstrate the usefulness of the approach to study the role of Tregs and IL-17 in arthritis

  3. Population pharmacokinetic–pharmacodynamic analysis for sugammadex-mediated reversal of rocuronium-induced neuromuscular blockade

    Science.gov (United States)

    Kleijn, Huub J; Zollinger, Daniel P; van den Heuvel, Michiel W; Kerbusch, Thomas

    2011-01-01

    AIMS An integrated population pharmacokinetic–pharmacodynamic model was developed with the following aims: to simultaneously describe pharmacokinetic behaviour of sugammadex and rocuronium; to establish the pharmacokinetic–pharmacodynamic model for rocuronium-induced neuromuscular blockade and reversal by sugammadex; to evaluate covariate effects; and to explore, by simulation, typical covariate effects on reversal time. METHODS Data (n = 446) from eight sugammadex clinical studies covering men, women, non-Asians, Asians, paediatrics, adults and the elderly, with various degrees of renal impairment, were used. Modelling and simulation techniques based on physiological principles were applied to capture rocuronium and sugammadex pharmacokinetics and pharmacodynamics and to identify and quantify covariate effects. RESULTS Sugammadex pharmacokinetics were affected by renal function, bodyweight and race, and rocuronium pharmacokinetics were affected by age, renal function and race. Sevoflurane potentiated rocuronium-induced neuromuscular blockade. Posterior predictive checks and bootstrapping illustrated the accuracy and robustness of the model. External validation showed concordance between observed and predicted reversal times, but interindividual variability in reversal time was pronounced. Simulated reversal times in typical adults were 0.8, 1.5 and 1.4 min upon reversal with sugammadex 16 mg kg−1 3 min after rocuronium, sugammadex 4 mg kg−1 during deep neuromuscular blockade and sugammadex 2 mg kg−1 during moderate blockade, respectively. Simulations indicated that reversal times were faster in paediatric patients and slightly slower in elderly patients compared with adults. Renal function did not affect reversal time. CONCLUSIONS Simulations of the therapeutic dosing regimens demonstrated limited impact of age, renal function and sevoflurane use, as predicted reversal time in typical subjects was always <2 min. PMID:21535448

  4. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    neuroprotective against glutamate-induced necrotic neuronal cell death in vitro and that this effect is mediated through NMDA receptor blockade by interacting with a site located within the NMDA channel pore.

  5. Nonadiabatic holonomic quantum computation using Rydberg blockade

    Science.gov (United States)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2018-04-01

    In this paper, we propose a scheme for realizing nonadiabatic holonomic computation assisted by two atoms and the shortcuts to adiabaticity (STA). The blockade effect induced by strong Rydberg-mediated interaction between two Rydberg atoms provides us the possibility to simplify the dynamics of the system, and the STA helps us design pulses for implementing the holonomic computation with high fidelity. Numerical simulations show the scheme is noise immune and decoherence resistant. Therefore, the current scheme may provide some useful perspectives for realizing nonadiabatic holonomic computation.

  6. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model.

    Directory of Open Access Journals (Sweden)

    Zineb Belcaid

    Full Text Available Glioblastoma (GBM is the most common malignant brain tumor in adults and is associated with a poor prognosis. Cytotoxic T lymphocyte antigen -4 (CTLA-4 blocking antibodies have demonstrated an ability to generate robust antitumor immune responses against a variety of solid tumors. 4-1BB (CD137 is expressed by activated T lymphocytes and served as a co-stimulatory signal, which promotes cytotoxic function. Here, we evaluate a combination immunotherapy regimen involving 4-1BB activation, CTLA-4 blockade, and focal radiation therapy in an immune-competent intracranial GBM model.GL261-luciferace cells were stereotactically implanted in the striatum of C57BL/6 mice. Mice were treated with a triple therapy regimen consisted of 4-1BB agonist antibodies, CTLA-4 blocking antibodies, and focal radiation therapy using a small animal radiation research platform and mice were followed for survival. Numbers of brain-infiltrating lymphocytes were analyzed by FACS analysis. CD4 or CD8 depleting antibodies were administered to determine the relative contribution of T helper and cytotoxic T cells in this regimen. To evaluate the ability of this immunotherapy to generate an antigen-specific memory response, long-term survivors were re-challenged with GL261 glioma en B16 melanoma flank tumors.Mice treated with triple therapy had increased survival compared to mice treated with focal radiation therapy and immunotherapy with 4-1BB activation and CTLA-4 blockade. Animals treated with triple therapy exhibited at least 50% long-term tumor free survival. Treatment with triple therapy resulted in a higher density of CD4+ and CD8+ tumor infiltrating lymphocytes. Mechanistically, depletion of CD4+ T cells abrogated the antitumor efficacy of triple therapy, while depletion of CD8+ T cells had no effect on the treatment response.Combination therapy with 4-1BB activation and CTLA-4 blockade in the setting of focal radiation therapy improves survival in an orthotopic mouse

  7. Effect of Nitric Oxide Synthesis Blockade on the Morphology of Langerhans Islets in August and Wistar Rats with Acute Alloxan Diabetes.

    Science.gov (United States)

    Smirnova, E A; Michunskaya, A B; Terekhina, O L; Kobozeva, L P; Kruglov, S V; Belkina, L M; Pozdnyakov, O M

    2015-06-01

    Alloxan diabetes was modeled in August rats with high activity of the NO system and in Wistar rats, and the effects of NO system blockade (by a course treatment with L-NNA) on Langerhans islet β cells were studied in 15 days. The toxic effects of diabetes on the rat β cells and islets were similar: the content of active β cells in the islets decreased to 15-20%, the number of islets to 24-29% of control. A course of L-NNA reduced the β cell and islet death, in August cells greater than in Wistar: the number of islets in August rats was restored to 81%, in Wistar rats to 60% of initial level; the activity of β cells remained at the control level in the former and 2-fold lower than in the control in the latter. It seems that a less pronounced protective effect of L-NNA in Wistar rats was explained by excessive reduction of NO level essential for β cell regeneration.

  8. The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.

    Science.gov (United States)

    Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-12-22

    Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Berry-Phase Blockade in Single-Molecule Magnets

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N.

    2007-06-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.

  10. [Improvement of approach to performance of lumbar sympathetic blockade in patients with tissue ischemia of the lower extremities].

    Science.gov (United States)

    Panov, V M; Fesenko, U A; Kutsyn, V M

    2014-06-01

    New access for performance of sympathic blockade in region of aortal bifurcation, was elaborated, basing on calculations, conducted on 30 spiral computeric tomograms of lumbar and sacral parts of vertebral column. Application of the method permits to escape such complications, as a renal and the main vessels damage, the sympathetic nerves blockade, do not demand roentgenological control.

  11. Reversal of neuromuscular blockade by sugammadex in laparoscopic bariatric surgery: In support of dose reduction.

    Science.gov (United States)

    Badaoui, Rachid; Cabaret, Aurélie; Alami, Youssef; Zogheib, Elie; Popov, Ivan; Lorne, Emmanuel; Dupont, Hervé

    2016-02-01

    Sugammadex is the first molecule able to antagonize steroidal muscle relaxants with few adverse effects. Doses are adjusted to body weight and the level of neuromuscular blockade. Sleeve gastrectomy is becoming a very popular form of bariatric surgery. It requires deep muscle relaxation followed by complete and rapid reversal to decrease postoperative and especially post-anaesthetic morbidity. Sugammadex is therefore particularly indicated in this setting. The objective of this study was to evaluate the deep neuromuscular blockade reversal time after administration of various doses of sugammadex (based on real weight or at lower doses). Secondary endpoints were the interval between the sugammadex injection and extubation and transfer from the operating room to the recovery room. We then investigated any complications observed in the recovery room. This pilot, prospective, observational, clinical practice evaluation study was conducted in the Amiens University Hospital. Neuromuscular blockade was induced by rocuronium. At the end of the operation, deep neuromuscular blockade was reversed by sugammadex at the dose of 4mg/kg. Sixty-four patients were included: 31 patients received sugammadex at a dosage based on their real weight (RW) and 33 patients received a lower dose (based on ideal weight [IW]). For identical rocuronium doses calculated based on IBW, sugammadex doses were significantly lower in the IW group: 349 (± 65) mg versus 508 (± 75) mg (Psugammadex and extubation (P=0.07) and transfer from the operating room to the recovery room (P=0.68) were also non-significantly longer in the IW group. The mean dose of sugammadex used by anaesthetists in the IW group was 4mg/kg of ideal weight increased by 35% to 50% (n=20; 351±34mg). No sugammadex adverse effects and no residual neuromuscular blockades were observed. Postoperative nausea and vomiting (PONV) was observed in 19.4% of patients in the real weight group versus 27.3% in the ideal weight group (P

  12. Comparison of rocuronium-induced neuromuscular blockade in second trimester pregnant women and non-pregnant women.

    Science.gov (United States)

    Jun, I J; Jun, J; Kim, E M; Lee, K Y; Kim, N; Chung, M H; Choi, Y R; Choi, E M

    2018-05-01

    This study set out to compare the onset and duration of rocuronium-induced neuromuscular blockade in second trimester pregnant women and non-pregnant women receiving general anesthesia. Forty-seven pregnant (Group P) and forty-seven non-pregnant (Group C) women were enrolled. Anesthesia was induced with propofol 2.0 mg/kg and rocuronium 0.6 mg/kg, and neuromuscular blockade was assessed with an accelerometric sensor using train-of-four stimulation (TOF-Watch® SX). Tracheal intubation was performed at maximum depression of the first twitch (T1) and anesthesia was maintained with sevoflurane 1.5-2.5% and 50% oxygen in air. We recorded the times to maximum T1 depression and 5% and 25% T1 recovery, as well as the mean arterial pressure and heart rate at baseline, injection of rocuronium, intubation, and 5% and 25% T1 recovery. The onset of rocuronium-induced neuromuscular blockade (time to maximum T1 depression) did not differ significantly between the groups. The duration (time to 25% T1 recovery) was significantly longer in Group P than in Group C (45.7 ± 12.9 min vs 40.6 ± 10.4 min, P rocuronium-induced neuromuscular blockade did not significantly differ in onset but lasted significantly longer in second trimester pregnant women compared with non-pregnant women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  14. Does renin-angiotensin system blockade have a role in preventing diabetic retinopathy? A clinical review

    DEFF Research Database (Denmark)

    Sjølie, A K; Dodson, P; Hobbs, F R R

    2011-01-01

    Diabetes management has increasingly focused on the prevention of macrovascular disease, in particular for type 2 diabetes. Diabetic retinopathy, one of the main microvascular complications of diabetes, is also an important public health problem. Much of the care invested in retinopathy relates...... the primary trial end-points were not met, there was a clear trend to less severe retinopathy with RAS blockade. A smaller trial, RASS, reported reduced retinopathy progression in type 1 diabetes from RAS blockade with both the ARB losartan and the angiotensin converting enzyme (ACE) inhibitor enalapril...

  15. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W; Efstathiou, Eleni; Li Ning Tapia, Elsa M; Tapia, Elsa M Li-Ning; Zurita, Amado J; Aparicio, Ana; Ravoori, Murali K; Vazquez, Elba S; Robinson, Dan R; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M; Logothetis, Christopher J; Navone, Nora M

    2014-09-03

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. Copyright © 2014, American Association for the Advancement of Science.

  16. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    Directory of Open Access Journals (Sweden)

    Schilling William P

    2002-01-01

    Full Text Available Abstract Background Maitotoxin (MTX initiates cell death by sequentially activating 1 Ca2+ influx via non-selective cation channels, 2 uptake of vital dyes via formation of large pores, and 3 release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms.

  17. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    Directory of Open Access Journals (Sweden)

    Roderick J Tan

    Full Text Available Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA and endothelin receptor B (ETB. Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p. or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p., atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios. Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  18. TGFβ (Transforming Growth Factor-β) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm.

    Science.gov (United States)

    Lareyre, Fabien; Clément, Marc; Raffort, Juliette; Pohlod, Stefanie; Patel, Meghana; Esposito, Bruno; Master, Leanne; Finigan, Alison; Vandestienne, Marie; Stergiopulos, Nikolaos; Taleb, Soraya; Trachet, Bram; Mallat, Ziad

    2017-11-01

    Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFβ (transforming growth factor-β) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture. Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGFβ using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGFβ blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1β or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1β after disease initiation has no effect on AAA progression to rupture. Endogenous TGFβ activity is required for the healing of AAA. TGFβ blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets. © 2017 American Heart Association, Inc.

  19. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.

  20. The renin–angiotensin–aldosterone system blockade in patients with advanced diabetic kidney disease

    Directory of Open Access Journals (Sweden)

    Sheila Bermejo

    2018-03-01

    Full Text Available Background and objectives: Diabetic kidney disease is the leading cause of end-stage chronic kidney disease (CKD. The renin–angiotensin–aldosterone system (RAAS blockade has been shown to slow the progression of diabetic kidney disease. Our objectives were: to study the percentage of patients with diabetic kidney disease treated with RAAS blockade, to determine its renal function, safety profile and assess whether its administration is associated with increased progression of CKD after 3 years of follow-up. Materials and methods: Retrospective study. 197 diabetic kidney disease patients were included and divided into three groups according to the treatment: patients who had never received RAAS blockade (non-RAAS blockade, patients who at some point had received RAAS blockade (inconstant-RAAS blockade and patients who received RAAS blockade (constant-RAAS blockade. Clinical characteristics and analytical variables such as renal function, electrolytes, glycosylated hemoglobin and glomerular filtration rate according to CKD-EPI and MDRD formulas were assessed. We also studied their clinical course (baseline, 1 and 3 years follow-up in terms of treatment group, survival, risk factors and renal prognosis. Results: Non-RAAS blockade patients had worse renal function and older age (p < 0.05 at baseline compared to RAAS blockade patients. Patients who received RAAS blockade were not found to have greater toxicity or chronic kidney disease progression and no differences in renal prognosis were identified. Mortality was higher in non-RAAS blockade patients, older patients and patients with worse renal function (p < 0.05. In the multivariate analysis, older age and worse renal function were risk factors for mortality. Conclusions: Treatment with RAAS blockade is more common in diabetic kidney disease patients with eGFR ≥ 30 ml/min/1.73 m2. In our study, there were no differences in the evolution of renal function

  1. Recommendations on the use of deep neuromuscular blockade by anaesthesiologists and surgeons. AQUILES (Anestesia QUIrúrgica para Lograr Eficiencia y Seguridad) Consensus.

    Science.gov (United States)

    Errando-Oyonarte, C L; Moreno-Sanz, C; Vila-Caral, P; Ruiz de Adana-Belbel, J C; Vázquez-Alonso, E; Ramírez-Rodríguez, J M; Veiga-Ruiz, G; Guasch-Arévalo, E; Lora-Tamayo D'Ocón, J I

    2017-02-01

    Neuromuscular blockade enables airway management, ventilation and surgical procedures. However there is no national consensus on its routine clinical use. The objective was to establish the degree of agreement among anaesthesiologists and general surgeons on the clinical use of neuromuscular blockade in order to make recommendations to improve its use during surgical procedures. Multidisciplinary consensus study in Spain. Anaesthesiologists experts in neuromuscular blockade management (n=65) and general surgeons (n=36) were included. Delphi methodology was selected. A survey with 17 final questions developed by a dedicated scientific committee was designed. The experts answered the successive questions in two waves. The survey included questions on: type of surgery, type of patient, benefits/harm during and after surgery, impact of objective neuromuscular monitoring and use of reversal drugs, viability of a multidisciplinary and efficient approach to the whole surgical procedure, focussing on the level of neuromuscular blockade. Five recommendations were agreed: 1) deep neuromuscular blockade is very appropriate for abdominal surgery (degree of agreement 94.1%), 2) and in obese patients (76.2%); 3) deep neuromuscular blockade maintenance until end of surgery might be beneficial in terms of clinical aspects, such as as immobility or better surgical access (86.1 to 72.3%); 4) quantitative monitoring and reversal drugs availability is recommended (89.1%); finally 5) anaesthesiologists/surgeons joint protocols are recommended. Collaboration among anaesthesiologists and surgeons has enabled some general recommendations to be established on deep neuromuscular blockade use during abdominal surgery. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, M.; Czernin, J.; Sun, K. [Univ. of California, Los Angeles, CA (United States)] [and others

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  3. Brief Report: Blockade of TANK-Binding Kinase 1/IKKɛ Inhibits Mutant Stimulator of Interferon Genes (STING)-Mediated Inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Frémond, Marie-Louise; Uggenti, Carolina; Van Eyck, Lien; Melki, Isabelle; Bondet, Vincent; Kitabayashi, Naoki; Hertel, Christina; Hayday, Adrian; Neven, Bénédicte; Rose, Yoann; Duffy, Darragh; Crow, Yanick J; Rodero, Mathieu P

    2017-07-01

    Gain-of-function mutations in TMEM173, encoding the stimulator of interferon (IFN) genes (STING) protein, underlie a novel type I interferonopathy that is minimally responsive to conventional immunosuppressive therapies and associated with high frequency of childhood morbidity and mortality. STING gain-of-function causes constitutive oversecretion of IFN. This study was undertaken to determine the effects of a TANK-binding kinase 1 (TBK-1)/IKKɛ inhibitor (BX795) on secretion and signaling of IFN in primary peripheral blood mononuclear cells (PBMCs) from patients with mutations in STING. PBMCs from 4 patients with STING-associated disease were treated with BX795. The effect of BX795 on IFN pathways was assessed by Western blotting and an IFNβ reporter assay, as well as by quantification of IFNα in cell lysates, staining for STAT-1 phosphorylation, and measurement of IFN-stimulated gene (ISG) messenger RNA (mRNA) expression. Treatment of PBMCs with BX795 inhibited the phosphorylation of IFN regulatory factor 3 and IFNβ promoter activity induced in HEK 293T cells by cyclic GMP-AMP or by genetic activation of STING. In vitro exposure to BX795 inhibited IFNα production in PBMCs of patients with STING-associated disease without affecting cell survival. In addition, BX795 decreased STAT-1 phosphorylation and ISG mRNA expression independent of IFNα blockade. These findings demonstrate the effect of BX795 on reducing type I IFN production and IFN signaling in cells from patients with gain-of-function mutations in STING. A combined inhibition of TBK-1 and IKKɛ therefore holds potential for the treatment of patients carrying STING mutations, and may also be relevant in other type I interferonopathies. © 2017, American College of Rheumatology.

  4. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  5. Detecting phonon blockade with photons

    International Nuclear Information System (INIS)

    Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.

    2011-01-01

    Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.

  6. The pharmacokinetics of ropivacaine after four different techniques of brachial plexus blockade.

    NARCIS (Netherlands)

    Rettig, H.C.; Lerou, J.G.C.; Gielen, M.J.M.; Boersma, E.; Burm, A.G.L.

    2007-01-01

    Arterial plasma concentrations of ropivacaine were measured after brachial plexus blockade using four different approaches: lateral interscalene (Winnie), posterior interscalene (Pippa), axillary and vertical infraclavicular. Four groups of 10 patients were given a single 3.75 mg.kg(-1) injection of

  7. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  8. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  9. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy

    NARCIS (Netherlands)

    Surewaard, Bas G.J.; Kubes, Paul

    2017-01-01

    It is central to the field of bacterial pathogenesis to define how bacteria are killed by phagocytic cells. During phagocytosis, the microbe is localized to the phagolysosome where crucial defense mechanisms such as acidification and production of reactive oxygen species (ROS) are initiated. This

  10. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults

    DEFF Research Database (Denmark)

    Hristovska, Ana-Marija; Duch, Patricia; Allingstrup, Mikkel

    2017-01-01

    , and undesirable autonomic responses. Sugammadex is a selective relaxant-binding agent specifically developed for rapid reversal of non-depolarizing neuromuscular blockade induced by rocuronium. Its potential clinical benefits include fast and predictable reversal of any degree of block, increased patient safety......, reduced incidence of residual block on recovery, and more efficient use of healthcare resources. OBJECTIVES: The main objective of this review was to compare the efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade caused by non-depolarizing neuromuscular agents......-depolarizing neuromuscular blocking agents for an elective in-patient or day-case surgical procedure. We included all trials comparing sugammadex versus neostigmine that reported recovery times or adverse events. We included any dose of sugammadex and neostigmine and any time point of study drug administration. DATA...

  11. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis.

    Science.gov (United States)

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-11-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. © 2013 British Society for Immunology.

  12. Influence of pudendal nerve blockade on stress relaxation in the female urethra

    DEFF Research Database (Denmark)

    Thind, P; Bagi, P; Mieszczak, C

    1996-01-01

    The urethral pressure decay following a sudden and sustained dilatation corresponds to stress relaxation. Urethral stress relaxation can be described by the equation Pt = Pequ + P alpha e-t/tau alpha + P beta e-t/tau beta, where Pt is the pressure at time t, Pequ is the equilibrium pressure after...... dilatation, P alpha and P beta are pressure decay, and tau alpha and tau beta are time constants. The time constants have previously proved independent of the way the dilatation is performed. The urethral stress relaxation obtained in 10 healthy women before and after pudendal nerve blockade was analysed...... by the mathematical model and the pressure parameters and time constants determined. The fast time constant, tau beta, was reduced by the nerve blockade, whereas tau alpha was unaffected, however, both P alpha and P beta were reduced. No single stress relaxation parameter can therefore be related to the muscle...

  13. IL-2-Mediated In Vivo Expansion of Regulatory T Cells Combined with CD154–CD40 Co-Stimulation Blockade but Not CTLA-4 Ig Prolongs Allograft Survival in Naive and Sensitized Mice

    Directory of Open Access Journals (Sweden)

    Dela Golshayan

    2017-04-01

    Full Text Available In recent years, regulatory T cells (Treg-based immunotherapy has emerged as a promising strategy to promote operational tolerance after solid organ transplantation (SOT. However, a main hurdle for the therapeutic use of Treg in transplantation is their low frequency, particularly in non-lymphopenic hosts. We aimed to expand Treg directly in vivo and determine their efficacy in promoting donor-specific tolerance, using a stringent experimental model. Administration of the IL-2/JES6-1 immune complex at the time of transplantation resulted in significant expansion of donor-specific Treg, which suppressed alloreactive T cells. IL-2-mediated Treg expansion in combination with short-term CD154–CD40 co-stimulation blockade, but not CTLA-4 Ig or rapamycin, led to tolerance to MHC-mismatched skin grafts in non-lymphopenic mice, mainly by hindering alloreactive CD8+ effector T cells and the production of alloantibodies. Importantly, this treatment also allowed prolonged survival of allografts in the presence of either donor-specific or cross-reactive memory cells. However, late rejection occurred in sensitized hosts, partly mediated by activated B cells. Overall, these data illustrate the potential but also some important limitations of Treg-based therapy in clinical SOT as well as the importance of concomitant immunomodulatory strategies in particular in sensitized hosts.

  14. Anti-inflammatory liposomes have no impact on liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    Betina Norman Jepsen

    2015-12-01

    Conclusion: Low dose dexamethasone targeted to Kupffer cells does not affect histological liver cell regeneration after 70% hepatectomy in rats, but reduces the inflammatory response judged by circulating markers of inflammation.

  15. Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade

    Science.gov (United States)

    Fiandalo, Michael V.; Stocking, John J.; Pop, Elena A.; Wilton, John H.; Mantione, Krystin M.; Li, Yun; Attwood, Kristopher M.; Azabdaftari, Gissou; Wu, Yue; Watt, David S.; Wilson, Elizabeth M.; Mohler, James L.

    2018-01-01

    Androgen deprivation therapy (ADT) is palliative and prostate cancer (CaP) recurs as lethal castration-recurrent/resistant CaP (CRPC). One mechanism that provides CaP resistance to ADT is primary backdoor androgen metabolism, which uses up to four 3α-oxidoreductases to convert 5α-androstane-3α,17β-diol (DIOL) to dihydrotestosterone (DHT). The goal was to determine whether inhibition of 3α-oxidoreductase activity decreased conversion of DIOL to DHT. Protein sequence analysis showed that the four 3α-oxidoreductases have identical catalytic amino acid residues. Mass spectrometry data showed combined treatment using catalytically inactive 3α-oxidoreductase mutants and the 5α-reductase inhibitor, dutasteride, decreased DHT levels in CaP cells better than dutasteride alone. Combined blockade of frontdoor and backdoor pathways of DHT synthesis provides a therapeutic strategy to inhibit CRPC development and growth. PMID:29541409

  16. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    Science.gov (United States)

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade.

  17. Positive HER-2 protein expression in circulating prostate cells and micro-metastasis, resistant to androgen blockage but not diethylstilbestrol

    Directory of Open Access Journals (Sweden)

    Nigel P Murray

    2011-01-01

    Full Text Available Introduction : HER-2 expression in prostate cancer is associated with a worse prognosis and is suggested to play a role in androgen resistance. We present a study of HER-2 expression in circulating tumor cells and micrometastasis in bone marrow and the effect of androgen blockage or DES in the presence of HER-2 expressing cells. Patients and Methods : A multicenter study of men with prostate cancer, treated with surgery, radiotherapy, or observation, and with or without hormone therapy. Mononuclear cells were separated from blood and bone marrow aspirate by differential centrifugation, touch preps were made from bone marrow biopsy samples. Prostate cells were detected using anti-PSA monoclonal antibody and standard immunocytochemistry. Positive samples were processed using Herceptest® to determine HER-2 expression. After 1 year, patients were re-evaluated and the findings of HER-2 expression and PSA change compared with treatment. Results : Total 199 men participated, and 97 had a second evaluation 1 year later, frequency of HER-2 expression in circulating tumor cells and micrometastasis was 18% and 21%, respectively. There was no significant difference in HER-2 expression in the pretreatment group, after radical surgery or radiotherapy or with biochemical failure. Men with androgen blockade had a significantly higher expression of HER-2 (58% (P =0.001. Of the 97 men with a second evaluation, 56 were in the observation arm, 27 androgen blockade, and 14 DES. Use of androgen blockade or DES significantly reduced serum PSA levels in comparison with observation (P =0.001. However, there was a significant increase in HER-2 expression in patients with androgen blockade (P =0.05 en comparison with observation or DES treatment. No patient with observation or DES became HER-2 positive, en comparison 4/22 patients initially HER-2 negative became HER-2 positive with androgen blockade. Conclusions : The results suggest that HER-2 positive cells are

  18. Fascia iliaca compartment blockade for acute pain control in hip fracture patients

    DEFF Research Database (Denmark)

    Foss, Nicolai B; Kristensen, Billy B; Bundgaard, Morten

    2007-01-01

    Hip fracture patients are in severe pain upon arrival at the emergency department. Pain treatment is traditionally based on systemic opioids. No study has examined the effect of fascia iliaca compartment blockade (FICB) in acute hip fracture pain management within a double-blind, randomized setup....

  19. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  20. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Directory of Open Access Journals (Sweden)

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  1. Need for beta-blockade in hypertension reduced with long-term minoxidil.

    Science.gov (United States)

    Brunner, H R; Jaeger, P; Ferguson, R K; Jequier, E; Turini, G; Gavras, H

    1978-01-01

    Sequential changes in plasma renin activity and urinary aldosterone and noradrenaline were assessed in eight patients with severe hypertension after minoxidil had been added to their treatment. Doses of 2.5--27.5 (mean 12.5) mg/day reduced the mean blood pressure from 166/113 +/-6/2 mm Hg to 124/88+/-4/2 mm Hg in one week. Plasma renin activity and urinary aldosterone and noradrenaline increased twofold to threefold initially but returned to baseline values within two to three weeks and remained unchanged during a mean follow-up of 5.1 months. Beta-blocking drugs were then withdrawn slowly in six patients without adverse effects, though blood pressure and heart rate increased in three patients, who required minimal doses of beta-blockers. Plasma renin activity and urinary aldosterone and noradrenaline did not change significantly after beta-blockade had been stopped. We conclude that the need for beta-blockade is greatly reduced with long-term minoxidil treatment and that it may be unnecessary in some patients. PMID:28811

  2. Is lumbosacral plexus blockade effective and safe for surgical anesthesia in total hip replacement?

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Larsen, Jens Rolighed; Børglum, Jens

    Background and Aims Patients scheduled for total hip replacement often presents cardiovascular comorbidity, which increases perioperative risk of complications. This pilot study aimed to compare lumbosacral plexus blockade with continuous and single-dose spinal anesthesia for surgical anesthesia...... had lumbosacral plexus blockade (lumbar plexus block, sacral plexus block and fascia transversalis plane block) with ropivacaine. Group 2 had continuous spinal anesthesia with repeated bupivacaine-doses. Group 3 had single-dose spinal anesthesia with bupivacaine. Hemodynamic data were recorded during...... vascular resistance, and arterial and central venous pressures. (table 1) No patients in group 1 achieved complete surgical anesthesia due to lack of anesthesia of the cranial part of the surgical incision. Conclusions Neither lumbosacral plexus block nor continuous spinal anesthesia affected any...

  3. Nilotinib Enhances Tumor Angiogenesis and Counteracts VEGFR2 Blockade in an Orthotopic Breast Cancer Xenograft Model with Desmoplastic Response

    Directory of Open Access Journals (Sweden)

    Sara Zafarnia

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF/VEGF receptor (VEGFR-targeted therapies predominantly affect nascent, immature tumor vessels. Since platelet-derived growth factor receptor (PDGFR blockade inhibits vessel maturation and thus increases the amount of immature tumor vessels, we evaluated whether the combined PDGFR inhibition by nilotinib and VEGFR2 blockade by DC101 has synergistic therapy effects in a desmoplastic breast cancer xenograft model. In this context, besides immunohistological evaluation, molecular ultrasound imaging with BR55, the clinically used VEGFR2-targeted microbubbles, was applied to monitor VEGFR2-positive vessels noninvasively and to assess the therapy effects on tumor angiogenesis. DC101 treatment alone inhibited tumor angiogenesis, resulting in lower tumor growth and in significantly lower vessel density than in the control group after 14 days of therapy. In contrast, nilotinib inhibited vessel maturation but enhanced VEGFR2 expression, leading to markedly increased tumor volumes and a significantly higher vessel density. The combination of both drugs led to an almost similar tumor growth as in the DC101 treatment group, but VEGFR2 expression and microvessel density were higher and comparable to the controls. Further analyses revealed significantly higher levels of tumor cell–derived VEGF in nilotinib-treated tumors. In line with this, nilotinib, especially in low doses, induced an upregulation of VEGF and IL-6 mRNA in the tumor cells in vitro, thus providing an explanation for the enhanced angiogenesis observed in nilotinib-treated tumors in vivo. These findings suggest that nilotinib inhibits vessel maturation but counteracts the effects of antiangiogenic co-therapy by enhancing VEGF expression by the tumor cells and stimulating tumor angiogenesis.

  4. Ultrasonography of the adult thoracic and lumbar spine for central neuraxial blockade.

    Science.gov (United States)

    Chin, Ki Jinn; Karmakar, Manoj Kumar; Peng, Philip

    2011-06-01

    The role of ultrasound in central neuraxial blockade has been underappreciated, partly because of the relative efficacy of the landmark-guided technique and partly because of the perceived difficulty in imaging through the narrow acoustic windows produced by the bony framework of the spine. However, this also is the basis for the utility of ultrasound: an interlaminar window that permits passage of sound waves into the vertebral canal also will permit passage of a needle. In addition, ultrasound aids in identification of intervertebral levels, estimation of the depth to epidural and intrathecal spaces, and location of important landmarks, including the midline and interlaminar spaces. This can facilitate neuraxial blockade, particularly in patients with difficult surface anatomic landmarks. In this review article, the authors summarize the current literature, describe the key ultrasonographic views, and propose a systematic approach to ultrasound imaging for the performance of spinal and epidural anesthesia in the adult patient.

  5. Multibit CkNOT quantum gates via Rydberg blockade

    DEFF Research Database (Denmark)

    Isenhower, L.; Saffman, Mark; Mølmer, Klaus

    2011-01-01

    Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (CkNOT) neutral atom gate. This gate can be implemented using sequential or simult......Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (CkNOT) neutral atom gate. This gate can be implemented using sequential...... or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35....

  6. Liver inflammation during monocrotaline hepatotoxicity

    International Nuclear Information System (INIS)

    Copple, Bryan L.; Ganey, Patricia E.; Roth, Robert A.

    2003-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl 3 ) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor-α (TNF-α) are required for MCT-induced HPC injury, rats were treated with either GdCl 3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-α. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF-α are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to

  7. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    Science.gov (United States)

    ABSTRACT BODY:Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  8. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    Science.gov (United States)

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  10. The Impact of Renin-Angiotensin System Blockade on Renal Outcomes and Mortality in Pre-Dialysis Patients with Advanced Chronic Kidney Disease.

    Science.gov (United States)

    Oh, Yun Jung; Kim, Sun Moon; Shin, Byung Chul; Kim, Hyun Lee; Chung, Jong Hoon; Kim, Ae Jin; Ro, Han; Chang, Jae Hyun; Lee, Hyun Hee; Chung, Wookyung; Lee, Chungsik; Jung, Ji Yong

    2017-01-01

    Renin-angiotensin-system (RAS) blockade is thought to slow renal progression in patients with chronic kidney disease (CKD). However, it remains uncertain if the habitual use of RAS inhibitors affects renal progression and outcomes in pre-dialysis patients with advanced CKD. In this multicenter retrospective cohort study, we identified 2,076 pre-dialysis patients with advanced CKD (stage 4 or 5) from a total of 33,722 CKD patients. RAS blockade users were paired with non-users for analyses using inverse probability of treatment-weighted (IPTW) and propensity score (PS) matching. The outcomes were renal death, all-cause mortality, hospitalization for hyperkalemia, and interactive factors as composite outcomes. RAS blockade users showed an increased risk of renal death in PS-matched analysis (hazard ratio [HR], 1.381; 95% CI, 1.071-1.781; P = 0.013), which was in agreement with the results of IPTW analysis (HR, 1.298; 95% CI, 1.123-1.500; P renal outcome without improving all-cause mortality. Further studies are warranted to determine whether withholding RAS blockade may lead to better outcomes in these patients.

  11. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    Science.gov (United States)

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  12. Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma.

    Science.gov (United States)

    Zhai, Lijie; Ladomersky, Erik; Dostal, Carlos R; Lauing, Kristen L; Swoap, Kathleen; Billingham, Leah K; Gritsina, Galina; Wu, Meijing; McCusker, Robert H; Binder, David C; Wainwright, Derek A

    2017-05-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults with a median survival of 14.6months. A contributing factor to GBM aggressiveness is the intratumoral expression of the potently immunosuppressive enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). The enzymatic activity of IDO1 is associated with the conversion of tryptophan into downstream kynurenine (Kyn), which has previously been hypothesized to contribute toward the suppression of tumor immunity. Utilizing the syngeneic, immunocompetent, intracranial GL261 cell GBM model, we previously demonstrated that tumor cell, but not non-tumor cell IDO1, suppresses T cell-mediated brain tumor regression in mice. Paradoxically, we also showed that the survival advantage mediated by immune checkpoint blockade is abrogated by non-tumor cell IDO1 deficiency. Here, we have built on our past observations and confirm the maladaptive role of tumor cell IDO1 in a novel mouse GBM model. We also demonstrate that, non-tumor cells, rather than mouse GBM cells, are the dominant contributor to IDO1-mediated enzyme activity. Finally, we show the novel associations between maximally-effective immune-checkpoint blockade-mediated survival, non-tumor cell IDO1 and intra-GBM Kyn levels. These data suggest for the first time that, GBM cell-mediated immunosuppression is IDO1 enzyme independent, while the survival benefits of immune checkpoint blockade require non-tumor cell IDO1 enzyme activity. Given that current clinical inhibitors vary in their mechanism of action, in terms of targeting IDO1 enzyme activity versus enzyme-independent effects, this work suggests that choosing an appropriate IDO1 pharmacologic will maximize the effectiveness of future immune checkpoint blockade approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)

    2016-04-15

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

  14. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  15. Sugammadex rescue following prolonged rocuronium neuromuscular blockade with ‘recurarisation’ in a patient with severe renal failure

    Science.gov (United States)

    Lobaz, Steven; Sammut, Mario; Damodaran, Anand

    2013-01-01

    We describe our experience of a 71-year-old patient with severe renal failure, who exhibited an unusually prolonged rocuronium-induced neuromuscular blockade (>4 h) and apparent recurarisation, following emergency rapid sequence induction (RSI). At the end of operation, 45 min post induction, train-of-four (TOF) testing had been 4/4 prior to wake up. No respiratory effort was seen 150 min postinduction, despite further neostigmine/glycopyrrolate and repeat TOF 4/4. The patient was resedated and transferred to the intensive care unit (ICU). At 180 min postinduction, fade was evident on TOF, suggestive of rocuronium reblockade. At 285 min, the patient was extubated safely following sugammadex administration and discharged uneventfully from the ICU. An important lesson to recognise is the potential for extremely prolonged neuromuscular blockade following rocuronium in patients with severe renal failure, particularly when using the higher doses (1.2 mg/kg) required for RSI, and that TOF in such cases may not be reliable in detecting residual blockade. PMID:23396837

  16. Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade

    Directory of Open Access Journals (Sweden)

    Inna Serganova

    2017-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy in hematologic malignancies has shown remarkable responses, but the same level of success has not been observed in solid tumors. A new prostate cancer model (Myc-CaP:PSMA(+ and a second-generation anti-hPSMA human CAR T cells expressing a Click Beetle Red luciferase reporter were used to study hPSMA targeting and assess CAR T cell trafficking and persistence by bioluminescence imaging (BLI. We investigated the antitumor efficacy of human CAR T cells targeting human prostate-specific membrane antigen (hPSMA, in the presence and absence of the target antigen; first alone and then combined with a monoclonal antibody targeting the human programmed death receptor 1 (anti-hPD1 mAb. PDL-1 expression was detected in Myc-CaP murine prostate tumors growing in immune competent FVB/N and immune-deficient SCID mice. Endogenous CD3+ T cells were restricted from the centers of Myc-CaP tumor nodules growing in FVB/N mice. Following anti-programmed cell death protein 1 (PD-1 treatment, the restriction of CD3+ T cells was reversed, and a tumor-treatment response was observed. Adoptive hPSMA-CAR T cell immunotherapy was enhanced when combined with PD-1 blockade, but the treatment response was of comparatively short duration, suggesting other immune modulation mechanisms exist and restrict CAR T cell targeting, function, and persistence in hPSMA expressing Myc-CaP tumors. Interestingly, an “inverse pattern” of CAR T cell BLI intensity was observed in control and test tumors, which suggests CAR T cells undergo changes leading to a loss of signal and/or number following hPSMA-specific activation. The lower BLI signal intensity in the hPSMA test tumors (compared with controls is due in part to a decrease in T cell mitochondrial function following T cell activation, which may limit the intensity of the ATP-dependent Luciferin-luciferase bioluminescence signal.

  17. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    Science.gov (United States)

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    activation of orexin 1 receptors is necessary for these effects. Expt. 3 tested the hypothesis that novel wheel exposure activates orexin neurons. Proestrous hamsters were transferred at ZT 5 to a nearby room within the animal facility and were exposed to a new cage with a locked or unlocked novel wheel or left in their home cages. At ZT 8, the hamsters were anesthetized, blood was withdrawn, they were perfused with fixative and brains were removed for immunohistochemical localization of Fos, GnRH, and orexin. Exposure to a wheel, whether locked or unlocked, suppressed circulating LH concentrations at ZT 8, decreased the proportion of Fos-activated GnRH neurons, and increased Fos-immunoreactive orexin cells. Unlocked wheels had greater effects than locked wheels on all three endpoints. Thus in a familiar environment, exercise potentiated the effect of the novel wheel on Fos expression because a locked wheel was not a sufficient stimulus to block the LH surge. In conclusion, these studies indicate that novel wheel exposure activates orexin neurons and that blockade of orexin 1 receptors prevents novel wheel blockade of the LH surge. These findings are consistent with a role for both exercise and arousal in mediating novel wheel blockade of the LH surge. PMID:24727338

  18. CT-guided stellate ganglion blockade vs. radiofrequency neurolysis in the management of refractory type I complex regional pain syndrome of the upper limb

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, Adrian [University Hospital CHU Gabriel Montpied, Radiology Department, Clermont-Ferrand (France); Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); CHU Clermont-Ferrand, Hopital Gabriel Montpied, Clermont-Ferrand (France); Aubry, Sebastien; Kastler, Bruno [University Hospital CHU Jean Minjoz, Radiology and Interventional Pain Unit, Besancon (France); Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); Sailley, Nicolas; Michalakis, Demosthene [University Hospital CHU Jean Minjoz, Radiology and Interventional Pain Unit, Besancon (France); Siliman, Gaye [University Hospital CHU St Jacques, Clinical Investigation Center, Besancon (France); Gory, Guillaume [Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); Lajoie, Jean-Louis [University Hospital CHU Jean Minjoz, Pain evaluation and Management Unit, Besancon (France)

    2013-05-15

    To describe and evaluate the feasibility and efficacy of CT-guided radiofrequency neurolysis (RFN) vs. local blockade of the stellate ganglion in the management of chronic refractory type I complex regional pain syndrome (CRPS) of the upper limb. Sixty-seven patients were included in this retrospective study between 2000 and 2011. All suffered from chronic upper limb type I CRPS refractory to conventional pain therapies. Thirty-three patients underwent stellate ganglion blockade and 34 benefited from radiofrequency neurolysis of the stellate ganglion. CT guidance was used in both groups. The procedure was considered effective when pain relief was {>=}50 %, lasting for at least 2 years. Thirty-nine women (58.2 %) and 28 men (41.8 %) with a mean age of 49.5 years were included in the study. Univariate analysis performed on the blockade and RFN groups showed a significantly (P < 0.0001) higher success rate in the RFN group (67.6 %, 23/34) compared with the blockade group (21.2 %, 7/33) with an odds ratio of 7.76. CT-guided radiofrequency neurolysis of the stellate ganglion is a safe and successful treatment of chronic refractory type I CRPS of the upper limb. It appears to be more effective than stellate ganglion blockade. (orig.)

  19. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    Science.gov (United States)

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.

  20. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Directory of Open Access Journals (Sweden)

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  1. Israel’s Blockade of Gaza, the Mavi Marmara Incident, and Its Aftermath

    Science.gov (United States)

    2010-06-23

    Rosen , a professor of international law and former diplomat, and Maj. Gen. Amos Horen (Ret.), a former president of Technion (Israel Institute of...However, Israeli Defense Minister Ehud Barak said, after meeting the Secretary General and providing details concerning new steps to ease the blockade

  2. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  3. RECONSTRUCTION OF ATROPHIC MAXILLA BY ANTERIOR ILIAC CREST BONE GRAFTING VIA NEUROAXIAL BLOCKADE TECHNIQUE: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Erol CANSIZ

    2017-01-01

    Full Text Available Anterior iliac crest bone grafting is a well-established modality in the treatment of alveolar bone deficiencies. However, this procedure may also have considerable postoperative morbidity which is mostly related to general anesthesia. Postoperative pain-related complications can be managed by neuroaxial blockade techniques which provide adequate surgical analgesia and reduce postoperative pain. This clinical report describes the reconstruction of a severely atrophic maxilla with anterior iliac crest bone grafting using combined spinal epidural anesthesia. Neuroaxial blockade techniques may be a useful alternative to eliminate general anesthesia related challenges of anterior iliac crest bone grafting procedures.

  4. Interplay between superconductivity and Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)

    2016-07-01

    Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.

  5. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    Science.gov (United States)

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  6. Evaluation of spinal anesthesia blockade time with 0.5% hyperbaric bupivacaine, with or without sufentanil, in chronic opioid users: a randomized clinical trial.

    Science.gov (United States)

    Sadeghi, Mostafa; Yekta, Reza Atef; Azimaraghi, Omid; Barzin, Gilda; Movafegh, Ali

    2016-01-01

    The primary outcome of this study was to evaluate the effect of adding sufentanil to hyperbaric bupivacaine on duration of sensory blockade of spinal anesthesia in chronic opioid users in comparison with non-addicts. Sixty patients scheduled for orthopedic surgery under spinal anesthesia were allocated into four groups: group 1 (no history of opium use who received intrathecal hyperbaric bupivacaine along with 1mL saline as placebo); group 2 (no history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]); group 3 (positive history of opium use who received intrathecal bupivacaine along with 1mL saline as placebo) and group 4 (positive history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]). The onset time and duration of sensory and motor blockade were measured. The duration of sensory blockade in group 3 was 120±23.1min which was significantly less than other groups (G1=148±28.7, G2=144±26.4, G4=139±24.7, p=0.007). The duration of motor blockade in group 3 was 145±30.0min which was significantly less than other groups (G1=164±36.0, G2=174±26.8, G4=174±24.9, p=0.03). Addition of 5μg intrathecal sufentanil to hyperbaric bupivacaine in chronic opioid users lengthened the sensory and motor duration of blockade to be equivalent to blockade measured in non-addicts. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot

    Science.gov (United States)

    Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex

    Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.

  8. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers

    International Nuclear Information System (INIS)

    Cornell, R.P.

    1982-01-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125 I-albumin microaggregates, and 125 I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125 I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans

  9. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers.

    Science.gov (United States)

    Cornell, R P

    1982-02-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125I-albumin microaggregates, and 125I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans.

  10. Concomitant apoptosis and regeneration of liver cells as a mechanism of liver-tumor promotion by β-naphthoflavone involving TNFα-signaling due to oxidative cellular stress in rats

    International Nuclear Information System (INIS)

    Kuwata, Kazunori; Shibutani, Makoto; Hayashi, Hitomi; Shimamoto, Keisuke; Hayashi, Shim-Mo; Suzuki, Kazuhiko; Mitsumori, Kunitoshi

    2011-01-01

    β-Naphthoflavone (BNF) is a strong inducer of cytochrome P450 1A enzymes, and exerts liver tumor-promoting activity through enhancement of oxidative stress responses in rats. This study investigated the role of the tissue environment surrounding hepatocellular preneoplastic lesions in the early tumor-promotion stage by BNF, using enzymatically modified isoquercitrin (EMIQ) as an anti-oxidative chemopreventive agent. Male F344 rats were fed a diet containing BNF (0.5%) for 6 weeks, with or without EMIQ (0.2%) in the drinking water, 2 weeks after initiation with N-diethylnitrosamine, and were subjected to two-thirds partial hepatectomy 1 week after starting BNF-promotion. BNF-treatment increased concentrations of liver thiobarbituric acid-reactive substances, single liver cells expressing glutathione S-transferase placental form or heme oxygenase (HO)-1, and concomitant apoptosis and proliferation of liver cells. Transcript upregulation of anti-oxidative enzymes (Aldh1a1 and Nqo1), cell cycle-related molecules (Cdc20 and Cdkn2b) and inflammation-related molecules including proinflammatory cytokines (Ccl2, Col1a1, Il6, Nos2 and Serpine1) was also evident. Furthermore, BNF increased HO-1-expressing Kupffer cells and liver cells expressing tumor necrosis factor receptor 1 (TNFR1) and the TNFR1-associated death domain. Most of these BNF-induced fluctuations disappeared or were suppressed by EMIQ in conjunction with suppression of tumor-promotion. Tnf transcript levels with BNF were also suppressed by EMIQ. These results suggest that BNF-induced oxidative stress causes single liver cell toxicity, allowing subsequent concomitant apoptosis and regeneration involving inflammatory responses including TNFα-signaling, contributing to tumor promotion. Kupffer cells may act to protect against inflammatory stimuli induced as a result of oxidative cellular stress by BNF, causing proinflammatory cytokine level fluctuations.

  11. Myostatin deficiency but not anti-myostatin blockade induces marked proteomic changes in mouse skeletal muscle.

    Science.gov (United States)

    Salzler, Robert R; Shah, Darshit; Doré, Anthony; Bauerlein, Roy; Miloscio, Lawrence; Latres, Esther; Papadopoulos, Nicholas J; Olson, William C; MacDonald, Douglas; Duan, Xunbao

    2016-07-01

    Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Blocking junctional adhesion molecule C enhances dendritic cell migration and boosts the immune responses against Leishmania major.

    Directory of Open Access Journals (Sweden)

    Romain Ballet

    2014-12-01

    Full Text Available The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1 response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2 response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

  13. Normotensive sodium loading in conscious dogs: Regulation of renin secretion during beta receptor blockade

    DEFF Research Database (Denmark)

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren

    2009-01-01

    Cl (20 micromol/kg/min for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol/kg/d, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg/kg/h). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servo-controlled...... that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of Na...... irrespective of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or beta1...

  14. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    International Nuclear Information System (INIS)

    Lin, Xinchun; Bernloehr, Christian; Hildebrandt, Tobias; Stadler, Florian J.; Doods, Henri; Wu, Dongmei

    2016-01-01

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  15. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xinchun [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Bernloehr, Christian; Hildebrandt, Tobias [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Stadler, Florian J., E-mail: fjstadler@szu.edu.cn [Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060 (China); Doods, Henri [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Wu, Dongmei, E-mail: dongmeiwu@bellsouth.net [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Department of BIN Convergence Technology, Chonbuk National University (Korea, Republic of)

    2016-08-15

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  16. Liver and Skin Histopathology in Adults with Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B)

    Science.gov (United States)

    Thurberg, Beth L.; Wasserstein, Melissa P.; Schiano, Thomas; O’Brien, Fanny; Richards, Susan; Cox, Gerald F.; McGovern, Margaret M.

    2012-01-01

    Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder characterized by the pathologic accumulation of sphingomyelin in multiple cells types, and occurs most prominently within the liver, spleen and lungs, leading to significant clinical disease. Seventeen ASMD patients underwent a liver biopsy during baseline screening for a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B. Eleven of the 17 were enrolled in the trial and each received a single dose of rhASM and underwent a repeat liver biopsy on Day 14. Biopsies were evaluated for fibrosis, sphingomyelin accumulation and macrophage infiltration by light and electron microscopy. When present, fibrosis was periportal and pericellular, predominantly surrounding affected Kupffer cells. Two baseline biopsies exhibited frank cirrhosis. Sphingomyelin was localized to isolated Kupffer cells in mildly affected biopsies and was present in both Kupffer cells and hepatocytes in more severely affected cases. Morphometric quantification of sphingomyelin storage in liver biopsies ranged from 4–44% of the microscopic field. Skin biopsies were also performed at baseline and Day 14 in order to compare the sphingomyelin distribution in a peripheral tissue to that of liver. Sphingomyelin storage was present at lower levels in multiple cell types of the skin, including dermal fibroblasts, macrophages, vascular endothelial cells, vascular smooth muscle cells and Schwann cells. This Phase 1 trial of rhASM in adults with ASMD provided a unique opportunity for a prospective assessment of hepatic and skin pathology in this rare disease and their potential usage as pharmacodynamic biomarkers. PMID:22613999

  17. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    Science.gov (United States)

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  18. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    International Nuclear Information System (INIS)

    Mi, Shanwei; Xiang, Gang; Yuwen, Daolu; Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang; Su, Yongqian; Shen, Yan; Xu, Qiang

    2016-01-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  19. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shanwei; Xiang, Gang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Yuwen, Daolu [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Su, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Shen, Yan, E-mail: shenyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  20. Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems

    Science.gov (United States)

    Young, Jeremy T.; Boulier, Thomas; Magnan, Eric; Goldschmidt, Elizabeth A.; Wilson, Ryan M.; Rolston, Steven L.; Porto, James V.; Gorshkov, Alexey V.

    2018-02-01

    We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016), 10.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

  1. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  2. Effects of Dietary Sodium Restriction in Kidney Transplant Recipients Treated With Renin-Angiotensin-Aldosterone System Blockade: A Randomized Clinical Trial.

    Science.gov (United States)

    de Vries, Laura V; Dobrowolski, Linn C; van den Bosch, Jacqueline J O N; Riphagen, Ineke J; Krediet, C T Paul; Bemelman, Frederike J; Bakker, Stephan J L; Navis, Gerjan

    2016-06-01

    In patients with chronic kidney disease receiving renin-angiotensin-aldosterone system (RAAS) blockade, dietary sodium restriction is an often-used treatment strategy to reduce blood pressure (BP) and albuminuria. Whether these effects extend to kidney transplant recipients is unknown. We therefore studied the effects of dietary sodium restriction on BP and urinary albumin excretion (UAE) in kidney transplant recipients receiving RAAS blockade. Two-center randomized crossover trial. Stable outpatient kidney transplant recipients with creatinine clearance > 30mL/min, BP ≥120/80mmHg, receiving stable RAAS blockade therapy. 6-week regular-sodium diet (target, 150mmol/24 h) and a 6-week low-sodium diet (target, 50mmol/24 h). Main outcome parameters were systolic and diastolic BP, UAE, and estimated glomerular filtration rate (eGFR) at the end of each diet period. Dietary adherence was assessed by 24-hour urinary sodium excretion. We randomly assigned 23 kidney transplant recipients, of whom 22 (mean age, 58±8 [SD] years; 50% men; mean eGFR, 51±21mL/min/1.73m(2)) completed the study. One patient withdrew from the study because of concerns regarding orthostatic hypotension on the low-sodium diet. Sodium excretion decreased from 164±50mmol/24 h during the regular-sodium diet to 87±55mmol/24 h during the low-sodium diet (mean difference, -77 [95% CI, -110 to -44] mmol/24 h; Padherence to sodium diet was achieved in 86% of patients. In stable kidney transplant recipients receiving RAAS blockade, dietary sodium restriction effectively reduces BP without affecting eGFR. Dietary sodium restriction is relevant to BP management in kidney transplant recipients receiving RAAS blockade. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Amenorrhea secondary to a vismodegib-induced blockade of follicle-stimulating hormone-receptor activation.

    Science.gov (United States)

    Strasswimmer, John; Latimer, Benjamin; Ory, Steven

    2014-08-01

    To report a novel mechanism suggestive of early ovarian failure secondary to the anti-tumor hedgehog-pathway inhibitor vismodegib. Case report and literature review. Academic and private dermatology and fertility practices. A 34-year-old nulliparous woman with locally advanced basal cell carcinomas who became amenorrheic while receiving oral therapy with vismodegib. Physical examination and endocrine evaluation. Elevated follicle-stimulating hormone (FSH) and low estrogen in the setting of a normal anti-Müllerian hormone. FSH was elevated; estrogen was low. Preantral follicles were detected and anti-Müllerian hormone activity was normal. Menses resumed 5 weeks after cessation of therapy. Vismodegib, a first-in-class inhibitor of the hedgehog signaling pathway is indicated for advanced basal cell carcinoma and is associated with amenorrhea. The mechanism is unknown; it has some features of ovarian failure but preserves ovarian potential through blockading of FSH-receptor-dependent signal transduction. This effect appears to be rapidly reversible upon cessation of therapy. Vismodegib and related compounds may have potential for a role in intervention for gynecologic and endocrine disorders and in therapy for other issues involving FSH-dependent function. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. TNF-α blockade suppresses pericystic inflammation following anthelmintic treatment in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2017-11-01

    platelet endothelial cell adhesion molecule (PECAM-1. In contrast, transcription was only modestly decreased in the DEX pretreated pigs compared to PZQ alone, and only for TNF-α, IL-6, IFN-γ, TGF-β and Ang1. IL-10 was not affected by either ETN or DEX pretreatments. The degree of inflammation, assessed by semi-quantitative inflammatory scores, was modestly decreased in both ETN and DEX pretreated animals compared to PZQ treated pigs whereas cyst damage scores were moderately decreased only in cysts from DEX pretreated pigs. However, the proportion of cysts with EB extravasation was not significantly changed in ETN and DEX pretreated groups.Overall, TNF-α blockade using ETN treatment modulated expression of a large variety of genes that play a role in induction and control of inflammation and structural changes. In contrast the number of inflammatory cells was only moderately decreased suggesting weaker effects on cell migration into the inflammatory capsules surrounding cysts than on release of modulatory molecules. Taken together, these data suggest that TNF-α blockade may provide a viable strategy to manage post-treatment pericystic inflammation that follows antiparasitic therapy for neurocysticercosis.

  5. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    DEFF Research Database (Denmark)

    Iversen, N.K.; Frische, S.; Thomsen, Karen

    2013-01-01

    contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly...

  6. External K+ dependence of strong inward rectifier K+ channel conductance is caused not by K+ but by competitive pore blockade by external Na.

    Science.gov (United States)

    Ishihara, Keiko

    2018-06-15

    Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.

  7. GHRH excess and blockade in X-LAG syndrome.

    Science.gov (United States)

    Daly, Adrian F; Lysy, Philippe A; Desfilles, Céline; Rostomyan, Liliya; Mohamed, Amira; Caberg, Jean-Hubert; Raverot, Veronique; Castermans, Emilie; Marbaix, Etienne; Maiter, Dominique; Brunelle, Chloe; Trivellin, Giampaolo; Stratakis, Constantine A; Bours, Vincent; Raftopoulos, Christian; Beauloye, Veronique; Barlier, Anne; Beckers, Albert

    2016-03-01

    X-linked acrogigantism (X-LAG) syndrome is a newly described form of inheritable pituitary gigantism that begins in early childhood and is usually associated with markedly elevated GH and prolactin secretion by mixed pituitary adenomas/hyperplasia. Microduplications on chromosome Xq26.3 including the GPR101 gene cause X-LAG syndrome. In individual cases random GHRH levels have been elevated. We performed a series of hormonal profiles in a young female sporadic X-LAG syndrome patient and subsequently undertook in vitro studies of primary pituitary tumor culture following neurosurgical resection. The patient demonstrated consistently elevated circulating GHRH levels throughout preoperative testing, which was accompanied by marked GH and prolactin hypersecretion; GH demonstrated a paradoxical increase following TRH administration. In vitro, the pituitary cells showed baseline GH and prolactin release that was further stimulated by GHRH administration. Co-incubation with GHRH and the GHRH receptor antagonist, acetyl-(d-Arg(2))-GHRH (1-29) amide, blocked the GHRH-induced GH stimulation; the GHRH receptor antagonist alone significantly reduced GH release. Pasireotide, but not octreotide, inhibited GH secretion. A ghrelin receptor agonist and an inverse agonist led to modest, statistically significant increases and decreases in GH secretion, respectively. GHRH hypersecretion can accompany the pituitary abnormalities seen in X-LAG syndrome. These data suggest that the pathology of X-LAG syndrome may include hypothalamic dysregulation of GHRH secretion, which is in keeping with localization of GPR101 in the hypothalamus. Therapeutic blockade of GHRH secretion could represent a way to target the marked hormonal hypersecretion and overgrowth that characterizes X-LAG syndrome. © 2016 Society for Endocrinology.

  8. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    International Nuclear Information System (INIS)

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J.

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol (β-blocker) and phentolamine (α-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection

  9. THE EFFECTS OF ACUTE AND CHRONIC STRESS ON ERYTHROCYTE DYNAMIC IN COMBINATION WITH ß–ADRENERGIC RECEPTORS BLOCKADE IN RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2005-08-01

    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  10. Femoral Nerve Injury Following a Lumbar Plexus Blockade

    Directory of Open Access Journals (Sweden)

    İrfan Güngör

    2014-06-01

    Full Text Available Background: Lumbar plexus blockade (LPB combined with sciatic nerve block (SNB is frequently used for lower extremity surgery. Perioperative nerve injury is a rarely encountered complication of peripheral nerve blocks (PNB. Case Report: Here we report a 44-year-old male patient who developed a partial femoral nerve injury (FNI following a LPB which was performed before the surgery of a patellar fracture. The clinical and electroneuromyographic findings of the patient were recovered almost completely within the following six months. Conclusion: The presented case demonstrated a FNI despite the absence of any pain or paresthesia sensation, with the disappearance of motor response under 0.3 mA of neurostimulation in the experienced hands.

  11. Sugammadex to reverse neuromuscular blockade in a child with a past history of cardiac transplantation

    Directory of Open Access Journals (Sweden)

    Karen Miller

    2017-01-01

    Full Text Available Sugammadex is a novel agent for the reversal of neuromuscular blockade. The speed and efficacy of reversal with sugammadex are significantly faster than acetylcholinesterase inhibitors, such as neostigmine. Sugammadex also has a limited adverse profile when compared with acetylcholinesterase inhibitors, specifically in regard to the incidence of bradycardia. This adverse effect may be particularly relevant in the setting of a heart transplant recipient with a denervated heart. The authors present a case of an 8-year-old child, status postcardiac transplantation, who required anesthetic care for laparoscopy and lysis of intra-abdominal adhesions. Sugammadex was used to reverse neuromuscular blockade and avoid the potential adverse effects of neostigmine. The unique mechanism of action of sugammadex is discussed, previous reports of its use in this unique patient population are reviewed, and its potential benefits compared to traditional acetylcholinesterase inhibitors are presented.

  12. Sugammadex to reverse neuromuscular blockade in a child with a past history of cardiac transplantation.

    Science.gov (United States)

    Miller, Karen; Hall, Brian; Tobias, Joseph D

    2017-01-01

    Sugammadex is a novel agent for the reversal of neuromuscular blockade. The speed and efficacy of reversal with sugammadex are significantly faster than acetylcholinesterase inhibitors, such as neostigmine. Sugammadex also has a limited adverse profile when compared with acetylcholinesterase inhibitors, specifically in regard to the incidence of bradycardia. This adverse effect may be particularly relevant in the setting of a heart transplant recipient with a denervated heart. The authors present a case of an 8-year-old child, status postcardiac transplantation, who required anesthetic care for laparoscopy and lysis of intra-abdominal adhesions. Sugammadex was used to reverse neuromuscular blockade and avoid the potential adverse effects of neostigmine. The unique mechanism of action of sugammadex is discussed, previous reports of its use in this unique patient population are reviewed, and its potential benefits compared to traditional acetylcholinesterase inhibitors are presented.

  13. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, Stine; Rossing, Kasper; Hess, Georg

    2012-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) affects both the glomerulus and tubules. We aimed to investigate the effect of irbesartan on the tubular markers: urinary (u) neutrophil gelatinase associated protein (NGAL), Kidney injury molecule 1 (KIM1) and liver-fatty acid......-binding protein (LFABP)....

  14. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Science.gov (United States)

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  15. LIGHT Is critical for IL-12 production by dendritic cells, optimal CD4+ Th1 cell response, and resistance to Leishmania major.

    Science.gov (United States)

    Xu, Guilian; Liu, Dong; Okwor, Ifeoma; Wang, Yang; Korner, Heinrich; Kung, Sam K P; Fu, Yang-Xin; Uzonna, Jude E

    2007-11-15

    Although studies indicate LIGHT (lymphotoxin (LT)-like, exhibits inducible expression and competes with HSV glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes) enhances inflammation and T cell-mediated immunity, the mechanisms involved in this process remain obscure. In this study, we assessed the role of LIGHT in IL-12 production and development of CD4(+) Th cells type one (Th1) in vivo. Bone marrow-derived dendritic cells from LIGHT(-/-) mice were severely impaired in IL-12p40 production following IFN-gamma and LPS stimulation in vitro. Furthermore, blockade of LIGHT in vitro and in vivo with HVEM-Ig and LT beta receptor (LTbetaR)-Ig leads to impaired IL-12 production and defective polyclonal and Ag-specific IFN-gamma production in vivo. In an infection model, injection of HVEM-Ig or LTbetaR-Ig into the usually resistant C57BL/6 mice results in defective IL-12 and IFN-gamma production and severe susceptibility to Leishmania major that was reversed by rIL-12 treatment. This striking susceptibility to L. major in mice injected with HVEM-Ig or LTbetaR-Ig was also reproduced in LIGHT(-/-) --> RAG1(-/-) chimeric mice. In contrast, L. major-infected LTbeta(-/-) mice do not develop acute disease, suggesting that the effect of LTbetaR-Ig is not due to blockade of membrane LT (LTalpha1beta2) signaling. Collectively, our data show that LIGHT plays a critical role for optimal IL-12 production by DC and the development of IFN-gamma-producing CD4(+) Th1 cells and its blockade results in severe susceptibility to Leishmania major.

  16. A new approach to anesthesia management in myasthenia gravis: reversal of neuromuscular blockade by sugammadex.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Driessen, J.J.; Booij, L.H.D.J.

    2010-01-01

    A neuromuscular blocking drug (NMBD) induced neuromuscular blockade (NMB) in patients with myasthenia gravis usually dissipates either spontaneously or by administration of neostigmine. We administered sugammadex to a patient with myasthenia gravis to reverse a rocuronium-induced profound NMB. NMBDs

  17. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    Science.gov (United States)

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  18. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  19. Prolonged blockade of the brachial plexus for the early rehabilitation of children with posttraumatic elbow contractures

    Directory of Open Access Journals (Sweden)

    D. V. Zabolotsky

    2015-01-01

    Full Text Available Objective. Improvement of surgical treatment outcomes in children with post-traumatic elbow contractures. Materials and methods. The study is based on the diagnostic findings of 48 children with post-traumatic elbow contractures who were treated at the Turner Scientific and Research Institute for Children’s Orthopedics. All children underwent complex rehabilitation after reconstructive intra-articular surgery to work out passive motions in the elbow using ARTROMOT-E2 device. The patients of the study group started rehabilitation in the first days after reconstructive intra-articular surgery in the background of prolonged blockade of the brachial plexus. In the control group, the rehabilitation was carried out traditionally on the 6th day after surgery without regional anesthesia. The patients of the study group were supplied with Contiplex SU perinural catheters for prolonged blockade of the brachial plexus using ultrasound (Edge SonoSite and neurostimulation (Stimuplex® HNS12 before surgery. For perioperative blockade of the brachial plexus we used intermittent injection of 0.5% ropivacaine (2 mg / kg. The severity of pain at the stages of rehabilitation was assessed using 10-point grading scale (FPS-R. The range of active and passive motions in the joints was evaluated by measuring the range of motions with a fleximeter. Results. Intermittent injection of ropivacaine before rehabilitation allowed to correct post-traumatic elbow contractures in children in the first days after surgery associated with the minimum subjective pain level and stable hemodynamic parameteres, accompanied with a significant increase of the elbow motion range in comparison with the group of the patients who were not performed regional anesthesia . Conclusion. Prolonged blockade of the brachial plexus in rehabilitation treatment of children with post-traumatic contractures provides appropriate analgesic and myoneural block components from the 1st day after intra

  20. Dendritic Cells Limit Fibro-Inflammatory Injury in NASH

    Science.gov (United States)

    Henning, Justin R.; Graffeo, Christopher S.; Rehman, Adeel; Fallon, Nina C.; Zambirinis, Constantinos P.; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Saeed, Usama Bin; Rao, Raghavendra S.; Badar, Sana; Quesada, Juan P.; Acehan, Devrim; Miller, George

    2013-01-01

    Non-alcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation. We postulated that DC are important in the progression of NASH. We found that intrahepatic DC expand and mature in NASH liver and assume an activated immune-phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibro-inflammation. Our mechanistic studies support a regulatory role for DC in NASH by limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic debris. We found that DC limit CD8+ T cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Conclusion Our findings support a role for DC in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. PMID:23322710

  1. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  2. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  3. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  4. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    BACKGROUND: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an......-learning module can increase anesthetists' use of neuromuscular monitoring. TRIAL REGISTRATION: Clinicaltrials.gov NCT02925143; https://clinicaltrials.gov/ct2/show/NCT02925143 (Archived by WebCite® at http://www.webcitation.org/6s50iTV2x)....

  5. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.

    Science.gov (United States)

    Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard

    2017-08-01

    Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  7. Increased myeloperoxidase activity as an indicator of neutrophil ...

    African Journals Online (AJOL)

    Ehab

    2012-04-30

    Apr 30, 2012 ... reperfusion injury, rheumatoid arthritis, bronchial ... following up some of sepsis group neonates there was significant ..... Kupffer cells: target for liver injury treatment. ... Pharmaceutical Science Invention ISSN, Volume 2,.

  8. The effect of neuromuscular blockade on canine laparoscopic ovariectomy: A double-blinded, prospective clinical trial

    NARCIS (Netherlands)

    van Goethem, B.; van Nimwegen, S.A.; Akkerdaas, L.C.; Murrell, J.C.; Kirpensteijn, J.

    2012-01-01

    The Effect of Neuromuscular Blockade on Canine Laparoscopic Ovariectomy: A Double-Blinded, Prospective Clinical Trial Bart Van Goethem, Diplomate ECVS, Sebastiaan Alexander van Nimwegen, PhD, Ies Akkerdaas, DVM, Joanna Claire Murrell, BVSc., PhD, Diplomate ECVAA, and Jolle Kirpensteijn, PhD,

  9. Hemodynamic and tissue oxygenation responses to exercise and beta-adrenergic blockade in patients with hyperthyroidism.

    Science.gov (United States)

    Monachini, Maristela C; Lage, Silvia G; Ran, Miguel A N; Cardoso, Rita H A; Medeiros, Caio; Caramelli, Bruno; Sposito, Andrei C; Ramires, José A F

    2004-07-01

    Exercise-induced dyspnea is a frequent feature in patients with hyperthyroidism. Data from clinical studies to elucidate the origin of this symptom are lacking. In the current study, we examined the hemodynamic and oxygenation responses to exercise and beta-adrenergic blockade in patients with hyperthyroidism and their relationship with dyspnea. Hemodynamic studies were performed under resting conditions and after isotonic exercise in 15 patients with hyperthyroidism and 11 control subjects. Exercise was applied using a bicycle ergometer, with progressive loads. In the hyperthyroid group, measurements were repeated at rest and during supine exercise after administering 15 mg of intravenous metoprolol. End-diastolic pulmonary artery pressure and cardiac index were higher in the hyperthyroid group than in controls (18.6 +/- 5.3 vs. 11.2 +/- 4.9 mmHg; p = 0.02, and 6.0 +/- 1.7 vs. 2.8 +/- 0.5 l/min/m2; p = 0.0001, respectively). After exercise, there was an increase in end-diastolic pulmonary artery pressure in the hyperthyroid group (18.6 +/- 5.3 to 25.5 +/- 9.9 mmHg; p = 0.02), revealing impaired cardiocirculatory reserve. Pulmonary arteriolar resistance increased significantly in parallel with end-diastolic pulmonary artery pressure after drug administration, suggesting an inadequate cardiovascular response after beta blockade in patients with hyperthyroidism. We observed that functional left ventricular reserve is impaired in patients with hyperthyroidism, suggesting an explanation for the frequent symptom of dyspnea and impaired exercise tolerance. Moreover, we also suggest that beta-adrenergic blockade may adversely affect cardiovascular function in patients with hyperthyroidism.

  10. Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward.

    Science.gov (United States)

    Sanders, Amy Cecilia; Hussain, Ali J; Hen, René; Zhuang, Xiaoxi

    2007-11-01

    The therapeutic effects of chronic selective serotonin reuptake inhibitors (SSRIs) are well documented, yet the elementary behavioral processes that are affected by such treatment have not been fully investigated. We report here the effects of chronic fluoxetine treatment and genetic deletion of the serotonin transporter (SERT) on food reinforced behavior in three paradigms: the progressive ratio operant task, the concurrent choice operant task, and the Pavlovian-to-Instrumental transfer task. We consistently find that chronic pharmacological blockade or genetic deletion of SERT result in similar behavioral consequences: reduced operant responding for natural reward. This is in line with previous studies reporting declines in operant responding for drugs and intracranial self-stimulation with fluoxetine treatment, suggesting that the effect of SERT blockade can be generalized to different reward types. Detailed analyses of behavioral parameters indicate that this reduction in operant responding affect both goal-directed and non-goal-directed behaviors without affecting the Pavlovian cue-triggered excessive operant responding. In addition, both pharmacological and genetic manipulations reduce locomotor activity in the open field novel environment. Our data contrast with the effect of dopamine in increasing operant responding for natural reward specifically in goal-directed behaviors and in increasing Pavlovian cue-triggered excessive operant responding. Serotonin and dopamine have been proposed to serve opposing functions in motivational processes. Our data suggest that their interactions do not result in simple opponency. The fact that pharmacological blockade and genetic deletion of SERT have similar behavioral consequences reinforces the utility of the SERT null mice for investigation of the mechanisms underlying chronic SSRIs treatment.

  11. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  12. Effect of lung-protective ventilation-induced respiratory acidosis on the duration of neuromuscular blockade by rocuronium.

    Science.gov (United States)

    Taguchi, Shinya; Ono, Kazumi; Hidaka, Hidekuni; Koyama, Yusuke

    2016-12-01

    The purpose of this study was to elucidate whether lung-protective ventilation-induced respiratory acidosis increased the duration of neuromuscular blockade by rocuronium. A total of 72 patients were enrolled. After the induction of general anesthesia, rocuronium 0.6 mg/kg real body weight was administered. Tidal volume and positive end-expiratory pressure were randomly assigned as either 10 ml/kg predicted body weight and 0 cmH 2 O (group S) or 6 ml/kg and 5 cmH 2 O (group L), respectively. Respiratory rate was started at 10/min. Neuromuscular blockade was monitored by acceleromyography at the adductor pollicis with train-of-four stimulation. The time from the initial bolus injection of rocuronium to first recovery of the first twitch was defined as DUR1. Immediately, rocuronium 0.15 mg/kg was administered. The time from first recovery of the first twitch to second recovery of the first twitch was defined as DUR2. We also measured arterial pH (pH1 and pH2, respectively). Data from 66 patients (33 each in groups L and S) were eventually available. pH1 and pH2 were significantly lower in group L compared with group S [pH1: 7.308 (7.288-7.334) vs. 7.439 (7.423-7.466); p respiratory acidosis increased the duration of neuromuscular blockade by rocuronium.

  13. Differential effects of mineralocorticoid blockade on the hypothalamo-pituitary-adrenal axis in pregnant and nonpregnant ewes

    Science.gov (United States)

    Lingis, Melissa; Richards, Elaine M.

    2011-01-01

    During pregnancy, plasma ACTH and cortisol are chronically increased; this appears to occur through a reset of hypothalamo-pituitary-adrenal (HPA) activity. We have hypothesized that differences in mineralocorticoid receptor activity in pregnancy may alter feedback inhibition of the HPA axis. We tested the effect of MR antagonism in pregnant and nonpregnant ewes infused for 4 h with saline or the MR antagonist canrenoate. Pregnancy significantly increased plasma ACTH, cortisol, angiotensin II, and aldosterone. Infusion of canrenoate increased plasma ACTH, cortisol, and aldosterone in both pregnant and nonpregnant ewes; however, the temporal pattern of these responses differed between these two reproductive states. In nonpregnant ewes, plasma ACTH and cortisol transiently increased at 1 h of infusion, whereas in pregnant ewes the levels gradually increased and were significantly elevated from 2 to 4 h of infusion. MR blockade increased plasma aldosterone from 2 to 4 h in the pregnant ewes but only at 4 h in the nonpregnant ewes. In both pregnant and nonpregnant ewes, the increase in plasma aldosterone was significantly related to the timing and magnitude of the increase in plasma potassium. The results indicate a differential effect of MR activity in pregnant and nonpregnant ewes and suggest that the slow changes in ACTH, cortisol, and aldosterone are likely to be related to blockade of MR effects in the kidney rather than to effects of MR blockade in hippocampus or hypothalamus. PMID:21205934

  14. Scannographic appearance of increased colloid uptake in the left liver lobe (Case presentation)

    International Nuclear Information System (INIS)

    Tadzher, Isak S.; Josifovska, Tatjana; Popgjorcheva, Daniela

    1996-01-01

    Incidentally increased uptake of Tc-99m sulfur colloid was found in scannographic images in the whole left liver lobe in all positions (PA, AP, DL, LL). The patient, a 60-year-old woman, was three years earlier cholocystecomized and had since occasional pain in the right upper abdominal quadrant due to biliary dyskinesia. Accessory spleen tissue was seen as well in the inferior lineal pole, probably presenting Shurer's phenomenon of 'lienis in liene' thus augmenting the serendipity of the scanographic findings. Imaging of the accessory spleen with heat denaturated spherocytes - Tc-99m confirmed the lienal structure of the tissue with preserved red pulp trabecular trapping mechanism in addition to phagocytic function of lineal Kupffer cells (in white pulp). Mebrofenin-Tc-99m (IDA-agent) showed in our patient normal distribution in both liver lobes contrary to focal nodular hyperplasia and adenoma of the liver where IDA-radio- pharmaceuticals have delayed clearance due to abnormal biliary canaliculi. In our patient uptake, distribution, excretion and liver washout of mebrofenin-Tc-99m was found to be normal. This is in favor of an exclusive, solitary increase of the number of Kupffer cells confined to the whole left lobe of the liver. Increased colloid uptake in the left liver lobe is dependent on a greater number of Kupffer cells pro volume than in the right lobe. (Author)

  15. Long-term functional impairment of hemopoietic progenitor cells engineered to express the S1 catalytic subunit of pertussis toxin.

    Science.gov (United States)

    Bonig, Halvard; Rohmer, Laurence; Papayannopoulou, Thalia

    2005-06-01

    A large body of data suggests that pertussis toxin (PTX)-sensitive G protein signals in mature and immature hemopoietic cells control their migration patterns in vitro and in vivo. These effects were derived after treatment of cells or animals with PTX. To circumvent several inherent problems of PTX holotoxin treatment, we expressed the S1 catalytic activity of PTX, thus blocking Gi protein signaling, in 32D murine myeloid progenitor cells and in primary human CD34+ cells, and studied its functional consequences. S1 was expressed using viral vectors. Effects of Gi protein blockade on proliferation, migration, adhesion, and gene expression were tested in vitro. S1 expression was nontoxic for the cells; expression and function were stable long-term and not overridden by compensatory mechanisms. S1-transduced 32D cells and primary CD34+ cells migrated poorly and did not contract their cytoskeleton upon treatment with the chemoattractant stromal cell-derived factor -1 (SDF-1), similar to the phenotype induced by PTX treatment. Gene expression studies comparing S1-transduced and control 32D cells uncovered four genes, expression of which was regulated by Gi protein blockade. Of interest, although SDF-1 signaling was inhibited, comparison between SDF-1-treated and untreated cells suggests that SDF-1 stimulation does not depend on de novo gene expression in these cells. Furthermore, when injected into nonobese diabetic/severe combined immunodeficient mice, seeding of S1-expressing 32D cells to bone marrow was largely blocked. Expression of S1 is an effective approach for studying long-term functional consequences of Gi protein blockade in hemopoietic cells in vitro and in vivo.

  16. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans

    Science.gov (United States)

    Zhang, Rong; Iwasaki, Kenichi; Zuckerman, Julie H.; Behbehani, Khosrow; Crandall, Craig G.; Levine, Benjamin D.; Blomqvist, C. G. (Principal Investigator)

    2002-01-01

    Spontaneous blood pressure (BP) and R-R variability are used frequently as 'windows' into cardiovascular control mechanisms. However, the origin of these rhythmic fluctuations is not completely understood. In this study, with ganglion blockade, we evaluated the role of autonomic neural activity versus other 'non-neural' factors in the origin of BP and R-R variability in humans. Beat-to-beat BP, R-R interval and respiratory excursions were recorded in ten healthy subjects (aged 30 +/- 6 years) before and after ganglion blockade with trimethaphan. The spectral power of these variables was calculated in the very low (0.0078-0.05 Hz), low (0.05-0.15 Hz) and high (0.15-0.35 Hz) frequency ranges. The relationship between systolic BP and R-R variability was examined by cross-spectral analysis. After blockade, R-R variability was virtually abolished at all frequencies; however, respiration and high frequency BP variability remained unchanged. Very low and low frequency BP variability was reduced substantially by 84 and 69 %, respectively, but still persisted. Transfer function gain between systolic BP and R-R interval variability decreased by 92 and 88 % at low and high frequencies, respectively, while the phase changed from negative to positive values at the high frequencies. These data suggest that under supine resting conditions with spontaneous breathing: (1) R-R variability at all measured frequencies is predominantly controlled by autonomic neural activity; (2) BP variability at high frequencies (> 0.15 Hz) is mediated largely, if not exclusively, by mechanical effects of respiration on intrathoracic pressure and/or cardiac filling; (3) BP variability at very low and low frequencies (rhythmicity; and (4) the dynamic relationship between BP and R-R variability as quantified by transfer function analysis is determined predominantly by autonomic neural activity rather than other, non-neural factors.

  17. Role of the pH in state-dependent blockade of hERG currents

    Science.gov (United States)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  18. Comparative study on the effect of RES-stimulating and blockading agents on the immunological response after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K; Seto, A; Ito, Y [Kyoto Univ. (Japan). Faculty of Medicine

    1975-03-01

    The effects of carbon particles and bacterial endotoxins on immunological recovery after irradiation were compared in relation to the radioprotective effects of the agents. When mice were injected with 10 mg of carbon particles (sufficient to protect the animals from radiation-induced death) 24 hrs prior to the administration of sheep red blood cells, the recovery of their immune response to the antigen was not significantly affected. Administration of 1 mg of carbon particles caused a slight enhancement of immune response. Previous treatment of animals with endotoxin resulted in a significant suppression of the immune response regardless of irradiation, the degree of suppression depending on the dose given. These results strongly suggest that the radioprotective effect of carbon- or endotoxin-treatment is attributable to the apparent RES-blockade and to the enhancement of hemopoietic recovery rather than to the enhancement of immunological recovery after irradiation.

  19. Comparative study on the effect of RES-stimulating and blockading agents on the immunological response after irradiation

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Seto, Akira; Ito, Yohei

    1975-01-01

    The effects of carbon particles and bacterial endotoxins on immunological recovery after irradiation were compared in relation to the radioprotective effects of the agents. When mice were injected with 10 mg of carbon particles (sufficient to protect the animals from radiation-induced death) 24 hrs prior to the administration of sheep red blood cells, the recovery of their immune response to the antigen was not significantly affected. Administration of 1 mg of carbon particles caused a slight enhancement of immune response. Previous treatment of animals with endotoxin resulted in a significant suppression of the immune response regardless of irradiation, the degree of suppression depending on the dose given. These results strongly suggest that the radioprotective effect of carbon- or endotoxin-treatment is attributable to the apparent RES-blockade and to the enhancement of hemopoietic recovery rather than to the enhancement of immunological recovery after irradiation. (auth.)

  20. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2

  1. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2006-01-01

    Roč. 97, č. 7 (2006), 077201/1-077201/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant - others:EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006

  2. Investigation of uncertainty components in Coulomb blockade thermometry

    International Nuclear Information System (INIS)

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-01-01

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin

  3. Investigation of uncertainty components in Coulomb blockade thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Hahtela, O. M.; Heinonen, M.; Manninen, A. [MIKES Centre for Metrology and Accreditation, Tekniikantie 1, 02150 Espoo (Finland); Meschke, M.; Savin, A.; Pekola, J. P. [Low Temperature Laboratory, Aalto University, Tietotie 3, 02150 Espoo (Finland); Gunnarsson, D.; Prunnila, M. [VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo (Finland); Penttilä, J. S.; Roschier, L. [Aivon Oy, Tietotie 3, 02150 Espoo (Finland)

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  4. Treatment of resting tremor by beta-adrenergic blockade.

    Science.gov (United States)

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting tremor was examined in eight patients with idiopathic Parkinson's disease. With the use of a double-blind, placebo-controlled study of crossover design, patients received 80 to 320 mg of nadolol for 6 weeks while continuing their previous treatment regimen. Accelerometer readings showed a progressive reduction in tremor amplitude, but no change in tremor frequency, with increasing nadolol dosage. Maximum benefit was achieved at 240 mg, when resting tremor improved 50% (p less than 0.01). Physician ratings confirmed these findings. The results suggest that response to beta-adrenergic blockade may not be limited to postural or intention tremor and that such agents may not reliably differentiate between the tremor of Parkinson's disease and essential tremor.

  5. Effect of on-chip filter on Coulomb blockade thermometer

    International Nuclear Information System (INIS)

    Roschier, L; Penttilä, J S; Gunnarsson, D; Prunnila, M; Meschke, M; Savin, A

    2012-01-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  6. Alcohol and retinoids

    DEFF Research Database (Denmark)

    Crabb, D.W.; Pinairs, J.; Hasanadka, R.

    2001-01-01

    , M. Fang, and David W. Crabb; (2) Alcohol, vitamin A, and beta-carotene: Adverse interactions, by M. A. Leo and Charles S. Lieber; (3) Retinoic acid, hepatic stellate cells, and Kupffer cells, by Hidekazu Tsukamoto, K. Motomura, T. Miyahara, and M. Ohata; (4) Retinoid storage and metabolism in liver...

  7. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice.

    Science.gov (United States)

    Henning, Justin R; Graffeo, Christopher S; Rehman, Adeel; Fallon, Nina C; Zambirinis, Constantinos P; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Bin-Saeed, Usama; Rao, Raghavendra S; Badar, Sana; Quesada, Juan P; Acehan, Devrim; Miller, George

    2013-08-01

    Nonalcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DCs) are antigen-presenting cells with an emerging role in hepatic inflammation. We postulated that DCs are important in the progression of NASH. We found that intrahepatic DCs expand and mature in NASH liver and assume an activated immune phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibroinflammation. Our mechanistic studies support a regulatory role for DCs in NASH by limiting sterile inflammation through their role in the clearance of apoptotic cells and necrotic debris. We found that DCs limit CD8(+) T-cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Our findings support a role for DCs in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. Copyright © 2013 American Association for the Study of Liver Diseases.

  8. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  9. Negative Pressure Pulmonary Edema after Reversing Rocuronium-Induced Neuromuscular Blockade by Sugammadex

    Directory of Open Access Journals (Sweden)

    Manzo Suzuki

    2014-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a rare complication that accompanies general anesthesia, especially after extubation. We experienced a case of negative pressure pulmonary edema after tracheal extubation following reversal of rocuronium-induced neuromuscular blockade by sugammadex. In this case, the contribution of residual muscular block on the upper airway muscle as well as large inspiratory forces created by the respiratory muscle which has a low response to muscle relaxants, is suspected as the cause.

  10. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  11. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    International Nuclear Information System (INIS)

    Horton, J.W.

    1987-01-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

  12. Delicate balance among three types of T cells in concurrent regulation of tumor immunity

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T.; O’Konek, Jessica J.; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A.; Terabe, Masaki

    2013-01-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here we addressed this question for Tregs and type II NKT cells in syngeneic models of colorectal and renal cancer. In mice with both type I and type II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Treg cells as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in three ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we demonstrated that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As cancer patients often have deficient type I NKT cell function, managing this delicate balance among three T cell subsets may be critical for the success of immunotherapy of human cancer. PMID:23319803

  13. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  14. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    Science.gov (United States)

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.

  15. Combined androgen blockade in the treatment of advanced prostate cancer--an overview. The Scandinavian Prostatic Cancer Group

    DEFF Research Database (Denmark)

    Iversen, P

    1997-01-01

    The value of combined androgen blockade in the treatment of patients with advanced prostate cancer is still controversial. In this review by the Scandinavian Prostatic Cancer Group, the literature addressing the concept and its clinical use is critically reviewed....

  16. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy : a randomised clinical trial

    NARCIS (Netherlands)

    Kwakernaak, Arjan J.; Krikken, Jan A.; Binnenmars, S. Heleen; Visser, Folkert W.; Hemmelder, Marc H.; Woittiez, Arend-Jan; Groen, Henk; Laverman, Gozewijn D.; Navis, Gerjan

    Background Reduction of dietary sodium intake or diuretic treatment increases renin-angiotensin-aldosterone system (RAAS) blockade efficacy in non-diabetic nephropathy. We aimed to investigate the effect of sodium restriction and the diuretic hydrochlorothiazide, separately and in combination, added

  17. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  18. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  19. Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade

    DEFF Research Database (Denmark)

    Ablamunits, Vitaly; Henegariu, Octavian; Hansen, Jakob Bondo

    2012-01-01

    (ab')(2) fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti-IL-1ß mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than......Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1ß. We postulated that blockade of IL-1ß would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F...... arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-¿, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies...

  20. Value of the addition of Amlodipine to atenolol in patients with angina pectoris despite adequate beta blockade

    NARCIS (Netherlands)

    Dunselman, PHJM; Bouwens, LHM; Herweijer, AH; Bernink, PJLM

    1998-01-01

    Anginal patients who remain symptomatic despite optimally dosed beta blockade may also be given dihydropyridine calcium antagonists. This treatment regimen was examined in a double-blind parallel, randomized, controlled study in 147 patients with angina and positive bicycle exercise tests despite

  1. Unexpected High Sensory Blockade during Continuous Spinal Anesthesiology (CSA in an Elderly Patient

    Directory of Open Access Journals (Sweden)

    R. Ketelaars

    2012-01-01

    Full Text Available A 98-year-old woman presented for a hemiarthroplasty of the left hip. Because of her age and cardiac and pulmonary co-existing diseases we decided to provide adequate regional anesthesia by continuous spinal anesthesia. Fragmented doses of isobaric bupivacaine 0.5% were administered through a system consisting of a spinal catheter connected to an antimicrobial filter. After an uneventful surgical procedure, prior to removal of the catheter, this system was flushed with 10 mL of normal saline in order to try to prevent post-dural-puncture headache. After arrival at the postanesthesia care unit and fifteen minutes after removal of the catheter the patient suffered an unexpected high thoracic sensory blockade and hypotension requiring treatment. The continuous spinal anesthesia technique can be used in selected cases to be able to administer local anesthetic agents in a slow and controlled manner to reach the desired effect. The risk of post-dural-puncture headache using this technique in elderly patients is very low and therefore precludes the need to try to prevent it. We have described a potentially dangerous complication of flushing a bupivacaine-filled system into the spinal canal of an elderly patient resulting in an undesirable high sensory blockade.

  2. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  3. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling.

    Science.gov (United States)

    Yin, Huquan; Liang, Xiaomei; Jogasuria, Alvin; Davidson, Nicholas O; You, Min

    2015-05-01

    Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    INTRODUCTION: During laparotomy, surgeons frequently experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. This issue is particularly pertinent while closing the fascia and placing the intestines into the abdominal cavity. Establishment of a deep neuromus......INTRODUCTION: During laparotomy, surgeons frequently experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. This issue is particularly pertinent while closing the fascia and placing the intestines into the abdominal cavity. Establishment of a deep...... neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  5. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    Science.gov (United States)

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. The cellular origin of the hepatic cholesterol synthesis (1961); Origine cellulaire du cholesterol hepatique de synthese (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    If rats are sacrificed within minutes after an injection of acetate 1 - {sup 14}C the specific radioactivities of sterols precipitable with digitonine, extracted from liver parenchyma cells and from Kupffer cells are very close to each other, whatever the duration of the experiment may be. It follows that cholesterol synthesis probably occurs in both types of cells. A validation of this conclusion requires that the validity of certain assumptions be established. (authors) [French] Si l'on sacrifie des rats dans les minutes qui suivent une injection d'acetate 1- {sup 14}C, les valeurs des radioactivites specifiques des sterols, precipitables par la digitonine, extraits des cellules parenchymateuses du foie et des cellules de Kupffer sont tres proches l'une de l'autre quelle que soit la duree de l'experience. On en deduit que la synthese du cholesterol s'effectue probablement dans les deux types de cellules. Cette conclusion pour etre valable, exige que le bien fonde de certaines hypotheses soit verifie. (auteurs)

  7. The effectivity of periprostatic nerve blockade for the pain control during transrectal ultrasound guided prostate biopsy

    Directory of Open Access Journals (Sweden)

    Alper Otunctemur

    2013-06-01

    Full Text Available Aim: Transrectal ultrasound (TRUS guided prostete biopsy is accepted as a standard procedure in the diagnosis of prostate cancer. Many different protocoles are applied to reduce the pain during the process. In this study we aimed to the comparison of two procedure with intrarectal lidocaine gel and periprostatice nerve blockade respective- ly in addition to perianal intrarectal lidocaine gel on the pain control in prostate biop- sy by TRUS. Methods: 473 patients who underwent prostate biopsy guided TRUS between 2008-2012 were included in the study. 10-point linear visual analog pain scale(VAS was used to evaluate the pain during biopsy. The patients were divided into two groups according to anesthesia procedure. In Group 1, there were 159 patients who had perianal-intrarectal lidocaine gel, in Group 2 there were 314 patients who had periprostatic nerve blockade in addition to intrarectal lidocain gel. The pain about probe manipulation was aseesed by VAS-1 and during the biopsy needle entries was evalu- ated by VAS-2. Results were compared with Mann-Whitney U and Pearson chi-square test. Results: Mean VAS-2 scores in Group 1 and Group 2 were 4.54 ± 1.02 and 2.06 ± 0.79 respectively. The pain score was determined significantly lower in the Group 2 (p = 0.001. In both groups there was no significant difference in VAS-1 scores, patient’s age, prostate volume, complication rate and PSA level. Conclusion: The combination of periprostatic nerve blockade and intrarectal lidocain gel provides a more meaningful pain relief compared to group of patients undergoing intrarectal lidocaine gel.

  8. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ping-Lung Chan

    Full Text Available Although diverse functions of different toll-like receptors (TLR on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4(hiCD25(+ regulatory T cells from naïve CD4(+CD25(- T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4(hiCD25(+ regulatory T cells. It was found that induced CD4(hiCD25(+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4(hiCD25(+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4(hiCD25(+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4(hiCD25(+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4(hiCD25(+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.

  9. Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner.

    Directory of Open Access Journals (Sweden)

    Emily K Moser

    2014-08-01

    Full Text Available Influenza A virus (IAV infection in the respiratory tract triggers robust innate and adaptive immune responses, resulting in both virus clearance and lung inflammation and injury. After virus clearance, resolution of ongoing inflammation and tissue repair occur during a distinct recovery period. B7 family co-stimulatory molecules such as CD80 and CD86 have important roles in modulating T cell activity during the initiation and effector stages of the host response to IAV infection, but their potential role during recovery and resolution of inflammation is unknown. We found that antibody-mediated CD86 blockade in vivo after virus clearance led to a delay in recovery, characterized by increased numbers of lung neutrophils and inflammatory cytokines in airways and lung interstitium, but no change in conventional IAV-specific T cell responses. However, CD86 blockade led to decreased numbers of FoxP3+ regulatory T cells (Tregs, and adoptive transfer of Tregs into αCD86 treated mice rescued the effect of the blockade, supporting a role for Tregs in promoting recovery after virus clearance. Specific depletion of Tregs late after infection mimicked the CD86 blockade phenotype, confirming a role for Tregs during recovery after virus clearance. Furthermore, we identified neutrophils as a target of Treg suppression since neutrophil depletion in Treg-depleted mice reduced excess inflammatory cytokines in the airways. These results demonstrate that Tregs, in a CD86 dependent mechanism, contribute to the resolution of disease after IAV infection, in part by suppressing neutrophil-driven cytokine release into the airways.

  10. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  11. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells

    International Nuclear Information System (INIS)

    Mikami, Iwao; Koizumi, Kiyoshi; Jablons, David M; You, Liang; He, Biao; Xu, Zhidong; Batra, Sonny; Lee, Amie Y; Mazieres, Julien; Reguart, Noemi; Uematsu, Kazutsugu

    2005-01-01

    Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active

  12. Chronic blockade of angiotensin II action prevents glomerulosclerosis, but induces graft vasculopathy in experimental kidney transplantation

    NARCIS (Netherlands)

    Smit-van Oosten, A; Navis, G; Stegeman, CA; Joles, JA; Klok, PA; Kuipers, F; Tiebosch, ATMG; van Goor, H

    Long-term renin-angiotensin system blockade is beneficial in a variety of renal diseases, This study examines the long-term (34 weeks) effects of the angiotensin-converting enzyme inhibitor lisinopril and the angiotensin II receptor type I blocker L158,809 in the Fisher to Lewis rat model of chronic

  13. Minority carrier blockade in MIND model solar cells

    International Nuclear Information System (INIS)

    Ley, M.; Kuznicki, Z.T.; Ballutaud, D.

    2003-01-01

    A continuous amorphized a-Si nanostructure with sharp a-Si/c-Si heterointerfaces is inserted in a c-Si wafer by medium-energy P ion implantation followed by a thermal treatment at 500 deg. C. New photovoltaic phenomena in the mesoscopically transformed material are expected and were presented recently. The simulation of the band structure taking into account the differences between the two Si phases of the MIND (multi-interface novel device) model solar cell indicates the presence of a high barrier blocking the minority carriers, which are photogenerated in the bulk superficial region of the wafer. Consequently, the collection efficiency (i.e. collected carriers versus penetrating photons) is deteriorated in UV. Collection efficiency and EBIC measurements were used to give a theoretical and experimental analysis of the causes and the consequences of such a deterioration on the photocurrent

  14. Delicate balance among three types of T cells in concurrent regulation of tumor immunity.

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T; O'Konek, Jessica J; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A; Terabe, Masaki

    2013-03-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here, we addressed this question for regulatory T cells (Treg) and type II natural killer T (NKT) cells in syngeneic models of colorectal and renal cancer. In mice with both type I and II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Tregs as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in 3 ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we showed that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As patients with cancer often have deficient type I NKT cell function, managing this delicate balance among 3 T-cell subsets may be critical for the success of immunotherapy for human cancer. ©2012 AACR.

  15. Piroxicam-Induced hepatic and renal Histopathological changes in mice

    Directory of Open Access Journals (Sweden)

    Amany Tohamy

    2007-02-01

    Full Text Available Piroxicam is a non-steroidal anti-inflammatory drug widely used in rheumatic diseases. The aim of this study was to investigate Piroxicam-induced histopathological changes in livers and kidneys of male albino mice. Methods: Animals were classified into a control group and 4 treated groups. Piroxicam was injected intraperitoneally using 0.3 mg/kg every day for four weeks. Each week a group of mice was sacrificed. Liver and kidneys were obtained for histological and histochemical examination.Animals were classified into a control group and 4 treated groups. Piroxicam was injected intraperitoneally using 0.3 mg/kg every day for four weeks. Each week a group of mice was sacrificed. Liver and kidneys were obtained for histological and histochemical examination.Results: Liver sections appeared with inflammatory cellular infiltration, vacuolated hepatocytes, dilated sinusoids, and increased number of Kupffer cells. Kidney sections appeared with some cellular inflammations. The glomeruli were shrunk resulting in widening of the urinary space. Oedema and vacuolations were noticed in the tubular cells. There was a positive correlation between these pathological changes and the increased treatment periods. Histochemical staining revealed that glycogen and protein contents had decreased in the hepatocytes. This depletion worsened gradually in liver cells after two, three, and four weeks. Similar depletion of the glycogen content was observed in kidney tissue. However, protein content appeared to be slightly decreased in the kidney tubules and glomeruli. Incensement of coarse chromatin in the nuclei of hepatocytes, Kupffer cells and most inflammatory cells were detected by Fuelgen method. Kidney tissues appeared with a severe decrease in coarse chromatin in the nuclei.Liver sections appeared with inflammatory cellular infiltration, vacuolated hepatocytes, dilated sinusoids, and increased number of Kupffer cells. Kidney sections appeared with some cellular

  16. Muscle-type nicotinic receptor blockade by diethylamine, the hydrophilic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando eAlberola-Die

    2016-02-01

    Full Text Available Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs, this work was aimed to determine the inhibitory effects of diethylamine (DEA, a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh in a dose-dependent manner (IC50 close to 70 μM, but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3 and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and

  17. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    Science.gov (United States)

    Linedale, Richard; Schmidt, Campbell; King, Brigid T; Ganko, Annabelle G; Simpson, Fiona; Panizza, Benedict J; Leggatt, Graham R

    2017-01-01

    Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  18. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Richard Linedale

    Full Text Available Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  19. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    Science.gov (United States)

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  20. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism.

    Science.gov (United States)

    McKay, Jerome T; Haro, Marcela A; Daly, Christina A; Yammani, Rama D; Pang, Bing; Swords, W Edward; Haas, Karen M

    2017-09-15

    B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2 -/- ) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2 -/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae , but not PC-negative nontypeable Haemophilus influenzae , relative to wild-type mice. PD-L2 -/- mice had significantly increased PC-specific CD138 + splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2 -/- mice and irradiated chimeras reconstituted with PD-L2 -/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5 + T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. The effect of neuromuscular blockade on oxygen consumption in sedated and mechanically ventilated pediatric patients after cardiac surgery.

    NARCIS (Netherlands)

    Lemson, J.; Driessen, J.J.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: To measure the effect of intense neuromuscular blockade (NMB) on oxygen consumption (VO(2)) in deeply sedated and mechanically ventilated children on the first day after complex congenital cardiac surgery. DESIGN: Prospective clinical interventional study. SETTING: Pediatric intensive

  2. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes

    NARCIS (Netherlands)

    Sprangers, F.; Sauerwein, H. P.; Romijn, J. A.; van Woerkom, G. M.; Meijer, A. J.

    1998-01-01

    There is increasing evidence for the existence of intrahepatic regulation of glucose metabolism by Kupffer cell products. Nitric oxide (NO) is known to inhibit gluconeogenic flux through pyruvate carboxylase and phosphoenolpyruvate carboxykinase. However, NO may also influence glucose metabolism at

  3. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    International Nuclear Information System (INIS)

    Lotkhov, Sergey V

    2013-01-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage–current characteristics were measured at temperatures down to T ∼ 20 mK for films with sheet resistivities as high as ∼7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. (paper)

  4. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  5. In vitro study of alpha 2-adrenoceptor turnover and metabolism using the adenocarcinoma cell line HT29

    International Nuclear Information System (INIS)

    Paris, H.; Taouis, M.; Galitzky, J.

    1987-01-01

    The biosynthesis rate of the receptor was studied in postconfluent HT29 cells, when its density expressed as fmol/mg of cell membrane protein is constant, by following the recovery of the receptor binding capacity after blockade with the non-reversible alpha-adrenergic antagonist benextramine. Study of the inhibition of [ 3 H]yohimbine and [ 3 H]UK-14,304 binding showed that benextramine was a more potent antagonist at alpha 2-adrenoceptor than phenoxybenzamine. The incubation of intact HT29 cells for 30 min in the presence of 10(-5) M benextramine irreversibly blocked more than 95% of the alpha 2-adrenoceptors and totally suppressed the inhibitory effect of UK-14,304 on cyclic AMP production. The blockade appeared specific, since benextramine effects were prevented by alpha 2-adrenergic agents. Moreover, neither vasoactive intestinal polypeptide responsiveness nor other tested aspects of the regulation of the adenylate cyclase was altered by the treatment. Study of the time course of receptor recovery after irreversible blockade indicated that alpha 2-adrenoceptors reappeared in the cells with a monoexponential kinetic. The linearization of the repopulation curve obtained with the labeled antagonist [ 3 H]yohimbine allowed the determination of the rate constant for receptor degradation (k = 0.0268 +/- 0.0025 hr-1) and the rate of receptor synthesis (6.91 +/- 0.64 fmol/mg of cell membrane protein/hr) corresponding to the synthesis of about 500 receptors/cell/hr. The alpha 2-adrenoceptor half-life was 26 +/- 3 hr. Measurement of the biological effects associated to the alpha-adrenoceptor stimulation during the course of receptor recovery indicated a relationship between the number of cell receptors and the percentage of inhibition of the cyclic AMP accumulation induced by forskolin

  6. Continuous positive airway pressure breathing increases the spread of sensory blockade after low-thoracic epidural injection of lidocaine.

    NARCIS (Netherlands)

    Visser, W.A.; Gielen, M.J.M.; Giele, J.L.P.

    2006-01-01

    Factors affecting the distribution of sensory blockade after epidural injection of local anesthetics remain incompletely clarified. To evaluate if increasing intrathoracic pressure affects the spread of thoracic epidural anesthesia, we randomized 20 patients who received an epidural catheter at the

  7. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.

    Science.gov (United States)

    Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede

    2017-07-01

    Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    Science.gov (United States)

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  9. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  10. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    International Nuclear Information System (INIS)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-01-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201 Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201 Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201 Tl uptake in non-occluded endocardium. Uptake of 201 Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.) [de

  11. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  12. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NARCIS (Netherlands)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-01-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is

  13. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  14. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Science.gov (United States)

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Prostate Cancer Cell–Stromal Cell Cross-Talk via FGFR1 Mediates Antitumor Activity of Dovitinib in Bone Metastases

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G.; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W.; Efstathiou, Eleni; Li-Ning Tapia, Elsa M.; Zurita, Amado J.; Aparicio, Ana; Ravoori, Murali K.; Vazquez, Elba S.; Robinson, Dan R.; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K.; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M.; Logothetis, Christopher J.; Navone, Nora M.

    2015-01-01

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell–bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. PMID:25186177

  16. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  17. Our experience with facial nerve monitoring in vestibular schwannoma surgery under partial neuromuscular blockade.

    Science.gov (United States)

    Vega-Céliz, Jorge; Amilibia-Cabeza, Emili; Prades-Martí, José; Miró-Castillo, Nuria; Pérez-Grau, Marta; Pintanel Rius, Teresa; Roca-Ribas Serdà, Francesc

    2015-01-01

    Facial nerve monitoring is fundamental in the preservation of the facial nerve in vestibular schwannoma surgery. Our objective was to analyse the usefulness of facial nerve monitoring under partial neuromuscular blockade. This was a retrospective analysis of 69 patients operated in a tertiary hospital. We monitored 100% of the cases. In 75% of the cases, we could measure an electromyographic response after tumour resection. In 17 cases, there was an absence of electromyographic response. Fifteen of them had an anatomic lesion with loss of continuity of the facial nerve and, in 2 cases, there was a lesion with preservation of the nerve. Preoperative facial palsy (29% 7%; P=.0349), large tumour size (88 vs. 38%; P=.0276), and a non-functional audition (88 vs. 51%; P=.0276) were significantly related with an absence of electromyographic response. Facial nerve monitoring under neuromuscular blockade is possible and safe in patients without previous facial palsy. If the patient had an electromyographic response after tumour excision, they developed better facial function in the postoperative period and after a year of follow up. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  18. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study - Efficacy, safety, and pharmacokinetics

    NARCIS (Netherlands)

    Sparr, Harald J.; Vermeyen, Karel M.; Beaufort, Anton M.; Rietbergen, Henk; Proost, Johannes H.; Saldien, Vera; Velik-Salchner, Corinna; Wierda, J. Mark K. H.

    Background: Sugammadex reverses the neuromuscular blocking effects of rocuronium by chemical encapsulation. The efficacy, safety, and pharmacokinetics of sugammadex for reversal of profound rocuronium-induced neuromuscular blockade were evaluated. Methods: Ninety-eight male adult patients were

  19. Synergistic effects of low-intensity exercise conditioning and β-blockade on cardiovascular and autonomic adaptation in pre- and postmenopausal women with hypertension.

    Science.gov (United States)

    Goldie, Catherine L; Brown, C Ann; Hains, Sylvia M J; Parlow, Joel L; Birtwhistle, Richard

    2013-10-01

    The effects of a 12-week low-intensity exercise conditioning program (walking) on blood pressure (BP), heart rate (HR), rate-pressure product (RPP), and cardiac autonomic function were measured in 40 sedentary women with hypertension. Women were assigned to either an exercise group (n = 20) or a control group (n = 20), matched for β-blockade treatment. They underwent testing at the beginning and at the end of the 12-week study period in three conditions: supine rest, standing, and low-intensity steady state exercise. The exercise group participated in a 12-week, low-intensity walking program, while the control group continued with usual sedentary activity. Compared with the control group, women in the exercise group showed reductions in systolic and diastolic BP and RPP (i.e., the estimated cardiac workload). β-Blockers increased baroreflex sensitivity and lowered BP and HR in all participants; however, those in the exercise group showed the effects of both treatments: a greater reduction in HR and RPP. The combination of exercise training and β-blockade produces cardiac and autonomic adaptations that are not observed with either treatment alone, suggesting that β-blockade enhances the conditioning effects of low-intensity exercise in women with hypertension.

  20. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  1. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  2. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial.

    Directory of Open Access Journals (Sweden)

    Lisa C Lindesmith

    2015-03-01

    Full Text Available Human noroviruses (NoVs are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP candidate vaccine in human volunteers.Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4 were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated.Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential

  3. Exploiting the high-affinity phosphonate-hydroxyapatite nanoparticle interaction for delivery of radiation and drugs

    International Nuclear Information System (INIS)

    Ong, Hooi Tin; Loo, Joachim S. C.; Boey, Freddy Y. C.; Russell, Stephen J.; Ma Jan; Peng, Kah-Whye

    2008-01-01

    Hydroxyapatite is biocompatible and used in various biomedical applications. Here, we generated hydroxyapatite nanoparticles (HNPs) of various sizes (40-200 nm) and demonstrated that they can be stably loaded with drugs or radioisotopes by exploiting the high-affinity HA-(poly)phosphonate interaction. Clinically available phosphonates, clodronate, and Tc-99m-methylene-diphosphonate (Tc-99m-MDP), were efficiently loaded onto HNPs within 15 min. Biodistribution of radiolabeled HNP-MDP-Tc99m in mice was monitored non-invasively using microSPECT-CT. Imaging and dosimetry studies indicated that the HNPs, regardless of size, were quickly taken up by Kupffer cells in the liver after systemic administration into mice. Clodronate loaded onto HNPs remained biologically active and were able to result in selective depletion of Kupffer cells. This method of drug or isotope loading on HA is fast and easy as it eliminates the need for additional surface modifications of the nanoparticles

  4. NO-flurbiprofen reduces amyloid β, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade

    Science.gov (United States)

    Abdul-Hay, Samer O.; Luo, Jia; Ashghodom, Rezene T.; Thatcher, Gregory R.J.

    2009-01-01

    The nonsteroidal anti-inflamatory drug (NSAID) flurbiprofen is a selective amyloid lowering agent (SALA) which has been studied clinically in Alzheimer’s disease. HCT-1026 is an ester prodrug of flurbiprofen incorporating a nitrate carrier moiety that in vivo provides NO bioactivity and an improved safety profile. In vitro, HCT-1026 retained the COX inhibitory and NSAID activity of flurbiprofen, but at concentrations at which levels of Aβ1–42 were lowered by flurbiprofen, Aβ1–42 levels were elevated 200% by HCT-1026. Conversely, at lower concentrations, HCT-1026 behaved as a SALA with greater potency than flurbiprofen. The difference in concentration responses between flurbiprofen and HCT-1026 in vitro suggests different cellular targets; and in no case did a combination of nitrate drug with flurbiprofen provide similar actions. In vivo, HCT-1026 was observed to reverse cognitive deficits induced by scopolamine in two behavioral assays; activity that was also shown by a classical nitrate drug, but not by flurbiprofen. The ability to restore aversive memory and spatial working and reference memory after cholinergic blockade has been demonstrated by other agents that stimulate NO/cGMP signaling. These observations add positively to the preclinical profile of HCT-1026 and NO chimeras in Alzheimer’s disease. PMID:19702655

  5. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    Directory of Open Access Journals (Sweden)

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  6. The suprasacral parallel shift vs lumbar plexus blockade with ultrasound guidance in healthy volunteers - a randomised controlled trial

    DEFF Research Database (Denmark)

    Bendtsen, T F; Pedersen, E M; Haroutounian, S

    2014-01-01

    -guided blockade of the lumbar plexus. The objective was to investigate whether the suprasacral technique is equally effective for anaesthesia of the terminal lumbar plexus nerves compared with a lumbar plexus block, and more effective for anaesthesia of the lumbosacral trunk. Twenty volunteers were included...

  7. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.

    Science.gov (United States)

    Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y

    2015-11-06

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  8. Calcitriol Inhibits HCV Infection via Blockade of Activation of PPAR and Interference with Endoplasmic Reticulum-Associated Degradation

    Directory of Open Access Journals (Sweden)

    Yu-Min Lin

    2018-01-01

    Full Text Available Vitamin D has been identified as an innate anti-hepatitis C virus (HCV agent but the possible mechanisms for this issue remain unclear. Here, we clarified the mechanisms of calcitriol-mediated inhibition of HCV infection. Calcitriol partially inhibited HCV infection, nitric oxide (NO release and lipid accumulation in Huh7.5 human hepatoma cells via the activation of vitamin D receptor (VDR. When cells were pretreated with the activators of peroxisome proliferator-activated receptor (PPAR-α (Wy14643 and -γ (Ly171883, the calcitriol-mediated HCV suppression was reversed. Otherwise, three individual stimulators of PPAR-α/β/γ blocked the activation of VDR. PPAR-β (linoleic acid reversed the inhibition of NO release, whereas PPAR-γ (Ly171883 reversed the inhibitions of NO release and lipid accumulation in the presence of calcitriol. The calcitriol-mediated viral suppression, inhibition of NO release and activation of VDR were partially blocked by an inhibitor of endoplasmic reticulum-associated degradation (ERAD, kifunensine. Furthermore, calcitriol blocked the HCV-induced expressions of apolipoprotein J and 78 kDa glucose-regulated protein, which was restored by pretreatment of kifunensine. These results indicated that the calcitriol-mediated HCV suppression was associated with the activation of VDR, interference with ERAD process, as well as blockades of PPAR, lipid accumulation and nitrative stress.

  9. The effect of α1 -adrenergic blockade on post-exercise brachial artery flow-mediated dilatation at sea level and high altitude.

    Science.gov (United States)

    Tymko, Michael M; Tremblay, Joshua C; Hansen, Alex B; Howe, Connor A; Willie, Chris K; Stembridge, Mike; Green, Daniel J; Hoiland, Ryan L; Subedi, Prajan; Anholm, James D; Ainslie, Philip N

    2017-03-01

    Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α 1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α 1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α 1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α 1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α 1 -adrenergic blockade (prazosin; 0.05 mg kg  -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography

  10. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  11. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  12. Coulomb blockade threshold in finite one-dimensional arrays of small tunnel junctions

    International Nuclear Information System (INIS)

    Lien, Nguyen V.; Dat, Nguyen T.; Nam, Nguyen H.

    2001-11-01

    The current-voltage characteristics of one-dimensional tunnel junction arrays are simulated using the semiclassical and full capacitance matrix description. The threshold voltage V th of the Coulomb blockade (CB) is evaluated and analyzed in detail as a function of the gate capacitance C 0 , the array length N, the temperature, and the degree of disorder. The disordered effect is found to be essential, while the long range interaction included in the full capacitance matrix calculations, when decreasing V th , weakly affects the qualitative behaviour of the CB for the V th (C 0 ) - and the V th (N)-dependences. (author)

  13. Tissue polypeptide-specific antigen (TPS) determinations before and during intermittent maximal androgen blockade in patients with metastatic prostatic carcinoma

    NARCIS (Netherlands)

    Kil, P. J. M.; Goldschmidt, H. M. J.; Wieggers, B. J. A.; Kariakine, O. B.; Studer, U. E.; Whelan, P.; Hetherington, J.; de Reijke, Th M.; Hoekstra, J. W.; Collette, L.

    2003-01-01

    To evaluate the prognostic significance of serially measured tissue polypeptide-specific antigen (TPS) levels in patients with metastatic prostatic carcinoma treated with intermittent maximal androgen blockade (MAB). To determine its value with respect to predicting response to treatment and time to

  14. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    Science.gov (United States)

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  15. Lack of Association Between the Use of Nerve Blockade and the Risk of Postoperative Chronic Opioid Use Among Patients Undergoing Total Knee Arthroplasty: Evidence From the Marketscan Database.

    Science.gov (United States)

    Sun, Eric C; Bateman, Brian T; Memtsoudis, Stavros G; Neuman, Mark D; Mariano, Edward R; Baker, Laurence C

    2017-09-01

    Total knee arthroplasty (TKA) is associated with high rates of prolonged opioid use after surgery (10%-34%). By decreasing opioid use in the immediate postoperative period, perioperative nerve blockade has been hypothesized to decrease the risk of persistent opioid use. Using health care utilization data, we constructed a sample of 120,080 patients undergoing TKA between 2002 and 2012 and used billing data to identify the utilization of peripheral or neuraxial blockade. We then used a multivariable logistic regression to estimate the association between nerve blockade and the risk of chronic opioid use, defined as having filled ≥10 prescriptions or ≥120 days' supply for an opioid in the first postsurgical year. Our analyses were adjusted for an extensive set of potential confounding variables, including medical comorbidities, previous opioid use, and previous use of other medications. We did not find an association between nerve blockade and the risk of postsurgical chronic opioid use across any of these 3 groups: adjusted relative risk (ARR) 0.984 for patients opioid-naïve in the year before surgery (98.3% confidence interval [CI], 0.870-1.12, P = .794), ARR 1.02 for intermittent opioid users (98.3% CI, 0.948-1.09, P = .617), and ARR 0.986 (98.3% CI, 0.963-1.01, P = .257) for chronic opioid users. Similar results held for alternative measures of postsurgical opioid use. Although the use of perioperative nerve blockade for TKA may improve short-term outcomes, the analyzed types of blocks do not appear to decrease the risk of persistent opioid use in the longer term.

  16. The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches

    Science.gov (United States)

    2017-01-01

    Metastasis is a highly complicated and sequential process in which primary cancer spreads to secondary organic sites. Liver is a well-known metastatic organ from colorectal cancer. Carcinoembryonic antigen (CEA) is expressed in most gastrointestinal, breast, and lung cancer cells. Overexpression of CEA is closely associated with liver metastasis, which is the main cause of death from colorectal cancer. CEA is widely used as a diagnostic and prognostic tumor marker in cancer patients. It affects many steps of liver metastasis from colorectal cancer cells. CEA inhibits circulating cancer cell death. CEA also binds to heterogeneous nuclear RNA binding protein M4 (hnRNP M4), a Kupffer cell receptor protein, and activates Kupffer cells to secrete various cytokines that change the microenvironments for the survival of colorectal cancer cells in the liver. CEA also activates cell adhesion-related molecules. The close correlation between CEA and cancer has spurred the exploration of many CEA-targeted approaches as anticancer therapeutics. Understanding the detailed functions and mechanisms of CEA in liver metastasis will provide great opportunities for the improvement of anticancer approaches against colorectal cancers. In this report, the roles of CEA in liver metastasis and CEA-targeting anticancer modalities are reviewed. PMID:28588612

  17. Advances in sepsis-associated liver dysfunction

    OpenAIRE

    Wang, Dawei; Yin, Yimei; Yao, Yongming

    2014-01-01

    Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS), and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs), hepatocytes and liver sinusoidal endothelial cells (LSECs). In additi...

  18. Human adipose tissue blood flow during prolonged exercise, III. Effect of beta-adrenergic blockade, nicotinic acid and glucose infusion

    DEFF Research Database (Denmark)

    Bülow, J

    1981-01-01

    acid, during acute i.v. beta-adrenergic blockade by propranolol, and during continuous i.v. infusion of glucose. The most pronounced lipid mobilization and utilization during work was seen in the control experiments where ATBF rose 3-fold on average from the initial rest period to the third hour...... of work. No increase in lipolysis and no increase in ATBF were found when lipolysis was blocked by nicotinic acid (0.3 g/h). Propranolol treatment (0.15 mg/kg) reduced lipolysis and nearly abolished the increase in ATBF during exercise. Intravenous administration of glucose (about 0.25 g/min) did......Subcutaneous adipose tissue blood flow (ATBF) was measured in six male subjects by the 133Xe-washout technique during 3-4 h of exercise at a work load corresponding to an oxygen uptake of about 1.71/min. The measurements were done during control conditions, during blockade of lipolysis by nicotinic...

  19. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    Kobayashi, Toshiya; Ohmori, Toshihiro; Yanai, Minoru; Kawanishi, Gosei; Mitsuyama, Masao; Nomoto, Kikuo.

    1991-01-01

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  20. Study on the distribution of 3H-PS-K in the body and the antitumor effects

    International Nuclear Information System (INIS)

    Fujioka, Shigeru

    1979-01-01

    3 H-PS-K was orally administered to mice, and it's distribution in the body was observed by means of macro-, micro-, and ultramicro-autoradiography. Macro-autoradiograms demonstrated that the radioactivity of 3 H-PS-K was intense in the liver, kidney, and spleen and that it was distributed uniformly in each organ. However, radioactivity was not seen at the site of the transplanted carcinoma. Micro-autoradiograms demonstrated that it was confined to Kupffer stellate cells in the liver and to macrophages in the spleen. Ultramicro-autoradiograms demonstrated that it was confined to lysosome granules in Kupffer stellate cells and to macrophages. Furthermore, when observed quantitatively, radioactivity was clearly distributed densely in lysosome granules and an increase of clearly distributed densely in lysosome granules and an increase of lysosomes was seen. These results suggest that activation of cells, stimulation of the reticuloendothelial system, and the lectin-effect of PS-K (blast formation of lymphocytes) seem to activate host defence mechanisms and to result in the antitumor effect. (Nishio, M.)